1
|
Houtsaeger C, Pasmans F, Claes I, Vandenabeele S, Haesebrouck F, Lebeer S, Boyen F. The role of the microbiome in allergic dermatitis-related otitis externa: a multi-species comparative review. Front Vet Sci 2024; 11:1413684. [PMID: 39736936 PMCID: PMC11683847 DOI: 10.3389/fvets.2024.1413684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The external ear canal, characterized by species-specific structural and physiological differences, maintains a hostile environment that prevents microbial overgrowth and foreign body entry, supported by factors such as temperature, pH, humidity, and cerumen with antimicrobial properties. This review combines several studies on the healthy ear canal's structure and physiology with a critical approach to the potential existence of an ear microbiome. We use a comparative multi-species approach to explore how allergic conditions alter the ear canal microenvironment and cerumen in different mammalian species, promoting pathogen colonization. We propose a pathogenetic model in which allergic conditions disrupt the antimicrobial environment of the EEC, creating circumstances favorable for facultative pathogenic micro-organisms like Staphylococcus and Malassezia species, leading to otitis externa (OE). A better understanding of the underpinning mechanisms may lead to innovative approaches to disease mitigation.
Collapse
Affiliation(s)
- Cyrelle Houtsaeger
- Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- YUN NV, Niel, Belgium
| | - Frank Pasmans
- Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ingmar Claes
- YUN NV, Niel, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sophie Vandenabeele
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Boyen
- Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
2
|
Zhang Z, Wu W, Lin J, Li H. Unveiling the hidden causal links: skin flora and cutaneous melanoma. Front Oncol 2024; 14:1451175. [PMID: 39723372 PMCID: PMC11668787 DOI: 10.3389/fonc.2024.1451175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Objective The presence of skin flora (SF) has been identified as a significant factor in the onset and progression of cutaneous melanoma (CM). However, the vast diversity and abundance of SF present challenges to fully understanding the causal relationship between SF and CM. Methods A Two Sample Mendelian Randomization (TSMR) analysis was conducted to investigating the causal relationship between SF and CM. The Inverse-Variance Weighted (IVW) method was utilized as the primary approach to assess the causal relationship under investigation. Furthermore, an independent external cohort was employed to validate the initial findings, followed by a meta-analysis of the consolidated results. To address potential confounding factors related to the influence of SF on CM, a Multivariate Mendelian Randomization (MVMR) analysis was also conducted. Finally, a Reverse Mendelian Randomization (RMR) was conducted to further validate the causal association. Results TSMR results showed that 9 SF have a causal relationship with CM in the training cohort. Although these 9 SF weren't confirmed in the testing cohort, 4 SF remained significant in the meta-analysis after integrating results from both cohorts. MVMR analysis indicated that 3 SF were still significantly associated with CM after accounting for the interactions between different SF in the training cohort. No reverse causal relationship was identified in RMR analysis. Conclusion A total of 9 SF were identified as having a potential causal relationship with CM; however, a large randomized controlled trial is needed to verify these results.
Collapse
Affiliation(s)
- Zexin Zhang
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenfeng Wu
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiajia Lin
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongyi Li
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Romano J, Hoyer N, Krumbeck JA, Goodnight A, Brandão J, Sadar MJ. ORAL MICROBIOME OF BENNETT'S ( NOTAMACROPUS RUFOGRISEUS) AND YELLOW-FOOTED ( PETROGALE XANTHOPUS) ROCK WALLABIES AND THE IMPACT OF INTRAORAL DISEASE. J Zoo Wildl Med 2024; 55:849-857. [PMID: 39699131 DOI: 10.1638/2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 12/20/2024] Open
Abstract
Intraoral disease, including macropod progressive periodontal disease, is one of the leading causes of morbidity and mortality for wallabies under human care. Clinical signs associated with intraoral disease vary, and diagnostic findings can be difficult to interpret without intraoral radiographs or advanced imaging; therefore, this disease process can be challenging to detect in its early stages. Previous studies have investigated the effects of intraoral disease on the normal oral microbiome of various domestic species. Results from these studies demonstrate specific changes to the oral microbiome that have the potential to be used as an early indicator of intraoral disease. The purpose of this study was to evaluate the oral microbiome of 12 Bennett's wallabies (Notamacropus rufogriseus) and 3 yellow-footed rock wallabies (Petrogale xanthopus), using next-generation sequencing, to determine if intraoral disease influences the oral microbiome, as demonstrated in other species. The study identified a total of 295 bacterial species and 388 fungal species from the oral cavity of 15 wallabies. Although not statistically significant, the results of the study suggest an increase in the number of anaerobic bacterial species in sites of disease, including Actinomyces bowdenii, a species from the family Propionibacteriaceae, Peptostreptococcus canis, Fretibacterium sp., and Synergistes jonesii. It also revealed a decrease in microbial diversity in animals with active intraoral disease compared with animals without active disease, as well as at the site of disease compared with the control site. Results from this study support the findings of similar studies assessing the oral microbiome of macropods. Additional studies are warranted to better understand the normal oral microbiome of Bennett's and yellow-footed rock wallabies and the dynamic changes in the microbiome that occur in animals with intraoral disease.
Collapse
Affiliation(s)
- Jon Romano
- Cheyenne Mountain Zoo, Colorado Springs, CO 80906, USA
| | - Naomi Hoyer
- Department of Clinical Sciences, Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO 80523, USA
| | | | | | - João Brandão
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Miranda J Sadar
- Department of Clinical Sciences, Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO 80523, USA,
| |
Collapse
|
4
|
Rosenkrantz W, Ritter JM, Keating MK, Bhatnagar J, Krumbeck JA. Burkholderia gladioli deep pyoderma in a dog secondary to immunosuppressive ciclosporin and prednisone therapy. Vet Dermatol 2024; 35:563-567. [PMID: 38654610 DOI: 10.1111/vde.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
A dog presented with deep pyoderma on the paw, following treatment with ciclosporin and prednisone for immune-mediated haemolytic anaemia. Cytological evaluation, skin biopsy, aerobic culture, next-generation DNA sequencing and PCR were used to detect the first reported case of Burkholderia gladioli in a dog.
Collapse
Affiliation(s)
| | - Jana M Ritter
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | | | - Julu Bhatnagar
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | | |
Collapse
|
5
|
Whittle MJ, Castillo-Fernandez J, Amos GCA, Watson P. Metagenomic characterisation of canine skin reveals a core healthy skin microbiome. Sci Rep 2024; 14:20104. [PMID: 39209855 PMCID: PMC11362342 DOI: 10.1038/s41598-024-63999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Furthering our knowledge of the skin microbiome is essential to understand health and disease in canines. To date, studies into the canine skin microbiome have focused on 16S rRNA high throughput sequencing however, these lack the granularity of species and strain level taxonomic characterisation and their associated functions. The aim of this study was to provide a comprehensive assessment of the skin microbiome by analysing the skin microbiome of 72 healthy adult colony dogs, across four distinct skin sites and four breeds, using metagenomic sequencing. Our analysis revealed that breed and skin site are drivers of variation, and a core group of taxa and genes are present within the skin microbiome of healthy dogs, comprising 230 taxa and 1219 gene families. We identified 15 species within the core microbiome that are represented by more than one strain. The biosynthesis of secondary metabolites pathway was enriched in the core microbiome suggesting the skin microbiome may play a role in colonisation resistance and protection from invading pathogens. Additionally, we uncovered the novelty of the canine skin microbiome and show that further investigation is required to increase the suitability of current databases for metagenomic sequencing of canine skin samples.
Collapse
Affiliation(s)
- Michaella J Whittle
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK.
| | - Juan Castillo-Fernandez
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Gregory C A Amos
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Phillip Watson
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| |
Collapse
|
6
|
Granados-Casas AO, Fernández-Bravo A, Stchigel AM, Cano-Lira JF. Genomic Sequencing and Functional Analysis of the Ex-Type Strain of Malbranchea zuffiana. J Fungi (Basel) 2024; 10:600. [PMID: 39330360 PMCID: PMC11433161 DOI: 10.3390/jof10090600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Malbranchea is a genus within the order Onygenales (phylum Ascomycota) that includes predominantly saprobic cosmopolitan species. Despite its ability to produce diverse secondary metabolites, no genomic data for Malbranchea spp. are currently available in databases. Therefore, in this study, we obtained, assembled, and annotated the genomic sequence of the ex-type strain of Malbranchea zuffiana (CBS 219.58). For the genomic sequencing, we employed both the Illumina and PacBio platforms, followed by hybrid assembly using MaSuRCA. Quality assessment of the assembly was performed using QUAST and BUSCO tools. Annotation was conducted using BRAKER2, and functional annotation was completed with InterProScan. The resulting genome was of high quality, with a size of 26.46 Mbp distributed across 38 contigs and a BUSCO completion rate of 95.7%, indicating excellent contiguity and assembly completeness. A total of 8248 protein-encoding genes were predicted, with functional annotations assigned to 73.9% of them. Moreover, 82 genes displayed homology with entries in the Pathogen Host Interactions (PHI) database, while 494 genes exhibited similarity to entries in the Carbohydrate-Active Enzymes (CAZymes) database. Furthermore, 30 biosynthetic gene clusters (BGCs) were identified, suggesting significant potential for the biosynthesis of diverse secondary metabolites. Comparative functional analysis with closely related species unveiled a considerable abundance of domains linked to enzymes involved in keratin degradation, alongside a restricted number of domains associated with enzymes engaged in plant cell wall degradation in all studied species of the Onygenales. This genome-based elucidation not only enhances our comprehension of the biological characteristics of M. zuffiana but also furnishes valuable insights for subsequent investigations concerning Malbranchea species and the order Onygenales.
