1
|
Wang D, Zhang X, Li H, Wang T, Ma X, Yu Z, Wang F, Zhang Y, Liu J. Iron regulatory protein from the hard tick Haemaphysalis longicornis: characterization, function and assessment as a protective antigen. PEST MANAGEMENT SCIENCE 2024; 80:3922-3934. [PMID: 38520319 DOI: 10.1002/ps.8095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/20/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Ticks are blood-feeding ectoparasites with different host specificities and are capable of pathogen transmission. Iron regulatory proteins (IRPs) play crucial roles in iron homeostasis in vertebrates. However, their functions in ticks remain poorly understood. The aim of the present study was to investigate the characteristics, functions, molecular mechanisms, and the vaccine efficacy of IRP in the hard tick Haemaphysalis longicornis. RESULTS The full-length complementary DNA of IRP from Haemaphysalis longicornis (HlIRP) was 2973 bp, including a 2772 bp open reading frame. It is expressed throughout three developmental stages (larvae, nymphs, and adult females) and in various tissues (salivary glands, ovaries, midgut, and Malpighian tubules). Recombinant Haemaphysalis longicornis IRP (rHlIRP) was obtained via a prokaryotic expression system and exhibited aconitase, iron chelation, radical-scavenging, and hemolytic activities in vitro. RNA interference-mediated IRP knockdown reduced tick engorgement weight, ovary weight, egg mass weight, egg hatching rate, and ovary vitellin content, as well as prolonging the egg incubation period. Proteomics revealed that IRP may affect tick reproduction and development through proteasome pathway-associated, ribosomal, reproduction-related, and iron metabolism-related proteins. A trial on rabbits against adult Haemaphysalis longicornis infestation demonstrated that rHlIRP vaccine could significantly decrease engorged weight (by 10%), egg mass weight (by 16%) and eggs hatching rate (by 22%) of ticks. The overall immunization efficacy using rHlIRP against adult females was 41%. CONCLUSION IRP could limit reproduction and development in Haemaphysalis longicornis, and HlIRP was confirmed as a candidate vaccine antigen to impair tick iron metabolism and protect the host against tick infestation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaojing Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hongxia Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ting Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaojin Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhijun Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Fang Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yankai Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
2
|
Sang MK, Patnaik HH, Park JE, Song DK, Jeong JY, Hong CE, Kim YT, Shin HJ, Ziwei L, Hwang HJ, Park SY, Kang SW, Park SH, Cha SJ, Ko JH, Shin EH, Park HS, Jo YH, Han YS, Patnaik BB, Lee YS. Transcriptome analysis of Haemaphysalis flava female using Illumina HiSeq 4000 sequencing: de novo assembly, functional annotation and discovery of SSR markers. Parasit Vectors 2023; 16:367. [PMID: 37848984 PMCID: PMC10583488 DOI: 10.1186/s13071-023-05923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Ticks are ectoparasites capable of directly damaging their hosts and transmitting vector-borne diseases. The ixodid tick Haemaphysalis flava has a broad distribution that extends from East to South Asia. This tick is a reservoir of severe fever with thrombocytopenia syndrome virus (SFTSV) that causes severe hemorrhagic disease, with cases reported from China, Japan and South Korea. Recently, the distribution of H. flava in South Korea was found to overlap with the occurrence of SFTSV. METHODS This study was undertaken to discover the molecular resources of H. flava female ticks using the Illumina HiSeq 4000 system, the Trinity de novo sequence assembler and annotation against public databases. The locally curated Protostome database (PANM-DB) was used to screen the putative adaptation-related transcripts classified to gene families, such as angiotensin-converting enzyme, aquaporin, adenylate cyclase, AMP-activated protein kinase, glutamate receptors, heat shock proteins, molecular chaperones, insulin receptor, mitogen-activated protein kinase and solute carrier family proteins. Also, the repeats and simple sequence repeats (SSRs) were screened from the unigenes using RepeatMasker (v4.0.6) and MISA (v1.0) software tools, followed by the designing of SSRs flanking primers using BatchPrimer 3 (v1.0) software. RESULTS The transcriptome produced a total of 69,822 unigenes, of which 46,175 annotated to the homologous proteins in the PANM-DB. The unigenes were also mapped to the EuKaryotic Orthologous Groups (KOG), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) specializations. Promiscuous presence of protein kinase, zinc finger (C2H2-type), reverse transcriptase, and RNA recognition motif domains was observed in the unigenes. A total of 3480 SSRs were screened, of which 1907 and 1274 were found as tri- and dinucleotide repeats, respectively. A list of primer sequences flanking the SSR motifs was detailed for validation of polymorphism in H. flava and the related tick species. CONCLUSIONS The reference transcriptome information on H. flava female ticks will be useful for an enriched understanding of tick biology, its competency to act as a vector and the study of species diversity related to disease transmission.
