1
|
Rajković M, Glavinić U, Bogunović D, Vejnović B, Davitkov D, Đelić N, Stanimirović Z. "Slow kill" treatment reduces DNA damage in leukocytes of dogs naturally infected with Dirofilaria immitis. Vet Parasitol 2023; 322:110008. [PMID: 37643566 DOI: 10.1016/j.vetpar.2023.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Parasitic diseases are considered to be a cause of oxidative stress which leads to oxidative damage of various molecules including DNA. This can result in mutations, replication errors, and genome instability. Therefore, aim of this study was to measure DNA damage induced by Dirofilaria immitis in the single cells such as dogs' leukocytes using the comet assay. Also, we monitored the effects of antiparasitic treatment on mitigation of sensitivity to DNA damage in leukocytes treated with H2O2 using the in vivo and ex vivo comet assay. The whole blood samples from 34 dogs from Serbia were used, both males and females, from one to 13 years old, both pure and mixed-breeds. A rapid immunochromatographic test (Antigen Rapid Heartworm Ag 2.0 Test Kit, Bionote, Minnesota, USA) was used for the detection of D. immitis antigens. The modified Knott's test and PCR were used in the aim of detecting D. immitis microfilariae in dogs' blood, and evaluating the number of circulating microfilariae during the treatment. The genotoxicity evaluation showed that D. immitis infection resulted in DNA damage in naturally infected dogs, with the highest DNA damage occurring in the group of dogs with severe clinical signs. Treatment with ivermectin and doxycycline decreased DNA damage in leukocytes of dogs in all groups, as the intensity of infection decreased due to applied therapy. Ex vivo comet assay results showed that leukocytes exhibited decreased sensitivity to H2O2-induced DNA damage during treatment. The results of the modified Knott's test and PCR in our study showed that treatment with ivermectin and doxycycline was successful in decreasing the average number of microfilariae during the time and at the end eliminating them from the dogs' blood.
Collapse
Affiliation(s)
- Milan Rajković
- Department of Parasitology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Uroš Glavinić
- Department of Biology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Danica Bogunović
- Department of Parasitology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Branislav Vejnović
- Department of Economics and Statistics, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia.
| | - Darko Davitkov
- Department of Equine, Small Animal, Poultry and Wild Animal Diseases, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Ninoslav Đelić
- Department of Biology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| | - Zoran Stanimirović
- Department of Biology, University of Belgrade - Faculty of Veterinary Medicine, Belgrade 11000, Serbia
| |
Collapse
|
2
|
Latrofa MS, Varotto-Boccazzi I, Louzada-Flores VN, Iatta R, Mendoza-Roldan JA, Roura X, Zatelli A, Epis S, Bandi C, Otranto D. Interaction between Wolbachia pipientis and Leishmania infantum in heartworm infected dogs. Parasit Vectors 2023; 16:77. [PMID: 36850014 PMCID: PMC9972713 DOI: 10.1186/s13071-023-05662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/10/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Wolbachia is a Gram-negative endosymbiont associated with several species of arthropods and filarioid nematodes, including Dirofilaria immitis. This endosymbiont may elicit a Th1 response, which is a component of the immunity against Leishmania infantum. METHODS To investigate the interactions between Wolbachia of D. immitis and L. infantum in naturally infected dogs and cytokine circulation, dogs without clinical signs (n = 187) were selected. Dogs were tested for microfilariae (mfs) by Knott, for female antigens of D. immitis by SNAP, and for anti-L. infantum antibodies by IFAT and assigned to four groups. Dogs of group 1 (G1) and 2 (G2) were positive for D. immitis and positive or negative to L. infantum, respectively. Dogs of group 3 (G3) and 4 (G4) were negative to D. immitis and positive or negative to L. infantum, respectively. Wolbachia and L. infantum DNA was quantified by real-time PCR (qPCR) in dog blood samples. A subset of dogs (n = 65) was examined to assess pro- and anti-inflammatory cytokine production using an ELISA test. RESULTS Of 93 dogs positive to D. immitis with circulating mfs, 85% were positive to Wolbachia, with the highest amount of DNA detected in G1 and the lowest in dogs with low mfs load in G1 and G2. Among dogs positive to L. infantum, 66% from G1 showed low antibody titer, while 48.9% from G3 had the highest antibody titer. Of 37 dogs positive to Wolbachia from G1, 26 (70.3%) had low antibody titers to L. infantum (1:160). Among cytokines, TNFα showed the highest mean concentration in G1 (246.5 pg/ml), IFNγ being the one most represented (64.3%). IL-10 (1809.5 pg/ml) and IL-6 (123.5 pg/ml) showed the highest mean concentration in dogs from G1. A lower percentage of dogs producing IL-4 was observed in all groups examined, with the highest mean concentration (2794 pg/ml) recorded in G2. CONCLUSION Results show the association of D. immitis and Wolbachia with the lower antibody titers of L. infantum in co-infected dogs, suggesting the hypothesis that the endosymbiont may affect the development of the patent leishmaniosis. However, due to the limitations associated with the heterogeneity of naturally infected dogs in field conditions, results should be validated by investigation on experimental models.
Collapse
Affiliation(s)
- Maria Stefania Latrofa
- grid.7644.10000 0001 0120 3326Department of Veterinary Medicine, University of Bari, Bari, Italy
| | | | | | - Roberta Iatta
- grid.7644.10000 0001 0120 3326Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | | | - Xavier Roura
- grid.7080.f0000 0001 2296 0625Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrea Zatelli
- grid.7644.10000 0001 0120 3326Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Sara Epis
- grid.4708.b0000 0004 1757 2822Department of Biosciences, University of Milan, Milan, Italy ,grid.4708.b0000 0004 1757 2822Pediatric CRC ‘Fondazione Romeo ed Enrica Invernizzi’, University of Milan, Milan, Italy
| | - Claudio Bandi
- grid.4708.b0000 0004 1757 2822Department of Biosciences, University of Milan, Milan, Italy ,grid.4708.b0000 0004 1757 2822Pediatric CRC ‘Fondazione Romeo ed Enrica Invernizzi’, University of Milan, Milan, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Bari, Italy. .,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
3
|
Louzada-Flores VN, Kramer L, Brianti E, Napoli E, Mendoza-Roldan JA, Bezerra-Santos MA, Latrofa MS, Otranto D. Treatment with doxycycline is associated with complete clearance of circulating Wolbachia DNA in Dirofilaria immitis-naturally infected dogs. Acta Trop 2022; 232:106513. [PMID: 35598650 DOI: 10.1016/j.actatropica.2022.106513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/01/2022]
Abstract
Bacteria of the genus Wolbachia are endosymbionts of parasitic filarial nematodes, including Dirofilaria immitis, and are a target for the treatment of canine heartworm disease. In the present study, 53 naturally-infected dogs were divided in three groups, based on their positivity to D. immitis by antigen and Knott tests, to assess the efficacy of doxycycline treatment in eliminating Wolbachia from circulating blood. At T0, dogs that scored positive to both tests (G1) or to antigen only (G2) were submitted to doxycycline (10 mg/kg BID PO) treatment and to 10% Imidacloprid + 2.5% Moxidectin (Advocate®), while those negative to both tests (G3) received only 10% Imidacloprid + 2.5% Moxidectin (Advocate®). All dogs were followed-up for one year, monthly treated with Advocate® and regularly monitored by antigen and Knott tests. During the whole period, all blood samples were screened for Wolbachia-D. immitis DNA load by quantitative real-time PCR (qPCR). At T0, 88.2% of the microfilariemic dogs were positive for Wolbachia DNA, while none of the dogs from G2 or G3 were positive. Wolbachia DNA was no longer detectable in dogs from G1 following 1 month of doxycycline treatment and microfilariae (mfs) were cleared at T2. All dogs from the G1 and G2 were negative for D. immitis antigen at 12 months. Results of this study suggest that successful elimination of mfs by doxycycline is associated with complete clearance of Wolbachia DNA in D. immitis-naturally infected dogs.
Collapse
|
4
|
Preyß-Jägeler C, Hartmann K, Dorsch R. [Role of systemic infections in canine kidney diseases]. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2022; 50:124-136. [PMID: 35523166 DOI: 10.1055/a-1811-6186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Kidney diseases represent a common problem as well as a frequent cause of death in dogs. Infectious agents may be responsible for glomerulopathies and acute kidney injuries. Many infections commonly associated with the development of immune complex glomerulonephritis in central and southern Europe are important as travel-associated diseases in Germany. These include leishmaniosis, dirofilariosis, and ehrlichiosis. Rarely, anaplasmosis, hepatozoonosis, Lyme disease as well as babesiosis caused by small Babesia spp. are detected as cause of canine immune complex glomerulonephritis in Germany. Leptospirosis, canine infectious hepatitis, and babesiosis caused by large Babesia spp. may be responsible for the development of acute kidney injuries associated with tubulointerstitial nephritis. Therefore, further diagnostics aiming at identifying potentially causative infectious agents in dogs with renal disease is important for both prognosis and therapy of the patient.
Collapse
Affiliation(s)
- Christine Preyß-Jägeler
- Medizinische Kleintierklinik, Zentrum für klinische Tiermedizin, Ludwig-Maximilians-Universität München
| | - Katrin Hartmann
- Medizinische Kleintierklinik, Zentrum für klinische Tiermedizin, Ludwig-Maximilians-Universität München
| | - Roswitha Dorsch
- Medizinische Kleintierklinik, Zentrum für klinische Tiermedizin, Ludwig-Maximilians-Universität München
| |
Collapse
|
5
|
Prevalence of Dirofilaria repens in dogs living in deltaic coastal plain of the Volturno River (Italy): a geographical risk model of infection. J Helminthol 2022; 96:e12. [PMID: 35195063 DOI: 10.1017/s0022149x22000062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The prevalence of vector-associated parasitic infections is high in central-southern Italy. The deltaic coastal plain of the Volturno River has been suspected, by veterinary practitioners, to have a high accidental incidence of Dirofilaria repens. Thus, the goal of this study was to evaluate the prevalence of dirofilariasis and other coinfections frequently described in dogs living in the Volturno area. Blood samples of 100 clinical asymptomatic dogs were examined using a Knott's technique and polymerase chain reaction in order to identify microfilariae. Other vector-borne coinfections were also investigated using ELISA kits. The results were analysed using statistical and Geographic Information System (GIS) software. Microfilariae of D. repens were detected in 10% of the dogs surveyed, with a presence of antibodies against Ehrlichia canis (4/10) and Dirofilaria immitis (1/10). Such high incidence should be considered in light of the zoonotic potential for D. repens and the support for more regular use of repellents to prevent the spread of this disease. The GIS analyses indicated that the study area provides suitable conditions to sustain populations of mosquito vectors and D. repens parasites throughout much of the year.