Collapse
Affiliation(s)
- Alan Omar Granados-Casas
- Mycology Unit, School of Medicine, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain
| | - Ana Fernández-Bravo
- Mycology Unit, School of Medicine, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain
| | - Alberto Miguel Stchigel
- Mycology Unit, School of Medicine, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain
| | - José Francisco Cano-Lira
- Mycology Unit, School of Medicine, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain
| |
Collapse
|
7
|
Older CE, Rodrigues Hoffmann A. Considerations for performing companion animal skin microbiome studies. Vet Dermatol 2024; 35:367-374. [PMID: 38654617 DOI: 10.1111/vde.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/16/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
The microbiome field has grown significantly in the past decade, and published studies have provided an overview of the microorganisms inhabiting the skin of companion animals. With the continued growth and interest in this field, concerns have been raised regarding sample collection methods, reagent contamination, data processing and environmental factors that may impair data interpretation (especially as related to low-biomass skin samples). In order to assure transparency, it is important to report all steps from sample collection to data analysis, including use of proper controls, and to make sequence data and sample metadata publicly available. Whilst interstudy variation will continue to exist, efforts to standardise methods will reduce confounding variables, and allow for reproducibility and comparability of results between studies. Companion animal microbiome studies often include clinical cases, and small sample sizes may result in lack of statistical significance within small datasets. The ability to combine results from standardised studies through meta-analyses would mitigate the limitations of these smaller studies, providing for more robust interpretation of results which could then inform clinical decisions. In this narrative review, we aim to present considerations for designing a study to evaluate the skin microbiome of companion animals, from conception to data analysis.
Collapse
Affiliation(s)
- Caitlin E Older
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Aline Rodrigues Hoffmann
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
De La Cruz KF, Townsend EC, Alex Cheong JZ, Salamzade R, Liu A, Sandstrom S, Davila E, Huang L, Xu KH, Wu SY, Meudt JJ, Shanmuganayagam D, Gibson ALF, Kalan LR. The porcine skin microbiome exhibits broad fungal antagonism. Fungal Genet Biol 2024; 173:103898. [PMID: 38815692 DOI: 10.1016/j.fgb.2024.103898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The skin and its microbiome function to protect the host from pathogen colonization and environmental stressors. In this study, using the Wisconsin Miniature Swine™ model, we characterize the porcine skin fungal and bacterial microbiomes, identify bacterial isolates displaying antifungal activity, and use whole-genome sequencing to identify biosynthetic gene clusters encoding for secondary metabolites that may be responsible for the antagonistic effects on fungi. Through this comprehensive approach of paired microbiome sequencing with culturomics, we report the discovery of novel species of Corynebacterium and Rothia. Further, this study represents the first comprehensive evaluation of the porcine skin mycobiome and the evaluation of bacterial-fungal interactions on this surface. Several diverse bacterial isolates exhibit potent antifungal properties against opportunistic fungal pathogens in vitro. Genomic analysis of inhibitory species revealed a diverse repertoire of uncharacterized biosynthetic gene clusters suggesting a reservoir of novel chemical and biological diversity. Collectively, the porcine skin microbiome represents a potential unique source of novel antifungals.
Collapse
Affiliation(s)
- Karinda F De La Cruz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Elizabeth C Townsend
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - J Z Alex Cheong
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Rauf Salamzade
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Aiping Liu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Evelin Davila
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; National Summer Undergraduate Research Project, University of Arizona, Tucson, AZ, United States
| | - Lynda Huang
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kayla H Xu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Sherrie Y Wu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jennifer J Meudt
- Department of Animal & Dairy Sciences, University of Wisconsin, Madison, WI, United States; Center for Biomedical Swine Research & Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Dhanansayan Shanmuganayagam
- Department of Animal & Dairy Sciences, University of Wisconsin, Madison, WI, United States; Center for Biomedical Swine Research & Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
9
|
Bromfield JI, Zaugg J, Straw RC, Cathie J, Krueger A, Sinha D, Chandra J, Hugenholtz P, Frazer IH. Characterization of the skin microbiome in normal and cutaneous squamous cell carcinoma affected cats and dogs. mSphere 2024; 9:e0055523. [PMID: 38530017 PMCID: PMC11036808 DOI: 10.1128/msphere.00555-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/03/2024] [Indexed: 03/27/2024] Open
Abstract
Human cutaneous squamous cell carcinomas (SCCs) and actinic keratoses (AK) display microbial dysbiosis with an enrichment of staphylococcal species, which have been implicated in AK and SCC progression. SCCs are common in both felines and canines and are often diagnosed at late stages leading to high disease morbidity and mortality rates. Although recent studies support the involvement of the skin microbiome in AK and SCC progression in humans, there is no knowledge of this in companion animals. Here, we provide microbiome data for SCC in cats and dogs using culture-independent molecular profiling and show a significant decrease in microbial alpha diversity on SCC lesions compared to normal skin (P ≤ 0.05). Similar to human skin cancer, SCC samples had an elevated abundance of staphylococci relative to normal skin-50% (6/12) had >50% staphylococci, as did 16% (4/25) of perilesional samples. Analysis of Staphylococcus at the species level revealed an enrichment of the pathogenic species Staphylococcus felis in cat SCC samples, a higher prevalence of Staphylococcus pseudintermedius in dogs, and a higher abundance of Staphylococcus aureus compared to normal skin in both companion animals. Additionally, a comparison of previously published human SCC and perilesional samples against the present pet samples revealed that Staphylococcus was the most prevalent genera across human and companion animals for both sample types. Similarities between the microbial profile of human and cat/dog SCC lesions should facilitate future skin cancer research. IMPORTANCE The progression of precancerous actinic keratosis lesions (AK) to cutaneous squamous cell carcinoma (SCC) is poorly understood in humans and companion animals, despite causing a significant burden of disease. Recent studies have revealed that the microbiota may play a significant role in disease progression. Staphylococcus aureus has been found in high abundance on AK and SCC lesions, where it secretes DNA-damaging toxins, which could potentiate tumorigenesis. Currently, a suitable animal model to investigate this relationship is lacking. Thus, we examined the microbiome of cutaneous SCC in pets, revealing similarities to humans, with increased staphylococci and reduced commensals on SCC lesions and peri-lesional skin compared to normal skin. Two genera that were in abundance in SCC samples have also been found in human oral SCC lesions. These findings suggest the potential suitability of pets as a model for studying microbiome-related skin cancer progression.
Collapse
Affiliation(s)
- Jacoba I. Bromfield
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Julian Zaugg
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, Queensland, Australia
| | - Rodney C. Straw
- Brisbane Veterinary Specialist Centre and the Australian Animal Cancer Foundation, Albany Creek, Queensland, Australia
| | - Julia Cathie
- Brisbane Veterinary Specialist Centre and the Australian Animal Cancer Foundation, Albany Creek, Queensland, Australia
| | - Annika Krueger
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Debottam Sinha
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Janin Chandra
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, Queensland, Australia
| | - Ian H. Frazer
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
10
|
Santoro D, Saridomichelakis M, Eisenschenk M, Tamamoto-Mochizuki C, Hensel P, Pucheu-Haston C. Update on the skin barrier, cutaneous microbiome and host defence peptides in canine atopic dermatitis. Vet Dermatol 2024; 35:5-14. [PMID: 37990608 DOI: 10.1111/vde.13215] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Canine atopic dermatitis (AD) is a complex inflammatory skin disease associated with cutaneous microbiome, immunological and skin barrier alterations. This review summarises the current evidence on skin barrier defects and on cutaneous microbiome dysfunction in canine AD. OBJECTIVE To this aim, online citation databases, abstracts and proceedings from international meetings on skin barrier and cutaneous microbiome published between 2015 and 2023 were reviewed. RESULTS Since the last update on the pathogenesis of canine AD, published by the International Committee on Allergic Diseases of Animals in 2015, 49 articles have been published on skin barrier function, cutaneous/aural innate immunity and the cutaneous/aural microbiome in atopic dogs. Skin barrier dysfunction and cutaneous microbial dysbiosis are essential players in the pathogenesis of canine AD. It is still unclear if such alterations are primary or secondary to cutaneous inflammation, although some evidence supports their primary involvement in the pathogenesis of canine AD. CONCLUSION AND CLINICAL RELEVANCE Although many studies have been published since 2015, the understanding of the cutaneous host-microbe interaction is still unclear, as is the role that cutaneous dysbiosis plays in the development and/or worsening of canine AD. More studies are needed aiming to design new therapeutic approaches to restore the skin barrier, to increase and optimise the cutaneous natural defences, and to rebalance the cutaneous microbiome.
Collapse
Affiliation(s)
- Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | - Chie Tamamoto-Mochizuki
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Cherie Pucheu-Haston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
11
|
Secker B, Shaw S, Atterbury RJ. Pseudomonas spp. in Canine Otitis Externa. Microorganisms 2023; 11:2650. [PMID: 38004662 PMCID: PMC10673570 DOI: 10.3390/microorganisms11112650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Canine otitis externa (OE) is a commonly diagnosed condition seen in veterinary practice worldwide. In this review, we discuss the mechanisms of the disease, with a particular focus on the biological characteristics of Pseudomonas aeruginosa and the impact that antibiotic resistance has on successful recovery from OE. We also consider potential alternatives to antimicrobial chemotherapy for the treatment of recalcitrant infections. P. aeruginosa is not a typical constituent of the canine ear microbiota, but is frequently isolated from cases of chronic OE, and the nature of this pathogen often makes treatment difficult. Biofilm formation is identified in 40-95% of P. aeruginosa from cases of OE and intrinsic and acquired antibiotic resistance, especially resistance to clinically important antibiotics, highlights the need for alternative treatments. The role of other virulence factors in OE remains relatively unexplored and further work is needed. The studies described in this work highlight several potential alternative treatments, including the use of bacteriophages. This review provides a summary of the aetiology of OE with particular reference to the dysbiosis that leads to colonisation by P. aeruginosa and highlights the need for novel treatments for the future management of P. aeruginosa otitis.
Collapse
Affiliation(s)
- Bailey Secker
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK; (B.S.); (S.S.)
