1
|
Manishimwe R, Moncada PM, Musanayire V, Shyaka A, Scott HM, Loneragan GH. Antibiotic-Resistant Escherichia coli and Salmonella from the Feces of Food Animals in the East Province of Rwanda. Animals (Basel) 2021; 11:1013. [PMID: 33916794 PMCID: PMC8067188 DOI: 10.3390/ani11041013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
In Rwanda, information on antibiotic resistance in food animals is scarce. This study was conducted to detect and phenotypically characterize antibiotic-resistant Escherichia coli and Salmonella in feces of cattle, goats, pigs, and poultry in the East province of Rwanda. We isolated non-type-specific (NTS) E. coli and Salmonella using plain culture media. In addition, we used MacConkey agar media supplemented with cefotaxime at 1.0 μg/mL and ciprofloxacin at 0.5 μg/mL to increase the probability of detecting E. coli with low susceptibility to third-generation cephalosporins and quinolones, respectively. Antibiotic susceptibility testing was performed using the disk diffusion test. Among 540 NTS E. coli isolates, resistance to tetracycline was the most frequently observed (35.6%), followed by resistance to ampicillin (19.6%) and streptomycin (16.5%). Percentages of NTS E. coli resistant to all three antibiotics and percentages of multidrug-resistant strains were higher in isolates from poultry. All isolated Salmonella were susceptible to all antibiotics. The sample-level prevalence for resistance to third-generation cephalosporins was estimated at 35.6% with all third-generation cephalosporin-resistant E. coli, expressing an extended-spectrum beta-lactamase phenotype. The sample-level prevalence for quinolone resistance was estimated at 48.3%. These results provided a baseline for future research and the development of integrated surveillance initiatives.
Collapse
Affiliation(s)
- Rosine Manishimwe
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79415, USA;
- Department of Veterinary Medicine, University of Rwanda, Nyagatare 56, Rwanda;
| | - Paola M. Moncada
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79415, USA;
| | - Vestine Musanayire
- Rwanda Veterinary Service Department, Rwanda Agriculture and Animal Resources Development Board, Ministry of Agriculture, Kigali 5016, Rwanda;
| | - Anselme Shyaka
- Department of Veterinary Medicine, University of Rwanda, Nyagatare 56, Rwanda;
| | - H. Morgan Scott
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA;
| | - Guy H. Loneragan
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA;
| |
Collapse
|
2
|
Bisusa MA, Bizire ME, Muntuokuwindi BD, Nijimbere G, Musimwa KR, Kambale VGC. Identification of Ixodidae ticks from cattle imported into the South Kivu province, east of the Democratic Republic of Congo. RUDN JOURNAL OF AGRONOMY AND ANIMAL INDUSTRIES 2020. [DOI: 10.22363/2312-797x-2020-15-3-308-317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A survey has been conducted in Bukavu on bovines imported in Democratic Republic of Congo from Rwanda to the public slaughterhouse of Bukavu, with the aim of identifying the Ixodidae ticks on their body. Thus, 1024 ticks have been collected on 300 cows for the entomological identification. Four species have been identified whose Boophilus decoloratus (44.4 %), Rhipicephalus appendiculatus (43.9 %), Amblyomma variegatum (11 %) and Ixodes thomasai (2 %). This last species being a new among those recognized in South Kivu. A charge to ticks of 6.5 has been observed at those bovines and the infestation rate has been significantly different in the 4 races, the Friesland (41.1 %) and Ankolé presented the superior values. The importation of cows in this part of the country from Rwanda is a real factor which conducts to the introduction of ticks and also diseases in Democratic Republic of Congo. Then being measures of heath control in the border must be sustained and reinforced for minimizing real risks.
