1
|
Louloudes-Lázaro A, Nogales-Altozano P, Rojas JM, Veloz J, Carlón AB, Van Rijn PA, Martín V, Fernández-Sesma A, Sevilla N. Double-stranded RNA orbivirus disrupts the DNA-sensing cGAS-sting axis to prevent type I IFN induction. Cell Mol Life Sci 2025; 82:55. [PMID: 39836220 PMCID: PMC11751250 DOI: 10.1007/s00018-025-05580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/10/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
Cyclic GMP-AMP synthase (cGAS) is a DNA sensing cellular receptor that induces IFN-I transcription in response to pathogen and host derived cytosolic DNA and can limit the replication of some RNA viruses. Some viruses have nonetheless evolved mechanisms to antagonize cGAS sensing. In this study, we evaluated the interaction between Bluetongue virus (BTV), the prototypical dsRNA virus of the Orbivirus genus and the Sedoreoviridae family, and cGAS. We found mitochondrial damage and DNA accumulation in the cytoplasm of infected cells. In addition, we show that BTV infection blocks DNA-induced IFN-I transcription and that virus infection prevents DNA sensing by inducing cGAS and STING degradation. We identify BTV-NS3 as the viral protein responsible for cGAS degradation, showing that NS3 physically interacts with cGAS and induces its degradation through an autophagy-dependent mechanism. Taken together, these findings identify for the first time a mechanism by which a dsRNA virus interferes with a DNA sensing pathway to evade the innate immune response.
Collapse
Affiliation(s)
- Andrés Louloudes-Lázaro
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Pablo Nogales-Altozano
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - José M Rojas
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Jeury Veloz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana B Carlón
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Piet A Van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Ana Fernández-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain.
| |
Collapse
|
2
|
Herder V, Caporale M, MacLean OA, Pintus D, Huang X, Nomikou K, Palmalux N, Nichols J, Scivoli R, Boutell C, Taggart A, Allan J, Malik H, Ilia G, Gu Q, Ronchi GF, Furnon W, Zientara S, Bréard E, Antonucci D, Capista S, Giansante D, Cocco A, Mercante MT, Di Ventura M, Da Silva Filipe A, Puggioni G, Sevilla N, Stewart ME, Ligios C, Palmarini M. Correlates of disease severity in bluetongue as a model of acute arbovirus infection. PLoS Pathog 2024; 20:e1012466. [PMID: 39150989 DOI: 10.1371/journal.ppat.1012466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/28/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024] Open
Abstract
Most viral diseases display a variable clinical outcome due to differences in virus strain virulence and/or individual host susceptibility to infection. Understanding the biological mechanisms differentiating a viral infection displaying severe clinical manifestations from its milder forms can provide the intellectual framework toward therapies and early prognostic markers. This is especially true in arbovirus infections, where most clinical cases are present as mild febrile illness. Here, we used a naturally occurring vector-borne viral disease of ruminants, bluetongue, as an experimental system to uncover the fundamental mechanisms of virus-host interactions resulting in distinct clinical outcomes. As with most viral diseases, clinical symptoms in bluetongue can vary dramatically. We reproduced experimentally distinct clinical forms of bluetongue infection in sheep using three bluetongue virus (BTV) strains (BTV-1IT2006, BTV-1IT2013 and BTV-8FRA2017). Infected animals displayed clinical signs varying from clinically unapparent, to mild and severe disease. We collected and integrated clinical, haematological, virological, and histopathological data resulting in the analyses of 332 individual parameters from each infected and uninfected control animal. We subsequently used machine learning to select the key viral and host processes associated with disease pathogenesis. We identified and experimentally validated five different fundamental processes affecting the severity of bluetongue: (i) virus load and replication in target organs, (ii) modulation of the host type-I IFN response, (iii) pro-inflammatory responses, (iv) vascular damage, and (v) immunosuppression. Overall, we showed that an agnostic machine learning approach can be used to prioritise the different pathogenetic mechanisms affecting the disease outcome of an arbovirus infection.
