1
|
Wang H, Lei D, Xu B, Li X, Fang R, Tang Y. Continuous surveillance of pathogens detects excretion of avian orthoreovirus and parvovirus by several wild waterfowl: possible wild bird reservoirs. Poult Sci 2024; 103:103940. [PMID: 38909506 PMCID: PMC11253670 DOI: 10.1016/j.psj.2024.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024] Open
Abstract
Migratory wild birds can carry various pathogens, such as influenza A virus, which can spread to globally and cause disease outbreaks and epidemics. Continuous epidemiological surveillance of migratory wild birds is of great significance for the early warning, prevention, and control of epidemics. To investigate the pathogen infection status of migratory wild birds in eastern China, fecal samples were collected from wetlands to conduct pathogen surveillance. The results showed that duck orthoreovirus (DRV) and goose parvovirus (GPV) nucleic acid were detected positive in the fecal samples collected from wild ducks, egrets, and swan. Phylogenetic analysis of the amplified viral genes reveals that the isolates were closely related to the prevalent strains in the regions involved in East Asian-Australasian (EAA) migratory flyway. Phylogenetic analysis of the amplified viral genes confirmed that they were closely related to circulating strains in the regions involved in the EAA migration pathway. The findings of this study have expanded the host range of the orthoreovirus and parvovirus, and revealed possible virus transmission between wild migratory birds and poultry.
Collapse
Affiliation(s)
- Hongzhi Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Di Lei
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Boyi Xu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xuyong Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Rendong Fang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
2
|
Nwokorogu VC, Pillai S, San JE, Pillay C, Nyaga MM, Sabiu S. A metagenomic investigation of the faecal RNA virome structure of asymptomatic chickens obtained from a commercial farm in Durban, KwaZulu-Natal province, South Africa. BMC Genomics 2024; 25:629. [PMID: 38914944 PMCID: PMC11194887 DOI: 10.1186/s12864-024-10517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Virome studies on birds, including chickens are relatively scarce, particularly from the African continent. Despite the continuous evolution of RNA viruses and severe losses recorded in poultry from seasonal viral outbreaks, the information on RNA virome composition is even scantier as a result of their highly unstable nature, genetic diversity, and difficulties associated with characterization. Also, information on factors that may modulate the occurrence of some viruses in birds is limited, particularly for domesticated birds. Viral metagenomics through advancements in sequencing technologies, has enabled the characterization of the entire virome of diverse host species using various samples. METHODS The complex RNA viral constituents present in 27 faecal samples of asymptomatic chickens from a South African farm collected at 3-time points from two independent seasons were determined, and the impact of the chicken's age and collection season on viral abundance and diversity was further investigated. The study utilized the non-invasive faecal sampling method, mRNA viral targeted enrichment steps, a whole transcriptome amplification strategy, Illumina sequencing, and bioinformatics tools. RESULTS The results obtained revealed a total of 48 viral species spanning across 11 orders, 15 families and 21 genera. Viral RNA families such as Coronaviridae, Picornaviridae, Reoviridae, Astroviridae, Caliciviridae, Picorbirnaviridae and Retroviridae were abundant, among which picornaviruses, demonstrated a 100% prevalence across the three age groups (2, 4 and 7 weeks) and two seasons (summer and winter) of the 27 faecal samples investigated. A further probe into the extent of variation between the different chicken groups investigated indicated that viral diversity and abundance were significantly influenced by age (P = 0.01099) and season (P = 0.00099) between chicken groups, while there was no effect on viral shedding within samples in a group (alpha diversity) for age (P = 0.146) and season (P = 0.242). CONCLUSION The presence of an exceedingly varied chicken RNA virome, encompassing avian, mammalian, fungal, and dietary-associated viruses, underscores the complexities inherent in comprehending the causation, dynamics, and interspecies transmission of RNA viruses within the investigated chicken population. Hence, chickens, even in the absence of discernible symptoms, can harbour viruses that may exhibit opportunistic, commensal, or pathogenic characteristics.
Collapse
Affiliation(s)
- Vivian C Nwokorogu
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - James E San
- Nelson Mandela School of Medicine, KwaZulu-Natal Research Innovation and Sequencing platform unit, University of KwaZulu- Natal, 719 Umbilo Road, Durban, 4001, South Africa
| | - Charlene Pillay
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Martin M Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
3
|
Li Y, Niu J, Liu Y, Dai Y, Ni H, Wang J, Fang R, Ye C. Genomic Sequencing and Analysis of Enzootic Nasal Tumor Virus Type 2 Provides Evidence for Recombination within the Prevalent Chinese Strains. Vet Sci 2024; 11:248. [PMID: 38921995 PMCID: PMC11209414 DOI: 10.3390/vetsci11060248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
In recent years, the clinical cases of ENTV-2 infection have increased and become prevalent in several provinces of China. In this study, we reported the occurrence of ENTV-2 in one goat farm in Chongqing, southwest China. The complete genome of an emerged ENTV-2 isolate (designated as CQ2) was sequenced with 7468 bp in length. Phylogenetic analysis revealed that ENTV-2 consisted of two main lineages. Lineage 1 was composed of Chinese strains and could be subdivided into five sublineages. CQ2 and the other six recent isolates from China were clustered in sublineage 1.5; however, CQ2 was significantly different from the other six isolates. Furthermore, recombination analysis suggested that CQ2 might be a recombinant variant derived from sublineage 1.5 and sublineage 1.2 strains, with the recombination region in areas of pro and pol genes. In conclusion, we sequenced and analyzed the complete genome of a potential ENTV-2 recombinant, which may contribute to our understanding of the genetic variation and evolution of ENTV-2 in China.