Collapse
|
3
|
Capture-based enrichment of Theileria parva DNA enables full genome assembly of first buffalo-derived strain and reveals exceptional intra-specific genetic diversity. PLoS Negl Trop Dis 2020; 14:e0008781. [PMID: 33119590 PMCID: PMC7654785 DOI: 10.1371/journal.pntd.0008781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/10/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Theileria parva is an economically important, intracellular, tick-transmitted parasite of cattle. A live vaccine against the parasite is effective against challenge from cattle-transmissible T. parva but not against genotypes originating from the African Cape buffalo, a major wildlife reservoir, prompting the need to characterize genome-wide variation within and between cattle- and buffalo-associated T. parva populations. Here, we describe a capture-based target enrichment approach that enables, for the first time, de novo assembly of nearly complete T. parva genomes derived from infected host cell lines. This approach has exceptionally high specificity and sensitivity and is successful for both cattle- and buffalo-derived T. parva parasites. De novo genome assemblies generated for cattle genotypes differ from the reference by ~54K single nucleotide polymorphisms (SNPs) throughout the 8.31 Mb genome, an average of 6.5 SNPs/kb. We report the first buffalo-derived T. parva genome, which is ~20 kb larger than the genome from the reference, cattle-derived, Muguga strain, and contains 25 new potential genes. The average non-synonymous nucleotide diversity (πN) per gene, between buffalo-derived T. parva and the Muguga strain, was 1.3%. This remarkably high level of genetic divergence is supported by an average Wright’s fixation index (FST), genome-wide, of 0.44, reflecting a degree of genetic differentiation between cattle- and buffalo-derived T. parva parasites more commonly seen between, rather than within, species. These findings present clear implications for vaccine development, further demonstrated by the ability to assemble nearly all known antigens in the buffalo-derived strain, which will be critical in design of next generation vaccines. The DNA capture approach used provides a clear advantage in specificity over alternative T. parva DNA enrichment methods used previously, such as those that utilize schizont purification, is less labor intensive, and enables in-depth comparative genomics in this apicomplexan parasite. An estimated 50 million cattle in sub-Saharan Africa are at risk of the deadly livestock disease East coast fever (ECF), caused by the parasite Theileria parva, which imposes tremendous economic hardship on smallholder farmers. An existing ECF vaccine protects against strains circulating among cattle, but not against T. parva derived from African Cape buffalo, its main wildlife carrier. Understanding this difference in protective efficacy requires characterization of the genetic diversity in T. parva strains associated with each mammalian host, a goal that has been hindered by the proliferation of T. parva in nucleated host cells, with much larger genomes. Here we adapted a sequence capture approach to target the whole parasite genome, enabling enrichment of parasite DNA over that of the host. Choices in protocol development resulted in nearly 100% parasite genome specificity and sensitivity, making this approach the most successful yet to generate T. parva genome sequence data in a high-throughput manner. The analyses uncovered a degree of genetic differentiation between cattle- and buffalo-derived genotypes that is akin to levels more commonly seen between species. This approach, which will enable an in-depth T. parva population genomics study from cattle and buffalo in the endemic regions, can easily be adapted to other intracellular pathogens.
Collapse
|
4
|
Atuhaire DK, Muleya W, Mbao V, Bazarusanga T, Gafarasi I, Salt J, Namangala B, Musoke AJ. Sequence diversity of cytotoxic T cell antigens and satellite marker analysis of Theileria parva informs the immunization against East Coast fever in Rwanda. Parasit Vectors 2020; 13:452. [PMID: 32894166 PMCID: PMC7487574 DOI: 10.1186/s13071-020-04322-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/30/2020] [Indexed: 11/21/2022] Open
Abstract
Background East Coast fever (ECF) caused by Theileria parva is endemic in Rwanda. In this study, the antigenic and genetic diversity of T. parva coupled with immunization and field challenge were undertaken to provide evidence for the introduction of ECF immunization in Rwanda. Methods Blood collected from cattle in the field was screened for T. parva using ELISA and PCR targeting the p104 gene. Tp1 and Tp2 gene sequences were generated from field samples and from Gikongoro and Nyakizu isolates. Furthermore, multilocus genotype data was generated using 5 satellite markers and an immunization challenge trial under field conditions using Muguga cocktail vaccine undertaken. Results Out of 120 samples, 44 and 20 were positive on ELISA and PCR, respectively. Antigenic diversity of the Tp1 and Tp2 gene sequences revealed an abundance of Muguga, Kiambu and Serengeti epitopes in the samples. A further three clusters were observed on both Tp1 and Tp2 phylogenetic trees; two clusters comprising of field samples and vaccine isolates and the third cluster comprising exclusively of Rwanda samples. Both antigens exhibited purifying selection with no positive selection sites. In addition, satellite marker analysis revealed that field samples possessed both shared alleles with Muguga cocktail on all loci and also a higher proportion of unique alleles. The Muguga cocktail (Muguga, Kiambu and Serengeti) genotype compared to other vaccine isolates, was the most represented in the field samples. Further low genetic sub-structuring (FST = 0.037) coupled with linkage disequilibrium between Muguga cocktail and the field samples was observed. Using the above data to guide a field immunization challenge trial comprising 41 immunized and 40 control animals resulted in 85% seroconversion in the immunized animals and an efficacy of vaccination of 81.7%, implying high protection against ECF. Conclusions Antigenic and genetic diversity analysis of T. parva facilitated the use of Muguga cocktail vaccine in field conditions. A protection level of 81.7% was achieved, demonstrating the importance of combining molecular tools with field trials to establish the suitability of implementation of immunization campaigns. Based on the information in this study, Muguga cocktail immunization in Rwanda has a potential to produce desirable results.![]()
Collapse
Affiliation(s)
| | - Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia.