Collapse
|
6
|
Madhav M, Baker D, Morgan JAT, Asgari S, James P. Wolbachia: A tool for livestock ectoparasite control. Vet Parasitol 2020; 288:109297. [PMID: 33248417 DOI: 10.1016/j.vetpar.2020.109297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Ectoparasites and livestock-associated insects are a major concern throughout the world because of their economic and welfare impacts. Effective control is challenging and relies mainly on the use of chemical insecticides and acaricides. Wolbachia, an arthropod and nematode-infecting, maternally-transmitted endosymbiont is currently of widespread interest for use in novel strategies for the control of a range of arthropod-vectored human diseases and plant pests but to date has received only limited consideration for use in the control of diseases of veterinary concern. Here, we review the currently available information on Wolbachia in veterinary ectoparasites and disease vectors, consider the feasibility for use of Wolbachia in the control of livestock pests and diseases and highlight critical issues which need further investigation.
Collapse
Affiliation(s)
- Mukund Madhav
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dalton Baker
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jess A T Morgan
- Department of Agriculture and Fisheries, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter James
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
7
|
Carretón E, Morchón R, Falcón-Cordón Y, Falcón-Cordón S, Matos JI, Montoya-Alonso JA. Evaluation of different dosages of doxycycline during the adulticide treatment of heartworm (Dirofilaria immitis) in dogs. Vet Parasitol 2020; 283:109141. [PMID: 32502919 DOI: 10.1016/j.vetpar.2020.109141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022]
Abstract
The endosymbiont bacteria Wolbachia plays an important role in the pathogenesis and inflammatory immune response to heartworm (Dirofilaria immitis) infection in dogs. Doxycycline is used to reduce Wolbachia from all life stages of heartworm to avoid large releases of the bacteria during the death of the worms. However, the dose and duration currently recommended have been extrapolated from the treatment of other rickettsial infections. Therefore, the aim was to study the dynamics of Wolbachia IgG antibodies in heartworm-infected dogs under adulticide treatment using different dosages of doxycycline. Forty-nine heartworm-infected dogs were recruited. On day 0 (diagnosis), monthly ivermectin (6 μg/kg) was prescribed, as well as daily doxycycline for 30 days, at 10 mg/kg/12 h (n = 13), 5 mg/kg/12 h (n = 19), and 10 mg/kg/24 h (n = 17). Dogs underwent adulticide treatment and blood samples were collected on days 0, 30, 90, and 120. All dogs had antibodies against recombinant Wolbachia surface protein (rWSP), confirming the important role of the bacteria in heartworm. No significant differences were found in anti-rWSP response by presence/absence of microfilariae, or by parasite burden on day 0. In all treated groups, the anti-rWSP antibody response was not significantly different between days 0 and 30 but was significantly lower between days 0 and 120 (p < 0.05). The results of the present study suggest that the administration of a lower dose than currently recommended is sufficient to achieve a significant reduction of Wolbachia in dogs infected by D. immitis.
Collapse
Affiliation(s)
- E Carretón
- Internal Medicine, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain.
| | - R Morchón
- Group GIR of animal and human dirofilariosis, Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Y Falcón-Cordón
- Internal Medicine, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain
| | - S Falcón-Cordón
- Internal Medicine, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain
| | - J I Matos
- Internal Medicine, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain
| | - J A Montoya-Alonso
- Internal Medicine, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain
| |
Collapse
|
8
|
Epis S, Varotto-Boccazzi I, Crotti E, Damiani C, Giovati L, Mandrioli M, Biggiogera M, Gabrieli P, Genchi M, Polonelli L, Daffonchio D, Favia G, Bandi C. Chimeric symbionts expressing a Wolbachia protein stimulate mosquito immunity and inhibit filarial parasite development. Commun Biol 2020; 3:105. [PMID: 32144396 PMCID: PMC7060271 DOI: 10.1038/s42003-020-0835-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/18/2020] [Indexed: 12/28/2022] Open
Abstract
Wolbachia can reduce the capability of mosquitoes to transmit infectious diseases to humans and is currently exploited in campaigns for the control of arboviruses, like dengue and Zika. Under the assumption that Wolbachia-mediated activation of insect immunity plays a role in the reduction of mosquito vectorial capacity, we focused our attention on the Wolbachia surface protein (WSP), a potential inductor of innate immunity. We hypothesized that the heterologous expression of this protein in gut- and tissue-associated symbionts may reduce parasite transmission. We thus engineered the mosquito bacterial symbiont Asaia to express WSP (AsaiaWSP). AsaiaWSP induced activation of the host immune response in Aedes aegypti and Anopheles stephensi mosquitoes, and inhibited the development of the heartworm parasite Dirofilaria immitis in Ae. aegypti. These results consolidate previous evidence on the immune-stimulating property of WSP and make AsaiaWSP worth of further investigations as a potential tool for the control of mosquito-borne diseases. Epis and Varotto-Boccazzi et al. show that Wolbachia surface protein (WSP) activates host innate immunity in mosquitoes, inhibiting the development of the heartworm parasite in its insect host. This study suggests the possibility that the WSP-expressing symbiont may be harnessed to control mosquito-borne diseases.
Collapse
Affiliation(s)
- Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Claudia Damiani
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy.,School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Laura Giovati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Marco Genchi
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Luciano Polonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, Saudi Arabia
| | - Guido Favia
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy.,School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy. .,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy.
| |
Collapse
|
9
|
Savadelis MD, Day KM, Bradner JL, Wolstenholme AJ, Dzimianski MT, Moorhead AR. Efficacy and side effects of doxycycline versus minocycline in the three-dose melarsomine canine adulticidal heartworm treatment protocol. Parasit Vectors 2018; 11:671. [PMID: 30587225 PMCID: PMC6307258 DOI: 10.1186/s13071-018-3264-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/12/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The American Heartworm Society currently recommends the use of a monthly macrocyclic lactone, a 28-day course of 10 mg/kg doxycycline BID, and the 3-dose protocol of melarsomine dihydrochloride for the treatment of canine heartworm disease. Doxycycline is necessary for the reduction of the bacterium Wolbachia, found in all heartworm life-stages. Previous price increases and decreasing availability prompted us to evaluate alternative tetracycline antibiotics, i.e. minocycline, for the reduction of Wolbachia during canine heartworm treatment. METHODS Thirty-two heartworm-positive dogs were randomized to receive 10 mg/kg or 5 mg/kg of either doxycycline or minocycline for 28 days BID, for a total of 8 dogs per experimental group. All dogs received 6 months of Heartgard Plus® (ivermectin/pyrantel) and the 3-dose protocol of 2.5 mg/kg melarsomine dihydrochloride. Blood samples were collected prior to the initiation of treatment, every 7 days throughout tetracycline treatment, and then monthly thereafter until the dog tested negative for the presence of heartworm antigen. DNA was isolated from circulating microfilarial samples and qPCR was performed on each sample. RESULTS A greater number of dogs in the 10 mg/kg doxycycline and minocycline treated groups experienced gastrointestinal side effects as compared to the 5 mg/kg doxycycline and minocycline treated groups. All eight dogs in the 10 mg/kg doxycycline-treated group tested negative for the presence of Wolbachia DNA by 28 days post-tetracycline treatment. A total of two dogs in both the 5 mg/kg doxycycline- and 10 mg/kg minocycline-treated groups and three dogs in the 5 mg/kg minocycline-treated group remained positive for the presence of Wolbachia DNA by the end of tetracycline treatment. CONCLUSIONS No lung pathology was assessed in this clinical trial, therefore the clinical effect of the remaining Wolbachia DNA in the 10 mg/kg minocycline-, 5 mg/kg doxycycline- and 5 mg/kg minocycline-treated groups cannot be determined. Owner compliance in the proper administration of these tetracyclines may be impacted by the increased severe gastrointestinal side effects reported for the 10 mg/kg doxycycline- and minocycline-treated groups. We recommend that veterinarians prescribe the recommended 10 mg/kg doxycycline for canine heartworm treatment and reduce the dosage to 5 mg/kg in cases of severe gastrointestinal side effects in order to improve owner compliance in administration of medications.
Collapse
Affiliation(s)
- Molly D Savadelis
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Katherine M Day
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jenna L Bradner
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Adrian J Wolstenholme
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for Tropical and Emerging Global Disease, University of Georgia, Athens, GA, USA
| | | | - Andrew R Moorhead
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Capelli G, Genchi C, Baneth G, Bourdeau P, Brianti E, Cardoso L, Danesi P, Fuehrer HP, Giannelli A, Ionică AM, Maia C, Modrý D, Montarsi F, Krücken J, Papadopoulos E, Petrić D, Pfeffer M, Savić S, Otranto D, Poppert S, Silaghi C. Recent advances on Dirofilaria repens in dogs and humans in Europe. Parasit Vectors 2018; 11:663. [PMID: 30567586 PMCID: PMC6299983 DOI: 10.1186/s13071-018-3205-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/19/2018] [Indexed: 02/03/2023] Open
Abstract
Dirofilaria repens is a nematode affecting domestic and wild canids, transmitted by several species of mosquitoes. It usually causes a non-pathogenic subcutaneous infection in dogs and is the principal agent of human dirofilariosis in the Old World. In the last decades, D. repens has increased in prevalence in areas where it has already been reported and its distribution range has expanded into new areas of Europe, representing a paradigmatic example of an emergent pathogen. Despite its emergence and zoonotic impact, D. repens has received less attention by scientists compared to Dirofilaria immitis. In this review we report the recent advances of D. repens infection in dogs and humans, and transmission by vectors, and discuss possible factors that influence the spread and increase of this zoonotic parasite in Europe. There is evidence that D. repens has spread faster than D. immitis from the endemic areas of southern Europe to northern Europe. Climate change affecting mosquito vectors and the facilitation of pet travel seem to have contributed to this expansion; however, in the authors' opinion, the major factor is likely the rate of undiagnosed dogs continuing to perpetuate the life-cycle of D. repens. Many infected dogs remain undetected due to the subclinical nature of the disease, the lack of rapid and reliable diagnostic tools and the poor knowledge and still low awareness of D. repens in non-endemic areas. Improved diagnostic tools are warranted to bring D. repens diagnosis to the state of D. immitis diagnosis, as well as improved screening of imported dogs and promotion of preventative measures among veterinarians and dog owners. For vector-borne diseases involving pets, veterinarians play a significant role in prevention and should be more aware of their responsibility in reducing the impact of the zoonotic agents. In addition, they should enhance multisectorial collaboration with medical entomologists and the public health experts, under the concept and the actions of One Health-One Medicine.
