1
|
Ji J, Ji L, Dong X, Li W, Zhang W, Wang X, Wang J, Lei B, Wang Z, Yuan W, Zhao K. Comparative transcriptomic analysis of goose astrovirus genotype 1 and 2 in goose embryonic fibroblasts. Poult Sci 2024; 103:104347. [PMID: 39357233 PMCID: PMC11472713 DOI: 10.1016/j.psj.2024.104347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
Gout in goslings has become widespread and caused huge economic losses for the goose industry. Emerging evidence suggests that goose astrovirus (GAstV) is a prominent etiological factor of gout in goslings. At present, 2 genotypes of GAstV have been identified named GAstV-1 and GAstV-2. Here, we isolated the GAstV-1 HBLY strain and GAstV-2 XT1 strain from HeBei province of China. The genome and proliferation characteristics of GAstV-1 and GAstV-2 were analyzed and the results showed that the whole genome identity was 53.8% to 55.8%, especially the nucleotide and amino acids identity of ORF2 and Cap protein was only 49.5% to 50.5% and 19.6% to 22.6 %. Interestingly, GAstV-1 and GAstV-2 with such low homology both can cause gout in goslings. To further explore this phenomenon, the whole genomic expression profile of goose embryonic fibroblasts (GEFs) infected with GAstV-1 was investigated in comparison with GAstV-2. The results revealed that 126 differentially expressed genes (DEGs) were identified between GAstV-1-infected and uninfected cells at 48 h postinfection (hpi), and 262 DEGs between GAstV-2 and uninfected. Among these, there are 15 commonly up-regulated genes and 19 commonly down-regulated genes. Gene ontology (GO) enrichment analysis, Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and short time-series expression miner (STEM) analysis suggested that GAstV-1 can induce a higher innate immune response to GEFs, while GAstV-2 has a more pronounced effect on GEFs metabolic pathways. The transcriptomic analysis results significantly enhance our comprehension of the pathogenic mechanisms of GAstV.
Collapse
Affiliation(s)
- Jiashuang Ji
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Longhai Ji
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaofeng Dong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wei Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiangqin Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Junli Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Baishi Lei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | | | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
2
|
Guo Z, Zhu M, Li X, Xu H, Lv Y. Primary goose kidney tubular epithelial cells for goose astrovirus genotype 2 infection: establishment and RNA sequencing analysis. Poult Sci 2024; 103:103774. [PMID: 38669820 PMCID: PMC11063644 DOI: 10.1016/j.psj.2024.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Goose astrovirus genotype 2 (GAstV-2) mainly causes gout in goslings; therefore, it is a major pathogen threatening to goose flocks. However, the mechanisms underlying host-GAstV-2 interactions remain unclear because host cells suitable for GAstV-2 replication have been unavailable. We previously noted that GAstV-2 is primarily located in goose renal epithelial cells, where it causes kidney damage. Therefore, here, we derived goose primary renal tubular epithelial (RTE) cells (GRTE cells) from the kidneys of goose embryos after collagenase I digestion. After culture in Dulbecco's modified Eagle medium/Nutrient mixture F-12 with 10% fetal bovine serum (FBS), the isolated cells had polygonal with roadstone-like morphology; they were identified to be epithelial cells based on the presence of cytokeratin 18 expression detected through immunofluorescence assay (IFA). GAstV-2 infection in GRTE cells led to no obvious cytopathic effects; the maximum amounts of infectious virions were observed 48 h post infection through IFA and quantitative PCR. Next, RNA-seq was performed to identify and map post-GAstV-2 infection differentially expressed genes. The downregulated pathways were mainly related to metabolism, including tryptophan metabolism, drug metabolism by cytochrome P450, xenobiotic metabolism by cytochrome P450, retinol metabolism, butanoate metabolism, starch and sucrose metabolism, ascorbate and aldarate metabolism, and drug metabolism by other enzymes and peroxisome. In contrast, the upregulated pathways were mostly related to the host cell defense and proliferation, including extracellular matrix-receptor interaction, complement and coagulation cascades, phagosome, PI3K-Akt signaling pathway, human T-lymphotropic virus 1 infection, lysosome, and tumor necrosis factor signaling pathway. In conclusion, we developed a GRTE cell line for GAstV-2 replication and analyzed the potential host-GAstV-2 interactions through RNA-seq; our results may aid in further investigating the pathogenic mechanisms underlying GAstV-2 infection and provide strategies for its prevention and control.