Collapse
Affiliation(s)
- Min Kyu Sang
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Hongray Howrelia Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jie Eun Park
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Dae Kwon Song
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jun Yang Jeong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Chan Eui Hong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Yong Tae Kim
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Hyeon Jun Shin
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Liu Ziwei
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Hee Ju Hwang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - So Young Park
- Biodiversity Research Team, Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, South Korea
| | - Se Won Kang
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, South Korea
| | - Seung-Hwan Park
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, South Korea
| | - Sung-Jae Cha
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jung Ho Ko
- Police Science Institute, Korean National Police University, Asan, Chungnam, 31539, South Korea
| | - E Hyun Shin
- Research Institute, Korea Pest Control Association, Seoul, 08501, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD., 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, South Korea
| | - Yong Hun Jo
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Bharat Bhusan Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Nuapadhi, Balasore , Odisha, 756089, India
| | - Yong Seok Lee
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea.
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea.
| |
Collapse
|
3
|
Cheng R, Li D, Duan DY, Parry R, Cheng TY, Liu L. Egg protein profile and dynamics during embryogenesis in Haemaphysalis flava ticks. Ticks Tick Borne Dis 2023; 14:102180. [PMID: 37011496 DOI: 10.1016/j.ttbdis.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Tick eggs contain all essential proteins for embryogenesis, and egg proteins are a potential reservoir of tick-protective antigens. However, the protein profile and dynamics during embryonic development remain unknown. This study aimed to depict the protein profile and dynamics in tick embryogenesis, further providing protein candidates for targeted interventions. Eggs from Haemaphysalis flava ticks were incubated at 28 °C and 85% relative humidity. On days 0 (newly laid eggs without incubation), 7, 14 and 21, eggs were collected, dewaxed and subject to protein extraction. Extracted proteins were digested by filter-aided sample preparation and analyzed by liquid chromatography-tandem mass spectrometry (LC/MS-MS). MS data were searched against an in-house H. flava protein database for tick-derived protein identification. Abundances of 40 selected high-confidence proteins were further quantified by LC-parallel reaction monitoring (PRM)/MS analysis throughout egg incubation. A total of 93 high-confidence proteins were identified in eggs on 0-day incubation. Identified proteins belonged to seven functional categories: transporters, enzymes, proteinase inhibitors, immunity-related proteins, cytoskeletal proteins, heat shock proteins and uncharacterized proteins. The enzyme category contained the most types of proteins. Neutrophil elastase inhibitors represented the most abundant proteins in terms of intensity-based absolute-protein-quantification. LC-PRM/MS revealed that the abundances of 20 proteins increased including enolase, calreticulin, actin, GAPDH et cetera, and the abundances of 11 proteins decreased including vitellogenins, neutrophil elastase inhibitor, carboxypeptidase Q, et cetera from 0- to 21-day incubation. This study provides the most comprehensive egg protein profile and dynamics during tick embryogenesis. Further investigations are needed to test the tick-control efficacy by targeting the egg proteins.