| | - Victor Mbao
- International Development Research Centre, Eastern and Southern Africa Regional Office, Nairobi, Kenya
| | | | | | - Jeremy Salt
- Global Alliance for Livestock Veterinary Medicines, Doherty Building, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, Scotland, UK
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
| | - Antony Jim Musoke
- LMK Medical laboratories and consultancies, P.O. Box 33686, Kampala, Uganda
| |
Collapse
|
5
|
Amzati GS, Djikeng A, Odongo DO, Nimpaye H, Sibeko KP, Muhigwa JBB, Madder M, Kirschvink N, Marcotty T. Genetic and antigenic variation of the bovine tick-borne pathogen Theileria parva in the Great Lakes region of Central Africa. Parasit Vectors 2019; 12:588. [PMID: 31842995 PMCID: PMC6915983 DOI: 10.1186/s13071-019-3848-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background Theileria parva causes East Coast fever (ECF), one of the most economically important tick-borne diseases of cattle in sub-Saharan Africa. A live immunisation approach using the infection and treatment method (ITM) provides a strong long-term strain-restricted immunity. However, it typically induces a tick-transmissible carrier state in cattle and may lead to spread of antigenically distinct parasites. Thus, understanding the genetic composition of T. parva is needed prior to the use of the ITM vaccine in new areas. This study examined the sequence diversity and the evolutionary and biogeographical dynamics of T. parva within the African Great Lakes region to better understand the epidemiology of ECF and to assure vaccine safety. Genetic analyses were performed using sequences of two antigen-coding genes, Tp1 and Tp2, generated among 119 T. parva samples collected from cattle in four agro-ecological zones of DRC and Burundi. Results The results provided evidence of nucleotide and amino acid polymorphisms in both antigens, resulting in 11 and 10 distinct nucleotide alleles, that predicted 6 and 9 protein variants in Tp1 and Tp2, respectively. Theileria parva samples showed high variation within populations and a moderate biogeographical sub-structuring due to the widespread major genotypes. The diversity was greater in samples from lowlands and midlands areas compared to those from highlands and other African countries. The evolutionary dynamics modelling revealed a signal of selective evolution which was not preferentially detected within the epitope-coding regions, suggesting that the observed polymorphism could be more related to gene flow rather than recent host immune-based selection. Most alleles isolated in the Great Lakes region were closely related to the components of the trivalent Muguga vaccine. Conclusions Our findings suggest that the extensive sequence diversity of T. parva and its biogeographical distribution mainly depend on host migration and agro-ecological conditions driving tick population dynamics. Such patterns are likely to contribute to the epidemic and unstable endemic situations of ECF in the region. However, the fact that ubiquitous alleles are genetically similar to the components of the Muguga vaccine together with the limited geographical clustering may justify testing the existing trivalent vaccine for cross-immunity in the region.
Collapse
Affiliation(s)
- Gaston S Amzati
- Research Unit of Veterinary Epidemiology and Biostatistics, Faculty of Agricultural and Environmental Sciences, Université Evangélique en Afrique, PO Box 3323, Bukavu, Democratic Republic of the Congo. .,Unit of Integrated Veterinary Research, Department of Veterinary Medicine, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium. .,Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA-ILRI) Hub, PO Box 30709-00100, Nairobi, Kenya.
| | - Appolinaire Djikeng
- Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA-ILRI) Hub, PO Box 30709-00100, Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health (CTLGH), The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - David O Odongo
- Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA-ILRI) Hub, PO Box 30709-00100, Nairobi, Kenya.,School of Biological Sciences, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
| | - Herman Nimpaye
- Faculty of Medicine, University of Burundi, PO Box 1550, Bujumbura, Burundi
| | - Kgomotso P Sibeko
- Vector and Vector-Borne Disease Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, P/Bag X04, Onderstepoort, Gauteng, 0110, South Africa
| | - Jean-Berckmans B Muhigwa
- Research Unit of Veterinary Epidemiology and Biostatistics, Faculty of Agricultural and Environmental Sciences, Université Evangélique en Afrique, PO Box 3323, Bukavu, Democratic Republic of the Congo
| | - Maxime Madder
- Vector and Vector-Borne Disease Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, P/Bag X04, Onderstepoort, Gauteng, 0110, South Africa
| | - Nathalie Kirschvink
- Unit of Integrated Veterinary Research, Department of Veterinary Medicine, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Tanguy Marcotty
- Unit of Integrated Veterinary Research, Department of Veterinary Medicine, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| |
Collapse
|
6
|
Amzati GS, Pelle R, Muhigwa JBB, Kanduma EG, Djikeng A, Madder M, Kirschvink N, Marcotty T. Mitochondrial phylogeography and population structure of the cattle tick Rhipicephalus appendiculatus in the African Great Lakes region. Parasit Vectors 2018; 11:329. [PMID: 29855375 PMCID: PMC5984310 DOI: 10.1186/s13071-018-2904-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/16/2018] [Indexed: 12/02/2022] Open
Abstract