Collapse
Affiliation(s)
- Zixuan Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyang Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoran Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingjun Lv
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Chen L, Cui H, Li J, Zhang Y, Wang H, Yang Y, Wang X, Zhang C, Liu J. Epidemiological Investigation of Goose Astrovirus in Hebei Province, China, 2019-2021. Microorganisms 2024; 12:990. [PMID: 38792819 PMCID: PMC11123679 DOI: 10.3390/microorganisms12050990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The goose astrovirus (GAstV), a key pathogen causing visceral gout and high mortality in geese, has spread widely in China, with frequent outbreaks in recent years. Outbreaks and transmissions of this virus have been reported across China, causing considerable economic losses to the goose industry worldwide, with losses exceeding tens of billions in China alone. However, there is still no effective prevention strategy against this virus. Therefore, continuous monitoring of the genetic diversity of dominant GAstV strains is crucial for developing targeted vaccines and appropriate therapeutics. As a crucial region for goose breeding in China, Hebei Province has previously lacked reports on the epidemiology of GAstV. Hence, investigating the epidemiology of GAstV in Hebei Province is highly important. From January 2019 to December 2021, 474 samples suspected of having a GAstV infection were collected in Hebei Province in this study. Through detailed histological observations, pathological examinations, virus isolation and identification, and genetic diversity analysis, we found that GAstV-2 has become the predominant circulating genotype. However, the presence of GAstV-1 and mixed infections cannot be ignored and should receive increased attention. The findings of this study not only deepened our understanding of GAstV in waterfowl in China but also provided scientific evidence for developing effective prevention and control measures, thereby promoting the healthy development of the goose industry in China.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (L.C.); (H.C.); (J.L.); (Y.Z.); (H.W.); (Y.Y.); (X.W.)
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (L.C.); (H.C.); (J.L.); (Y.Z.); (H.W.); (Y.Y.); (X.W.)
| |
Collapse
|
4
|
Xu L, Wu Z, He Y, Jiang B, Cheng Y, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Sun D, Cheng A, Chen S. Molecular characterization of a virulent goose astrovirus genotype-2 with high mortality in vitro and in vivo. Poult Sci 2024; 103:103585. [PMID: 38492247 PMCID: PMC10959697 DOI: 10.1016/j.psj.2024.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
Goose astrovirus (GAstV) is a newly identified viral pathogen threatening waterfowl, exhibiting a high prevalence across various regions in China. Notably, the Guanghan District of Deyang City, situated in Sichuan Province, has faced a outbreak of GAstV, resulting in significant mortality among goslings due to the induction of gout-like symptoms. In our research, we successfully isolated a GAstV strain known as GAstV SCG3. This strain exhibits efficient replication capabilities, proving virulent in goslings and goose embryos. Our study delved into the characteristics of GAstV SCG3 both in vitro and in vivo. Additionally, we examined tissue phagocytosis and the distribution of GAstV SCG3 in deceased goslings using H&E staining and IHC techniques. According to the classification established by the ICTV, GAstV SCG3 falls under the category of GAstV genotype-2. Notably, it demonstrates the highest homology with the published AHAU5 sequences, reaching an impressive 98%. Furthermore, our findings revealed that GAstV SCG3 exhibits efficient proliferation exclusively in goose embryos and in LMH cells, while not manifesting in seven other types of avian and mammalian cells. Significantly, the mortality of GAstV on goslings and goose embryos are 93.1 and 80%, respectively. Moreover, the viral load in the livers of infected goslings surpasses that in the kidneys when compared with the attenuated strain GAstV SCG2. The mortality of GAstV is usually between 20% and 50%, our study marks the first report of a virulent GAstV strain with such a high mortality.