- School of Biosciences, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Stephen Shaw
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK; (B.S.); (S.S.)
| | - Robert J. Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK; (B.S.); (S.S.)
| |
Collapse
|
12
|
Shaikh N, Lee S, Krumbeck JA, Kurs-Lasky M. Support for the Use of a New Cutoff to Define a Positive Urine Culture in Young Children. Pediatrics 2023; 152:e2023061931. [PMID: 37691613 PMCID: PMC10914346 DOI: 10.1542/peds.2023-061931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Conventional urine culture selects for a narrow range of organisms that grow well in aerobic conditions. In contrast, examination of bacterial gene sequences in the urine provides a relatively unbiased evaluation of the organisms present. Thus, by using 16S ribosomal ribonucleic acid (rRNA) gene amplicon sequencing as the reference standard, we now have the ability to assess the accuracy of urine culture in diagnosing urinary tract infection (UTI). METHODS We enrolled febrile children 1 month to 3 years of age that underwent bladder catheterization for suspected UTI. Using 16S rRNA gene amplicon sequencing as the reference standard, we calculated the accuracy of urine culture at various cutoffs (10 000, 50 000, and 100 000 colony forming units per milliliter). Children with ≥80% relative abundance of any organism on 16S rRNA gene amplicon sequencing with elevated urinary markers of inflammation were defined as having a UTI. RESULTS When using a cutoff of 10 000 CFU/mL, the sensitivity and specificity of urine culture were 98% (95% confidence interval [CI]: 93%-100%) and 99% (95% CI: 97%-100%), respectively. Using a cutoff of 50 000 colony forming units per mL decreased sensitivity to 80% (95% CI: 68%-93%) without changing the specificity. Using a cutoff of 100 000 further decreased sensitivity to 70% (95% CI: 55%-84%). CONCLUSIONS Conventional culture remains an accurate method of diagnosing UTIs in young children; however, these data suggest that a cutoff of 10 000 colony forming units per mL provides the optimal balance between sensitivity and specificity for children undergoing bladder catheterization.
Collapse
Affiliation(s)
- Nader Shaikh
- University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh of UPMC, Division of General Academic Pediatrics, Pittsburgh, Pennsylvania
| | - Sojin Lee
- University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh of UPMC, Division of General Academic Pediatrics, Pittsburgh, Pennsylvania
| | | | - Marcia Kurs-Lasky
- University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh of UPMC, Division of General Academic Pediatrics, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Nye AK, Rogovskyy A, Lazarus MA, Amore R, Mankin KMT. Effectiveness of chlorhexidine diacetate and povidone-iodine in antiseptic preparation of the canine external ear canal prior to total ear canal ablation with bulla osteotomy procedure: A preliminary study. Vet Med Sci 2023; 9:1998-2005. [PMID: 37418348 PMCID: PMC10508515 DOI: 10.1002/vms3.1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/04/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
OBJECTIVE This article is a preliminary study to compare the ability of 0.05% chlorhexidine diacetate (CD) and 1% povidone-iodine (PI) solutions to reduce bacterial contamination on the canine external ear canal during initial patient preparation and comparison of the incidence of immediate tissue reactions. STUDY DESIGN The study is a multi-institutional, randomised, clinical prospective study. ANIMALS OR SAMPLE POPULATION Dogs (n = 19) undergoing total ear canal ablation with bulla osteotomy (TECABO). METHODS The external ear of each dog was cleaned with the assigned antiseptic solution. Culture of the ear was performed by standard techniques to semi-quantitatively evaluate bacterial growth and to identify bacterial organisms pre- and post-antiseptic use. RESULTS Both antiseptic groups showed a significant reduction in bacterial growth score (BGS) between pre- and post-antiseptic use (CD p = 0.009, PI p = 0.005). There was no difference in the reduction of BGS between CD and PI solutions (p = 0.53). Minor adverse skin reactions occurred in 25% of cases. There was no significant difference in the occurrence of adverse skin reactions between antiseptics (p = 0.63). CONCLUSION CD and PI were similarly able to decrease the number of bacteria on the external ear following initial preparation. No difference in the incidence of adverse tissue reactions was found. CLINICAL SIGNIFICANCE Properly diluted aqueous formulations of either antiseptic may be used for safe preparation limited to the external ear canal of dogs. Additional studies evaluating outcomes such as duration of bacterial inhibition and incidence of surgical site infections are needed to fully elucidate differences between CD and PI antiseptics prior to TECABO.
Collapse
Affiliation(s)
- Alicia K. Nye
- Department of Small Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationTexasUSA
| | - Artem Rogovskyy
- Department of Veterinary PathobiologyCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationTexasUSA
| | | | - Riley Amore
- Dallas Veterinary Surgical CenterDallasTexasUSA
| | - Kelley M. Thieman Mankin
- Department of Small Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
14
|
Coffey EL, Gomez AM, Ericsson AC, Burton EN, Granick JL, Lulich JP, Furrow E. The impact of urine collection method on canine urinary microbiota detection: a cross-sectional study. BMC Microbiol 2023; 23:101. [PMID: 37055748 PMCID: PMC10100081 DOI: 10.1186/s12866-023-02815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND The urinary tract harbors unique microbial communities that play important roles in urogenital health and disease. Dogs naturally suffer from several of the same urological disorders as humans (e.g., urinary tract infections, neoplasia, urolithiasis) and represent a valuable translational model for studying the role of urinary microbiota in various disease states. Urine collection technique represents a critical component of urinary microbiota research study design. However, the impact of collection method on the characterization of the canine urinary microbiota remains unknown. Therefore, the objective of this study was to determine whether urine collection technique alters the microbial populations detected in canine urine samples. Urine was collected from asymptomatic dogs by both cystocentesis and midstream voiding. Microbial DNA was isolated from each sample and submitted for amplicon sequencing of the V4 region of the bacterial 16 S rRNA gene, followed by analyses to compare microbial diversity and composition between urine collection techniques. RESULTS Samples collected via midstream voiding exhibited significantly higher sequence read counts (P = .036) and observed richness (P = .0024) than cystocentesis urine. Bray Curtis and Unweighted UniFrac measures of beta diversity showed distinct differences in microbial composition by collection method (P = .0050, R2 = 0.06 and P = .010, R2 = 0.07, respectively). Seven taxa were identified as differentially abundant between groups. Pasteurellaceae, Haemophilus, Friedmanniella, two variants of Streptococcus, and Fusobacterium were over-represented in voided urine, while a greater abundance of Burkholderia-Caballeronia-Paraburkholderia characterized cystocentesis samples. Analyses were performed at five thresholds for minimum sequence depth and using three data normalization strategies to validate results; patterns of alpha and beta diversity remained consistent regardless of minimum read count requirements or normalization method. CONCLUSION Microbial composition differs in canine urine samples collected via cystocentesis as compared to those collected via midstream voiding. Future researchers should select a single urine collection method based on the biological question of interest when designing canine urinary microbiota studies. Additionally, the authors suggest caution when interpreting results across studies that did not utilize identical urine collection methods.
Collapse
Affiliation(s)
- Emily L. Coffey
- University of Minnesota, 1352 Boyd Avenue C339 Veterinary Medical Center, 55108 Saint Paul, MN USA
| | - Andres M. Gomez
- University of Minnesota, 1352 Boyd Avenue C339 Veterinary Medical Center, 55108 Saint Paul, MN USA
| | - Aaron C. Ericsson
- University of Missouri, 4011 Discovery Drive S123B, 65201 Columbia, MO USA
| | - Erin N. Burton
- University of Minnesota, 1352 Boyd Avenue C339 Veterinary Medical Center, 55108 Saint Paul, MN USA
| | - Jennifer L. Granick
- University of Minnesota, 1352 Boyd Avenue C339 Veterinary Medical Center, 55108 Saint Paul, MN USA
| | - Jody P. Lulich
- University of Minnesota, 1352 Boyd Avenue C339 Veterinary Medical Center, 55108 Saint Paul, MN USA
| | - Eva Furrow
- University of Minnesota, 1352 Boyd Avenue C339 Veterinary Medical Center, 55108 Saint Paul, MN USA
| |
Collapse
|
15
|
Mueller RS, Baumann KN, Boehm T, Dörfelt S, Kasper B, Udraite-Vovk L. Evaluation of hypochlorous acid as an ear flush in dogs with chronic otitis externa. Vet Dermatol 2023; 34:134-141. [PMID: 36517454 DOI: 10.1111/vde.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/17/2022] [Accepted: 09/03/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic otitis externa (OE) in dogs frequently requires anaesthetised ear flushing. OBJECTIVES To evaluate hypochlorous acid as an ear flushing and antimicrobial agent in dogs with chronic OE. ANIMALS Twenty dogs with chronic OE caused by the same organisms bilaterally. MATERIALS AND METHODS One ear was flushed under anaesthesia with hypochlorous acid, the other with saline solution. Subsequently, the ear flushed with hypochlorous acid was cleaned with the same solution twice daily for 2 weeks, the other ear with a commercial ear cleaner. An ear medication containing miconazole, polymyxin B and prednisolone was used once daily in both ears. Clinical scores were determined before the flush. Ear cytological results were obtained, a hearing test was conducted before and after the ear flush, and a culture was taken directly after flushing. Ears were evaluated after 2 weeks of therapy. RESULTS Yeast was present in the ears of 11, cocci in one and a mixed infection in eight dogs. Five ears were negative on culture after flushing with hypochlorous acid, one after the saline flush. Clinical and cytological scores decreased significantly with both solutions after 2 weeks of treatment. There was no difference between treatments in any of the scores at any time point between treatments and in the results of the hearing test before and after the flushing procedure. Adverse effects were not seen. CONCLUSIONS AND CLINICAL RELEVANCE Hypochlorous acid is a suitable cleaning solution for canine OE.
Collapse
Affiliation(s)
- Ralf S Mueller
- Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Katja N Baumann
- Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Teresa Boehm
- Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Stefanie Dörfelt
- Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Bettina Kasper
- Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | | |
Collapse
|
16
|
Munson E, Lawhon SD, Burbick CR, Zapp A, Villaflor M, Thelen E. An Update on Novel Taxa and Revised Taxonomic Status of Bacteria Isolated from Domestic Animals Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0028122. [PMID: 36533907 PMCID: PMC9945509 DOI: 10.1128/jcm.00281-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Novel bacterial taxonomy and nomenclature revisions can have significant impacts on clinical practice, disease epidemiology, and veterinary microbiology laboratory operations. Expansion of research on the microbiota of humans, animals, and insects has significant potential impacts on the taxonomy of organisms of clinical interest. Implications of taxonomic changes may be especially important when considering zoonotic diseases. Here, we address novel taxonomy and nomenclature revisions of veterinary significance. Noteworthy discussion centers around descriptions of novel mastitis pathogens in Streptococcaceae, Staphylococcaceae, and Actinomycetaceae; bovine reproductive tract pathogens in Corynebacteriaceae; novel members of Mannheimia spp., Leptospira spp., and Mycobacterium spp.; the transfer of Ochrobactrum spp. to Brucella spp.; and revisions to the genus Mycoplasma.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
17
|
Rojas-Gätjens D, Avey-Arroyo J, Chaverri P, Rojas-Jimenez K, Chavarría M. Differences in fungal communities in the fur of two- and three-toed sloths revealed by ITS metabarcoding. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36848210 DOI: 10.1099/mic.0.001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Sloths have dense fur on which insects, algae, bacteria and fungi coexist. Previous studies using cultivation-dependent methods and 18S rRNA sequencing revealed that the fungal communities in their furs comprise members of the phyla Ascomycota and Basidiomycota. In this note, we increase the resolution and knowledge of the mycobiome inhabiting the fur of the two- (Choloepus hoffmanni) and three-toed (Bradypus variegatus) sloths. Targeted amplicon metagenomic analysis of ITS2 nrDNA sequences obtained from 10 individuals of each species inhabiting the same site revealed significant differences in the structure of their fungal communities and also in the alpha-diversity estimators. The results suggest a specialization by host species and that the host effect is stronger than that of sex, age and animal weight. Capnodiales were the dominant order in sloths' fur and Cladosporium and Neodevriesia were the most abundant genera in Bradypus and Choloepus, respectively. The fungal communities suggest that the green algae that inhabit the fur of sloths possibly live lichenized with Ascomycota fungal species. The data shown in this note offer a more detailed view of the fungal content in the fur of these extraordinary animals and could help explain other mutualistic relationships in this complex ecosystem.