Background The ixodid tick Rhipicephalus appendiculatus is the main vector of Theileria parva, wich causes the highly fatal cattle disease East Coast fever (ECF) in sub-Saharan Africa. Rhipicephalus appendiculatus populations differ in their ecology, diapause behaviour and vector competence. Thus, their expansion in new areas may change the genetic structure and consequently affect the vector-pathogen system and disease outcomes. In this study we investigated the genetic distribution of R. appendiculatus across agro-ecological zones (AEZs) in the African Great Lakes region to better understand the epidemiology of ECF and elucidate R. appendiculatus evolutionary history and biogeographical colonization in Africa. Methods Sequencing was performed on two mitochondrial genes (cox1 and 12S rRNA) of 218 ticks collected from cattle across six AEZs along an altitudinal gradient in the Democratic Republic of Congo, Rwanda, Burundi and Tanzania. Phylogenetic relationships between tick populations were determined and evolutionary population dynamics models were assessed by mismach distribution. Results Population genetic analysis yielded 22 cox1 and 9 12S haplotypes in a total of 209 and 126 nucleotide sequences, respectively. Phylogenetic algorithms grouped these haplotypes for both genes into two major clades (lineages A and B). We observed significant genetic variation segregating the two lineages and low structure among populations with high degree of migration. The observed high gene flow indicates population admixture between AEZs. However, reduced number of migrants was observed between lowlands and highlands. Mismatch analysis detected a signature of rapid demographic and range expansion of lineage A. The star-like pattern of isolated and published haplotypes indicates that the two lineages evolve independently and have been subjected to expansion across Africa. Conclusions Two sympatric R. appendiculatus lineages occur in the Great Lakes region. Lineage A, the most diverse and ubiquitous, has experienced rapid population growth and range expansion in all AEZs probably through cattle movement, whereas lineage B, the less abundant, has probably established a founder population from recent colonization events and its occurrence decreases with altitude. These two lineages are sympatric in central and eastern Africa and allopatric in southern Africa. The observed colonization pattern may strongly affect the transmission system and may explain ECF endemic instability in the tick distribution fringes. Electronic supplementary material The online version of this article (10.1186/s13071-018-2904-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gaston S Amzati
- Unit of Integrated Veterinary Research, Department of Veterinary Medicine, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium. .,Research Unit of Veterinary Epidemiology and Biostatistics, Faculty of Agricultural and Environmental Sciences, Université Evangélique en Afrique, P.O. Box 3323, Bukavu, Democratic Republic of the Congo. .,Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI) hub, P.O. Box 30709-00100, Nairobi, Kenya.
| | - Roger Pelle
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI) hub, P.O. Box 30709-00100, Nairobi, Kenya
| | - Jean-Berckmans B Muhigwa
- Research Unit of Veterinary Epidemiology and Biostatistics, Faculty of Agricultural and Environmental Sciences, Université Evangélique en Afrique, P.O. Box 3323, Bukavu, Democratic Republic of the Congo
| | - Esther G Kanduma
- Department of Biochemistry, School of Medicine, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Appolinaire Djikeng
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI) hub, P.O. Box 30709-00100, Nairobi, Kenya.,Present address: Centre for Tropical Livestock Genetics and Health (CTLGH), The University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK
| | - Maxime Madder
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, P/Bag X04, Onderstepoort, 0110, South Africa
| | - Nathalie Kirschvink
- Unit of Integrated Veterinary Research, Department of Veterinary Medicine, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Tanguy Marcotty
- Unit of Integrated Veterinary Research, Department of Veterinary Medicine, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| |
Collapse
|
7
|
Kabi F, Masembe C, Muwanika V, Kirunda H, Negrini R. Geographic distribution of non-clinical Theileria parva infection among indigenous cattle populations in contrasting agro-ecological zones of Uganda: implications for control strategies. Parasit Vectors 2014; 7:414. [PMID: 25175844 PMCID: PMC4261563 DOI: 10.1186/1756-3305-7-414] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/26/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Non-clinical Theileria parva infection among indigenous cattle occurs upon recovery from primary disease during the first year of life. Continuous exposure to infection through contaminated tick infestations with absence of clinical disease gives rise to endemic stability. Endemic stable populations may become sources of infection if contaminated tick vectors are shared with susceptible exotic cattle. This study aimed at establishing a nationwide distribution of non-clinical T. parva infection among indigenous cattle populations to inform novel control strategies. METHODS The occurrence of non-clinical T. parva infection among apparently healthy 925 indigenous cattle from 209 herds spread out in 10 agro-ecological zones (AEZs) was determined using a nested PCR assay. The influence of AEZ, breed, sex, age and farmers' ranking of ECF importance were interrogated for influence of non-clinical parasite occurrence. RESULTS The overall prevalence of non-clinical T. parva infection was 30% (278/925). A gradual increase of non-clinical T. parva infection was observed ranging from 17% (95% CI: 0.03-0.23) to 43% (95% CI: 0.3-0.55) in the North Eastern Savannah Grasslands (NESG) to the Western Highland Ranges (WHR) respectively. A similarly associated 18% (95% CI: 0.07-0.28) and 35% (95% CI: 0.3-0.39) non-clinical parasite prevalence was observed among the East African shorthorn Zebu (EASZ) and Ankole cattle respectively. Average herd level non-clinical T. parva prevalence was 28%, ranging from zero to 100%. The likelihood of non-clinical T. parva infection was 35.5% greater in the western highlands compared to the northeastern semi-arid AEZs. CONCLUSIONS Non-clinical T. parva occurs countrywide, structured along patterns of AEZ and breed gradients. These findings may guide policy formulation, deployment of integrated control strategies and local cattle improvement programs.