Collapse
Affiliation(s)
- Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Marco Caporale
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Davide Pintus
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Xinyi Huang
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Natasha Palmalux
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Rosario Scivoli
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Aislynn Taggart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jay Allan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Haris Malik
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Georgios Ilia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Stephan Zientara
- Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Maisons-Alfort, France
| | - Emmanuel Bréard
- Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Maisons-Alfort, France
| | - Daniela Antonucci
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Sara Capista
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Daniele Giansante
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Antonio Cocco
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Maria Teresa Mercante
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Mauro Di Ventura
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Noemi Sevilla
- Centro de Investigación en Sanidad Animal. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC). Valdeolmos, Madrid, Spain
| | - Meredith E Stewart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
3
|
Mohd Jaafar F, Belhouchet M, Monsion B, Bell-Sakyi L, Mertens PPC, Attoui H. Orbivirus NS4 Proteins Play Multiple Roles to Dampen Cellular Responses. Viruses 2023; 15:1908. [PMID: 37766314 PMCID: PMC10535134 DOI: 10.3390/v15091908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Non-structural protein 4 (NS4) of insect-borne and tick-borne orbiviruses is encoded by genome segment 9, from a secondary open reading frame. Though a protein dispensable for bluetongue virus (BTV) replication, it has been shown to counter the interferon response in cells infected with BTV or African horse sickness virus. We further explored the functional role(s) of NS4 proteins of BTV and the tick-borne Great Island virus (GIV). We show that NS4 of BTV or GIV helps an E3L deletion mutant of vaccinia virus to replicate efficiently in interferon-treated cells, further confirming the role of NS4 as an interferon antagonist. Our results indicate that ectopically expressed NS4 of BTV localised with caspase 3 within the nucleus and was found in a protein complex with active caspase 3 in a pull-down assay. Previous studies have shown that pro-apoptotic caspases (including caspase 3) suppress type I interferon response by cleaving mediators involved in interferon signalling. Our data suggest that orbivirus NS4 plays a role in modulating the apoptotic process and/or regulating the interferon response in mammalian cells, thus acting as a virulence factor in pathogenesis.
Collapse
Affiliation(s)
- Fauziah Mohd Jaafar
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - Mourad Belhouchet
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, Oxford OX3 7BN, UK;
| | - Baptiste Monsion
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK;
| | - Peter P. C. Mertens
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK;
| | - Houssam Attoui
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France;
| |
Collapse
|
4
|
Hardy A, Bakshi S, Furnon W, MacLean O, Gu Q, Varjak M, Varela M, Aziz MA, Shaw AE, Pinto RM, Cameron Ruiz N, Mullan C, Taggart AE, Da Silva Filipe A, Randall RE, Wilson SJ, Stewart ME, Palmarini M. The Timing and Magnitude of the Type I Interferon Response Are Correlated with Disease Tolerance in Arbovirus Infection. mBio 2023; 14:e0010123. [PMID: 37097030 PMCID: PMC10294695 DOI: 10.1128/mbio.00101-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Infected hosts possess two alternative strategies to protect themselves against the negative impact of virus infections: resistance, used to abrogate virus replication, and disease tolerance, used to avoid tissue damage without controlling viral burden. The principles governing pathogen resistance are well understood, while less is known about those involved in disease tolerance. Here, we studied bluetongue virus (BTV), the cause of bluetongue disease of ruminants, as a model system to investigate the mechanisms of virus-host interactions correlating with disease tolerance. BTV induces clinical disease mainly in sheep, while cattle are considered reservoirs of infection, rarely exhibiting clinical symptoms despite sustained viremia. Using primary cells from multiple donors, we show that BTV consistently reaches higher titers in ovine cells than cells from cattle. The variable replication kinetics of BTV in sheep and cow cells were mostly abolished by abrogating the cell type I interferon (IFN) response. We identified restriction factors blocking BTV replication, but both the sheep and cow orthologues of these antiviral genes possess anti-BTV properties. Importantly, we demonstrate that BTV induces a faster host cell protein synthesis shutoff in primary sheep cells than cow cells, which results in an earlier downregulation of antiviral proteins. Moreover, by using RNA sequencing (RNA-seq), we also show a more pronounced expression of interferon-stimulated genes (ISGs) in BTV-infected cow cells than sheep cells. Our data provide a new perspective on how the type I IFN response in reservoir species can have overall positive effects on both virus and host evolution. IMPORTANCE The host immune response usually aims to inhibit virus replication in order to avoid cell damage and disease. In some cases, however, the infected host avoids the deleterious effects of infection despite high levels of viral replication. This strategy is known as disease tolerance, and it is used by animal reservoirs of some zoonotic viruses. Here, using a virus of ruminants (bluetongue virus [BTV]) as an experimental system, we dissected virus-host interactions in cells collected from species that are susceptible (sheep) or tolerant (cow) to disease. We show that (i) virus modulation of the host antiviral type I interferon (IFN) responses, (ii) viral replication kinetics, and (iii) virus-induced cell damage differ in tolerant and susceptible BTV-infected cells. Understanding the complex virus-host interactions in disease tolerance can allow us to disentangle the critical balance between protective and damaging host immune responses.