Collapse
Affiliation(s)
- Linhua Xu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Yu He
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Bowen Jiang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Yao Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People's Republic of China, Chengdu 611130, China.
| |
Collapse
|
5
|
Ding R, Xu H, Huang H, Cao R, Lv Y. Effects of Goose Astrovirus Type 2 Infection on Peripheral Blood Lymphocyte and Macrophage Activity In Vitro. Viral Immunol 2024; 37:139-148. [PMID: 38574260 DOI: 10.1089/vim.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Goose astrovirus type 2 (GAstV-2) is a novel pathogen causing visceral gout in goslings; it not only causes necrosis of renal epithelial cells but also causes spleen damage, indicating that GAstV-2 induces immunosuppression in goslings. However, to date, the interaction between GAstV-2 and immune cells remains unclear. In this study, peripheral blood lymphocytes and macrophages were isolated from goslings without GAstV-2 infection and then inoculated in vitro with GAstV-2, and the virus localization in the lymphocytes and macrophages, proliferation and apoptosis of lymphocytes, and phagocytic activity, reactive oxygen species (ROS) and nitric oxide (NO) production, and cell polarity in macrophages were determined. The results showed that GAstV-2 was observed in the cytoplasm of CD4 and CD8 T cells and macrophages, indicating that GAstV-2 can infect both lymphocytes and macrophages. GAstV-2 infection reduced the lymphocyte proliferation induced by Concanavalin A and lipopolysaccharide stimulation and increased the lymphocyte apoptosis rate and mRNA expression of Fas, demonstrating that GAstV-2 causes damage to lymphocytes. Moreover, GAstV-2 infection enhanced phagocytic activity and production of ROS and NO and induced a proinflammatory phenotype in macrophages (M1 macrophages), indicating that macrophages play an antiviral role during GAstV-2 infection. In conclusion, these results demonstrate that GAstV-2 infection causes damages to lymphocytes, and host macrophages inhibit GAstV-2 invasion during infection.
Collapse
Affiliation(s)
- Rui Ding
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haoran Xu
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Han Huang
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruibing Cao
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingjun Lv
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Zhu M, Guo Z, Xu H, Li X, Chen H, Cao R, Lv Y. Aminoguanidine alleviates gout in goslings experimentally infected with goose astrovirus-2 by reducing kidney lesions. Poult Sci 2024; 103:103484. [PMID: 38306918 PMCID: PMC10847692 DOI: 10.1016/j.psj.2024.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
Goose astrovirus (GAstV)-2, a novel pathogen identified in 2018, mainly causes visceral gout in goslings, leading to approximately 50% mortality. At present, no commercial veterinary products are available to prevent and treat the disease. Our previous studies showed that nitric oxide (NO) and inducible NO synthase (iNOS) were markedly higher in the kidney and spleen of goslings infected with GAstV-2, but their effects during GAstV-2 infection remain unclear. In the present study, goslings were intraperitoneally injected with aminoguanidine (AG)-an iNOS inhibitor-to examine the role of NO during GAstV-2 infection. AG significantly decreased the serum NO concentration and iNOS mRNA expression in the kidney. Moreover, AG reduced the mortality, serum uric acid and creatinine content, and urate deposition in visceral organs and joints. Histopathological analysis demonstrated that AG reduced renal tubular cell necrosis, inflammatory cell infiltration, glycogen deposition in glomerular mesangium, and interstitial fibrosis, suggesting alleviation of kidney lesions. Furthermore, AG decreased the expression of renal injury markers such as KIM-1 and desmin; inflammatory cytokine-related genes such as IL-1β, IL-8, and MMP-9; and autophagy-related genes and proteins such as LC3II, ATG5, and Beclin1. However, quantitative real-time PCR and immunohistochemistry showed that treatment with AG did not affect the kidney and liver viral load. These findings suggest that AG decreases the mortality rate and kidney lesions in goslings infected with GAstV-2 through mechanisms associated with autophagy and inhibition of inflammatory cytokine production in the kidney but not with GAstV-2 replication.