Collapse
Affiliation(s)
- Gioia Capelli
- Laboratory of Parasitology, National reference centre/OIE collaborating centre for diseases at the animal-human interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Claudio Genchi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Gad Baneth
- Koret School of Veterinary Medicine, The Hebrew University, Rehovot, Israel
| | - Patrick Bourdeau
- Veterinary School of Nantes ONIRIS, University of Nantes, LUNAM, Nantes, France
| | - Emanuele Brianti
- Department of Veterinary Science, Università degli Studi di Messina, Messina, Italy
| | - Luís Cardoso
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Patrizia Danesi
- Laboratory of Parasitology, National reference centre/OIE collaborating centre for diseases at the animal-human interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Hans-Peter Fuehrer
- Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - Alessio Giannelli
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Angela Monica Ionică
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Carla Maia
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisboa, Portugal
| | - David Modrý
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Fabrizio Montarsi
- Laboratory of Parasitology, National reference centre/OIE collaborating centre for diseases at the animal-human interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Elias Papadopoulos
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Veterinary Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dušan Petrić
- Laboratory for medical and veterinary entomology, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Sara Savić
- Scientific Veterinary Institute “Novi Sad”, Novi Sad, Serbia
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Sven Poppert
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University Basel, Basel, Switzerland
| | - Cornelia Silaghi
- National Centre of Vector Entomology, University of Zurich, Zurich, Switzerland
- Institute of Infectology, Friedrich-Loeffler-Institute, Isle of Riems, Greifswald, Germany
| |
Collapse
|
11
|
Muñoz-Caro T, Conejeros I, Zhou E, Pikhovych A, Gärtner U, Hermosilla C, Kulke D, Taubert A. Dirofilaria immitis Microfilariae and Third-Stage Larvae Induce Canine NETosis Resulting in Different Types of Neutrophil Extracellular Traps. Front Immunol 2018; 9:968. [PMID: 29867950 PMCID: PMC5951940 DOI: 10.3389/fimmu.2018.00968] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022] Open
Abstract
Heartworm disease is a zoonotic vector-borne disease caused by Dirofilaria immitis mainly affecting canids. Infectious third-stage larvae (L3) are transmitted to the definitive hosts via culicid mosquitoes; adult nematodes reside in the pulmonary arteries and in the right heart releasing unsheathed first-stage larvae (microfilariae) into the bloodstream leading to chronic and sometimes fatal disease. So far, early innate immune reactions triggered by these different D. immitis stages in the canine host have scarcely been investigated. Therefore, D. immitis microfilariae and L3 were analyzed for their capacity to induce neutrophil extracellular traps (NETs) in canine polymorphonuclear neutrophils (PMN). Overall, scanning electron microscopy analysis revealed both larval stages as strong inducers of canine NETosis. Co-localization of PMN-derived extracellular DNA with granulocytic histones, neutrophil elastase, or myeloperoxidase in parasite-entrapping structures confirmed the classical characteristics of NETosis. Quantitative analyses showed that both larval stages triggered canine NETs in a time-dependent but dose-independent manner. Moreover, parasite-induced NET formation was not influenced by the parasites viability since heat-inactivated microfilariae and L3 also induced NETs. In addition, parasite/PMN confrontation promoted significant entrapment but not killing of microfilariae and L3. Both, NETosis and larval entrapment was significantly reversed via DNase I treatments while treatments with the NADPH oxidase inhibitor diphenyleneiodonium failed to significantly influence these reactions. Interestingly, different types of NETs were induced by microfilariae and L3 since microfilarial stages merely induced spread and diffuse NETs while the larger L3 additionally triggered aggregated NET formation.
Collapse
Affiliation(s)
- Tamara Muñoz-Caro
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Ershun Zhou
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anton Pikhovych
- Clinical Development Animal Health, Animal Center, Bayer Animal Health GmbH, Leverkusen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Daniel Kulke
- Drug Discovery Animal Health, Parasiticides, Filaricides Research, Bayer Animal Health GmbH, Leverkusen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
12
|
Anders G, Hassiepen U, Theisgen S, Heymann S, Muller L, Panigada T, Huster D, Samsonov SA. The Intrinsic Pepsin Resistance of Interleukin-8 Can Be Explained from a Combined Bioinformatical and Experimental Approach. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:300-308. [PMID: 28113517 DOI: 10.1109/tcbb.2016.2614821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interleukin-8 (IL-8, CXCL8) is a neutrophil chemotactic factor belonging to the family of chemokines. IL-8 was shown to resist pepsin cleavage displaying its high resistance to this protease. However, the molecular mechanisms underlying this resistance are not fully understood. Using our in-house database containing the data on three-dimensional arrangements of secondary structure elements from the whole Protein Data Bank, we found a striking structural similarity between IL-8 and pepsin inhibitor-3. Such similarity could play a key role in understanding IL-8 resistance to the protease pepsin. To support this hypothesis, we applied pepsin assays confirming that intact IL-8 is not degraded by pepsin in comparison to IL-8 in a denaturated state. Applying 1H-15N Heteronuclear Single Quantum Coherence NMR measurements, we determined the putative regions at IL-8 that are potentially responsible for interactions with the pepsin. The results obtained in this work contribute to the understanding of the resistance of IL-8 to pepsin proteolysis in terms of its structural properties.
Collapse
|
13
|
Nelson CT, Myrick ES, Nelson TA. Clinical benefits of incorporating doxycycline into a canine heartworm treatment protocol. Parasit Vectors 2017; 10:515. [PMID: 29143657 PMCID: PMC5688473 DOI: 10.1186/s13071-017-2446-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The objective of heartworm treatment is to improve the clinical condition of the patient and to eliminate pre-cardiac, juvenile, and adult worm stages with minimal complications. Pulmonary thromboembolisms are an inevitable consequence of worm death and can result in severe pulmonary reactions and even death of the patient. To minimize these reactions, various treatment protocols involving melarsomine, the only adulticidal drug approved by the US Food and Drug Administrations (FDA), in conjunction with macrocyclic lactone heartworm preventives and glucocorticosteroids have been advocated. The discovery of the bacterial endosymbiont Wolbachia in Dirofilaria immitis has led to several experimental studies examining the effects of administering doxycycline to reduce or eliminate Wolbachia organism. These studies have shown a decrease in gross and microscopic pathology of pulmonary parenchyma in experimental heartworm infections pretreated with doxycycline before melarsomine administration. METHODS Electronic medical records from a large veterinary practice in northeast Alabama were searched to identify dogs treated for heartworms with melarsomine from January 2005 through December 2012. The search was refined further to select for dogs that met the following criteria: 1) received two or three doses of ivermectin heartworm preventive prior to melarsomine injections, 2) received one injection of melarsomine followed by two injections 4 to 8 weeks later, and 3) were treated with prednisone following melarsomine injections. The dogs were then divided into those that also were treated with doxycycline 10 mg/kg BID for 4 weeks (Group A, n = 47) and those that did not receive doxycycline (Group B, n = 47). The medical notes of all 94 cases were then reviewed for comments concerning coughing, dyspnea, or hemoptysis in the history, physical exam template, or from telephone conversations with clients the week following each visit. Any dog that died within one year of treatment from either cardiovascular or pulmonary problems was noted. RESULTS Dogs from Group A receiving doxycycline had fewer respiratory complications (6.52%) and heartworm disease-related deaths (0%) than Group B (19.14% and 4.25%, respectively). CONCLUSIONS Although there are not enough cases to indicate statistical significance, the results strongly suggest that including doxycycline into canine heartworm treatment protocols decreases post-treatment complications and mortality in naturally infected clinical cases.
Collapse
Affiliation(s)
- C Thomas Nelson
- Animal Medical Centers of NE Alabama, 719 Quintard Ave, Anniston, AL, 36201-5757, USA.
| | | | | |
Collapse
|
14
|
Interaction between Wolbachia and the fibrinolytic system as a possible pathological mechanism in cardiopulmonary dirofilariosis. Vet Parasitol 2017; 247:64-69. [DOI: 10.1016/j.vetpar.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 12/24/2022]
|
15
|
Milanović Z, Ilić A, Andrić JF, Radonjić V, Beletić A, Filipović MK. Acute-phase response in Babesia canis and Dirofilaria immitis co-infections in dogs. Ticks Tick Borne Dis 2017; 8:907-914. [DOI: 10.1016/j.ttbdis.2017.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 01/15/2023]
|
16
|
25 Years of the Onchocerca ochengi Model. Trends Parasitol 2016; 32:966-978. [PMID: 27665524 DOI: 10.1016/j.pt.2016.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/20/2016] [Accepted: 08/30/2016] [Indexed: 01/12/2023]
Abstract
Although of limited veterinary significance, Onchocerca ochengi has become famous as a natural model or 'analogue' of human onchocerciasis (river blindness), which is caused by Onchocerca volvulus. On the basis of both morphological and molecular criteria, O. ochengi is the closest extant relative of O. volvulus and shares several key natural history traits with the human pathogen. These include exploitation of the same group of insect vectors (blackflies of the Simulium damnosum complex) and formation of collagenous nodules with a similar histological structure to human nodules. Here, we review the contribution of this natural system to drug and vaccine discovery efforts, as well as to our basic biological understanding of Onchocerca spp., over the past quarter-century.
Collapse
|
17
|
Armstrong SD, Xia D, Bah GS, Krishna R, Ngangyung HF, LaCourse EJ, McSorley HJ, Kengne-Ouafo JA, Chounna-Ndongmo PW, Wanji S, Enyong PA, Taylor DW, Blaxter ML, Wastling JM, Tanya VN, Makepeace BL. Stage-specific Proteomes from Onchocerca ochengi, Sister Species of the Human River Blindness Parasite, Uncover Adaptations to a Nodular Lifestyle. Mol Cell Proteomics 2016; 15:2554-75. [PMID: 27226403 PMCID: PMC4974336 DOI: 10.1074/mcp.m115.055640] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 04/30/2016] [Indexed: 12/13/2022] Open
Abstract
Despite 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important neglected tropical diseases, with 17 million people affected. The etiological agent, Onchocerca volvulus, is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies and the development of novel strategies for disease control and diagnosis. Here, we utilize the closest relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes and host-parasite interactions within the secretome. We identified a total of 4260 unique O. ochengi proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. Observed protein families that were enriched in all whole body extracts relative to the complete search database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, the larval stages exhibited enrichment for several mitochondrial-related protein families, including members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of transforming growth factor-β and a second member of a novel 6-ShK toxin domain family, which was originally described from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle highlights its profound complexity and emphasizes the extremely close relationship between O. ochengi and O. volvulus The insights presented here provide new candidates for vaccine development, drug targeting and diagnostic biomarkers.