Collapse
|
4
|
Liu YK, Liu GH, Liu L, Wang AB, Cheng TY, Duan DY. Comparative analysis of the anticoagulant activities and immunogenicity of HSC70 and HSC70 TKD of Haemaphysalis flava. Parasit Vectors 2022; 15:411. [PMID: 36335395 PMCID: PMC9636643 DOI: 10.1186/s13071-022-05521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Haemaphysalis flava is a hematophagous ectoparasite that acquires the nutrition needed for development and reproduction by sucking blood and digesting the blood meal. During blood-sucking and blood-meal digestion, the prevention of blood coagulation is important for this tick. Previous studies have shown that heat shock cognate 70 (HSC70) protein has certain anticoagulant activities, but its immunogenicity remains unclear. Also, whether the mutation of individual bases of the TKD-like peptide of HSC70 through the overlap extension method can change its anticoagulant activities and immunogenicity remains to be investigated. METHODS The gene encoding the HSC70 protein was cloned from a complementary DNA library synthesized from H. flava. The coding gene of the TKD-like peptide of HSC70 was mutated into a TKD peptide coding gene (HSC70TKD) using the overlap extension method. Escherichia coli prokaryotic expression plasmids were constructed to obtain the recombinant proteins of HSC70 (rHSC70) and HSC70TKD (rHSC70TKD). The purified rHSC70 and rHSC70TKD were evaluated at different concentrations for anticoagulant activities using four in vitro clotting assays. Emulsifying recombinant proteins with complete and incomplete Freund's adjuvants were subcutaneously immunized in Sprague Dawley rats. The serum antibody titers and serum concentrations of interferon-gamma (IFN-γ) and interleukin-4 (IL-4) were detected using an indirect enzyme-linked immunosorbent assay to assess the immunogenicity of rHSC70 and rHSC70TKD. RESULTS The open reading frame of HSC70 was successfully amplified and found to have a length of 1958 bp. The gene encoding the TKD-like peptide of HSC70 was artificially mutated, with the 1373-position adenine (A) of the original sequence mutated into guanine (G), the 1385-position cytosine (C) mutated into G and the 1386-position G mutated into C. rHSC70 and rHSC70TKD that fused with His-tag were obtained using the expression plasmids pET-28a-HSC70 and pET-28a-HSC70TKD, respectively. rHSC70 and rHSC70TKD prolonged the thrombin time (TT) and reduced the fibrinogen (FIB) content in the plasma, but did not affect the prothrombin time (PT) or activated partial thromboplastin time (APTT) when compared to the negative control. Interestingly, the ability of rHSC70TKD to prolong the TT and reduce the FIB content in the plasma was better than that of rHSC70. The specific antibody titers of both rHSC70 and rHSC70TKD in rat serum reached 1:124,000 14 days after the third immunization. The serum concentration of IFN-γ in the rHSC70TKD group was higher than that in the rHSC70 group. The rHSC70 group has the highest serum concentration of IL-4, and the serum concentration of IL-4 in the rHSC70TKD group was higher than that in the negative group. CONCLUSIONS rHSC70 and rHSC70TKD exhibited anticoagulant activities by prolonging the TT and reducing the FIB content in vitro. rHSC70TKD had better anticoagulant activities than rHSC70. Both rHSC70 and rHSC70TKD had good immunogenicity and induced humoral and cellular immunity.
Collapse
Affiliation(s)
- Yu-Ke Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Guo-Hua Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Lei Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Ai-Bing Wang
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Tian-Yin Cheng
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - De-Yong Duan
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| |
Collapse
|
5
|
Liu L, Yan F, Zhang L, Wu ZF, Duan DY, Cheng TY. Protein profiling of hemolymph in Haemaphysalis flava ticks. Parasit Vectors 2022; 15:179. [PMID: 35610668 PMCID: PMC9128142 DOI: 10.1186/s13071-022-05287-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background Tick hemolymph bathes internal organs, acts as an exchange medium for nutrients and cellular metabolites, and offers protection against pathogens. Hemolymph is abundant in proteins. However, there has been limited integrated protein analysis in tick hemolymph thus far. Moreover, there are difficulties in differentiating tick-derived proteins from the host source. The aim of this study was to profile the tick/host protein components in the hemolymph of Haemaphysalis flava. Methods Hemolymph from adult engorged H. flava females was collected by leg amputation from the Erinaceus europaeus host. Hemolymph proteins were extracted by a filter-aided sample preparation protocol, digested by trypsin, and assayed by liquid chromatography–tandem mass spectrometry (LC–MS/MS). MS raw data were searched against the UniProt Erinaceidae database and H. flava protein database for host- and tick-derived protein identification. Protein abundance was further quantified by intensity-based absolute quantification (iBAQ). Results Proteins extracted from hemolymph unevenly varied in size with intense bands between 100 and 130 kDa. In total, 312 proteins were identified in the present study. Therein 40 proteins were identified to be host-derived proteins, of which 18 were high-confidence proteins. Top 10 abundant host-derived proteins included hemoglobin subunit-α and subunit-β, albumin, serotransferrin-like, ubiquitin-like, haptoglobin, α-1-antitrypsin-like protein, histone H2B, apolipoprotein A-I, and C3-β. In contrast, 169 were high-confidence tick-derived proteins. These proteins were classified into six categories based on reported functions in ticks, i.e., enzymes, enzyme inhibitors, transporters, immune-related proteins, muscle proteins, and heat shock proteins. The abundance of Vg, microplusin and α-2-macroglobulin was the highest among tick-derived proteins as indicated by iBAQ. Conclusions Numerous tick- and host-derived proteins were identified in hemolymph. The protein profile of H. flava hemolymph revealed a sophisticated protein system in the physiological processes of anticoagulation, digestion of blood meal, and innate immunity. More investigations are needed to characterize tick-derived proteins in hemolymph. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05287-7.