Collapse
Affiliation(s)
- Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | | | - Priscila Chaverri
- Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica.,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica.,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| |
Collapse
|
18
|
Kelly PA, McKay JS, Maguire D, Jones M, Roberts L, Powell F, Breathnach R. A retrospective study of cases of canine demodicosis submitted to a commercial diagnostic laboratory servicing the United Kingdom and Ireland (2017-2018) part 2; Aerobic culture and antimicrobial susceptibility results. Res Vet Sci 2022; 153:92-98. [PMID: 36334407 DOI: 10.1016/j.rvsc.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Clinical diagnostic reports from 508 cases of canine demodicosis diagnosed either by histological or skin scraping analysis from a United Kingdom Accreditation Service (UKAS) accredited veterinary diagnostic laboratory servicing the United Kingdom (UK) and Ireland were evaluated. Of the 508 cases, 284 had skin swabs submitted for culture on the same day the skin biopsy and/or skin scraping were obtained. Dogs with juvenile-onset (JO) demodicosis represented 57.4% of these cases, whilst adult-onset (AO) cases comprised 42.6%. The data revealed that overgrowth of pathogenic bacteria was more common in AO demodicosis cases (75.2%) in comparison to the JO cases (57%). Adult-onset cases also had increased involvement of bacteria belonging to multiple genera and/or yeast (28.9%) in comparison to JO cases (18.4%). Pruritus was significantly associated with an overgrowth of Staphylococcus pseudintermedius (p < 0.001). Resistance to one or more antimicrobial classes was noted in S. pseudintermedius isolates from 56.3% of JO cases with 10.3% of these cases being classified as Multi-Drug Resistant (MDR). Similarly, 51.9% of S. pseudintermedius isolates from the AO cases were noted to be resistant to one or more antimicrobial class with 8.6% of these cases being considered MDR. Cephalosporins were the most frequently administered antimicrobial class noted in submission histories, followed by the penicillin and fluoroquinolone classes. Whilst our findings reveal a high prevalence of concurrent overgrowth of pathogenic bacteria warranting therapeutic intervention in canine demodicosis, the presence of resistance within isolates highlights the need for prudent selection and targeted use of antimicrobial therapy that encompass the key principles of antimicrobial stewardship.
Collapse
Affiliation(s)
- Pamela A Kelly
- University College Dublin Veterinary Hospital, School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Jennifer S McKay
- IDEXX Laboratories, Grange House, Sandbeck Way, Wetherby LS22 7DN, United Kingdom.
| | - David Maguire
- IDEXX Laboratories, Grange House, Sandbeck Way, Wetherby LS22 7DN, United Kingdom.
| | - Matthew Jones
- IDEXX Laboratories, Grange House, Sandbeck Way, Wetherby LS22 7DN, United Kingdom.
| | - Larry Roberts
- IDEXX Laboratories, Grange House, Sandbeck Way, Wetherby LS22 7DN, United Kingdom.
| | - Frank Powell
- The Charles Institute of Dermatology, University College Dublin, Belfield, Dublin 4, Ireland; The Mater Misericordiae University Hospital, Eccles St, Dublin 7, Ireland.
| | - Rory Breathnach
- University College Dublin Veterinary Hospital, School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| |
Collapse
|
19
|
S Forster C, Liu H, Kurs-Lasky M, Ullmer W, Krumbeck JA, Shaikh N. Uromycobiome in infants and toddlers with and without urinary tract infections. Pediatr Nephrol 2022:10.1007/s00467-022-05844-3. [PMID: 36547733 DOI: 10.1007/s00467-022-05844-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The bacterial components of the urobiome have been described in children, both with and without urinary tract infections (UTI). However, less is known about the pediatric uromycobiome: the community of fungi in the urine. The objectives of this study were to describe the uromycobiome in children and determine whether the uromycobiome differs between children with and without UTI. METHODS This was a cross-sectional study of febrile children less than 3 years of age who presented to the Emergency Department and had a catheterized urine sample sent as part of clinical care. We obtained residual urine for use in this study and identified components of the uromyobiome through amplification and sequencing of the fungal ITS2 region. We then compared the uromycobiome between those with and without UTI. RESULTS We included 374 children in this study (UTI = 50, no UTI = 324). Fungi were isolated from urine samples of 310 (83%) children. Fungi were identified in a higher proportion of children with UTI, compared to those without UTI (96% vs. 81%, p = 0.01). Shannon diversity index was higher in children with UTI, compared to those without (p = 0.04). Although there were differences in the most abundant taxa between children with and without UTI, there was no significant difference in beta diversity between groups. CONCLUSIONS Fungi were detected in the majority of catheterized urine samples from children. While a higher proportion of children with UTI had fungi in their urine, compared to children without UTI, there was no difference in the composition of these groups. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Catherine S Forster
- Department of Pediatrics School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
| | - Hui Liu
- Department of Pediatrics School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Marcia Kurs-Lasky
- Department of Pediatrics School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Wendy Ullmer
- Zymo Research Corporation, Irvine, CA, USA.,Pangea Laboratory, Tustin, CA, USA
| | - Janina A Krumbeck
- Zymo Research Corporation, Irvine, CA, USA.,Pangea Laboratory, Tustin, CA, USA
| | - Nader Shaikh
- Department of Pediatrics School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| |
Collapse
|
20
|
Importance of Microbiome of Fecal Samples Obtained from Adolescents with Different Weight Conditions on Resistance Gene Transfer. Microorganisms 2022; 10:microorganisms10101995. [PMID: 36296271 PMCID: PMC9611664 DOI: 10.3390/microorganisms10101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Antimicrobial resistance (AMR) is a relevant public health problem worldwide, and microbiome bacteria may contribute to the horizontal gene transfer associated with antimicrobial resistance. The microbiome of fecal samples from Mexican adolescents were analyzed and correlated with eating habits, and the presence of AMR genes on bacteria in the microbiome was evaluated. Fecal samples from adolescents were collected and processed to extract genomic DNA. An Illumina HiSeq 1500 system was used to determine resistance genes and the microbiome of adolescents through the amplification of gene resistance and the V3–V4 regions of RNA, respectively. Analysis of the microbiome from fecal samples taken from 18 obese, overweight, and normal-weight adolescents revealed that the Firmicutes was the most frequent phylum, followed by Bacteroidetes, Actinobacteria, Proteobacteria and Verrucomicrobia. The following species were detected as the most frequent in the samples: F. prausnitzii, P. cori, B. adolescentis, E. coli and A. muciniphila. The presence of Bacteroides, Prevotella and Ruminococcus was used to establish the enterotype; enterotype 1 was more common in women and enterotype 2 was more common in men. Twenty-nine AMR genes were found for β-lactamases, fluoroquinolones, aminoglycosides, macrolide, lincosamides, streptogramin (MLS), tetracyclines and sulfonamides. The presence of microorganisms in fecal samples that harbor AMR genes that work against antimicrobials frequently used for the treatment of microbial infections such as b-lactams, macrolides, aminoglycosides, MLS, and tetracyclines is of great concern, as these organisms may be an important reservoir for horizontal AMR gene transfer.
Collapse
|
21
|
Ianiri G, LeibundGut-Landmann S, Dawson TL. Malassezia: A Commensal, Pathogen, and Mutualist of Human and Animal Skin. Annu Rev Microbiol 2022; 76:757-782. [PMID: 36075093 DOI: 10.1146/annurev-micro-040820-010114] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identified in the late nineteenth century as a single species residing on human skin, Malassezia is now recognized as a diverse genus comprising 18 species inhabiting not only skin but human gut, hospital environments, and even deep-sea sponges. All cultivated Malassezia species are lipid dependent, having lost genes for lipid synthesis and carbohydrate metabolism. The surging interest in Malassezia results from development of tools to improve sampling, culture, identification, and genetic engineering, which has led to findings implicating it in numerous skin diseases, Crohn disease, and pancreatic cancer. However, it has become clear that Malassezia plays a multifaceted role in human health, with mutualistic activity in atopic dermatitis and a preventive effect against other skin infections due to its potential to compete with skin pathogens such as Candida auris. Improved understanding of complex microbe-microbe and host-microbe interactions will be required to define Malassezia's role in human and animal health and disease so as to design targeted interventions.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Agricultural, Environmental, and Food Sciences, University of Molise, Campobasso, Italy
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Faculty of Vetsuisse, and Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Thomas L Dawson
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore; .,Department of Drug Discovery, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
22
|
Phenotypic correlates of the working dog microbiome. NPJ Biofilms Microbiomes 2022; 8:66. [PMID: 35995802 PMCID: PMC9395329 DOI: 10.1038/s41522-022-00329-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Dogs have a key role in law enforcement and military work, and research with the goal of improving working dog performance is ongoing. While there have been intriguing studies from lab animal models showing a potential connection between the gut microbiome and behavior or mental health there is a dearth of studies investigating the microbiome-behavior relationship in working dogs. The overall objective of this study was to characterize the microbiota of working dogs and to determine if the composition of the microbiota is associated with behavioral and performance outcomes. Freshly passed stools from each working canine (Total n = 134) were collected and subject to shotgun metagenomic sequencing using Illumina technology. Behavior, performance, and demographic metadata were collected. Descriptive statistics and prediction models of behavioral/phenotypic outcomes using gradient boosting classification based on Xgboost were used to study associations between the microbiome and outcomes. Regarding machine learning methodology, only microbiome features were used for training and predictors were estimated in cross-validation. Microbiome markers were statistically associated with motivation, aggression, cowardice/hesitation, sociability, obedience to one trainer vs many, and body condition score (BCS). When prediction models were developed based on machine learning, moderate predictive power was observed for motivation, sociability, and gastrointestinal issues. Findings from this study suggest potential gut microbiome markers of performance and could potentially advance care for working canines.