Collapse
Affiliation(s)
- Yixuan Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.L.); (J.N.); (Y.L.); (Y.D.); (R.F.)
| | - Jingyi Niu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.L.); (J.N.); (Y.L.); (Y.D.); (R.F.)
| | - Yiyu Liu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.L.); (J.N.); (Y.L.); (Y.D.); (R.F.)
| | - Yu Dai
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.L.); (J.N.); (Y.L.); (Y.D.); (R.F.)
| | - Hongbo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinliang Wang
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou 256600, China
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.L.); (J.N.); (Y.L.); (Y.D.); (R.F.)
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.L.); (J.N.); (Y.L.); (Y.D.); (R.F.)
| |
Collapse
|
4
|
Yang H, Zhang W, Wang M, Yuan S, Zhang X, Wen F, Guo J, Mei K, Huang S, Li Z. Characterization and pathogenicity evaluation of recombinant novel duck reovirus isolated from Southeast China. Front Vet Sci 2023; 10:1124999. [PMID: 36998638 PMCID: PMC10043381 DOI: 10.3389/fvets.2023.1124999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
The novel duck reovirus (NDRV) emerged in southeast China in 2005. The virus causes severe liver and spleen hemorrhage and necrosis in various duck species, bringing serious harm to waterfowl farming. In this study, three strains of NDRV designated as NDRV-ZSS-FJ20, NDRV-LRS-GD20, and NDRV-FJ19 were isolated from diseased Muscovy ducks in Guangdong and Fujian provinces. Pairwise sequence comparisons revealed that the three strains were closely related to NDRV, with nucleotide sequence identities for 10 genomic fragments ranging between 84.8 and 99.8%. In contrast, the nucleotide sequences of the three strains were only 38.9–80.9% similar to the chicken-origin reovirus and only 37.6–98.9% similar to the classical waterfowl-origin reovirus. Similarly, phylogenetic analysis revealed that the three strains clustered together with NDRV and were significantly different from classical waterfowl-origin reovirus and chicken-origin reovirus. In addition, the analyses showed that the L1 segment of the NDRV-FJ19 strain was a recombinant of 03G and J18 strains. Experimental reproduction of the disease showed that the NDRV-FJ19 strain was pathogenic to both ducks and chickens and could lead to symptoms of hemorrhage and necrosis in the liver and spleen. This was somewhat different from previous reports that NDRV is less pathogenic to chickens. In conclusion, we speculated that the NDRV-FJ19 causing duck liver and spleen necrosis is a new variant of a duck orthoreovirus that is significantly different in pathogenicity from any previously reported waterfowl-origin orthoreovirus.
Collapse
Affiliation(s)
- Huihu Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Wandi Zhang
- Nanyang Vocational College of Agriculture, Nanyang, China
| | - Meihong Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Xuelian Zhang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Kun Mei
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- *Correspondence: Shujian Huang
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- Zhili Li
| |
Collapse
|
5
|
Lunge VR, De Carli S, Fonseca ASK, Ikuta N. Avian Reoviruses in Poultry Farms from Brazil. Avian Dis 2022; 66:459-464. [PMID: 36715480 DOI: 10.1637/aviandiseases-d-22-99998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
Avian reovirus (ARV) is highly disseminated in commercial Brazilian poultry farms, causing arthritis/tenosynovitis, runting-stunting syndrome, and malabsorption syndrome in different meat- and egg-type birds (breeders, broilers, grillers, and layers). In Brazil, ARV infection was first described in broilers in the 1970s but was not considered an important poultry health problem for decades. A more concerning outcome of field infections has been observed in recent years, including condemnations at slaughterhouses because of the unsightly appearance of chicken body parts, mainly the legs. Analyses of the performance of poultry flocks have further evidenced economic losses to farms. Genetic and antigenic characterization of ARV field strains from Brazil demonstrated a high diversity of lineages circulating in the entire country, including four of the five main phylogenetic groups previously described (I, II, III, and V). It is still unclear if all of them are associated with different diseases affecting flocks' performance in Brazilian poultry. ARV infections have been controlled in Brazilian poultry farms by immunization of breeders and young chicks with classical commercial live vaccine strains (S1133, 1733, 2408, and 2177) used elsewhere in the Western Hemisphere. However, genetic and antigenic variations of the field isolates have prevented adequate protection against associated diseases, so killed autogenous vaccines are being produced from isolates obtained on specific farms. In conclusion, ARV field variants are continuously challenging poultry farming in Brazil. Epidemiological surveillance combined with molecular biological analyses from the field samples, as well as the development of vaccine strains directed toward the ARV circulating variants, are necessary to control this economically important poultry pathogen.