Collapse
Affiliation(s)
- Fredrick Kabi
- Department of Environmental Management, Molecular Genetics Laboratory, College of Agricultural and Environmental Sciences, Makerere University, P,O, Box 7062/7298 Kampala, Uganda.
| | | | | | | | | |
Collapse
|
8
|
Kalume MK, Saegerman C, Mbahikyavolo DK, Makumyaviri AM, Marcotty T, Madder M, Caron Y, Lempereur L, Losson B. Identification of hard ticks (Acari: Ixodidae) and seroprevalence to Theileria parva in cattle raised in North Kivu Province, Democratic Republic of Congo. Parasitol Res 2012. [PMID: 23192530 DOI: 10.1007/s00436-012-3200-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study aimed to identify tick species and to determine their relationship with the Theileria parva seroprevalence in cattle raised under an extensive farming system in North Kivu Province, Democratic Republic of Congo in two agro-ecological zones namely medium (1,000-1,850 m) and high (>1,850 m) altitude. Among the 3,215 ticks collected on 482 animals, from February to April 2009, Rhipicephalus appendiculatus (64.26 %), the main vector of T. parva, was the most abundant species followed by Rhipicephalus decoloratus (35.49 %) and Amblyomma variegatum (0.25 %). The mean burden of R. appendiculatus tick per infested animal appeared significantly higher at medium (6.5 ± 0.22 ticks) than at high (0.07 ± 0.3 ticks) altitude (P < 0.05). However, an indirect fluorescent antibody test carried out on 450 blood samples revealed a global T. parva seroprevalence of 43 % (95 % CI: 38-47) which was not significantly (P > 0.05) different between medium (48.4 %; 95 % CI: 38-49) and high (41.9 %; 95 % CI: 35-49) altitude. These relatively low seroprevalences suggest that there is a state of endemicity to T. parva infection in the study area. The presence of the tick vector on animals was associated with an increased risk of being seropositive to T. parva infection (odds ratio = 2.04; 95 % CI: 1.8-2.3; P < 0.001). The results suggest the need for a longitudinal study to investigate the seasonal dynamics of tick species and T. parva infection. The rate of tick infection should also be evaluated in order to determine the intensity of T. parva transmission to cattle.
Collapse
Affiliation(s)
- Moïse Kasereka Kalume
- Faculty of Veterinary Medicine, Catholic University of Graben, B P 29, Butembo, North Kivu Province, Democratic Republic of Congo
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kubelová M, Mazancová J, Široký P. Theileria, Babesia, and Anaplasma detected by PCR in ruminant herds at Bié Province, Angola. Parasite 2012; 19:417-22. [PMID: 23193527 PMCID: PMC3671455 DOI: 10.1051/parasite/2012194417] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/12/2012] [Indexed: 11/24/2022] Open
Abstract
Distribution of Anaplasma spp., Babesia spp., Theileria spp., and Ehrlichia ruminantium, was for the first time studied in Bié Province, central Angola. We examined 76 blood samples of cattle originated from seven farms, and 13 blood samples of goats from two farms employing molecular genetic tools (PCR). Most prevalent was A. ovis-infection in goats (100%) and A. marginale-infection in cattle (38% of examined animals, and six out of seven farms). B. bigemina-infection was detected in only one specimen at Andulo, whereas B. bovis was not detected in Bié. We did not detected T. parva, the causative agent of serious diseases in cattle; nevertheless, infection by T. velifera was quite frequent (14% of examined animals, and five out of seven farms). Causative agent of heartwater disease - E. ruminantium, was not detected. Taking into account short-term perspective of PCR methods in monitoring of epidemiological status in herds, the number of infected animals and distribution of detected pathogens should not be ignored.
Collapse
Affiliation(s)
- M. Kubelová
-
Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno Palackého 1-3 612 42 Brno Czech Republic
| | - J. Mazancová
-
Department of Sustainable Technologies, Institute of Tropics and Subtropics, Czech University of Life Sciences Prague Kamýcká 129 165 21 Praha 6 Czech Republic
| | - P. Široký
-
Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno Palackého 1-3 612 42 Brno Czech Republic
-
CEITEC-Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno Palackého 1-3 612 42 Brno Czech Republic
| |
Collapse
|
10
|
Kivaria FM, Kapaga AM, Mbassa GK, Mtui PF, Wani RJ. Epidemiological perspectives of ticks and tick-borne diseases in South Sudan: cross-sectional survey results. ACTA ACUST UNITED AC 2012; 79:E1-E10. [PMID: 23327317 DOI: 10.4102/ojvr.v79i1.400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/02/2012] [Accepted: 05/11/2012] [Indexed: 11/01/2022]
Abstract
A cross-sectional study was conducted between September and October 2010 in five states of South Sudan that were selected on the basis of the perceived risk of tick-borne diseases. The purpose was to investigate epidemiological parameters of tick-borne diseases in South Sudan and their uses in future control strategies. A total of 805 calves were assessed by clinical, microscopic and serological examination and tick counts. The indirect Enzyme-Linked Immuno-Sorbent Assay (ELISA) was used to detect antibodies to Theileria parva, Theileria mutans, Anaplasma marginale and Babesian bigemina. Sero-conversion risks for T. parva and T. mutans were 27.3% and 31.3% respectively, whilst the risk was 57.6% and 52.8% for A. marginale and B. bigemina, respectively. Major tick species identified include Rhipicephalus appendiculatus, Rhipicephalus decoloratus, Rhipicephalus microplus, Amblyomma variegatum, and Rhipicephalus evertsi. There was great variation (P ≤ 0.001) in the number of all these ticks, both between herds in a state and between calves in an individual herd. The low and intermediate sero-conversion risks observed in the study states suggest that immunisation against East Coast fever (ECF) is justified. Fortunately, three major genotypes that were identified by applying Polymerase Chain Reaction Restriction Fragment Length Polymorphism (PCRRFLP) analysis on the p104 to the blood samples and T. parva Muguga, matched very well with T. parva Kiambu 5 and T. parva Muguga; therefore the Muguga cocktail can be used for the immunisation of cattle in South Sudan. However, prospective studies are required to develop optimal control measures for tick-borne diseases under different ecological and husbandry practices in South Sudan.