Collapse
|
23
|
Koch C, Nordzieke S, Grieger J, Mayser P. Medium chain fatty acid esters are effective even in azole resistant Malassezia pachydermatis. Mycoses 2022; 65:1188-1193. [PMID: 35923130 DOI: 10.1111/myc.13512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Malassezia (M.) pachydermatis as a frequent reason for dermatological consultation in dogs and cats was recently shown to be lipid-dependent, too. Lipolytic activity is a prerequisite for activating antimicrobial effectivity of fatty acid esters. OBJECTIVES It was therefore of interest whether it is possible to induce this mechanism in M. pachydermatis and to identify possible differences between minimal and strong lipid-dependent strains. METHODS In an agar dilution test, the minimal inhibitory concentrations of six fatty acid esters were determined for seventeen M. pachydermatis strains. GC analysis of parent compounds and liberated fatty acids was used to quantify ester cleavage. RESULTS Hydrolysis was observed in all test strains in a homogenous manner but was dependent on the chemical structure. Lowest MICs (500ppm after 14 days of incubation) were obtained applying glyceryl monocaprylate and 3-hydroxylpropyl caprylate, while the corresponding esters of undecylenic acid showed nearly twice the value. As shown by GC analysis with the reference strains CBS 1879 and CBS 1892 and 3-hydroxypropyl caprylate, hydrolysis and caprylic acid formation starts immediately and was dependent on yeast density. Furthermore, nine azole resistant strains isolated from dogs with treatment failures showed MIC values comparable to the other strains and no resistance to monohydric fatty acid esters. CONCLUSIONS Medium chain fatty acid esters may represent a new therapeutic option for veterinary use even in azole-resistant strains. The in vivo verification in M. pachydermatis associated dermatitis in dogs and cats will be the next step for the successful development of new therapeutics.
Collapse
|
24
|
Leonard C, Thiry D, Taminiau B, Daube G, Fontaine J. External Ear Canal Evaluation in Dogs with Chronic Suppurative Otitis Externa: Comparison of Direct Cytology, Bacterial Culture and 16S Amplicon Profiling. Vet Sci 2022; 9:366. [PMID: 35878383 PMCID: PMC9324598 DOI: 10.3390/vetsci9070366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
A discrepancy between cytology and bacterial culture methods is sometimes observed in canine otitis externa. The objective of this study was to compare results from cytology, bacterial culture and 16S amplicon profiling. Twenty samples from 16 dogs with chronic suppurative otitis externa were collected. A direct cytological evaluation was carried out during the consultations. Aerobic bacterial culture and susceptibility were performed by an external laboratory used in routine practice. For 16S amplicon profiling, DNA was extracted and the hypervariable segment V1−V3 of the 16S rDNA was amplified and then sequenced with a MiSeq Illumina sequence carried out by the Mothur software using the SILVA database. A good correlation between cytology and bacterial culture was observed in 60% of the samples. Some bacterial species revealed by bacterial culture were present with low relative abundance (<10%) in 16S amplicon profiling. Some bacterial species revealed by the 16S amplicon profiling analysis were not identified with culture; most of the time, the offending species was a Corynebacterium. To conclude, a careful interpretation of the results of bacterial culture should be made and always be in agreement with the cytology. The 16S amplicon profiling method appears to be a more sensitive method for detecting strains present in suppurative otitis but does not provide information on bacterial susceptibility.
Collapse
Affiliation(s)
- Caroline Leonard
- Department for Clinical Sciences, Faculté de Médecine Vétérinaire, University of Liege, 4000 Liege, Belgium;
| | - Damien Thiry
- Bacteriology Laboratory, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium;
| | - Bernard Taminiau
- Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine B43b, University of Liege, 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Georges Daube
- Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine B43b, University of Liege, 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Jacques Fontaine
- Department for Clinical Sciences, Faculté de Médecine Vétérinaire, University of Liege, 4000 Liege, Belgium;
| |
Collapse
|
25
|
Díaz L, Castellá G, Bragulat MR, Paytuví-Gallart A, Sanseverino W, Cabañes FJ. Study of the variation of the Malassezia load in the interdigital fold of dogs with pododermatitis. Vet Res Commun 2022; 47:385-396. [PMID: 35704160 DOI: 10.1007/s11259-022-09951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/04/2022] [Indexed: 11/25/2022]
Abstract
The yeast Malassezia pachydermatis is a common inhabitant of the skin and mucosae of dogs. However, under certain circumstances this yeast can overgrow and act as an opportunistic pathogen causing otitis and dermatitis in dogs. Canine pododermatitis is a common disorder in dogs in which M. pachydermatis acts as an opportunistic pathogen. In the present study, the presence of Malassezia yeasts was assessed and quantified in samples collected from the interdigital space of dogs with pododermatitis before and after treatment, and from healthy dogs. The samples were subjected to two different cytological examinations, culture on Sabouraud glucose agar and modified Dixon's agar and a quantitative PCR targeting the internal transcribed spacer (ITS) genomic region. A selection of samples was analyzed by next generation sequencing (NGS) using the D1D2 domain of the large subunit of the ribosomal DNA as target. The pododermatitis samples before treatment showed higher cell counts, colony-forming units and ITS copies than the rest of samples. The NGS analysis revealed that Ascomycota was the main phylum in the healthy and post-treatment samples. However, Basidiomycota and M. pachydermatis was more abundant in the pododermatitis samples before treatment. These results support M. pachydermatis as an opportunistic agent in canine pododermatitis by a variety of methods, and demonstrate the correlation between cytologic and molecular methods for quantification.
Collapse
Affiliation(s)
- Leyna Díaz
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Gemma Castellá
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.
| | - M Rosa Bragulat
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | | | | | - F Javier Cabañes
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
26
|
Prior CD, Moodley A, Karama M, Malahlela MN, Leisewitz A. Prevalence of methicillin resistance in
Staphylococcus pseudintermedius
isolates from dogs with skin and ear infections in South Africa. J S Afr Vet Assoc 2022. [DOI: 10.36303/jsava.2022.93.1.505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Affiliation(s)
- CD Prior
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
| | - A Moodley
- International Livestock Research Institute,
Kenya
| | - M Karama
- Veterinary Public Health Section, Faculty of Veterinary Science, University of Pretoria,
South Africa
| | - MN Malahlela
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria,
South Africa
| | - A Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
| |
Collapse
|
27
|
Vecere G, Malka S, Holden N, Tang S, Krumbeck JA. Comparison of ear canal microbiome in rabbits (Oryctolagus cuniculus domesticus) with and without otitis externa using next generation DNA sequencing. J Exot Pet Med 2022. [DOI: 10.1053/j.jepm.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Clinical and Microbiological Performances and Effects on Lipid and Cytokine Production of a Ceruminolytic Ear Cleaner in Canine Erythemato-Ceruminous Otitis Externa. Vet Sci 2022; 9:vetsci9040185. [PMID: 35448682 PMCID: PMC9031221 DOI: 10.3390/vetsci9040185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
Erythemato-ceruminous otitis externa (ECOE) is the most common type of otitis in dogs and is generally associated with bacterial and/or yeast infections. The performance of an ear cleaner was assessed over two weeks in canine ECOE, associated with a mild or moderate secondary infection, in a prospective open-label study. Forty ear canals with ECOE that did not receive any type of aural treatment and were not cleaned for 7 days were included. Pruritus (PS), 0−3 Otitis Index Score (OTIS-3) and 0−4 scale cytology (CYTO) scores were assessed on Day (D) 0, D7 and D14. Concentrations of a panel of 13 cytokines on the ear canal surface and the lipid profile of the exudate were measured on D0 and D14. From D0 to D12 or D13, the dogs’ ears were cleaned daily if the secretion score (SEC) was 3/3, every second day if the score was 2/3 and every third day if the score was 1/3. PS, OTIS-3, SEC and CYTO were significantly lower on D7 compared to baseline (−40%, −31%, −36%, −34%, respectively; p < 0.0001). The same parameters decreased further on D14 (−60%, −53%, −61%, −73%, respectively; p < 0.0001) and amounts of interleukin 8 and chemokine KC-like were also reduced compared to baseline (−45%, p < 0.01; −36%, p = 0.3, respectively). The lipid profile was also modified, with a decrease in free lipids and an increase in bound lipids.
Collapse
|
29
|
Krumbeck JA, Turner DD, Diesel A, Hoffman AR, Heatley JJ. Skin microbiota of quaker parrots (Myiopsitta monachus) with normal feathering or feather loss via next-generation sequencing technology. J Exot Pet Med 2022. [DOI: 10.1053/j.jepm.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
A Review of Recent Developments in Veterinary Otology. Vet Sci 2022; 9:vetsci9040161. [PMID: 35448659 PMCID: PMC9032795 DOI: 10.3390/vetsci9040161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
The knowledge gap between practical research and its implementation in veterinary practice is becoming harder to bridge, as researchers now have a plethora of journals in which to publish. This paper summarizes recent research from the latest publications related to ear disease in dogs which have implications for veterinary practitioners. The topics reviewed include 16s rRNA new-generation sequencing, the use of oclacitinib in pinnal ulceration, the etiopathogenesis of aural hematoma, contamination of the middle ear during elective myringotomy and how to avoid it, and the use of carbon dioxide lasers in chronic obstructive otitis.