Collapse
Affiliation(s)
- Ming Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixuan Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoran Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyang Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongbo Chen
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, Fujian, China
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingjun Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Cao J, Zhang D, Li W, Yuan W, Luo G, Xie S. Azilsartan improves urinary albumin excretion in hypertension mice. Aging (Albany NY) 2024; 16:4138-4148. [PMID: 38462692 PMCID: PMC10968693 DOI: 10.18632/aging.205271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 03/12/2024]
Abstract
Hypertension is one of the most important risk factors for chronic kidney diseases, leading to hypertensive nephrosclerosis, including excessive albuminuria. Azilsartan, an angiotensin II type 1 receptor blocker, has been widely used for the treatment of hypertension. However, the effects of Azilsartan on urinary albumin excretion in hypertension haven't been reported before. In this study, we investigated whether Azilsartan possesses a beneficial property against albuminuria in mice treated with angiotensin II and a high-salt diet (ANG/HS). Compared to the control group, the ANG/HS group had higher blood pressure, oxidative stress, and inflammatory response, all of which were rescued by Azilsartan dose-dependently. Importantly, the ANG/HS-induced increase in urinary albumin excretion and decrease in the expression of occludin were reversed by Azilsartan. Additionally, it was shown that increased fluorescence intensity of FITC-dextran, declined trans-endothelial electrical resistance (TEER) values, and reduction of occludin and krüppel-like factor 2 (KLF2) were observed in ANG/HS-treated human renal glomerular endothelial cells (HrGECs), then prevented by Azilsartan. Moreover, the regulatory effect of Azilsartan on endothelial monolayer permeability in ANG/HS-treated HrGECs was abolished by the knockdown of KLF2, indicating KLF2 is required for the effect of Azilsartan. We concluded that Azilsartan alleviated diabetic nephropathy-induced increase in Uterine artery embolization (UAE) mediated by the KLF2/occludin axis.
Collapse
Affiliation(s)
- Jun Cao
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Dandan Zhang
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Wenfeng Li
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Wenjin Yuan
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Gang Luo
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Shaofeng Xie
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| |
Collapse
|
8
|
Wang B, Wang X, Dong Y, Liu X, Xu L, Liu Y, Wu Y, Wang C, Liu H. PDGFβ receptor-targeted delivery of truncated transforming growth factor β receptor type II for improving the in vitro and in vivo anti-renal fibrosis activity via strong inactivation of TGF-β1/Smad signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:237-252. [PMID: 37401970 DOI: 10.1007/s00210-023-02594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Truncated transforming growth factor β receptor type II (tTβRII), serving as a trap for binding excessive transforming growth factor β1 (TGF-β1) by means of competing with wild-type TβRII, is a promising strategy for the treatment of kidney fibrosis. Platelet-derived growth factor β receptor (PDGFβR) is highly expressed in interstitial myofibroblasts in kidney fibrosis. This study identified the interaction between a novel tTβRII variant Z-tTβRII (PDGFβR-specific affibody ZPDGFβR fused to the N-terminus of tTβRII) and TGF-β1. Moreover, Z-tTβRII highly targeted to TGF-β1-activated NIH3T3 cells and UUO-induced fibrotic kidney, but less to normal cells, tissues, and organs. Furthermore, Z-tTβRII significantly inhibited cell proliferation and migration, and reduced fibrosis markers expression and phosphorylation level of Smad2/3 in activated NIH3T3 cells. Meanwhile, Z-tTβRII markedly alleviated the kidney histopathology and fibrotic responses, and inhibited the TGF-β1/Smad signaling pathway in UUO mice. Besides, Z-tTβRII showed good safety performance in the treatment of UUO mice. In conclusion, these results demonstrated that Z-tTβRII may be a potential candidate for a targeting therapy on renal fibrosis due to the high potential of fibrotic kidney-targeting and strong anti-renal fibrosis activity.
Collapse
Affiliation(s)
- Bing Wang
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
- Department of Cell Biology, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Xiaohua Wang
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
- Laboratory of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Yixin Dong
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Xiaohui Liu
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Liming Xu
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Yong Liu
- Medical Research Center, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Yan Wu
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Chuntao Wang
- Department of Cell Biology, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China.
| | - Haifeng Liu
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China.