Collapse
Affiliation(s)
- Stuart D Armstrong
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Dong Xia
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Germanus S Bah
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - Ritesh Krishna
- ¶Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Henrietta F Ngangyung
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - E James LaCourse
- ‖Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Henry J McSorley
- **The Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4JT
| | - Jonas A Kengne-Ouafo
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon
| | | | - Samuel Wanji
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon
| | - Peter A Enyong
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon; §§Tropical Medicine Research Station, Kumba, Cameroon
| | - David W Taylor
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK; ¶¶Division of Pathway Medicine, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Mark L Blaxter
- ‖‖Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Jonathan M Wastling
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK; ‡‡‡The National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L3 5RF, UK
| | - Vincent N Tanya
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - Benjamin L Makepeace
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK;
| |
Collapse
|
18
|
Lauzi S, Maia JP, Epis S, Marcos R, Pereira C, Luzzago C, Santos M, Puente-Payo P, Giordano A, Pajoro M, Sironi G, Faustino A. Molecular detection of Anaplasma platys, Ehrlichia canis, Hepatozoon canis and Rickettsia monacensis in dogs from Maio Island of Cape Verde archipelago. Ticks Tick Borne Dis 2016; 7:964-969. [PMID: 27177475 DOI: 10.1016/j.ttbdis.2016.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 02/04/2023]
Abstract
Tick-borne diseases are emerging worldwide and have an important zoonotic relevance. Dogs play an important role in the epidemiology of several zoonotic tick-borne pathogens acting as sentinels and/or reservoirs. This study focused on the molecular identification of tick-borne pathogens in blood samples of 153 autochthonous asymptomatic dogs in Maio Island, Cape Verde archipelago. Eighty-four (54.9%) dogs were positive for one or more pathogens. Fifty-five (35.9%) dogs were infected with Hepatozoon canis, 53 (34.6%) with Anaplasma platys, five (3.3%) with Ehrlichia canis and Rickettsia monacensis, an emerging human pathogen, was also identified in a single dog (0.7%). The former three pathogens cause important canine tick-borne diseases that are transmitted or potentially transmitted by Rhipicephalus sanguineus s.l., the only hard tick identified in Cape Verde. Furthermore, Wolbachia spp. was amplified from the blood of one dog. None of the dogs were positive for Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Midichloria mitochondrii, Bartonella spp., Babesia spp. or Theileria spp. Fifty-four (35.3%) animals showed single infections and 30 (19.6%) co-infections, with A. platys and H. canis co-infection being the most frequent (28 dogs, 18.3%). The frequency of E. canis infection was statistically different among age groups (P=0.017), being higher among dogs older than 4 years compared to younger dogs. Infection by A. platys was also statistically different among age groups (P=0.031), being higher in dogs younger than 2 years compared to older dogs. The statistical analyses showed no significant association of PCR positivity with gender or location. The frequency of tick-borne pathogens detected in dogs in Maio Island, including R. monacensis, highlights the need to improve diagnosis and control in order to prevent the risk of transmission of these pathogens among dogs and humans living in or travelling to this touristic island.
Collapse
Affiliation(s)
- Stefania Lauzi
- Department of Veterinary Science and Public Health, University of Milan, Via Celoria 10, 20133 Milan, Italy.
| | - João P Maia
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661 Vairão, Vila do Conde, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre FC4 4169-007 Porto, Portugal
| | - Sara Epis
- Department of Veterinary Science and Public Health, University of Milan, Via Celoria 10, 20133 Milan, Italy
| | - Ricardo Marcos
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Cristina Pereira
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Camilla Luzzago
- Department of Veterinary Science and Public Health, University of Milan, Via Celoria 10, 20133 Milan, Italy
| | - Marta Santos
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Pablo Puente-Payo
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Alessia Giordano
- Department of Veterinary Science and Public Health, University of Milan, Via Celoria 10, 20133 Milan, Italy
| | - Massimo Pajoro
- Department of Veterinary Science and Public Health, University of Milan, Via Celoria 10, 20133 Milan, Italy
| | - Giuseppe Sironi
- Department of Veterinary Science and Public Health, University of Milan, Via Celoria 10, 20133 Milan, Italy
| | - Augusto Faustino
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| |
Collapse
|
19
|
Goddard A, Leisewitz AL, Kjelgaard-Hansen M, Kristensen AT, Schoeman JP. Excessive Pro-Inflammatory Serum Cytokine Concentrations in Virulent Canine Babesiosis. PLoS One 2016; 11:e0150113. [PMID: 26953797 PMCID: PMC4783066 DOI: 10.1371/journal.pone.0150113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
Babesia rossi infection causes a severe inflammatory response in the dog, which is the result of the balance between pro- and anti-inflammatory cytokine secretion. The aim of this study was to determine whether changes in cytokine concentrations were present in dogs with babesiosis and whether it was associated with disease outcome. Ninety-seven dogs naturally infected with B. rossi were studied and fifteen healthy dogs were included as controls. Diagnosis of babesiosis was confirmed by polymerase chain reaction and reverse line blot. Blood samples were collected from the jugular vein at admission, prior to any treatment. Cytokine concentrations were assessed using a canine-specific multiplex assay on an automated analyser. Serum concentrations of interleukin (IL)-2, IL-6, IL-8, IL-10, IL-18, granulocyte-macrophage colony stimulating factor (GM-CSF) and monocyte chemotactic protein-1 (MCP-1) were measured. Twelve of the Babesia-infected dogs died (12%) and 85 survived (88%). Babesia-infected dogs were also divided into those that presented within 48 hours from displaying clinical signs, and those that presented more than 48 hours after displaying clinical signs. Cytokine concentrations were compared between the different groups using the Mann-Whitney U test. IL-10 and MCP-1 concentrations were significantly elevated for the Babesia-infected dogs compared to the healthy controls. In contrast, the IL-8 concentration was significantly decreased in the Babesia-infected dogs compared to the controls. Concentrations of IL-6 and MCP-1 were significantly increased in the non-survivors compared to the survivors. Concentrations for IL-2, IL-6, IL-18 and GM-CSF were significantly higher in those cases that presented during the more acute stage of the disease. These findings suggest that a mixed cytokine response is present in dogs with babesiosis caused by B. rossi, and that an excessive pro-inflammatory response may result in a poor outcome.
Collapse
Affiliation(s)
- Amelia Goddard
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- * E-mail:
| | - Andrew L. Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Mads Kjelgaard-Hansen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annemarie T. Kristensen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johan P. Schoeman
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
20
|
McCall JW, Kramer L, Genchi C, Guerrero J, Dzimianski MT, Mansour A, McCall SD, Carson B. Effects of doxycycline on heartworm embryogenesis, transmission, circulating microfilaria, and adult worms in microfilaremic dogs. Vet Parasitol 2014; 206:5-13. [PMID: 25458121 DOI: 10.1016/j.vetpar.2014.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/13/2014] [Accepted: 09/29/2014] [Indexed: 11/17/2022]
Abstract
Tetracycline treatment of animals or humans infected with filariae that harbor Wolbachia endosymbionts blocks further embryogenesis, and existing microfilariae gradually die. This treatment also kills developing larvae and has a slow-kill effect on adult filariae, all presumably due to elimination of the Wolbachia. Also, Dirofilaria immitis microfilariae in blood collected from dogs up to 25 days after the last dose of doxycycline developed to infective L3 that were normal in appearance and motility in mosquitoes but did not continue to develop or migrate normally after subcutaneous (SC) injection into dogs. The present study was designed to determine whether heartworm microfilariae collected at later times after treatment would regain the ability to continue normal development in a dog. The study also was expected to yield valuable data on the effects of treatment on microfilariae and antigen levels and adult worms. The study was conducted in 16 dogs as two separate replicates at different times. A total of five dogs (two in Replicate A and three in Replicate B) infected either by SC injection of L3 or intravenous transplantation of adult heartworms were given doxycycline orally at 10mg/kg twice daily for 30 days, with three untreated controls. Microfilarial counts in the five treated dogs gradually declined during the 12-13 months after treatment initiation. Two dogs were amicrofilaremic before necropsy and three had 13 or fewer microfilariae/ml. Only one treated dog was negative for heartworm antigen before necropsy. Overall, treated dogs generally had fewer live adult heartworms than controls, and most of their live worms were moribund. All three control dogs remained positive for microfilariae and antigen and had many live worms. L3 from mosquitoes fed on blood collected 73-77 or 161-164 days after initiation of doxycycline treatments were injected SC into five dogs. None of the dogs injected with L3 from mosquitoes fed on blood from doxycycline-treated dogs were ever positive for microfilariae or antigen, and none had worms at necropsy; three control dogs were positive for microfilariae and antigen and had many live worms. These data indicate that doxycycline treatment of microfilaremic dogs gradually reduces numbers of microfilariae and blocks further transmission of heartworms. This latter effect should be highly effective in reducing the rate of selection of heartworms with genes that confer resistance to macrocyclic lactone preventives and microfilaricides. The data also suggest that doxycycline has a slow-kill effect on adult heartworms.
Collapse
Affiliation(s)
- J W McCall
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - L Kramer
- Dipartimento de Produzione Animali, Università di Parma, 43100 Parma, Italy
| | - C Genchi
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Sezione di Patologia Generale e Parasitologia, Università degli Studi de Milano, Italy
| | - J Guerrero
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M T Dzimianski
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - A Mansour
- TRS Labs, Inc., 215 Paradise Blvd., Athens, GA 30607, USA
| | - S D McCall
- TRS Labs, Inc., 215 Paradise Blvd., Athens, GA 30607, USA
| | - B Carson
- TRS Labs, Inc., 215 Paradise Blvd., Athens, GA 30607, USA
| |
Collapse
|
21
|
Kramer L, Genchi C. Where are we with Wolbachia and doxycycline: an in-depth review of the current state of our knowledge. Vet Parasitol 2014; 206:1-4. [PMID: 24813786 DOI: 10.1016/j.vetpar.2014.03.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 12/23/2022]
Abstract
Dirofilaria immitis, the cause of canine and feline heartworm disease, was the first filarial nematode described to harbour the bacterial endosymbiont Wolbachia. This ground-breaking discovery has led to intense research aimed at unravelling the nature of the endosymbiotic relationship; genomic studies have revealed how the bacteria may interact with the parasite and help explain why each is so dependent on the other. Analysis of the immune response to these bacteria may elucidate the mechanisms through which filarial parasites are able to survive for long periods of time in otherwise immune-competent hosts. Finally, studies aimed at the removal of the bacteria using specific antibiotic treatment in infected hosts is leading to the development of novel approaches for interrupting the transmission cycle and for the treatment and control of heartworm disease.