Collapse
|
31
|
Souza-Silva T, Rossi CC, Andrade-Oliveira AL, Vilar LC, Pereira MF, Penna BDA, Giambiagi-deMarval M. Interspecies transfer of plasmid-borne gentamicin resistance between Staphylococcus isolated from domestic dogs to Staphylococcus aureus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105230. [PMID: 35104683 DOI: 10.1016/j.meegid.2022.105230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
As preconized by the One Health concept, the intimate relationship between pets and owners is a common source for the trade of microorganisms with zoonotic potential, and with them, antimicrobial resistance genes. In this work, we evaluated the presence of antimicrobial resistance genes, that are usually within mobile genetic elements, in a laboratory collection of 79 canine Staphylococcus strains, mostly Staphylococcus pseudintermedius and Staphylococcus coagulans. Resistance to tetracycline was observed in 34% of the strains, followed by resistance to erythromycin (21%) and gentamicin (19%). These phenotypes were partially correlated with the presence of the tetracycline resistance genes tet(M) and tet(K) in 64% and 44% of all strains, respectively; erythromycin resistance genes erm(A) and erm(C) in 53% and 23%; and gentamicin resistance gene aac(6')-aph(2″) in 26% of the strains. At least 45% of the strains harbored high- and/or low-molecular weight plasmids, whose transfer may be facilitated by their widespread biofilm-forming capacity, and absence of restrictive CRISPR systems. We selected eight plasmid-bearing and multidrug resistant strains, which were submitted to plasmid curing by stress with SDS. No strain lost resistance during stressing cultivation but, by conjugation experiments, the S. pseudintermedius strain 27 transferred its plasmid-borne resistance to gentamicin, conferred by the aac(6')-aph(2″) gene, to Staphylococcus aureus. The frequent empirical use of gentamicin to treat skin and ear infections in domestic dogs is likely to select resistant strains. Also, as demonstrated by our study, these strains can serve as gene reservoirs for human pathogens, such as S. aureus.
Collapse
Affiliation(s)
- Thaysa Souza-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ciro César Rossi
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Ana Luisa Andrade-Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lucas Cecílio Vilar
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Monalessa Fábia Pereira
- Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, Carangola, MG, Brazil
| | | | - Marcia Giambiagi-deMarval
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
32
|
Burton M, Krumbeck JA, Wu G, Tang S, Prem A, Gupta AK, Dawson TL. The adult microbiome of healthy and otitis patients: Definition of the core healthy and diseased ear microbiomes. PLoS One 2022; 17:e0262806. [PMID: 35073343 PMCID: PMC8786117 DOI: 10.1371/journal.pone.0262806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/05/2022] [Indexed: 12/31/2022] Open
Abstract
Otitis media (OM) and externa (OE) are painful, recurrent ear conditions. As most otitis publications focus on the bacterial content of childhood ears, there remains a dearth of information regarding the adult ear microbiome including both bacteria and fungi. This study compares the outer ear microbiome of healthy adults to adults affected by OE and OM using both intergenic-transcribed-spacer (ITS) and 16S-rDNA sequencing. The adult ear core microbiome consists of the prokaryote Cutibacterium acnes and the eukaryotic Malassezia arunalokei, M. globosa, and M. restricta. The healthy ear mycobiome is dominated by Malassezia and can be divided into two groups, one dominated by M. arunalokei, the other by M. restricta. Microbiome diversity and biomass varied significantly between healthy and diseased ears, and analyses reveal the presence of a potential mutualistic, protective effect of Malassezia species and C. acnes. The healthy ear core microbiome includes the bacteria Staphylococcus capitis and S. capitis/caprae, while the diseased ear core is composed of known bacterial and fungal pathogens including Aspergillus sp., Candida sp., Pseudomonas aeruginosa, S. aureus, and Corynebacterium jeikeium. The data presented highlight the need for early detection of the cause of otitis to direct more appropriate, efficient treatments. This will improve patient outcomes and promote improved antimicrobial stewardship.
Collapse
Affiliation(s)
- Maria Burton
- Zymo Research Corporation, Irvine, CA, United States of America
| | | | - Guangxi Wu
- Zymo Research Corporation, Irvine, CA, United States of America
| | - Shuiquan Tang
- Zymo Research Corporation, Irvine, CA, United States of America
| | - Aishani Prem
- Zymo Research Corporation, Irvine, CA, United States of America
| | - Aditya K. Gupta
- Mediprobe Research Inc., London, ON, Canada and University of Toronto, Toronto, ON, Canada
| | - Thomas L. Dawson
- Skin Research Institute, Singapore, Singapore
- Dept of Drug Discovery, College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States of America
| |
Collapse
|
33
|
Niemiec BA, Gawor J, Tang S, Prem A, Krumbeck JA. The bacteriome of the oral cavity in healthy dogs and dogs with periodontal disease. Am J Vet Res 2022; 83:50-58. [PMID: 34727048 DOI: 10.2460/ajvr.21.02.0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare the bacteriome of the oral cavity in healthy dogs and dogs with various stages of periodontal disease. ANIMALS Dogs without periodontal disease (n = 12) or with mild (10), moderate (19), or severe (10) periodontal disease. PROCEDURES The maxillary arcade of each dog was sampled with a sterile swab, and swabs were submitted for next-generation DNA sequencing targeting the V1-V3 region of the 16S rRNA gene. RESULTS 714 bacterial species from 177 families were identified. The 3 most frequently found bacterial species were Actinomyces sp (48/51 samples), Porphyromonas cangingivalis (47/51 samples), and a Campylobacter sp (48/51 samples). The most abundant species were P cangingivalis, Porphyromonas gulae, and an undefined Porphyromonas sp. Porphyromonas cangingivalis and Campylobacter sp were part of the core microbiome shared among the 4 groups, and P gulae, which was significantly enriched in dogs with severe periodontal disease, was part of the core microbiome shared between all groups except dogs without periodontal disease. Christensenellaceae sp, Bacteroidales sp, Family XIII sp, Methanobrevibacter oralis, Peptostreptococcus canis, and Tannerella sp formed a unique core microbiome in dogs with severe periodontal disease. CONCLUSIONS AND CLINICAL RELEVANCE Results highlighted that in dogs, potential pathogens can be common members of the oral cavity bacteriome in the absence of disease, and changes in the relative abundance of certain members of the bacteriome can be associated with severity of periodontal disease. Future studies may aim to determine whether these changes are the cause or result of periodontal disease or the host immune response.
Collapse
Affiliation(s)
- Brook A Niemiec
- Veterinary Dental Specialties and Oral Surgery, San Diego, CA
| | | | - Shuiquan Tang
- MiDOG LLC, Tustin, CA.,Zymo Research Corp., Irvine, CA
| | - Aishani Prem
- MiDOG LLC, Tustin, CA.,Zymo Research Corp., Irvine, CA
| | | |
Collapse
|
34
|
Kano R, Murayama N. Rapid Molecular Detection of Antifungal-Resistant Strains of <i>Malassezia pachydermatis</i>. Med Mycol J 2022; 63:53-56. [DOI: 10.3314/mmj.21-00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rui Kano
- Department of Veterinary Dermatology, Nihon University College of Bioresource Sciences
| | | |
Collapse
|
35
|
Niemiec BA, Gawor J, Tang S, Prem A, Krumbeck JA. The mycobiome of the oral cavity in healthy dogs and dogs with periodontal disease. Am J Vet Res 2022; 83:42-49. [PMID: 34727047 DOI: 10.2460/ajvr.20.11.0200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the mycobiome of the oral cavity in healthy dogs and dogs with various stages of periodontal disease. ANIMALS 51 dogs without periodontal disease (n = 12) or with mild (10), moderate (19), or severe (10) periodontal disease. PROCEDURES The whole maxillary arcade of each dog was sampled with a sterile swab, and swabs were submitted for next-generation DNA sequencing targeting the internal transcribed spacer 2 region with a commercial sequencing platform. RESULTS Fungi were detected in all samples, with a total of 320 fungal species from 135 families detected in the data set. No single fungal species was found in all samples. The 3 most frequently found fungal species were Cladosporium sp (46/51 samples), Malassezia restricta (44/51 samples), and Malassezia arunalokei (36/51 samples). Certain fungi, specifically those of the family Didymellaceae, the family Irpicaceae, and the order Pleosporales, were significantly associated with different stages of periodontitis. Mycobial analysis indicated that Cladosporium sp could be considered part of the core oral cavity mycobiome. CONCLUSIONS AND CLINICAL RELEVANCE Results highlighted that fungi are present in the oral cavity of dogs and are characterized by substantial species diversity, with different fungal communities associated with various stages of periodontal disease. The next-generation DNA sequencing used in the present study revealed substantially more species of fungi than previous culture-based studies.
Collapse
|
36
|
Patidar P, Prakash T. Decoding the roles of extremophilic microbes in the anaerobic environments: Past, Present, and Future. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100146. [PMID: 35909618 PMCID: PMC9325894 DOI: 10.1016/j.crmicr.2022.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
The inaccessible extreme environments harbor a large majority of anaerobic microbes which remain unknown. Anaerobic microbes are used in a variety of industrial applications. In the future, metagenomic-assisted techniques can be used to identify novel anaerobic microbes from the unexplored extreme environments. Genetic engineering can be used to enhance the efficiency of anaerobic microbes for various processes.
The genome of an organism is directly or indirectly correlated with its environment. Consequently, different microbes have evolved to survive and sustain themselves in a variety of environments, including unusual anaerobic environments. It is believed that their genetic material could have played an important role in the early evolution of their existence in the past. Presently, out of the uncountable number of microbes found in different ecosystems we have been able to discover only one percent of the total communities. A large majority of the microbial populations exists in the most unusual and extreme environments. For instance, many anaerobic bacteria are found in the gastrointestinal tract of humans, soil, and hydrothermal vents. The recent advancements in Metagenomics and Next Generation Sequencing technologies have improved the understanding of their roles in these environments. Presently, anaerobic bacteria are used in various industries associated with biofuels, fermentation, production of enzymes, vaccines, vitamins, and dairy products. This broad applicability brings focus to the significant contribution of their genomes in these functions. Although the anaerobic microbes have become an irreplaceable component of our lives, a major and important section of such anaerobic microbes still remain unexplored. Therefore, it can be said that unlocking the role of the microbial genomes of the anaerobes can be a noteworthy discovery not just for mankind but for the entire biosystem as well.