Collapse
Affiliation(s)
- Lei Liu
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Fen Yan
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lu Zhang
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zhi-Feng Wu
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Tian-Yin Cheng
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
6
|
Agwunobi DO, Wang T, Zhang M, Wang T, Jia Q, Zhang M, Shi X, Yu Z, Liu J. Functional implication of heat shock protein 70/90 and tubulin in cold stress of Dermacentor silvarum. Parasit Vectors 2021; 14:542. [PMID: 34666804 PMCID: PMC8527796 DOI: 10.1186/s13071-021-05056-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Background The tick Dermacentor silvarum Olenev (Acari: Ixodidae) is a vital vector tick species mainly distributed in the north of China and overwinters in the unfed adult stage. The knowledge of the mechanism that underlies its molecular adaptation against cold is limited. In the present study, genes of hsp70 and hsp90 cDNA, named Dshsp70 and Dshsp90, and tubulin were cloned and characterized from D. silvarum, and their functions in cold stress were further evaluated. Methods The genome of the heat shock proteins and tubulin of D. silvarum were sequenced and analyzed using bioinformatics methods. Each group of 20 ticks were injected in triplicate with Dshsp90-, Dshsp70-, and tubulin-derived dsRNA, whereas the control group was injected with GFP dsRNA. Then, the total RNA was extracted and cDNA was synthesized and subjected to RT-qPCR. After the confirmation of knockdown, the ticks were incubated for 24 h and were exposed to − 20 °C lethal temperature (LT50), and then the mortality was calculated. Results Results indicated that Dshsp70 and Dshsp90 contained an open reading frame of 345 and 2190 nucleotides that encoded 114 and 729 amino acid residues, respectively. The transcript Dshsp70 showed 90% similarity with that identified from Dermacentor variabilis, whereas Dshsp90 showed 85% similarity with that identified from Ixodes scapularis. Multiple sequence alignment indicates that the deduced amino acid sequences of D. silvarum Hsp90, Hsp70, and tubulin show very high sequence identity to their corresponding sequences in other species. Hsp90 and Hsp70 display highly conserved and signature amino acid sequences with well-conserved MEEVD motif at the C-terminal in Hsp90 and a variable C-terminal region with a V/IEEVD-motif in Hsp70 that bind to numerous co-chaperones. RNA interference revealed that the mortality of D. silvarum was significantly increased after injection of dsRNA of Dshsp70 (P = 0.0298) and tubulin (P = 0.0448), whereas no significant increases were observed after the interference of Dshsp90 (P = 0.0709). Conclusions The above results suggested that Dshsp70 and tubulin play an essential role in the low-temperature adaptation of ticks. The results of this study can contribute to the understanding of the survival and acclimatization of overwintering ticks. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05056-y.