Collapse
Affiliation(s)
- Laura Kramer
- Department of Veterinary Science, University of Parma, via del Taglio 10, 43126 Parma, Italy.
| | - Claudio Genchi
- Department of Veterinary Science and Public Health, University of Milan, via Celoria 10, 20133 Milano, Italy
| |
Collapse
|
22
|
Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, Kay SM, Koldkjær P, Rainbow L, Radford AD, Blaxter ML, Tanya VN, Trees AJ, Cordaux R, Wastling JM, Makepeace BL. Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res 2012; 22:2467-77. [PMID: 22919073 PMCID: PMC3514676 DOI: 10.1101/gr.138420.112] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/27/2012] [Indexed: 02/06/2023]
Abstract
The α-proteobacterium Wolbachia is probably the most prevalent, vertically transmitted symbiont on Earth. In contrast with its wide distribution in arthropods, Wolbachia is restricted to one family of animal-parasitic nematodes, the Onchocercidae. This includes filarial pathogens such as Onchocerca volvulus, the cause of human onchocerciasis, or river blindness. The symbiosis between filariae and Wolbachia is obligate, although the basis of this dependency is not fully understood. Previous studies suggested that Wolbachia may provision metabolites (e.g., haem, riboflavin, and nucleotides) and/or contribute to immune defense. Importantly, Wolbachia is restricted to somatic tissues in adult male worms, whereas females also harbor bacteria in the germline. We sought to characterize the nature of the symbiosis between Wolbachia and O. ochengi, a bovine parasite representing the closest relative of O. volvulus. First, we sequenced the complete genome of Wolbachia strain wOo, which revealed an inability to synthesize riboflavin de novo. Using RNA-seq, we also generated endobacterial transcriptomes from male soma and female germline. In the soma, transcripts for membrane transport and respiration were up-regulated, while the gonad exhibited enrichment for DNA replication and translation. The most abundant Wolbachia proteins, as determined by geLC-MS, included ligands for mammalian Toll-like receptors. Enzymes involved in nucleotide synthesis were dominant among metabolism-related proteins, whereas the haem biosynthetic pathway was poorly represented. We conclude that Wolbachia may have a mitochondrion-like function in the soma, generating ATP for its host. Moreover, the abundance of immunogenic proteins in wOo suggests a role in diverting the immune system toward an ineffective antibacterial response.
Collapse
Affiliation(s)
- Alistair C. Darby
- Institute of Integrative Biology and the Centre for Genomic Research, Biosciences Building, University of Liverpool, Liverpool, Merseyside L69 7ZB, United Kingdom
| | - Stuart D. Armstrong
- Institute of Infection & Global Health, Liverpool Science Park IC2, University of Liverpool, Liverpool, Merseyside L3 5RF, United Kingdom
| | - Germanus S. Bah
- Institute of Infection & Global Health, Liverpool Science Park IC2, University of Liverpool, Liverpool, Merseyside L3 5RF, United Kingdom
- Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, Ngaoundéré, BP65 Adamawa Region, Cameroon
| | - Gaganjot Kaur
- Institute of Evolutionary Biology and the GenePool Genomics Facility, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Margaret A. Hughes
- Institute of Integrative Biology and the Centre for Genomic Research, Biosciences Building, University of Liverpool, Liverpool, Merseyside L69 7ZB, United Kingdom
| | - Suzanne M. Kay
- Institute of Integrative Biology and the Centre for Genomic Research, Biosciences Building, University of Liverpool, Liverpool, Merseyside L69 7ZB, United Kingdom
| | - Pia Koldkjær
- Institute of Integrative Biology and the Centre for Genomic Research, Biosciences Building, University of Liverpool, Liverpool, Merseyside L69 7ZB, United Kingdom
| | - Lucille Rainbow
- Institute of Integrative Biology and the Centre for Genomic Research, Biosciences Building, University of Liverpool, Liverpool, Merseyside L69 7ZB, United Kingdom
| | - Alan D. Radford
- Institute of Infection & Global Health, Liverpool Science Park IC2, University of Liverpool, Liverpool, Merseyside L3 5RF, United Kingdom
| | - Mark L. Blaxter
- Institute of Evolutionary Biology and the GenePool Genomics Facility, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Vincent N. Tanya
- Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, Ngaoundéré, BP65 Adamawa Region, Cameroon
| | - Alexander J. Trees
- Institute of Infection & Global Health, Liverpool Science Park IC2, University of Liverpool, Liverpool, Merseyside L3 5RF, United Kingdom
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions (UMR CNRS 7267), Equipe Ecologie Evolution Symbiose, Université de Poitiers, 86022 Poitiers CEDEX, France
| | - Jonathan M. Wastling
- Institute of Infection & Global Health, Liverpool Science Park IC2, University of Liverpool, Liverpool, Merseyside L3 5RF, United Kingdom
| | - Benjamin L. Makepeace
- Institute of Infection & Global Health, Liverpool Science Park IC2, University of Liverpool, Liverpool, Merseyside L3 5RF, United Kingdom
| |
Collapse
|
23
|
Dvir E, Mellanby R, Kjelgaard-Hansen M, Schoeman J. Plasma IL-8 concentrations are increased in dogs with spirocercosis. Vet Parasitol 2012; 190:185-90. [DOI: 10.1016/j.vetpar.2012.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/08/2012] [Accepted: 06/10/2012] [Indexed: 02/04/2023]
|
24
|
The immune response to parasitic helminths of veterinary importance and its potential manipulation for future vaccine control strategies. Parasitol Res 2012; 110:1587-99. [PMID: 22314781 DOI: 10.1007/s00436-012-2832-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 01/16/2012] [Indexed: 01/21/2023]
Abstract
Despite the increasing knowledge of the immunobiology and epidemiology of parasitic helminths of the gastrointestinal system and the cardiorespiratory system, complications arising from infections of animals and humans with these parasites are a major clinical and economic problem. This has been attributed to the high incidence of these parasites, the widespread emergence of multi-drug resistant parasite strains and the lack of effective vaccines. Efforts to develop and produce vaccines against virtually all helminths (with the exception of Dictyocaulus viviparus and some cestode species) have been hindered by the complexity of the host-parasite relationship, and incomplete understanding of the molecular and immune regulatory pathways associated with the development of protective immunity against helminths. Novel genomic and proteomic technologies have provided opportunities for the discovery and characterisation of effector mechanisms and molecules that govern the host-parasite interactions in these two body systems. Such knowledge provided clues on how appropriate and protective responses are elicited against helminths and, thus, may lead to the development of effective therapeutic strategies. Here, we review advances in the immune response to selected helminths of animal health significance, and subsequent vaccine potential. The topics addressed are important for understanding how helminths interact with host immune defences and also are relevant for understanding the pathogenesis of diseases caused by helminths.
Collapse
|
25
|
Simón F, Siles-Lucas M, Morchón R, González-Miguel J, Mellado I, Carretón E, Montoya-Alonso JA. Human and animal dirofilariasis: the emergence of a zoonotic mosaic. Clin Microbiol Rev 2012; 25:507-44. [PMID: 22763636 PMCID: PMC3416488 DOI: 10.1128/cmr.00012-12] [Citation(s) in RCA: 534] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dirofilariasis represents a zoonotic mosaic, which includes two main filarial species (Dirofilaria immitis and D. repens) that have adapted to canine, feline, and human hosts with distinct biological and clinical implications. At the same time, both D. immitis and D. repens are themselves hosts to symbiotic bacteria of the genus Wolbachia, the study of which has resulted in a profound shift in the understanding of filarial biology, the mechanisms of the pathologies that they produce in their hosts, and issues related to dirofilariasis treatment. Moreover, because dirofilariasis is a vector-borne transmitted disease, their distribution and infection rates have undergone significant modifications influenced by global climate change. Despite advances in our knowledge of D. immitis and D. repens and the pathologies that they inflict on different hosts, there are still many unknown aspects of dirofilariasis. This review is focused on human and animal dirofilariasis, including the basic morphology, biology, protein composition, and metabolism of Dirofilaria species; the climate and human behavioral factors that influence distribution dynamics; the disease pathology; the host-parasite relationship; the mechanisms involved in parasite survival; the immune response and pathogenesis; and the clinical management of human and animal infections.
Collapse
Affiliation(s)
- Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy and IBSAL, University of Salamanca, Spain.
| | | | | | | | | | | | | |
Collapse
|
26
|
Wong SSY, Teng JLL, Poon RWS, Choi GKY, Chan KH, Yeung ML, Hui JJY, Yuen KY. Comparative evaluation of a point-of-care immunochromatographic test SNAP 4Dx with molecular detection tests for vector-borne canine pathogens in Hong Kong. Vector Borne Zoonotic Dis 2011; 11:1269-77. [PMID: 21612526 DOI: 10.1089/vbz.2010.0265] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are no comprehensive studies on the performance of commonly used point-of-care diagnostic enzyme immunoassay for common arthropod-borne canine pathogens. A comparative evaluation of an immunochromatographic test for these infections with a comprehensive polymerase chain reaction (PCR) test panel was performed on 100 pet dogs and 100 stray dogs without obvious clinical symptoms. Of the 162 positive test results from both immunochromatographic test and PCR, there was 85.2% concordance. The 24 discordant results between serology and PCR occurred in tests involving Ehrlichia canis (14) and Anaplasma platys (10), which may be related to the time of infection. No positive cases of borreliosis or rickettsiosis were detected. One important limitation of the immunochromatographic test was its lack of testing for babesiosis and hepatozoonosis. The former is the most prevalent arthropod-borne canine infection in our cohort (41%). Coinfections were found in 19% stray dogs and 6% of pet dogs with both tests (p < 0.01). Seventeen and 8 samples from stray and pet dogs, respectively, were initially positive in the PCR test for Ehrlichia. However, on sequencing of the PCR amplicon, 10 from stray and 2 from pet dogs were found to be Wolbachia sequences instead, with 100% nucleotide identity to the 16S rRNA sequence of Wolbachia endosymbiont of Dirofilaria immitis. The presence of Wolbachia DNAemia (6%) correlated well with the molecular test and immunochromatographic antigen test for D. immitis.