Collapse
Affiliation(s)
- Pratyusha Patidar
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, HP, India
| | - Tulika Prakash
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, HP, India
- Corresponding author.
| |
Collapse
|
37
|
Tsang W, Linde A, Krumbeck JA, Wu G, Kim YJ, Lushington GH, Melgarejo T. Occurrence of Antimicrobial Resistance Genes in the Oral Cavity of Cats with Chronic Gingivostomatitis. Animals (Basel) 2021; 11:ani11123589. [PMID: 34944364 PMCID: PMC8698017 DOI: 10.3390/ani11123589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Oral disease in cats is a significant concern in the small animal practice setting. The specific cause of this disease is inadequately understood; however, antibiotics are commonly used for the management, although many cats respond poorly to these treatments. Antibiotics have been overused and misused in the context of both human and veterinary medicine. Consequently, many antimicrobial drugs are becoming less effective in treating infections. This study aimed to evaluate the presence of antimicrobial resistance genes in swabs obtained from the mouth of cats. Moreover, the study looked at simultaneous occurrence between these genes and one type of oral fungi. We found that antimicrobial resistance genes are extremely common in both clinically healthy and sick cats. Furthermore, we established that Malassezia (a type of fungi) co-occurs with some resistance genes. The findings are important because antimicrobial resistance genes present in the mouth of cats have the potential to transfer to humans and thereby make certain antibiotics less effective. Abstract Feline chronic gingivostomatitis (FCGS) is a severe immune-mediated inflammatory disease with concurrent oral dysbiosis (bacterial and fungal). Broad-spectrum antibiotics are used empirically in FCGS. Still, neither the occurrence of antimicrobial-resistant (AMR) bacteria nor potential patterns of co-occurrence between AMR genes and fungi have been documented in FCGS. This study explored the differential occurrence of AMR genes and the co-occurrence of AMR genes with oral fungal species. Briefly, 14 clinically healthy (CH) cats and 14 cats with FCGS were included. Using a sterile swab, oral tissue surfaces were sampled and submitted for 16S rRNA and ITS-2 next-generation DNA sequencing. Microbial DNA was analyzed using a proprietary curated database targeting AMR genes found in bacterial pathogens. The co-occurrence of AMR genes and fungi was tested using point biserial correlation. A total of 21 and 23 different AMR genes were detected in CH and FCGS cats, respectively. A comparison of AMR-gene frequencies between groups revealed statistically significant differences in the occurrence of genes conferring resistance to aminoglycosides (ant4Ib), beta-lactam (mecA), and macrolides (mphD and mphC). Two AMR genes (mecA and mphD) showed statistically significant co-occurrence with Malassezia restricta. In conclusion, resistance to clinically relevant antibiotics, such as beta-lactams and macrolides, is a significant cause for concern in the context of both feline and human medicine.
Collapse
Affiliation(s)
- Wayne Tsang
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (W.T.); (A.L.); (Y.J.K.)
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (W.T.); (A.L.); (Y.J.K.)
| | | | - Guangxi Wu
- MiDOG LLC, 14672 Bentley Cir, Tustin, CA 92780, USA; (J.A.K.); (G.W.)
| | - Young J. Kim
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (W.T.); (A.L.); (Y.J.K.)
| | | | - Tonatiuh Melgarejo
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (W.T.); (A.L.); (Y.J.K.)
- Correspondence: ; Tel.: +1-(909)-706-3829
| |
Collapse
|
38
|
Rexo A, Hansen B, Clarsund M, Krumbeck JA, Bernstein J. Effect of topical medication on the nasomaxillary skin-fold microbiome in French bulldogs. Vet Dermatol 2021; 33:10-e5. [PMID: 34668256 DOI: 10.1111/vde.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Host-microbe interactions may influence dermatitis pathogenesis in the nasomaxillary folds of French bulldogs, which is often complicated by secondary bacterial and fungal infections. OBJECTIVE To assess the skin-fold microbiome in systemically healthy French bulldogs and to determine the influence of topical medications on this microbiome. ANIMALS Nineteen healthy French bulldogs. METHODS AND MATERIALS Next-generation DNA sequencing was applied to characterise the microbiome composition in the nasomaxillary folds of systemically healthy French bulldogs. Subsequently, the effect of two topical products on the fold microbiome was assessed. Seven dogs were treated with a protease product (Kalzyme; enzyme) that inhibits biofilm formation without biocidal activity, six dogs were treated with a 2% chlorhexidine diacetate solution (Nolvasan; CHX) with biocidal activity, and six dogs were untreated. Dogs were randomly assigned to each group, and the investigator was blinded. RESULTS The primary skin bacterial phyla inhabiting the folds at inclusion were Firmicutes, Actinobacteria and Proteobacteria. The primary skin fungal phyla were Ascomycota and Basidiomycota. Topical treatment increased the diversity of bacterial and fungal compositions over time (increase in microbial diversity score: enzyme 38%, chlorhexidine 11%, control <5%) and the relative abundance of pathogens reduced significantly (enzyme, P = 0.028; CHX, P = 0.048). A clear correlation (r2 = 0.83) was observed between the abundance of clinically relevant pathogens and microbial diversity. CONCLUSIONS The nasomaxillary skin-fold microbiome of healthy French bulldogs contained a high abundance of clinically relevant pathogens (mean 36.4%). Topical therapy with enzyme increased microbial diversity of skin folds and reduced the relative abundance of pathogens.
Collapse
Affiliation(s)
- Alissa Rexo
- Dermatology and Allergy Services for Animals, Springfield, VA, 22150, USA
| | - Bruce Hansen
- Dermatology and Allergy Services for Animals, Springfield, VA, 22150, USA
| | - Mats Clarsund
- Division of Biotechnology, Lund University, Lund, 223 63, Sweden
| | | | | |
Collapse
|
39
|
Saika H, Murayama N, Kano R. Molecular typing and antifungal drug susceptivity profile of Rhodotorula mucilaginosa from canine skin and ear canal. J Vet Med Sci 2021; 83:1545-1548. [PMID: 34526416 PMCID: PMC8569882 DOI: 10.1292/jvms.21-0361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rhodotorula mucilaginosa are saprophytic yeast, and opportunistic infections known as human rhodotorulosis are increasing in immunocompromised patients. In this study, we isolated R. mucilaginosa from pet dogs in Japan and determined the minimum inhibitory concentrations (MICs) of antifungal drugs on these isolates to investigate the drug susceptibility pattern. All 10 isolates according to the broth microdilution (BM) assay of the Clinical and Laboratory Standards Institute (CLSI) M27-A2 were resistance to azoles and genetically close to fluconazole (FLZ)-resistant human isolates of R. mucilaginosa. Due to resistance, it is expected that treatment will be difficult if they infect humans.
Collapse
Affiliation(s)
- Honami Saika
- Veterinary Dermatology, Nihon University College of Bioresource Sciences, 1866 Kameino, Fusisawa, Kanagawa 252-0880, Japan
| | - Nobuo Murayama
- Dermatology Services for Dogs and Cats, 1F Tandem Hirano Bldg. 2-11-14, Hirano, Koto-ku, Tokyo 135-0023, Japan
| | - Rui Kano
- Veterinary Dermatology, Nihon University College of Bioresource Sciences, 1866 Kameino, Fusisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
40
|
Pereira AM, Clemente A. Dogs' Microbiome From Tip to Toe. Top Companion Anim Med 2021; 45:100584. [PMID: 34509665 DOI: 10.1016/j.tcam.2021.100584] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
Microbiota and microbiome, which refers, respectively, to the microorganisms and conjoint of microorganisms and genes are known to live in symbiosis with hosts, being implicated in health and disease. The advancements and cost reduction associated with high-throughput sequencing techniques have allowed expanding the knowledge of microbial communities in several species, including dogs. Throughout their body, dogs harbor distinct microbial communities according to the location (e.g., skin, ear canal, conjunctiva, respiratory tract, genitourinary tract, gut), which have been a target of study mostly in the last couple of years. Although there might be a core microbiota for different body sites, shared by dogs, it is likely influenced by intrinsic factors such as age, breed, and sex, but also by extrinsic factors such as the environment (e.g., lifestyle, urban vs rural), and diet. It starts to become clear that some medical conditions are mediated by alterations in microbiota namely dysbiosis. Moreover, understanding microbial colonization and function can be used to prevent medical conditions, for instance, modulation of gut microbiota of puppies is more effective to ensure a healthy gut than interventions in adults. This paper gathers current knowledge of dogs' microbial communities, exploring their function, implications in the development of diseases, and potential interactions among communities while providing hints for further research.
Collapse
Affiliation(s)
- Ana Margarida Pereira
- University of the Azores, Faculty of Agricultural and Environmental Sciences, Institute of Agricultural and Environmental Research and Technology (IITAA). Rua Capitão João d'Ávila, Azores, Portugal.
| | - Alfonso Clemente
- Department of Physiology and Biochemistry in Animal Nutrition, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
41
|
Boone JM, Fountain K, Williams J, Lloyd DH, Killick R, Rodriguez Barbón A, Stidworthy MF, Loeffler A. Diseases and histopathological findings from lesional pinnae of 10 bats. VETERINARY RECORD CASE REPORTS 2021. [DOI: 10.1002/vrc2.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Johann M. Boone
- Department of Clinical Science and Services Royal Veterinary College, Hatfield, North Mymms Hertfordshire UK
| | - Kay Fountain
- Department of Biology and Biochemistry University of Bath Claverton Down Bath UK
| | - Jonathan Williams
- Department of Pathobiology and Population Sciences Royal Veterinary College, Hatfield, North Mymms Hertfordshire UK
| | - David H. Lloyd
- Department of Clinical Science and Services Royal Veterinary College, Hatfield, North Mymms Hertfordshire UK
| | | | | | - Mark F. Stidworthy
- Pathology Division International Zoo Veterinary Group Station House, Keighley West Yorkshire UK
| | - Anette Loeffler
- Department of Clinical Science and Services Royal Veterinary College, Hatfield, North Mymms Hertfordshire UK
| |
Collapse
|
42
|
Kobayashi T, Imanishi I. Epithelial-immune crosstalk with the skin microbiota in homeostasis and atopic dermatitis - a mini review. Vet Dermatol 2021; 32:533-e147. [PMID: 34378246 DOI: 10.1111/vde.13007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022]
Abstract
The skin is a complex and dynamic ecosystem, wherein epithelial cells, immune cells and the skin microbiota actively interact and maintain barrier integrity and functional immunity. Skin microbes actively tune the functions of the resident immune cells. Dysbiosis - alterations in the resident microbiota - leads to the dysregulation of host immunity. Microbiome analyses in humans and dogs with atopic dermatitis (AD) have shown shifts in microbial diversity, and in particular, an increased proportion of staphylococci. Monogenic diseases that manifest AD-like symptoms provide insights into the pathogenesis of AD and the mechanisms of dysbiosis, from both the epithelial and immunological perspectives. The symbiotic relationships between the host and microbiota must be maintained constitutively. Detailed mechanisms of how host immunity regulates commensal bacteria in the steady state have been reported. The skin harbours multiple tissue-resident immune cells, including both innate and adaptive immune cells. Recent studies have highlighted the fundamental role of innate lymphoid cells (ILCs) in the maintenance of barrier functions and tissue homeostasis. ILCs directly respond to tissue-derived signals and are instrumental in barrier immunity. Epithelial cells produce alarmins such as thymic stromal lymphopoietin (TSLP) and interleukins (IL)-33 and IL-25, all of which activate group 2 ILCs (ILC2s), which produce type 2 cytokines, such as IL-5 and IL-13, boosting type 2 immune reactions. Dysregulation of the epithelial-ILC crosstalk results in allergic inflammation. This review highlights our understanding of the active interactions between the host epithelial and immune cells, and microbiota, providing a foundation for novel therapeutic strategies for inflammatory skin diseases.