| |
Collapse
|
9
|
Xu L, Jiang B, Cheng Y, Gao Z, He Y, Wu Z, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Gao Q, Sun D, Cheng A, Chen S. Molecular epidemiology and virulence of goose astroviruses genotype-2 with different internal gene sequences. Front Microbiol 2023; 14:1301861. [PMID: 38143855 PMCID: PMC10740193 DOI: 10.3389/fmicb.2023.1301861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/10/2023] [Indexed: 12/26/2023] Open
Abstract
Goose astrovirus (GAstV) is a small, non-enveloped, single-stranded, positive-sense RNA virus. GAstV has rapidly spread across various regions in China since 2016. In Sichuan, out of 113 samples were collected from goose diseases between 2019 and 2022, 97 were positive for GAstV through PCR testing. Remarkably, over the past three years, GAstV outbreak in Sichuan has accounted for an astonishing 85.8% of all goose-origin viruses. Among these cases, 63.9% had single GAstV infections, 29.9% had dual infections, and 6.2% had quadruple infections. To comprehend the variations in virulence among distinct strains of GAstV. 12 representative strains of single GAstV infections were isolated. These strains exhibited distinct characteristics, such as prominent white urate depositions in organs and joints, as well as extensive tissues phagocytosis in major target organs' tissues. The conserved ORF1b genes and the variable ORF2 genes of these representative GAstV strains were sequenced, enabling the establishment of phylogenetic trees for GAstV. All GAstV strains were identified as belonging to genotype-2 with varying internal gene sequences. Experiments were conducted on GAstV genotype-2, both in vivo and in vitro, revealed significant variations in pathogenicity and virulence across susceptible cells, embryos, and goslings. This comprehensive study enhances researchers' understanding of the transmission characteristics and virulence of GAstV genotype-2, aiding in a better comprehension of their molecular epidemiology and pathogenic mechanism.
Collapse
Affiliation(s)
- Linhua Xu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Bowen Jiang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Yao Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Zhenjie Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Yu He
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| |
Collapse
|
10
|
Wang A, Xie J, Wu Z, Liu L, Wu S, Feng Q, Dong H, Zhu S. Pathogenicity of a goose astrovirus 2 strain causing fatal gout in goslings. Microb Pathog 2023; 184:106341. [PMID: 37704061 DOI: 10.1016/j.micpath.2023.106341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Gosling gout has posed a serious threat to the development of the China's goose industry since the outbreak in mainland China in 2016; goose astrovirus (GAstV) was identified as the culprit pathogen. Two genotypes of this virus have been identified: GAstV-1 and GAstV-2, of which GAstV-2 is the main epidemic strain. Our current understanding of the pathogenic mechanisms of GAstV-2 remains limited. To assess pathogenicity, 1-day-old goslings were inoculated with the GAstV-2 YC20 strain via the subcutaneous, intranasal, and oral infection routes. All the goslings showed typical gout symptoms, with those in the oral infection group exhibiting earlier and more severe clinical symptoms, the highest mortality rate, and greatest weight loss. The blood biochemical indicators, viral loads in cloacal swabs and all representative tissues, and serum antibody titers of all infection groups increased significantly, and no significant differences in these parameters were observed among the three infection groups. Histopathological studies showed that the livers, kidneys, and spleens were the main damaged organs, and the pathological changes in the oral group were more severe than those in the other groups. Further analysis revealed that hepatic sinuses narrowed or became occluded as early as 1 day post-inoculation; urate deposition occurred in the renal tubules at 2 days post-inoculation (dpi), followed by necrosis of renal tubular epithelial cells; and lymphocytic infiltration appeared in the splenic tissue at 5 dpi. These results further our understanding of the pathogenic mechanisms of GAstV-2 and provide a reference for future studies.
Collapse
Affiliation(s)
- Anping Wang
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| | - Jun Xie
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| | - Zhi Wu
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| | - Li Liu
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| | - Shuang Wu
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| | - Qi Feng
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| | - Hongyan Dong
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| | - Shanyuan Zhu
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| |
Collapse
|
11
|
Xu L, Jiang B, Cheng Y, He Y, Wu Z, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Gao Q, Sun D, Cheng A, Chen S. Infection and innate immune mechanism of goose astrovirus. Front Microbiol 2023; 14:1121763. [PMID: 36778860 PMCID: PMC9909288 DOI: 10.3389/fmicb.2023.1121763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Goose astrovirus (GAstV, genus Avian Astrovirus, family Astrovirus) was first discovered in 2005, but was not considered as a pathogen of gosling gout until 2016. Since then, goose astrovirus has erupted in Chinese goslings, causing at most 50% of gosling deaths. By December 2022, the disease had become epidemic and prevailed in goose farms in Jiangsu, Shandong, Anhui, Henan, Guangdong, Liaoning, Sichuan and other places in China. The disease mainly affects goslings within 3 weeks old. The typical symptoms of goose astrovirus are large deposits of urate in the viscera, joint cavity and ureter surface of infected goslings. Goose astrovirus infection can trigger high levels of iNOS, limiting goose astrovirus replication. The ORF2 domain P2 of the goose astrovirus activates the OASL protein, limiting its replication. Goose astrovirus can also activate pattern recognition receptors (RIG-I, MDA-5, TLR-3), causing an increase in MHC-Ia, MHC-Ib and CD81 mRNA, activating humoral and cellular immunity, thereby hindering virus invasion. Goose astrovirus also regulates the activation of IFNs and other antiviral proteins (Mx1, IFITM3, and PKR) in the spleens and kidneys to inhibit viral replication. The innate immune response process in goslings also activates TGF-β, which may be closely related to the immune escape of goose astrovirus. Gaining insight into the infection and innate immune mechanism of goose astrovirus can help researchers study and prevent the severe disease in goslings better.