Collapse
Affiliation(s)
- Vagner R Lunge
- Laboratório de Diagnóstico em Medicina Veterinária, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil, .,Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil.,Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil
| | - Silvia De Carli
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil
| | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Sellers HS. Avian Reoviruses from Clinical Cases of Tenosynovitis: An Overview of Diagnostic Approaches and 10-Year Review of Isolations and Genetic Characterization. Avian Dis 2022; 66:420-426. [PMID: 36715473 DOI: 10.1637/aviandiseases-d-22-99990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/24/2023]
Abstract
Reoviral-induced tenosynovitis/viral arthritis is an economically significant disease of poultry. Affected birds present with lameness, unilateral or bilateral swollen hock joints or shanks, and/or reluctance to move. In severe cases, rupture of the gastrocnemius or digital flexor tendons may occur, and significant culling may be necessary. Historically, vaccination with a combination of modified live and inactivated vaccines has successfully controlled disease. Proper vaccination reduced vertical transmission and provided maternal-derived antibodies to progeny to protect against disease, at an age when they were most susceptible. Starting in 2011-2012, an increased incidence of tenosynovitis/viral arthritis was observed in chickens and turkeys. In chickens, progeny from reovirus-vaccinated breeders were affected, suggesting commercial vaccines did not provide adequate protection against disease. In turkeys, clinical disease was primarily in males, although females can also be affected. The most significant signs were observed around 14-16 wks of age and include reluctance to move, lameness, and limping on one or both legs. The incidence of tenosynovitis/viral arthritis presently remains high. Reoviruses isolated from clinical cases are genetically and antigenically characterized as variants, meaning they are different from vaccine strains. Characterization of the field isolates reveals multiple new genotypes and serotypes that are significantly different from commercial vaccines and each other. In 2012, a single prevalent virus was isolated from a majority of the cases submitted to the Poultry Diagnostic and Research Center at the University of Georgia. Genetic characterization of the σC protein revealed the early isolates belonged to genetic cluster (GC) 5. Soon after the initial identification of the GC5 variant reovirus, many broiler companies incorporated these isolates from their farms into their autogenous vaccines and continue to do so today. The incidence of GC5 field isolates has decreased significantly, likely because of the widespread use of the isolates in autogenous vaccines. Unfortunately, variant reoviruses belonging to multiple GCs have emerged, despite inclusion of these isolates in autogenous vaccines. In this review, an overview of nomenclature, sample collection, and diagnostic testing will be covered, and a summary of variant reoviruses isolated from clinical cases of tenosynovitis/viral arthritis over the past 10 yrs will be provided.
Collapse
Affiliation(s)
- Holly S Sellers
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602,
| |
Collapse
|
7
|
Genetic and pathogenic characteristics of two novel/recombinant avian orthoreovirus. Vet Microbiol 2022; 275:109601. [DOI: 10.1016/j.vetmic.2022.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
|
8
|
Kim SW, Choi YR, Park JY, Wei B, Shang K, Zhang JF, Jang HK, Cha SY, Kang M. Isolation and Genomic Characterization of Avian Reovirus From Wild Birds in South Korea. Front Vet Sci 2022; 9:794934. [PMID: 35155656 PMCID: PMC8831841 DOI: 10.3389/fvets.2022.794934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022] Open
Abstract
Avian reoviruses (ARVs) cause severe arthritis, tenosynovitis, pericarditis, and depressed growth in chickens, and these conditions have become increasingly frequent in recent years. Studies on the role of wild birds in the epidemiology of ARVs are insufficient. This study provides information about currently circulating ARVs in wild birds by gene detection using diagnostic RT-PCR, virus isolation, and genomic characterization. In this study, we isolated and identified 10 ARV isolates from 7,390 wild birds' fecal samples, including migratory bird species (bean goose, Eurasian teal, Indian spot-billed duck, and mallard duck) from 2015 to 2019 in South Korea. On comparing the amino acid sequences of the σC-encoding gene, most isolates, except A18-13, shared higher sequence similarity with the commercial vaccine isolate S1133 and Chinese isolates. However, the A18-13 isolate is similar to live attenuated vaccine av-S1133 and vaccine break isolates (SD09-1, LN09-1, and GX110116). For the p10- and p17-encoding genes, all isolates have identical fusion associated small transmembrane (FAST) protein and nuclear localization signal (SNL) motif to chicken-origin ARVs. Phylogenetic analysis of the amino acid sequences of the σC-encoding gene revealed that all isolates were belonged to genotypic cluster I. For the p10- and p17-encoding genes, the nucleotide sequences of all isolates indicated close relationship with commercial vaccine isolate S1133 and Chinese isolates. For the σNS-encoding gene, the nucleotide sequences of all isolates indicated close relationship with the Californian chicken-origin isolate K1600657 and belonged to chicken-origin ARV cluster. Our data indicates that wild birds ARVs were derived from the chicken farms. This finding suggests that wild birds serve as natural carriers of such viruses for domestic poultry.
Collapse
|