Collapse
Affiliation(s)
- Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ichiro Imanishi
- Laboratory of Microbiology, Kitasato University School of Medicine, 1-15-1, Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0374, Japan
| |
Collapse
|
43
|
Characterization of Oral Microbiota in Cats: Novel Insights on the Potential Role of Fungi in Feline Chronic Gingivostomatitis. Pathogens 2021; 10:pathogens10070904. [PMID: 34358054 PMCID: PMC8308807 DOI: 10.3390/pathogens10070904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Previous studies have suggested the involvement of viral and bacterial components in the initiation and progression of feline chronic gingivostomatitis (FCGS), but the role of fungi remains entirely unknown. This pilot study aimed to investigate the bacteriome and mycobiome in feline oral health and disease. Physical exams, including oral health assessment, of privately owned, clinically healthy (CH) cats (n = 14) and cats affected by FCGS (n = 14) were performed. Using a sterile swab, oral tissue surfaces of CH and FCGS cats were sampled and submitted for 16S rRNA and ITS-2 next-generation DNA sequencing. A high number of fungal species (n = 186) was detected, with Malassezia restricta, Malassezia arunalokei, Cladosporium penidielloides/salinae, and Aspergillaceae sp. being significantly enriched in FCGS samples, and Saccharomyces cerevisiae in CH samples. The bacteriome was significantly distinct between groups, and significant inter-kingdom interactions were documented. Bergeyella zoohelcum was identified as a potential biomarker of a healthy feline oral microbiome. These data suggest that fungi might play a role in the etiology and pathogenesis of FCGS, and that oral health should not simply be regarded as the absence of microbial infections. Instead, it may be viewed as the biological interactions between bacterial and fungal populations that coexist to preserve a complex equilibrium in the microenvironment of the mouth. Additional investigations are needed to improve our understanding of the feline oral ecosystem and the potential interactions between viruses, bacteria, and fungi in FCGS.
Collapse
|
44
|
Park M, Park S, Jung WH. Skin Commensal Fungus Malassezia and Its Lipases. J Microbiol Biotechnol 2021; 31:637-644. [PMID: 33526754 PMCID: PMC9705927 DOI: 10.4014/jmb.2012.12048] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Malassezia is the most abundant genus in the fungal microflora found on human skin, and it is associated with various skin diseases. Among the 18 different species of Malassezia that have been identified to date, M. restricta and M. globosa are the most predominant fungal species found on human skin. Several studies have suggested a possible link between Malassezia and skin disorders. However, our knowledge on the physiology and pathogenesis of Malassezia in human body is still limited. Malassezia is unable to synthesize fatty acids; hence, it uptakes external fatty acids as a nutrient source for survival, a characteristic compensated by the secretion of lipases and degradation of sebum to produce and uptake external fatty acids. Although it has been reported that the activity of secreted lipases may contribute to pathogenesis of Malassezia, majority of the data were indirect evidences; therefore, enzymes' role in the pathogenesis of Malassezia infections is still largely unknown. This review focuses on the recent advances on Malassezia in the context of an emerging interest for lipases and summarizes the existing knowledge on Malassezia, diseases associated with the fungus, and the role of the reported lipases in its physiology and pathogenesis.
Collapse
Affiliation(s)
- Minji Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sungmin Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea,Corresponding author Phone: +82-31-670-3068 Fax: +82-31-675-1381 E-mail:
| |
Collapse
|
45
|
Melgarejo T, Oakley BB, Krumbeck JA, Tang S, Krantz A, Linde A. Assessment of bacterial and fungal populations in urine from clinically healthy dogs using next-generation sequencing. J Vet Intern Med 2021; 35:1416-1426. [PMID: 33739491 PMCID: PMC8162589 DOI: 10.1111/jvim.16104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Urine from clinically healthy dogs is not sterile. Characterizing microbial diversity and abundance within this population of dogs is important to define normal reference ranges for healthy urine. OBJECTIVES To establish composition and relative representation of bacterial and fungal microbiomes in urine of clinically healthy dogs. ANIMALS Fifty clinically healthy dogs. METHODS Analytic study. Urine sampling via cystocentesis. Comprehensive evaluation of urine including standard urinalysis, culture and sensitivity, next-generation sequencing (NGS), and bioinformatics to define bacterial and fungal microbiome. RESULTS Culture did not yield positive results in any samples. Next-generation sequencing of urine established low presence of bacteria, fungi, or both in all samples. Diversity and abundance of bacterial and fungal communities varied between urine samples from different dogs. Struvite crystals were associated with bacterial community structure (P = .07) and there was a positive correlation between struvite crystals and pH. CONCLUSIONS AND CLINICAL IMPORTANCE The microbiome in urine of clinically healthy dogs has diverse bacterial and fungal species These findings highlight limitations of conventional culture testing and the need for culture-independent molecular diagnostics to detect microorganisms in urine.
Collapse
Affiliation(s)
- Tonatiuh Melgarejo
- Western University of Health Sciences (WesternU), College of Veterinary Medicine, Pomona, California, USA
| | - Brian B Oakley
- Western University of Health Sciences (WesternU), College of Veterinary Medicine, Pomona, California, USA
| | | | | | - Adam Krantz
- Western University of Health Sciences (WesternU), College of Veterinary Medicine, Pomona, California, USA
| | - Annika Linde
- Western University of Health Sciences (WesternU), College of Veterinary Medicine, Pomona, California, USA
| |
Collapse
|
46
|
Borriello G, Paradiso R, Catozzi C, Brunetti R, Roccabianca P, Riccardi MG, Cecere B, Lecchi C, Fusco G, Ceciliani F, Galiero G. Cerumen microbial community shifts between healthy and otitis affected dogs. PLoS One 2020; 15:e0241447. [PMID: 33237912 PMCID: PMC7688138 DOI: 10.1371/journal.pone.0241447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Otitis externa is a common multifactorial disease in dogs, characterized by broad and complex modifications of the ear microbiota. The goal of our study was to describe the ear cerumen microbiota of healthy dogs, within the same animal and between different animals, and to compare the cerumen microbiota of otitis affected dogs with that of healthy animals. The present study included 26 healthy dogs, 16 animals affected by bilateral otitis externa and 4 animals affected by monolateral otitis externa. For each animal cerumen samples from the right and left ear were separately collected with sterile swabs, and processed for DNA extraction and PCR amplification of the 16S rRNA gene. Amplicon libraries were sequenced using an Ion Torrent Personal Genome Machine (PGM), and taxonomical assignment and clustering were performed using QIIME 2 software. Our results indicate that the bacterial community of the cerumen in healthy dogs was characterized by extensive variability, with the most abundant phyla represented by Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes and Fusobacteria. The analysis of both alpha and beta diversity between pairs of left and right ear samples from the same dog within the group of affected animals displayed higher differences than between paired samples across healthy dogs. Moreover we observed reduced bacterial richness in the affected group as compared with controls and increased variability in population structure within otitis affected animals, often associated with the proliferation of a single bacterial taxon over the others. Moreover, Staphylococcus and Pseudomonas resulted to be the bacterial genera responsible for most distances between the two groups, in association with differences in the bacterial community structure. The cerumen microbiota in healthy dogs exhibits a complex bacterial population which undergoes significant modifications in otitis affected animals.
Collapse
Affiliation(s)
- Giorgia Borriello
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Rubina Paradiso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Carlotta Catozzi
- Dipartimento di Medicina Veterinaria, Università di Milano, Milano, Italy
| | - Roberta Brunetti
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Paola Roccabianca
- Dipartimento di Medicina Veterinaria, Università di Milano, Milano, Italy
| | | | - Bianca Cecere
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Cristina Lecchi
- Dipartimento di Medicina Veterinaria, Università di Milano, Milano, Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università di Milano, Milano, Italy
| | - Giorgio Galiero
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| |
Collapse
|
47
|
Kasai T, Fukui Y, Aoki K, Ishii Y, Tateda K. Changes in the ear canal microbiota of dogs with otitis externa. J Appl Microbiol 2020; 130:1084-1091. [PMID: 32979301 DOI: 10.1111/jam.14868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023]
Abstract
AIMS Otitis externa (OE), one of the most common ear diseases in dogs, is caused by bacterial pathogens such as Staphylococcus sp. To understand the network of microbial communities in the canine ear canal affected with OE, we performed a cross-sectional study using next-generation sequencing. METHODS AND RESULTS Ear swab samples were collected from 23 OE-affected and 10 healthy control dogs, and the 16S rRNA gene sequenced using Illumina MiSeq. The otic microbiota in the OE-affected dogs showed significantly decreased alpha diversity compared to controls. The community composition also differed in the affected group, with significantly higher relative abundance of the phylum Firmicutes and the genus Staphylococcus (P = 0·01 and 0·04 respectively). Contrary to our expectations, the severity of the disease did not impact the otic microbiota in OE-affected dogs. CONCLUSIONS The ear canal microbiota of OE-affected dogs is distinct from that of healthy dogs, irrespective of disease status. SIGNIFICANCE AND IMPACT OF THE STUDY This study, one of the few detailed analyses of the otic microbiota, can provide practical information for the appropriate treatment of canine OE.
Collapse
Affiliation(s)
- T Kasai
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan.,Kitagawa Veterinary Hospital, Tokyo, Japan
| | - Y Fukui
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - K Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Y Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - K Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|