Collapse
Affiliation(s)
- Desmond O Agwunobi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tongxuan Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Meng Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tianhong Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qingying Jia
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Miao Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinyue Shi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
7
|
Identification and Characterization of Immunodominant Proteins from Tick Tissue Extracts Inducing a Protective Immune Response against Ixodes ricinus in Cattle. Vaccines (Basel) 2021; 9:vaccines9060636. [PMID: 34200738 PMCID: PMC8229163 DOI: 10.3390/vaccines9060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Ixodes ricinus is the main vector of tick-borne diseases in Europe. An immunization trial of calves with soluble extracts of I. ricinus salivary glands (SGE) or midgut (ME) previously showed a strong response against subsequent tick challenge, resulting in diminished tick feeding success. Immune sera from these trials were used for the co-immunoprecipitation of tick tissue extracts, followed by LC-MS/MS analyses. This resulted in the identification of 46 immunodominant proteins that were differentially recognized by the serum of immunized calves. Some of these proteins had previously also drawn attention as potential anti-tick vaccine candidates using other approaches. Selected proteins were studied in more detail by measuring their relative expression in tick tissues and RNA interference (RNAi) studies. The strongest RNAi phenotypes were observed for MG6 (A0A147BXB7), a protein containing eight fibronectin type III domains predominantly expressed in tick midgut and ovaries of feeding females, and SG2 (A0A0K8RKT7), a glutathione-S-transferase that was found to be upregulated in all investigated tissues upon feeding. The results demonstrated that co-immunoprecipitation of tick proteins with host immune sera followed by protein identification using LC-MS/MS is a valid approach to identify antigen–antibody interactions, and could be integrated into anti-tick vaccine discovery pipelines.
Collapse
|
8
|
Luo J, Shen H, Ren Q, Guan G, Zhao B, Yin H, Chen R, Zhao H, Luo J, Li X, Liu G. Characterization of an MLP Homologue from Haemaphysalis longicornis (Acari: Ixodidae) Ticks. Pathogens 2020; 9:pathogens9040284. [PMID: 32295244 PMCID: PMC7238268 DOI: 10.3390/pathogens9040284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Members of the cysteine-rich protein (CRP) family are known to participate in muscle development in vertebrates. Muscle LIM protein (MLP) belongs to the CRP family and has an important function in the differentiation and proliferation of muscle cells. In this study, the full-length cDNA encoding MLP from Haemaphysalis longicornis (H. longicornis; HLMLP) ticks was obtained by 5' rapid amplification of cDNA ends (RACE). To verify the transcriptional status of MLP in ticks, HLMLP gene expression was assessed during various developmental stages by real-time PCR (RT-PCR). Interestingly, HLMLP expression in the integument was significantly (P < 0.01) higher than that observed in other tested tissues of engorged adult ticks. In addition, HLMLP mRNA levels were significantly downregulated in response to thermal stress at 4 °C for 48 h. Furthermore, recombinant HLMLP was expressed in Escherichia coli, and Western blot analysis showed that rabbit antiserum against H. longicornis adults recognized HLMLP and MLPs from different ticks. Ten 3-month-old rabbits that had never been exposed to ticks were used for the immunization and challenge experiments. The rabbits were divided into two groups of five rabbits each, where rabbits in the first group were immunized with HLMLP, while those in the second group were immunized with phosphate-buffered saline (PBS) diluent as controls. The vaccination of rabbits with the recombinant HLMLP conferred partial protective immunity against ticks, resulting in 20.00% mortality and a 17.44% reduction in the engorgement weight of adult ticks. These results suggest that HLMLP is not ideal as a candidate for use in anti-tick vaccines. However, the results of this study generated novel information on the MLP gene in H. longicornis and provide a basis for further investigation of the function of this gene that could potentially lead to a better understanding of the mechanism of myofiber determination and transformation.
Collapse
Affiliation(s)
- Jin Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (J.L.); (H.S.); (Q.R.); (G.G.); (H.Y.); (J.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Shen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (J.L.); (H.S.); (Q.R.); (G.G.); (H.Y.); (J.L.)
| | - Qiaoyun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (J.L.); (H.S.); (Q.R.); (G.G.); (H.Y.); (J.L.)
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (J.L.); (H.S.); (Q.R.); (G.G.); (H.Y.); (J.L.)
| | - Bo Zhao
- Gansu Agriculture Technology College, Duanjiatan 425, Lanzhou 730030, China;
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (J.L.); (H.S.); (Q.R.); (G.G.); (H.Y.); (J.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| | - Ronggui Chen
- Ili Center of Animal Disease Control and Diagnosis, Ili 835000, China;
| | - Hongying Zhao
- Chapchal Sibo Autonomous County Animal Husbandry and Veterinary Station, Chapchal 835400, China;
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (J.L.); (H.S.); (Q.R.); (G.G.); (H.Y.); (J.L.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (X.L.); (G.L.)
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (J.L.); (H.S.); (Q.R.); (G.G.); (H.Y.); (J.L.)