Collapse
Affiliation(s)
- Samson S Y Wong
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The antifilarial effects of tetracycline drugs were first demonstrated when they were found to be highly effective against L(3) and L(4) of Brugia pahangi and Litomosoides sigmodontis in rodent models. Tetracyclines are also now known to have activity against microfilariae and adult Dirofilaria immitis, but assessment of their activity against larval and juvenile heartworms has not been reported previously. This study assessed the effects of doxycycline administered orally at 10mg/kg twice daily for 30-day periods at selected times during the early part of the life cycle of D. immitis in dogs with dual infections of D. immitis and B. pahangi. Twenty beagles were randomly allocated by weight to four groups of five dogs each. On Day 0, each dog was given 50 D. immitis L(3) and 200 B. pahangi L(3) by SC injection. Dogs received doxycycline on Days 0-29 (Group 1); Days 40-69 (Group 2); or Days 65-94 (Group 3). Group 4 served as untreated controls. Blood samples were collected for microfilariae counting and antigen testing. Necropsy for collection of adult heartworms and selected tissues were performed Days 218-222. Heartworms recovered were examined by immunohistology, conventional microscopy/transmission electron microscopy, and molecular biology techniques. No live heartworms were recovered from dogs in Group 1; dogs in Group 2 had 0 to 2 live worms (98.4% efficacy), and dogs in Group 3 had 0-36 live worms (69.6% efficacy). All control dogs had live adult heartworms (25-41). The live worms recovered from dogs in Groups 2 and 3 were less developed and smaller that worms from control dogs. Microfilariae were not detected in any dogs in Groups 1 and 2; one dog in Group 3 had 1 microfilariae/ml at necropsy. All control dogs had microfilariae at necropsy. One dog in Group 1 was antigen positive at one sampling (Day 166). One dog in Group 2 was antigen positive Days 196 and 218-222 and three dogs in Group 3 were antigen positive at one or more samplings All five control dogs were antigen positive at all three sampling times. These findings suggest that doxycycline at 10mg/kg orally twice daily for 30 days has efficacy against migrating tissue-phase larvae and juvenile worms and will delay or restrict microfilarial production.
Collapse
|
28
|
Hansen RDE, Trees AJ, Bah GS, Hetzel U, Martin C, Bain O, Tanya VN, Makepeace BL. A worm's best friend: recruitment of neutrophils by Wolbachia confounds eosinophil degranulation against the filarial nematode Onchocerca ochengi. Proc Biol Sci 2010; 278:2293-302. [PMID: 21177682 PMCID: PMC3119012 DOI: 10.1098/rspb.2010.2367] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Onchocerca ochengi, a filarial parasite of cattle, represents the closest relative of the human pathogen, Onchocerca volvulus. Both species harbour Wolbachia endosymbionts and are remarkable in that adult female worms remain viable but sessile for many years while surrounded by host cells and antibodies. The basis of the symbiosis between filariae and Wolbachia is thought to be metabolic, although a role for Wolbachia in immune evasion has received little attention. Neutrophils are attracted to Wolbachia, but following antibiotic chemotherapy they are replaced by eosinophils that degranulate on the worm cuticle. However, it is unclear whether the eosinophils are involved in parasite killing or if they are attracted secondarily to dying worms. In this study, cattle infected with Onchocerca ochengi received adulticidal regimens of oxytetracycline or melarsomine. In contrast to oxytetracycline, melarsomine did not directly affect Wolbachia viability. Eosinophil degranulation increased significantly only in the oxytetracycline group; whereas nodular gene expression of bovine neutrophilic chemokines was lowest in this group. Moreover, intense eosinophil degranulation was initially associated with worm vitality, not degeneration. Taken together, these data offer strong support for the hypothesis that Wolbachia confers longevity on O. ochengi through a defensive mutualism, which diverts a potentially lethal effector cell response.
Collapse
Affiliation(s)
- Rowena D E Hansen
- Liverpool School of Tropical Medicine, School of Veterinary Science and Institute of Infection and Global Health, University of Liverpool, , Liverpool L69 7ZJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
González-Miguel J, Rosario L, Rota-Nodari E, Morchón R, Simón F. Identification of immunoreactive proteins of Dirofilaria immitis and D. repens recognized by sera from patients with pulmonary and subcutaneous dirofilariosis. Parasitol Int 2010; 59:248-56. [DOI: 10.1016/j.parint.2010.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/16/2010] [Accepted: 02/23/2010] [Indexed: 11/15/2022]
|
30
|
Dingman P, Levy JK, Kramer LH, Johnson CM, Lappin MR, Greiner EC, Courtney CH, Tucker SJ, Morchon R. Association of Wolbachia with heartworm disease in cats and dogs. Vet Parasitol 2010; 170:50-60. [DOI: 10.1016/j.vetpar.2010.01.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 01/15/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
|
31
|
Shiny C, Krushna NSA, Archana B, Farzana B, Narayanan RB. Serum antibody responses to Wolbachia surface protein in patients with human lymphatic filariasis. Microbiol Immunol 2010; 53:685-93. [PMID: 19954456 DOI: 10.1111/j.1348-0421.2009.00172.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wolbachia surface protein (WSP), which is the most abundantly expressed protein of Wolbachia from the human filarial parasite Brugia malayi, was chosen for the present study. B-cell epitope prediction of the WSP protein sequence indicates a high antigenicity, surface probability and hydrophilicity by DNA STAR software analysis. ProPred analysis suggests the presence of HLA class II binding regions in the WSP protein that contribute to T-cell responses and isotype reactivity. In order to validate these findings, the gene coding for endosymbiont WSP was PCR-amplified from the genomic DNA of the human filarial parasite Brugia malayi and cloned in T-7 expression vector pRSET-A. Western blot and ELISA at the total IgG level with recombiant WSP indicated a significantly elevated reactivity in CP compared to MF, EN and NEN individuals. Isotype ELISA also suggested an elevated reactivity in CP patients at the IgG1 level. In contrast, WSP-specific IgG4 levels were found to be elevated in MF patients compared to CP and EN. Besides this, WSP-specific IgE levels indicated an elevated reactivity in CP and MF patients compared to normals. Observations from ELISA supported the in silico predictions that indicate the presence of B- and T-cell epitopes. Hence, a combinatorial approach of in silico predictions and wet-lab studies provides interesting insights into the role of Wolbachia proteins in filarial pathogenesis.
Collapse
|
32
|
Grandi G, Morchon R, Kramer L, Kartashev V, Simon F. Wolbachia in Dirofilaria repens, an agent causing human subcutaneous dirofilariasis. J Parasitol 2009; 94:1421-3. [PMID: 19127968 DOI: 10.1645/ge-1575.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 04/30/2008] [Indexed: 11/10/2022] Open
Abstract
Human subcutaneous dirofilariasis is an increasingly reported zoonosis caused by several filarial species, in particular by Dirofilaria (Nochtiella) repens. Like many filarial worms, D. repens harbors the bacterial endosymbiont Wolbachia that has been implicated in the inflammatory features of filarial infection. Immunohistochemical staining against the Wolbachia surface protein (WSP) was carried out on 14 skin nodules and showed numerous bacteria within the intact worms and occasional positive staining within the surrounding inflammatory infiltrate. Serum samples from 11 of these patients resulted positive for total immunoglobulin G titers against WSP as examined in enzyme-linked immunosorbent assay. This is the first description of Wolbachia distribution in D. repens and the first report of specific immune response to Wolbachia in patients with subcutaneous dirofilariasis.
Collapse
Affiliation(s)
- G Grandi
- Dipartimento di Produzioni Animali, Università degli Studi di Parma, via del Taglio 8, Parma, Italy
| | | | | | | | | |
Collapse
|
33
|
Kramer L, Grandi G, Leoni M, Passeri B, McCall J, Genchi C, Mortarino M, Bazzocchi C. Wolbachia and its influence on the pathology and immunology of Dirofilaria immitis infection. Vet Parasitol 2008; 158:191-5. [DOI: 10.1016/j.vetpar.2008.09.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
McCall JW, Genchi C, Kramer L, Guerrero J, Dzimianski MT, Supakorndej P, Mansour AM, McCall SD, Supakorndej N, Grandi G, Carson B. Heartworm and Wolbachia: therapeutic implications. Vet Parasitol 2008; 158:204-14. [PMID: 18930598 DOI: 10.1016/j.vetpar.2008.09.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A safer, more effective adulticidal treatment and a safe method for reducing microfilaremia and breaking transmission of heartworm disease early in the treatment are needed. The present study evaluated efficacy of ivermectin (IVM) and doxycycline (DOXY) alone or together (with or without melarsomine [MEL]) in dogs with induced adult heartworm infection and assessed the ability of microfilariae from DOXY-treated dogs to develop to L3 in Aedes aegypti mosquitoes and subsequently to become reproductive adults in dogs. Thirty beagles were each infected with 16 adult heartworms by intravenous transplantation. Six weeks later, dogs were ranked by microfilarial count and randomly allocated to 6 groups of 5 dogs each. Beginning on Day 0, Group 1 received IVM (6 mcg/kg) weekly for 36 weeks. Group 2 received DOXY (10 mcg/(kgday)) orally Weeks 1-6, 10-11, 16-17, 22-25, and 28-33. Groups 3 and 5 received IVM and DOXY according to doses and schedules used for Groups 1 and 2. At Week 24, Groups 3 and 4 received an intramuscular injection of MEL (2.5 mg/kg), followed 1 month later by two injections 24h apart. Group 6 was not treated. Blood samples were collected for periodic microfilaria counts and antigen (Ag) testing (and later immunologic evaluation and molecular biology procedures). Radiographic and physical examinations, hematology/clinical chemistry testing, and urinalysis were done before infection, before Day 0, and periodically during the treatment period. At 36 weeks, the dogs were euthanized and necropsied for worm recovery, collection of lung, liver, kidney, and spleen samples for examination by immunohistochemistry and conventional histological methods. All dogs treated with IVM + DOXY (with or without MEL) were amicrofilaremic after Week 9. Microfilarial counts gradually decreased in dogs treated with IVM or DOXY, but most had a few microfilariae at necropsy. Microfilarial counts for dogs treated only with MEL were similar to those for controls. Antigen test scores gradually decreased with IVM + DOXY (with or without MEL) and after MEL. Antigen scores for IVM or DOXY alone were similar to controls throughout the study. Reduction of adult worms was 20.3% for IVM, 8.7% for DOXY, 92.8% for IVM + DOXY + MEL, 100% for MEL, and 78.3% for IVM + DOXY. Mosquitoes that fed on blood from DOXY-treated dogs had L3 normal in appearance but were not infective for dogs. Preliminary observations suggest that administration of DOXY+IVM for several months prior to (or without) MEL will eliminate adult HW with less potential for severe thromboembolism than MEL alone.
Collapse
Affiliation(s)
- J W McCall
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Heartworm disease due to Dirofilaria immitis continues to cause severe disease and even death in dogs and other animals in many parts of the world, even though safe, highly effective and convenient preventatives have been available for the past two decades. Moreover, the parasite and vector mosquitoes continue to spread into areas where they have not been reported previously. Heartworm societies have been established in the USA and Japan and the First European Dirofilaria Days (FEDD) Conference was held in Zagreb, Croatia, in February of 2007. These organizations promote awareness, encourage research and provide updated guidelines for the diagnosis, treatment and prevention of heartworm disease. The chapter begins with a review of the biology and life cycle of the parasite. It continues with the prevalence and distribution of the disease in domestic and wild animals, with emphasis on more recent data on the spreading of the disease and the use of molecular biology techniques in vector studies. The section on pathogenesis and immunology also includes a discussion of the current knowledge of the potential role of the Wolbachia endosymbiont in inflammatory and immune responses to D. immitis infection, diagnostic use of specific immune responses to the bacteria, immunomodulatory activity and antibiotic treatment of infected animals. Canine, feline and ferret heartworm disease are updated with regard to the clinical presentation, diagnosis, prevention, therapy and management of the disease, with special emphasis on the recently described Heartworm Associated Respiratory Disease (HARD) Syndrome in cats. The section devoted to heartworm infection in humans also includes notes on other epizootic filariae, particularly D. repens in humans in Europe. The chapter concludes with a discussion on emerging strategies in heartworm treatment and control, highlighting the potential role of tetracycline antibiotics in adulticidal therapy.