Collapse
Affiliation(s)
- Linhua Xu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Linhua Xu, ✉
| | - Bowen Jiang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yao Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhen Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,*Correspondence: Anchun Cheng, ✉
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Shun Chen, ✉
| |
Collapse
|
12
|
Zhu Y, Wang H, Hua J, Ye W, Chen L, Ni Z, Yun T, Ma J, Yao H, Bao E, Zhang C. Isolation and Pathogenicity of a Novel Goose Astrovirus from Overfed Adult Landaise Geese in China. Viruses 2022; 14:v14122806. [PMID: 36560810 PMCID: PMC9784181 DOI: 10.3390/v14122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Goose astrovirus (GAstV) is an important pathogen causing visceral gout and high mortality in goslings, which has broken out and spread across China. In 2021, a disease characterized by urate deposition on the visceral surface and 30% mortality occurred in commercial adult Landaise geese in Zhejiang Province, China. A systematic study identified an infecting astrovirus, designated ZJCX, that was efficiently isolated from a diseased goose with a chicken hepatocellular carcinoma cell line (LMH). In contrast to other GAstVs originating from goslings, ZJCX caused cytopathogenic effects in LMH cells, and the crystalline arrangement of viral particles was observed through transmission electron microscopy. Indeed, phylogenetic analysis and nucleotide homology comparison revealed that ZJCX isolate belongs to the genotype II cluster of GAstVs and displays 97.8-98.4% identity with other GAstV II strains. However, several specific mutations occurred in the polyprotein and capsid protein regions. Moreover, a pathogenicity assessment of ZJCX with a gosling model was conducted, and typical visceral gout was reproduced and led to 18% mortality. The viral loads of ZJCX in the blood, kidney, and liver were detected with specific primers after inoculation, which demonstrated that the kidney and liver presented viral loads peaking at seven days post-inoculation (dpi). Biochemical parameter examination showed that AST, ALT, γ-GT, UA, and BUN levels were significantly increased by GAstV, whereas body weight was reduced. Overall, this study indicated that the GAstV isolate could infect adult geese, and the results regarding the viral loads and biochemical parameters induced by ZJCX provide insight into GAstV pathogenicity.
Collapse
Affiliation(s)
- Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hongyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (E.B.); (C.Z.); Tel./Fax: +86-0571-86404182 (C.Z.)
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (E.B.); (C.Z.); Tel./Fax: +86-0571-86404182 (C.Z.)