Collapse
Affiliation(s)
- Fredrick M Kivaria
- National Epidemiology Section, Ministry of Livestock and Fisheries Development.
| | | | | | | | | |
Collapse
|
11
|
Zaman MA, Iqbal Z, Abbas RZ, Khan MN, Muhammad G, Younus M, Ahmed S. In vitro and in vivo acaricidal activity of a herbal extract. Vet Parasitol 2012; 186:431-6. [DOI: 10.1016/j.vetpar.2011.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/29/2011] [Accepted: 11/03/2011] [Indexed: 11/27/2022]
|
12
|
McFadden AMJ, Rawdon TG, Meyer J, Makin J, Morley CM, Clough RR, Tham K, Mullner P, Geysen D. An outbreak of haemolytic anaemia associated with infection of Theileria orientalis in naive cattle. N Z Vet J 2011; 59:79-85. [PMID: 21409734 DOI: 10.1080/00480169.2011.552857] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
CASE HISTORY An outbreak of haemolytic anaemia occurred when 87 cattle were introduced from a presumed non-infected herd from south Otago to a herd in Northland (n=580 cows), New Zealand, where theileriosis is endemic. CLINICAL FINDINGS Clinical signs associated with Theileria spp. infection included lethargy, anorexia, inappetance, pale mucous membranes, and varying severity of anaemia. In the naive imported cattle, 11/29 (38%) of those tested showed haematological signs of anaemia (haematocrit (HCT) <0.25 L/L). A negative association was present between the HCT and the number of Theileria spp. organisms counted using light microscopy (correlation coefficient=-0.4; p<0.05). Haemoparasites consistent with Theileria spp. were observed on examination of a blood smear. Theileria orientalis group (Theileria buffeli/orientalis) species was confirmed using PCR and DNA sequencing, and other causes for anaemia were excluded in the most clinically severely affected cow. The 18S sequence data and phylogenetic analysis of the CoxIII sequences showed samples had the greatest similarity to T. orientalis Chitose from Japan. DIAGNOSIS Haemolytic anaemia associated with infection of T. orientalis. CLINICAL RELEVANCE Previous reports have suggested that T. orientalis group species may be non-pathogenic in healthy cattle, and an incidental finding in blood samples. However, this investigation provided evidence that in New Zealand, this pathogen is capable of causing clinical disease in cattle not necessarily debilitated by another disease. The potential for disease should be considered when naive cattle are brought in from non-endemic to endemic regions, for instance cattle from the South Island moved to regions where the vector for T. orientalis group species, Haemaphysalis longicornis, is active, and T. orientalis is present.
Collapse
Affiliation(s)
- A M J McFadden
- Investigation and Diagnostic Centre, Wallaceville, Biosecurity New Zealand, Ministry of Agriculture and Forestry, Upper Hutt 5018, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Epidemiological analysis of tick-borne diseases in Zambia. Vet Parasitol 2011; 175:331-42. [DOI: 10.1016/j.vetpar.2010.09.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 09/15/2010] [Accepted: 09/24/2010] [Indexed: 11/21/2022]
|
14
|
Gachohi JM, Kitala PM, Ngumi PN, Skilton RA. Environment and farm factors associated with exposure to Theileria parva infection in cattle under traditional mixed farming system in Mbeere District, Kenya. Trop Anim Health Prod 2010; 43:271-7. [PMID: 20835912 DOI: 10.1007/s11250-010-9688-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2010] [Indexed: 11/30/2022]
Abstract
The objective of this study was to investigate the relationship between seroprevalence to Theileria parva infection in cattle and potential environmental and farm-level effects in 80 farms under traditional crop-livestock system in Mbeere District, Kenya. A standardized questionnaire was used to collect the effects characteristics as related to T. parva infection epidemiology. Serum samples were collected from 440 cattle of all ages for detection of T. parva antibodies by the enzyme-linked immunosorbent assay technique. The association between the variables was assessed using a generalized estimation equation logistic regression model. The overall T. parva seroprevalence, accounting for correlation of responses, was 19.3% (95% confidence interval (CI) 14%, 25%). Two variables, "administrative division" and "presence of the vector tick on the farm", were significantly associated with the T. parva seroresponse. Respectively, cattle from farms in Gachoka, Evurore, and Mwea divisions were (and their 95% CI) 1.3 (0.36, 4.8), 4.4 (1.2, 15.9), and 15.2 (4.9, 47.1) times more likely to be seropositive relative to those from Siakago Division (P = 0.000). Cattle from farms in which the vector tick was present were 2.9 (1.2, 6.7) times more likely to be seropositive (P = 0.011). Results of this study suggested that both environmental and farm factors may be associated with T. parva infection epidemiology in Mbeere District. Under such circumstances, characterization of environmental suitability for the vector tick and corresponding environment-specific farm management practices in the district is required both for improved understanding of the disease and in planning disease control programs.