Collapse
|
36
|
Attout T, Martin C, Babayan SA, Kozek WJ, Bazzocchi C, Oudet F, Gallagher IJ, Specht S, Bain O. Pleural cellular reaction to the filarial infection Litomosoides sigmodontis is determined by the moulting process, the worm alteration, and the host strain. Parasitol Int 2008; 57:201-11. [DOI: 10.1016/j.parint.2008.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 01/08/2008] [Accepted: 01/13/2008] [Indexed: 11/27/2022]
|
37
|
Morchón R, Rodríguez-Barbero A, Velasco S, López-Belmonte J, Simón F. Vascular endothelial cell activation by adult Dirofilaria immitis antigens. Parasitol Int 2008; 57:441-6. [PMID: 18603468 DOI: 10.1016/j.parint.2008.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/28/2008] [Accepted: 05/16/2008] [Indexed: 11/19/2022]
Abstract
Dirofilaria immitis is the causal agent of cardiopulmonary dirofilariosis (heartworm disease). Adult worms lodge in the pulmonary arteries and right ventricle, thus vascular endothelium is exposed to high concentrations of Dirofilaria antigenic products. Heartworm disease habitually develops as a chronic foreseeable pathology. Moreover, the simultaneous death of many adult worms, naturally or induced by a filaricide treatment, can cause acute thromboembolisms and endarteritis. To better understand the effects of the massive death of D. immitis adult worms on the blood vessel endothelium, we cultured vascular endothelial cells in the presence or absence of an antigenic extract of D. immitis adult worms (DiSA). The parasite products increased the expression of enzymes and the synthesis of eicosanoids related to inflammation, such as COX-2, 5-LO, PGE(2) and LTB(4). The expression of ICAM-1 and PECAM-1 adhesion molecules and endothelial and inducible Nitric Oxide Synthases (eNOS and iNOS) was also increased in cultures treated with DiSA. Nevertheless, DiSA decreased endothelial permeability and does not alter both proliferation and apoptosis. These results suggest that the somatic extract of D. immitis adult worms stimulate inflammatory mechanisms in endothelial cells, without altering their basic physiologic processes.
Collapse
Affiliation(s)
- R Morchón
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Salamanca, Avda. del Campo Charro s/n, 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
38
|
Gillette-Ferguson I, Daehnel K, Hise AG, Sun Y, Carlson E, Diaconu E, McGarry HF, Taylor MJ, Pearlman E. Toll-like receptor 2 regulates CXC chemokine production and neutrophil recruitment to the cornea in Onchocerca volvulus/Wolbachia-induced keratitis. Infect Immun 2007; 75:5908-15. [PMID: 17875630 PMCID: PMC2168349 DOI: 10.1128/iai.00991-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filarial nematode Onchocerca volvulus is the causative organism of river blindness. Our previous studies demonstrated an essential role for endosymbiotic Wolbachia bacteria in corneal disease, which is characterized by neutrophil infiltration into the corneal stroma and the development of corneal haze. To determine the role of Toll-like receptors (TLRs) in neutrophil recruitment and activation, we injected a soluble extract of O. volvulus containing Wolbachia bacteria into the corneal stromata of C57BL/6, TLR2-/-, TLR4-/-, TLR2/4-/-, and TLR9-/- mice. We found an essential role for TLR2, but not TLR4 or TLR9, in neutrophil recruitment to the cornea and development of corneal haze. Furthermore, chimeric mouse bone marrow studies showed that resident bone marrow-derived cells in the cornea can initiate this response. TLR2 expression was also essential for CXC chemokine production by resident cells in the cornea, including corneal fibroblasts, and for neutrophil activation. Taken together, these findings indicate that Wolbachia activates TLR2 on resident bone marrow-derived cells in the corneal stroma to produce CXC chemokines, leading to neutrophil recruitment to the corneal stroma, and that TLR2 mediates O. volvulus/Wolbachia-induced neutrophil activation and development of corneal haze.
Collapse
|
39
|
Morchón R, Roca F, López-Belmonte J, Genchi M, Venco L, Rodríguez-Barbero A, Simón F. Changes in the levels of eicosanoids in cats naturally and experimentally infected with Dirofilaria immitis. Vet Parasitol 2007; 147:271-5. [PMID: 17544219 DOI: 10.1016/j.vetpar.2007.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/17/2007] [Accepted: 04/19/2007] [Indexed: 11/27/2022]
Abstract
Feline heartworm (Dirofilaria immitis) infection is a severe, life-threatening disease. The eicosanoids are lipid mediators derived from the metabolism of the arachidonic acid, involved in the regulation of the immune response and of inflammatory reactions. In this study, naturally infected cats showed significant higher levels of prostaglandin E(2) (PGE2), thromboxane B(2) (TXB(2)) and leukotriene B(4) (LTB4) than uninfected cats. Changes in the levels of eicosanoids during the infection were observed in experimentally infected cats. PGE2 increased significantly during the first 60 days post-infection, then progressively decreased until day 180 post-infection. At this time, PGE2 values are still significantly higher than those observed before the infection. TxB2 and LTB4 increased progressively from the beginning of infection and reached their maximum levels 180 days post-infection. In experimentally infected, ivermectin-treated cats, 15 days after treatment (45 days after infection) both PGE2 and LTB4 levels were similar to those observed in experimentally infected, untreated cats. No significant differences of PGE2 levels were found before the infection and at the end of the experiment (165 days post-treatment, 195 days post-infection). Increased levels of LTB4 were found 15 days post-treatment, afterward they progressively decreased. These data show that D. immitis infection influences the production of intravascular eicosanoids in cats. The high levels of PGE2 observed in the early phase of infection could be related to the survival of the worms, while those of TxB2 and LTB4 detected at the end of the study could mediate the inflammatory reactions and thrombi formation during the feline dirofilariosis.
Collapse
Affiliation(s)
- R Morchón
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Salamanca, Avda. Campo Charro s/n, 37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Bazzocchi C, Comazzi S, Santoni R, Bandi C, Genchi C, Mortarino M. Wolbachia surface protein (WSP) inhibits apoptosis in human neutrophils. Parasite Immunol 2007; 29:73-9. [PMID: 17241395 DOI: 10.1111/j.1365-3024.2006.00915.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymorphonuclear cells (PMNs) are essential for the innate immune response against invading bacteria. At the same time, modulation of PMNs' apoptosis or cell death by bacteria has emerged as a mechanism of pathogenesis. Wolbachia bacteria are Gram-negative endosymbionts of filarial nematodes and arthropods, phylogenetically related to the genera Anaplasma, Ehrlichia and Neorickettsia (family Anaplasmataceae). Although several pathogens are known to interfere with apoptosis, there is only limited information on specific proteins that modulate this phenomenon. This is the first evidence for the anti-apoptotic activity of a surface protein of Wolbachia from filarial nematode parasites (the Wolbachia surface protein, WSP). The inhibition of apoptosis was demonstrated on purified human PMNs in vitro by different methods. TUNEL assay showed that the percentage of dead cells was reduced after stimulation with WSP; Annexin V-FITC binding assay confirmed that cell death was due mainly to apoptosis and not to necrosis. Reduced caspase-3 activity in stimulated cells also confirmed an inhibition of the apoptotic process.
Collapse
Affiliation(s)
- C Bazzocchi
- Dipartimento di Patologia Animale Igiene e Sanità Pubblica Veterinaria, Sezione di Patologia Generale e Parassitologia, Università di Milano, Milano, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Simón F, Kramer LH, Román A, Blasini W, Morchón R, Marcos-Atxutegi C, Grandi G, Genchi C. Immunopathology of Dirofilaria immitis infection. Vet Res Commun 2006; 31:161-71. [PMID: 17216316 DOI: 10.1007/s11259-006-3387-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2005] [Indexed: 10/23/2022]
Abstract
Heartworm disease caused by Dirofilaria immitis affects canine and feline hosts, with infections occasionally being reported in humans. Studies have shown that both dirofilarial antigens and those derived from its bacterial endosymbiont Wolbachia, interact with the host organism during canine, feline and human infections and participate in the development of the pathology and in the regulation of the host's immune response. Both innate and acquired immune responses are observed and the development of the acquired response may depend on the host and, or on its parasitological status. This review aims at illustrating current research on the role of both D. immitis and Wolbachia, in the immunology and immunopathology of dirofilariosis.
Collapse
Affiliation(s)
- F Simón
- Laboratorio de Parasitología, Universidad de Salamanca, Salamanca, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Nfon CK, Makepeace BL, Njongmeta LM, Tanya VN, Bain O, Trees AJ. Eosinophils contribute to killing of adult Onchocerca ochengi within onchocercomata following elimination of Wolbachia. Microbes Infect 2006; 8:2698-705. [PMID: 16962357 DOI: 10.1016/j.micinf.2006.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 07/26/2006] [Accepted: 07/27/2006] [Indexed: 11/25/2022]
Abstract
Many filarial nematodes, including Onchocerca volvulus (the cause of human 'River Blindness'), have a mutually dependent relationship with Wolbachia bacteria. There has been much interest in Wolbachia as a chemotherapeutic target, since there are no macrofilaricidal drugs (i.e., lethal to adult worms) of low toxicity. Using the bovine parasite O. ochengi, we previously demonstrated that combined intensive and intermittent (COM) oxytetracycline treatment induces a sustained depletion of Wolbachia and is macrofilaricidal, whereas a short intensive regimen (SIR) is non-macrofilaricidal. To understand how targeting Wolbachia with oxytetracycline can lead to worm death, O. ochengi nodules (onchocercomata) were sequentially excised from cattle administered COM or SIR therapy, and cell infiltrates were microscopically quantified. Pre-treatment, worms were surrounded by neutrophils, with eosinophils rare or absent. At 8-12weeks after either regimen, eosinophils increased around worms and were observed degranulating on the cuticle. However, with the SIR treatment, neutrophils returned to predominance by 48weeks, while in the COM group, eosinophilia persisted. These observations suggest that accumulation of degranulating eosinophils over a prolonged period is a cause rather than an effect of parasite death, and the macrofilaricidal mechanism of antibiotics may relate to facilitation of eosinophil infiltration around worms by ablation of Wolbachia-mediated neutrophilia.