- Correspondence: (X.L.); (G.L.)
| |
Collapse
|
9
|
Wang F, Gong H, Zhang H, Zhou Y, Cao J, Zhou J. Molecular characterization, tissue-specific expression, and RNA knockdown of the putative heat shock cognate 70 protein from Rhipicephalus haemaphysaloides. Parasitol Res 2019; 118:1363-1370. [PMID: 30891634 DOI: 10.1007/s00436-019-06258-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/11/2019] [Indexed: 11/27/2022]
Abstract
Heat shock cognate 70-kDa protein (RH-Hsc70) was identified from a cDNA library synthesized from the sialotranscriptomes of unfed and fed Rhipicephalus haemaphysaloides. The RH-Hsc70 open reading frame is 1950 bp long and encodes a protein that is 649 amino acids in length, with a predicted molecular weight of 71.1 kDa and a theoretical pI of 5.43. RH-Hsc70 exhibits 98% amino acid identity with Hsc70 in Haemaphysalis flava and 83% identity with Hsc70 in arthropods and mammals. RH-Hsc70 was mainly expressed in nymphs and adult ticks, not in larvae. Real-time quantitative PCR analysis indicated that RH-Hsc70 mRNA expression was induced by blood feeding in adult ticks. In addition, RH-Hsc70 gene expression was higher in the ovaries of fed adult ticks than that in the midguts, salivary glands, and fat bodies of unfed or fed adult ticks. RH-Hsc70 gene knockdown inhibited tick blood feeding, significantly decreased tick engorgement rate, and increased tick death rate. These data illustrate the importance of RH-Hsc70 in tick blood feeding and aging, which makes it a promising candidate for the development of anti-tick vaccines.
Collapse
Affiliation(s)
- Fangfang Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, Handan, 056038, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
10
|
He XM, Liu L, Cheng TY. HSC70 from Haemaphysalis flava (Acari: Ixodidae) exerts anticoagulation activity in vitro. Ticks Tick Borne Dis 2018; 10:170-175. [PMID: 30366643 DOI: 10.1016/j.ttbdis.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/20/2018] [Accepted: 10/15/2018] [Indexed: 01/30/2023]
Abstract
Ticks and tick-borne diseases are major global health threats. During blood feeding, ticks insert their hypostomes into hosts and inject an array of anticoagulant molecules to maintain fluidity of the blood-meal. These anticoagulant molecules may provide insights into understanding the feeding biology of ticks and to develop vaccines against infestations. In Haemaphysalis flava, the heat shock cognate 70 (HSC70), a member of the heat shock protein (HSP) family, is differentially expressed in salivary glands at different levels of engorgement during blood feeding. However, its function in ticks is largely not known. The present study was designed to explore the possible effects of HSC70 on the plasma. The open reading frame (ORF) of HSC70 was expressed in a prokaryotic system, and recombinant HSC70 (rHSC70) was purified and characterized. The anticoagulation activity of rHSC70 was estimated by measuring prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and fibrinogen (FIB) with/without its inhibitor, VER155008. The results demonstrated that rHSC70 from H. flava extended TT (P < 0.001) and FIB clotting times (>300 s), but showed little effect on PT and APTT. Adding an inhibitor reversed anticlotting effects of rHSC70 on TT and FIB. These data indicate that rHSC70 is an anticoagulant agent, and the anticlotting activity likely attributes to the inhibition of thrombin and the transformation of fibrinogen into fibrin.
Collapse
Affiliation(s)
- Xiao-Ming He
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, China.