Collapse
Affiliation(s)
- Alexandra Hardy
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Siddharth Bakshi
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Oscar MacLean
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Mariana Varela
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Muhamad Afiq Aziz
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Andrew E. Shaw
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Rute Maria Pinto
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Natalia Cameron Ruiz
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Catrina Mullan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Aislynn E. Taggart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Richard E. Randall
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Sam J. Wilson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Meredith E. Stewart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| |
Collapse
|
5
|
Xia X, Cheng A, Wang M, Ou X, Sun D, Mao S, Huang J, Yang Q, Wu Y, Chen S, Zhang S, Zhu D, Jia R, Liu M, Zhao XX, Gao Q, Tian B. Functions of Viroporins in the Viral Life Cycle and Their Regulation of Host Cell Responses. Front Immunol 2022; 13:890549. [PMID: 35720341 PMCID: PMC9202500 DOI: 10.3389/fimmu.2022.890549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Viroporins are virally encoded transmembrane proteins that are essential for viral pathogenicity and can participate in various stages of the viral life cycle, thereby promoting viral proliferation. Viroporins have multifaceted effects on host cell biological functions, including altering cell membrane permeability, triggering inflammasome formation, inducing apoptosis and autophagy, and evading immune responses, thereby ensuring that the virus completes its life cycle. Viroporins are also virulence factors, and their complete or partial deletion often reduces virion release and reduces viral pathogenicity, highlighting the important role of these proteins in the viral life cycle. Thus, viroporins represent a common drug-protein target for inhibiting drugs and the development of antiviral therapies. This article reviews current studies on the functions of viroporins in the viral life cycle and their regulation of host cell responses, with the aim of improving the understanding of this growing family of viral proteins.
Collapse
Affiliation(s)
- Xiaoyan Xia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
6
|
Comparative Virus-Host Protein Interactions of the Bluetongue Virus NS4 Virulence Factor. Viruses 2022; 14:v14020182. [PMID: 35215776 PMCID: PMC8878768 DOI: 10.3390/v14020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 02/05/2023] Open
Abstract
Bluetongue virus (BTV) is the etiologic agent of a non-contagious arthropod-borne disease transmitted to wild and domestic ruminants. BTV induces a large panel of clinical manifestations ranging from asymptomatic infection to lethal hemorrhagic fever. Despite the fact that BTV has been studied extensively, we still have little understanding of the molecular determinants of BTV virulence. In our report, we have performed a comparative yeast two-hybrid (Y2H) screening approach to search direct cellular targets of the NS4 virulence factor encoded by two different serotypes of BTV: BTV8 and BTV27. This led to identifying Wilms’ tumor 1-associated protein (WTAP) as a new interactor of the BTV-NS4. In contrast to BTV8, 1, 4 and 25, NS4 proteins from BTV27 and BTV30 are unable to interact with WTAP. This interaction with WTAP is carried by a peptide of 34 amino acids (NS422−55) within its putative coil-coiled structure. Most importantly, we showed that binding to WTAP is restored with a chimeric protein where BTV27-NS4 is substituted by BTV8-NS4 in the region encompassing residue 22 to 55. We also demonstrated that WTAP silencing reduces viral titers and the expression of viral proteins, suggesting that BTV-NS4 targets a cellular function of WTAP to increase its viral replication.
Collapse
|
7
|
Vaccination as a Strategy to Prevent Bluetongue Virus Vertical Transmission. Pathogens 2021; 10:pathogens10111528. [PMID: 34832683 PMCID: PMC8622840 DOI: 10.3390/pathogens10111528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bluetongue virus (BTV) produces an economically important disease in ruminants of compulsory notification to the OIE. BTV is typically transmitted by the bite of Culicoides spp., however, some BTV strains can be transmitted vertically, and this is associated with fetus malformations and abortions. The viral factors associated with the virus potency to cross the placental barrier are not well defined. The potency of vertical transmission is retained and sometimes even increased in live attenuated BTV vaccine strains. Because BTV possesses a segmented genome, the possibility of reassortment of vaccination strains with wild-type virus could even favor the transmission of this phenotype. In the present review, we will describe the non-vector-based BTV infection routes and discuss the experimental vaccination strategies that offer advantages over this drawback of some live attenuated BTV vaccines.
Collapse
|
8
|
Rojas JM, Avia M, Martín V, Sevilla N. Inhibition of the IFN Response by Bluetongue Virus: The Story So Far. Front Microbiol 2021; 12:692069. [PMID: 34168637 PMCID: PMC8217435 DOI: 10.3389/fmicb.2021.692069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Bluetongue virus (BTV) is the prototypical orbivirus that belongs to the Reoviridae family. BTV infection produces a disease in ruminants, particularly in sheep, that results in economic losses through reduced productivity. BTV is transmitted by the bite of Culicoides spp. midges and is nowadays distributed globally throughout subtropical and even temperate regions. As most viruses, BTV is susceptible to the IFN response, the first line of defense employed by the immune system to combat viral infections. In turn, BTV has evolved strategies to counter the IFN response and promote its replication. The present review we will revise the works describing how BTV interferes with the IFN response.
Collapse
Affiliation(s)
- José Manuel Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|