Collapse
Affiliation(s)
- Charles K Nfon
- Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Pembroke Place, Liverpool L3 5QA, UK
| | | | | | | | | | | |
Collapse
|
43
|
Kramer L, Simón F, Tamarozzi F, Genchi M, Bazzocchi C. Is Wolbachia complicating the pathological effects of Dirofilaria immitis infections? Vet Parasitol 2005; 133:133-6. [PMID: 15885912 DOI: 10.1016/j.vetpar.2005.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human and animal parasitic filarial nematodes, which often are the cause of severe disease, harbor intracellular bacteria of the genus Wolbachia (Rickettsiaceae). It is thought that these bacteria play an important role in the pathogenesis and immune response to filarial infection. In order to determine the possible role of Wolbachia in heartworm disease, dogs naturally infected with Dirofilaria immitis were studied for specific antibody response to Wolbachia surface protein (WSP). Antibody subclasses were analyzed to determine immune response polarization. Dogs that died from heartworm disease were necropsied, and various organs were studied by immunohistochemistry to determine whether Wolbachia-derived molecules were present in tissue from infected dogs. Humoral response to the WSP was present in all infected dogs and appeared to be predominantly of the Th1-type. Several organs, including lung, liver, and kidney, contained positive-staining cells for WSP, confirming that the canine host does come into contact with Wolbachia-derived molecules.
Collapse
Affiliation(s)
- L Kramer
- Dipt. di Produzioni Animali, Università di Parma, 43100 Parma, Italy.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Presence of transovarially-transmitted endosymbiontic Wolbachia bacteria in Dirofilaria immitis, and in other filariae of man and animals, presents a new paradigm for our understanding of pathogenesis, treatment and diagnosis of filarial infections. Many of the basic biological characteristics of Wolbachia have yet to be elucidated, but the results obtained to date suggest that canine or the feline hosts can be exposed to D. immitis Wolbachia when larvae, or adult worms, are killed; when Wolbachia are expulsed, with the deposition of microfilariae, from the uterus of the females; and possibly through the excretory system of both male and female worms. The two organs that have the greatest potential of being affected by the Wolbachial metabolic products/antigens released from the adult worms are the lungs and the kidneys. Population of Wolbachia in D. immitis is polymorphic. The life cycle of Wolbachia is complex and may consist of two reproductive modes: multiplication of the bacillary forms by binary fission and by a more complex mode which resembles the Chlamydia-like cycle that consists of three morphological stages: a small, dense body, an intermediate stage with a dense inclusion, and a bacillary form which represents the final product of development and maturation of the small, dense body. The Chlamydia-like cycle offers a potential survival strategy for the Wolbachia by producing more progeny than multiplication by binary fission, and appears to be more active during growth and development of embryos and of the larvae. The small, dense bodies may be the infectious forms responsible for the spread of Wolbachia through the canalicular system, within the lateral chords of filariae. An amorphous membrane that lines the perienteric surface of the body wall may represent a physical barrier that limits the spread and movement of Wolbachia to the perienteric surface of the lateral chords. Wolbachia in D. immitis may also offer therapeutic and diagnostic possibilities. Elimination of Wolbachia by chemotherapy, and the suppressive effect of aposymbiosis on embryonic development of D. immitis, may have potential application for control (sterilization of female worms) and treatment of dirofilariasis. However, the three stages in the life cycle of Wolbachia may be antigenically different and each stage may have a different susceptibility to therapeutic agents. Persistence of dormant small, dense bodies after treatment would allow the Wolbachia to re-establish once the conditions for development would become favorable. Detection of Wolbachial antigens provides an attractive diagnostic possibility to identify D. immitis early in the infection. Further studies on Wolbachia of filariae, including those of D. immitis, will undoubtedly reveal additional information that can be applied towards treatment, diagnosis, and control of filarial infections.
Collapse
Affiliation(s)
- Wieslaw J Kozek
- Department of Microbiology and Medical Zoology, Medical Sciences Campus, University of Puerto Rico, P.O. Box 365067, San Juan, PR 00936-5067, USA.
| |
Collapse
|
45
|
Bazzocchi C, Mortarino M, Comazzi S, Bandi C, Franceschi A, Genchi C. Expression and function of Toll-like receptor 2 in canine blood phagocytes. Vet Immunol Immunopathol 2005; 104:15-9. [PMID: 15661327 DOI: 10.1016/j.vetimm.2004.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 08/16/2004] [Accepted: 08/27/2004] [Indexed: 11/28/2022]
Abstract
Toll-like receptors (TLRs) are a family of highly conserved pattern recognition receptors (PRR) of mammals that participate in the activation of innate immune responses against microbial infections. Among these receptors, TLR2 is essential for the recognition of conserved structural components of bacteria, protozoa and fungi. Until now, expression of TLR2 in dogs has not been investigated. In this work we describe a partial sequence of the gene coding for canine TLR2 and show that TLR2 mRNA is constitutively expressed in canine blood PMNs. We also show that stimulation of purified PMNs with lipoteichoic acid (LTA), a ligand of TLR2, leads to the release of proinflammatory chemokine IL-8. Furthermore, TLR2 protein is easily detectable by flow cytometry on the canine peripheral blood granulocyte and monocyte cell surface, and slightly on lymphocytes. These findings suggest that, also in dogs as in humans the initial antibacterial response of PMNs could be elicited through engagement of TLR2.
Collapse
Affiliation(s)
- Chiara Bazzocchi
- Dipartimento di Patologia Animale Igiene e Sanità Pubblica Veterinaria, Sezione di Patologia Generale e Parassitologia, Università di Milano, Via Celoria 10, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Taylor MJ, Bandi C, Hoerauf A. Wolbachia.Bacterial Endosymbionts of Filarial Nematodes. ADVANCES IN PARASITOLOGY 2005; 60:245-84. [PMID: 16230105 DOI: 10.1016/s0065-308x(05)60004-8] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Filarial nematodes are important helminth parasites of the tropics and a leading cause of global disability. They include species responsible for onchocerciasis, lymphatic filariasis and dirofilariasis. A unique feature of these nematodes is their dependency upon a symbiotic intracellular bacterium, Wolbachia, which is essential for normal development and fertility. Advances in our understanding of the symbiosis of Wolbachia bacteria with filarial nematodes have made rapid progress in recent years. Here we summarise our current understanding of the evolution of the symbiotic association together with insights into the functional basis of the interaction derived from genomic analysis. Also we discuss the contribution of Wolbachia to inflammatory-mediated pathogenesis and adverse reactions to anti-filarial drugs and describe the outcome of recent field trials using antibiotics as a promising new tool for the treatment of filarial infection and disease.
Collapse
Affiliation(s)
- Mark J Taylor
- Filariasis Research Laboratory, Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | | | | |
Collapse
|
47
|
Morchón R, Ferreira AC, Martín-Pacho JR, Montoya A, Mortarino M, Genchi C, Simón F. Specific IgG antibody response against antigens of Dirofilaria immitis and its Wolbachia endosymbiont bacterium in cats with natural and experimental infections. Vet Parasitol 2004; 125:313-21. [PMID: 15482887 DOI: 10.1016/j.vetpar.2004.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 07/13/2004] [Accepted: 08/16/2004] [Indexed: 10/26/2022]
Abstract
Sera from three groups of cats under different experimental conditions were studied by ELISA to assess the host's immune response against synthetic peptides derived from Dirofilaria immitis (Dipp) and against the surface protein of its endosymbiont, Wolbachia (WSPr). In experimentally infected cats (Group 1), an increase of IgG antibody against both Dipp and WSPr was observed from 2 months post-infection until the end of the study, 6 months post-infection. In experimentally infected cats, treated against infective larvae (Group 2), anti-Dipp IgG decreased dramatically from 4 months post-infection (3 months post treatment), showing very low values till the end of the study (6.5 months from infection, 5.5 months from treatment), while anti-WSP IgG increased constantly till the end of the study. Of 49 outdoor, asymptomatic cats exposed to a high risk of natural infection (Group 3), 9 were positive for anti-Dipp IgG and for a validated, in-clinic commercial antibody diagnostic kit for cats. Two cats were also found positive for circulating antigens of adult female worm. Anti-WSPr IgG were found in five of nine anti-Dipp IgG-positive sera and from eight ELISADipp-negative sera. Our results confirm the strong IgG response in heartworm infected cats and demonstrate the involvement of the Wolbachia endosymbiont in the immune reaction to the parasite both in experimentally infected cats and in cats exposed to a high risk of natural infection.
Collapse
Affiliation(s)
- R Morchón
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Gillette-Ferguson I, Hise AG, McGarry HF, Turner J, Esposito A, Sun Y, Diaconu E, Taylor MJ, Pearlman E. Wolbachia-induced neutrophil activation in a mouse model of ocular onchocerciasis (river blindness). Infect Immun 2004; 72:5687-92. [PMID: 15385467 PMCID: PMC517527 DOI: 10.1128/iai.72.10.5687-5692.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endosymbiotic Wolbachia bacteria are abundant in the filarial nematodes that cause onchocerciasis (river blindness), including the larvae (microfilariae) that migrate into the cornea. Using a mouse model of ocular onchocerciasis, we recently demonstrated that it is these endosymbiotic bacteria rather than the nematodes per se that induce neutrophil infiltration to the corneal stroma and loss of corneal clarity (Saint Andre et al., Science 295:1892-1895, 2002). To better understand the role of Wolbachia organisms in the pathogenesis of this disease, we examined the fate of these bacteria in the cornea by immunoelectron microscopy. Microfilariae harboring Wolbachia organisms were injected into mouse corneas, and bacteria were detected with antibody to Wolbachia surface protein. Within 18 h of injection, neutrophils completely surrounded the nematodes and were in close proximity to Wolbachia organisms. Wolbachia surface protein labeling was also prominent in neutrophil phagosomes, indicating neutrophil ingestion of Wolbachia organisms. Furthermore, the presence of numerous electron-dense granules around the phagosomes indicated that neutrophils were activated. To determine if Wolbachia organisms directly activate neutrophils, peritoneal neutrophils were incubated with either parasite extracts containing Wolbachia organisms, parasite extracts depleted of Wolbachia organisms (by antibiotic treatment of worms), or Wolbachia organisms isolated from filarial nematodes. After 18 h of incubation, we found that isolated Wolbachia organisms stimulated production of tumor necrosis factor alpha and CXC chemokines macrophage inflammatory protein 2 and KC by neutrophils in a dose-dependent manner. Similarly, these cytokines were induced by filarial extracts containing Wolbachia organisms but not by Wolbachia-depleted extracts. Taken together, these findings indicate that neutrophil activation is an important mechanism by which Wolbachia organisms contribute to the pathogenesis of ocular onchocerciasis.
Collapse
|