Collapse
Affiliation(s)
- John M Gachohi
- International Livestock Research Institute (ILRI), P.O. Box 30709, 00100, Nairobi, Kenya.
| | | | | | | |
Collapse
|
15
|
Estimating seroprevalence and variation to four tick-borne infections and determination of associated risk factors in cattle under traditional mixed farming system in Mbeere District, Kenya. Prev Vet Med 2010; 95:208-23. [DOI: 10.1016/j.prevetmed.2010.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/10/2010] [Accepted: 03/26/2010] [Indexed: 11/20/2022]
|
16
|
Genotypic diversity of merozoite surface antigen 1 of Babesia bovis within an endemic population. Mol Biochem Parasitol 2010; 172:107-12. [PMID: 20371255 PMCID: PMC2941823 DOI: 10.1016/j.molbiopara.2010.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 11/21/2022]
Abstract
Multiple genetically distinct strains of a pathogen circulate and compete for dominance within populations of animal reservoir hosts. Understanding the basis for genotypic strain structure is critical for predicting how pathogens respond to selective pressures and how shifts in pathogen population structure can lead to disease outbreaks. Evidence from related Apicomplexans such as Plasmodium, Toxoplasma, Cryptosporidium and Theileria suggests that various patterns of population dynamics exist, including but not limited to clonal, oligoclonal, panmictic and epidemic genotypic strain structures. In Babesia bovis, genetic diversity of variable merozoite surface antigen (VMSA) genes has been associated with disease outbreaks, including in previously vaccinated animals. However, the extent of VMSA diversity within a defined population in an endemic area has not been examined. We analyzed genotypic diversity and temporal change of MSA-1, a member of the VMSA family, in individual infected animals within a reservoir host population. Twenty-eight distinct MSA-1 genotypes were identified within the herd. All genotypically distinct MSA-1 sequences clustered into three groups based on sequence similarity. Two thirds of the animals tested changed their dominant MSA-1 genotypes during a 6-month period. Five animals within the population contained multiple genotypes. Interestingly, the predominant genotypes within those five animals also changed over the 6-month sampling period, suggesting ongoing transmission or emergence of variant MSA-1 genotypes within the herd. This study demonstrated an unexpected level of diversity for a single copy gene in a haploid genome, and illustrates the dynamic genotype structure of B. bovis within an individual animal in an endemic region. Co-infection with multiple diverse MSA-1 genotypes provides a basis for more extensive genotypic shifts that characterizes outbreak strains.
Collapse
|
17
|
Katzer F, Ngugi D, Walker AR, McKeever DJ. Genotypic diversity, a survival strategy for the apicomplexan parasite Theileria parva. Vet Parasitol 2009; 167:236-43. [PMID: 19837514 PMCID: PMC2817781 DOI: 10.1016/j.vetpar.2009.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tick-borne protozoan parasite Theileria parva causes East Coast fever (ECF), a severe lymphoproliferative disease of cattle that is a major constraint to the improvement of livestock in eastern, central and southern Africa. Studies in cattle experimentally infected with T. parva have shown that the protective cytotoxic T lymphocyte (CTL) response is tightly focused, with individual animals recognizing only one or two dominant antigens, the identity of which varies with MHC class I phenotype. It is well known that cross-protection between T. parva stocks is limited, but precise evaluation of genetic diversity in field populations of the parasite has been hampered by a lack of molecular markers spanning the genome. A recently described panel of satellite markers has provided evidence for substantial genotypic diversity and recombination but does not provide cover for large segments of the genome. To address this deficiency, we undertook to identify additional polymorphic markers covering these regions and we report herein 42 newly identified PCR-RFLP markers distributed across the 4 T. parva chromosomes, as well as 19 new satellite markers for chromosomes 1 and 2. This brings the total number of available polymorphic markers to 141 for the 8.5 Mb genome. We have used these markers to characterise existing parasite stabilates and have also shown that passage of the parasite through naïve cattle and ticks can lead to substantial changes of parasite populations in resulting stabilates. These markers have also been used to show that passage of mixed parasites through an immunised calf results in the removal of the immunising genotype from the parasite population produced by ticks fed on this animal.