| |
Collapse
|
13
|
Zhang M, Zhang L, Yang J, Zhao D, Han K, Huang X, Liu Q, Xiao Y, Gu Y, Li Y. An IgY Effectively Prevents Goslings from Virulent GAstV Infection. Vaccines (Basel) 2022; 10:vaccines10122090. [PMID: 36560500 PMCID: PMC9781778 DOI: 10.3390/vaccines10122090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Goose astrovirus (GAstV) leads to viscera and joints urate deposition in 1- to 20-day-old goslings, with a mortality rate of up to 50%, posing a severe threat to entire colonies; however, there is no efficient prevention and control method for GAstV infection. This study describes a prophylactic anti-GAstV strategy based on the specific immunoglobulin Y (IgY) from egg yolk. The specific IgY was produced by 22-week-old laying hens intramuscularly immunized with the inactivated GAstV three consecutive times, with 2-week intervals. The egg yolk was collected weekly after the immunization and the anti-GAstV IgY titer was monitored using an agar gel immune diffusion assay (AGID). The results revealed that the AGID titer began to increase on day 7, reached a peak on day 49, and remained at a high level until day 77 after the first immunization. The specific IgY was prepared from the combinations of egg yolk from day 49 to day 77 through PEG-6000 precipitation. Animal experiments were conducted to evaluate the effects of prevention and treatment. The result of the minimum prophylactic dose of the IgY showed that the protection rate was 90.9% when 2.5 mg was administrated. Results of the prevention and the treatment experiments showed prevention and cure rates of over 80% when yolk antibody was administered in the early stages of the GAstV infection. These results suggested that the specific IgY obtained from immunized hens with the inactivated GAstV could be a novel strategy for preventing and treating GAstV infection.
Collapse
Affiliation(s)
- Mengran Zhang
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Yichen Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
14
|
A Review of the Emerging Poultry Visceral Gout Disease Linked to Avian Astrovirus Infection. Int J Mol Sci 2022; 23:ijms231810429. [PMID: 36142340 PMCID: PMC9499687 DOI: 10.3390/ijms231810429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Avian astroviruses, including chicken astrovirus (CAstV), avian nephritisvirus (ANV), and goose astrovirus (GoAstV), are ubiquitous enteric RNA viruses associated with enteric disorders in avian species. Recent research has found that infection of these astroviruses usually cause visceral gout in chicken, duckling and gosling. However, the underlying mechanism remains unknown. In the current article, we review recent discoveries of genetic diversity and variation of these astroviruses, as well as pathogenesis after astrovirus infection. In addition, we discuss the relation between avian astrovirus infection and visceral gout in poultry. Our aim is to review recent discoveries about the prevention and control of the consequential visceral gout diseases in poultry, along with the attempt to reveal the possible producing process of visceral gout diseases in poultry.
Collapse
|
15
|
A Review of Emerging Goose Astrovirus Causing Gout. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1635373. [PMID: 36072471 PMCID: PMC9441354 DOI: 10.1155/2022/1635373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
In recent years, an infection in geese caused by goose astrovirus (GAstV) has repeatedly occurred in coastal areas of China and rapidly spread to inland provinces. The infection is characterized by joint and visceral gout and is fatal. The disease has caused huge economic losses to China's goose industry. GAstV is a nonenveloped, single-stranded, positive-sense RNA virus. As it is a novel virus, there is no specific classification. Here, we review the current understanding of GAstV. The virus structure, isolation, diagnosis and detection, innate immune regulation, and transmission route are discussed. In addition, since GAstV can cause gout in goslings, the possible role of GAstV in gout formation and uric acid metabolism is discussed. We hope that this review will inform researchers to rapidly develop effective methods to prevent and treat this disease.
Collapse
|
16
|
Zhu Q, Sun D. Goose Astrovirus in China: A Comprehensive Review. Viruses 2022; 14:v14081759. [PMID: 36016381 PMCID: PMC9416409 DOI: 10.3390/v14081759] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Goose astroviruses (GoAstVs) are small non-enveloped viruses with a genome consisting of a single-stranded positive-sense RNA molecule. A novel GoAstV was identified in Shandong in 2016 and quickly spread to other provinces in China, causing gout in goslings, with a mortality rate of approximately 50%. GoAstV can also cause gout in chickens and ducks, indicating its ability to cross the species barrier. GoAstV has only been reported in China, where it has caused serious losses to the goose-breeding industry. However, in view of its cross-species transmission ability and pathogenicity in chickens and ducks, GoAstV should be a concern to poultry breeding globally. As an emerging virus, there are few research reports concerning GoAstV. This review summarizes the current state of knowledge about GoAstV, including the epidemiology, evolution analysis, detection methods, pathogenicity, pathogenesis, and potential for cross-species transmission. We also discuss future outlooks and provide recommendations. This review can serve as a valuable reference for further research on GoAstV.
Collapse
|
17
|
Tao J, Li B, Cheng J, Shi Y, Qiao C, Lin Z, Liu H. Genomic Divergence Characterization and Quantitative Proteomics Exploration of Type 4 Porcine Astrovirus. Viruses 2022; 14:v14071383. [PMID: 35891364 PMCID: PMC9319226 DOI: 10.3390/v14071383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Porcine astrovirus (PAstV) has been identified as an important diarrheic pathogen with a broad global distribution. The PAstV is a potential pathogen to human beings and plays a role in public health. Until now, the divergence characteristics and pathogenesis of the PAstV are still not well known. In this study, the PAstV-4 strain PAstV/CH/2022/CM1 was isolated from the diarrheal feces of a piglet in Shanghai, which was identified to be a recombination of PAstV4/JPN (LC201612) and PAstV4/CHN (JX060808). A time tree based on the ORF2 protein of the astrovirus demonstrated that type 2–5 PAstV (PAstV-2 to 5) diverged from type 1 PAstV (PAstV-1) at a point from 1992 to 2000. To better understand the molecular basis of the virus, we sought to explore the host cell response to the PAstV/CH/2022/CM1 infection using proteomics. The results demonstrate that viral infection elicits global protein changes, and that the mitochondria seems to be a primary and an important target in viral infection. Importantly, there was crosstalk between autophagy and apoptosis, in which ATG7 might be the key mediator. In addition, the NOD-like receptor X1 (NLRX1) in the mitochondria was activated and participated in several important antiviral signaling pathways after the PAstV/CH/2022/CM1 infection, which was closely related to mitophagy. The NLRX1 may be a crucial protein for antagonizing a viral infection through autophagy, but this has yet to be validated. In conclusion, the data in this study provides more information for understanding the virus genomic characterization and the potential antiviral targets in a PAstV infection.
Collapse
Affiliation(s)
- Jie Tao
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (J.C.); (Y.S.); (C.Q.); (Z.L.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Benqiang Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (J.C.); (Y.S.); (C.Q.); (Z.L.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jinghua Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (J.C.); (Y.S.); (C.Q.); (Z.L.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Ying Shi
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (J.C.); (Y.S.); (C.Q.); (Z.L.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Changtao Qiao
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (J.C.); (Y.S.); (C.Q.); (Z.L.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Zhi Lin
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (J.C.); (Y.S.); (C.Q.); (Z.L.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (J.C.); (Y.S.); (C.Q.); (Z.L.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
- Correspondence:
| |
Collapse
|
18
|
Wang H, Zhu Y, Ye W, Hua J, Chen L, Ni Z, Yun T, Bao E, Zhang C. Genomic and Epidemiological Characteristics Provide Insights into the Phylogeographic Spread of Goose Astrovirus in China. Transbound Emerg Dis 2022; 69:e1865-e1876. [PMID: 35301812 DOI: 10.1111/tbed.14522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Goose astrovirus (GAstV) is an emerging pathogen with a wide distribution in China that causes visceral gout and leads to significant economic losses in the goose industry. Here, 10 GAstV strains were isolated from different farms in southeast China. We performed an integrated analysis of the full-genome sequences of these new strains alongside comprehensive epidemiological surveillance information from the database. Interestingly, the results showed two distinct genotypes of GAstV, which were evolutionarily distant from each other. Group I GAstVs were closely related to DAstV IV, and group II strains were classified with duck astrovirus (DAstV) II and turkey astrovirus (TAstV) II. Further investigation showed that among the GAstV I strains, ZJC14 and AHDY differed from FLX. Comparative analysis of 58 available genomes clustered the GAstV II strains into two subgroups. We identified two major mutation sites, 456 (E/D) and 540 (L/Q), in the capsid protein, which were related to distinct subgroups according to evolution. GAstV II subgroup 1a strains are the predominant strains in the current prevalent epidemiology. Phylogeographic analysis based on 90 reported cases from 13 provinces revealed the complexity and severity of GAstV epidemics in China, within which Henan, Anhui and Jiangsu provinces have suffered great impacts. According to these phylogeographic investigations, following the initial introduction of GAstV from Hunan Province, the dispersal of GAstV with different subgenotypes on a nationwide scale may be explained by the live gosling trade. Our findings have important implications for the evolution and dispersal of GAstV and will contribute to understanding the potential risk of GAstV. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongyu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinchu Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tao Yun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|