Collapse
Affiliation(s)
- F Katzer
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK.
| | | | | | | |
Collapse
|
18
|
Heidarpour Bami M, Haddadzadeh HR, Kazemi B, Khazraiinia P, Bandehpour M, Aktas M. Molecular identification of ovine Theileria species by a new PCR-RFLP method. Vet Parasitol 2009; 161:171-7. [PMID: 19264409 DOI: 10.1016/j.vetpar.2009.01.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 01/21/2009] [Accepted: 01/27/2009] [Indexed: 11/29/2022]
Abstract
Theileria spp. infect wild and domestic ruminants in the tropical and subtropical regions of the world. Two species, T. lestoquardi and T. ovis, are suspected to cause ovine theileriosis in Iran. The epidemiological aspects of ovine theileriosis in Iran are poorly understood, and further investigations by sensitive and precise techniques are required. In this study, the use of a nested PCR for amplification of a fragment of the 18S ribosomal DNA from virtually all species of Theileria is described. For differentiation of various Theileria spp. a RFLP assay was developed as a diagnostic tool enabling direct, concurrent, highly specific and sensitive identification of Theileria spp. The sensitivity of the nested PCR for Theileria species was 10(-5)% parasitemia. Restriction fragment length polymorphism (RFLP) of the PCR products allowed differentiation between three different Theileria species (T. annulata, T. lestoquardi and T. ovis) and seems to be useful for differentiation of other species such as T. separata and Theileria spp. china. From 100 field blood samples obtained from sheep in East and South-East Iran, 56% were positive for Theileria spp. by nested-PCR compared with 21% by microscopic examination. Out of 56 positive samples, 12.5% (7/56) were positive for T. ovis and 87/5% (49/56) were positive for T. lestoquardi. This is the first report in which T. ovis has been detected in Iran using molecular identification techniques.
Collapse
Affiliation(s)
- M Heidarpour Bami
- Clinical Science Department, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
19
|
Bazarusanga T, Geysen D, Vercruysse J, Marcotty T. The sensitivity of PCR and serology in different Theileria parva epidemiological situations in Rwanda. Vet Parasitol 2008; 154:21-31. [PMID: 18384961 DOI: 10.1016/j.vetpar.2008.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/07/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
Theileria parva is the causative agent of a lethal tick-borne disease of cattle occurring in eastern, central and southern Africa. Variations in the sensitivity of the serological and molecular tests with seasonal vector occurrence and discrepancies between low PCR prevalence and high T. parva vector density are a setback to estimate true prevalences. Therefore, the objectives of the present studies were to evaluate (1) the sensitivity of three serological tests (IFAT, ELISA and SELISA) and one molecular test (PCR) in the diagnosis of chronic T. parva infections in four different agro-ecological zones of Rwanda and (2) the effect of tick challenge and animal's age on the sensitivity of PCR. Blood samples from 635 bovines were collected in four agro-ecological zones of Rwanda. All sera were screened using the IFAT, ELISA, SELISA and PCR. The binary results of the four diagnostic tests were introduced separately for each agro-ecological zone in a Bayesian model to estimate the prevalence of T. parva infections and the sensitivity of the four diagnostic tests. All test specificities were set to 100%. The estimated T. parva prevalence was much higher (83-85%) than estimations based on single diagnostic tests. The estimated sensitivity of serological tests was relatively constant and ranged from 57 to 75% in the various areas. The sensitivity of PCR showed more pronounced variations, ranging from 66% in the low T. parva transmission (high land) zones compared to 24% in the highly vector infested (low land) zones. Calves and adult cattle (n=194) were also sampled in regularly and irregularly dipped herds in the low land region. The apparent T. parva prevalence detected by PCR was significantly higher in calves than in adult cattle and in herds regularly treated with acaricides, while no significant differences were found with IFAT. The conditional probability that a sample was positive at PCR while it was positive at IFAT was significantly lower in adults. The implication of these findings in the use of diagnostic assays for epidemiological studies is discussed.
Collapse
Affiliation(s)
- Thomas Bazarusanga
- Rwanda Animal Resources Development Authority (RARDA), BP 804, Kigali, Rwanda
| | | | | | | |
Collapse
|
20
|
Bazarusanga T, Geysen D, Vercruysse J, Madder M. An update on the ecological distribution of Ixodid ticks infesting cattle in Rwanda: countrywide cross-sectional survey in the wet and the dry season. EXPERIMENTAL & APPLIED ACAROLOGY 2007; 43:279-291. [PMID: 18040870 DOI: 10.1007/s10493-007-9121-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 11/08/2007] [Indexed: 05/25/2023]
Abstract
As part of the epidemiological studies aimed at developing an East Coast fever (ECF) immunisation control strategy, which combines an infection and treatment method with strategic tick control, a countrywide tick survey was carried out in both the dry and the wet season to determine the abundance and the dynamics of the tick populations infesting cattle in Rwanda. Six Ixodid tick species where identified from a total of 12,814 tick specimens collected. Rhipicephalus appendiculatus, the main vector of ECF was the most abundant (91.8%) followed by Boophilus decoloratus (6.1%) and Ambyomma variegatum (1.2%). Few ticks from the three other less economically important Ixodid species (Rhipicephalus compositus, R. evertsi evertsi and Ixodes cavipalpus) were recovered. Both adult and immature stages of the most dominant tick species were found to be widespread with a year round presence. The numbers of ticks were high in low land and medium zones and declined markedly in the higher regions of Rwanda. The geographical distribution of various tick species throughout the country and their epidemiological implications are discussed.
Collapse
|