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
11
|
Espinosa PJ, Alberdi P, Villar M, Cabezas-Cruz A, de la Fuente J. Heat Shock Proteins in Vector-pathogen Interactions: The Anaplasma phagocytophilum Model. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-73377-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Liu L, Cheng TY, He XM. Proteomic profiling of the midgut contents of Haemaphysalis flava. Ticks Tick Borne Dis 2018; 9:490-495. [PMID: 29371124 DOI: 10.1016/j.ttbdis.2018.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/06/2018] [Accepted: 01/13/2018] [Indexed: 12/12/2022]
Abstract
Scant information is available regarding the proteins involved in blood meal processing in ticks. Here, we aimed to highlight the midgut proteins involved in preventing blood meal coagulation, and in facilitating intracellular digestion in the tick Haemaphysalis flava. Proteins were extracted from the midgut contents of fully engorged and partially engorged ticks. We used liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis to identify 131 unique peptides, and 102 proteins. Of these, 15 proteins, each with at least two unique peptides, were recognized with high confidence. We also retrieved 18 unigenes from our previous published transcriptomic libraries of the midguts and salivary glands of H. flava, and inferred the primary structures of nine proteins and fragments of five proteins. There were 23 and 21 unique proteins in the midgut contents of fully engorged and partially engorged ticks, respectively. We detected 58 shared proteins in the midgut contents of both fully engorged and partially engorged ticks. Of these, seven were significantly differentially expressed between fully engorged and partially engorged ticks: actin, calmodulin, elongation factor-1α, hsp90, multifunctional chaperone, tubulin α, and tubulin β. Our results demonstrated that the proteome of the midgut contents, combined with the transcriptome of the midgut, was a viable method for the reinforcement of protein identification. This method will facilitate further study of blood meal processing by ticks, as well as the identification of clues for tick infestation control. The existence of numerous proteins detected in the midgut contents also highlight the complexity of blood digestion in ticks; this area is in need of further investigation.
Collapse
Affiliation(s)
- Lei Liu
- College of Veterinary Medicine, Hunan Collaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Collaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China.
| | - Xiao-Ming He
- College of Veterinary Medicine, Hunan Collaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China
| |
Collapse
|
13
|
Functional characterization of candidate antigens of Hyalomma anatolicum and evaluation of its cross-protective efficacy against Rhipicephalus microplus. Vaccine 2017; 35:5682-5692. [PMID: 28911904 DOI: 10.1016/j.vaccine.2017.08.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 01/12/2023]
Abstract
Hyalomma anatolicum and Rhipicephalus microplus seriously affect dairy animals and immunization of host is considered as a sustainable option for the management of the tick species. Identification and validation of protective molecules are the major challenges in developing a cross-protective vaccine. The subolesin (SUB), calreticulin (CRT) and cathepsin L-like cysteine proteinase (CathL) genes of H. anatolicum were cloned, sequenced and analysed for sequence homology. Both Ha-SUB and Ha-CRT genes showed very high level of homogeneity within the species (97.6-99.4% and 98.2-99.7%) and among the tick species (77.3-99.3% and 85.1-99.7%) while for Ha-CathL the homogeneity was lower among ticks (57.5-89.5%). Besides tick species, both Ha-SUB and Ha- CRT genes showed high level of homogeneity with dipterans (47.2-53.4% and 72.0-74.4%) and nematodes (64.0% by CRT). The level of expression of the conserved genes in different stages of the tick species was studied. The differences in fold change of expression (FCE) of the targeted genes in life stages of tick were not statistically significant except Ha-SUB in eggs and in frustrated females, Ha-CRT in fed male and Ha-CathL in unfed and frustrated females where highest FCE was recorded. The functional properties of the genes were studied by RNAi technology and a significant level of gene suppression (p<0.05) resulted in very low percentage of engorgement of treated ticks viz., 3.7%, 11.1% and 30.0% in Ha-SUB, Ha-CRT and Ha-CathL respectively, in comparison to control was recorded. The recombinant proteins rHa-SUB, rHa-CRT and rHa-CathL encoded by the genes were expressed in prokaryotic expression system. They were evaluated for cross-protective efficacy and found to be respectively, 65.4%, 41.3% and 30.2% protective against H. anatolicum and 54.0%, 37.6% and 22.2%, against R. microplus infestations.
Collapse
|
14
|
Liu L, Cheng TY, Yang Y. Cloning and expression pattern of a heat shock cognate protein 70 gene in ticks (Haemaphysalis flava). Parasitol Res 2017; 116:1695-1703. [PMID: 28462495 DOI: 10.1007/s00436-017-5444-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Ticks and tick-borne-diseases have serious public health implications, and screening feasible protein candidates for vaccines development is identified to be an effective alternative to control of tick infestations. In current study, we focused on cloning the full-length gene encoding a heat shock cognate protein 70 (Hsc70), a molecular chaperone of critical functional roles belonging to heat shock protein 70 (HSP70) family, in salivary glands of Haemaphysalis flava, namely Hf-Hsc70, and analyzing the expression of Hf-Hsc70 in different life phases, organs and ambient temperatures. Rapid amplification of cDNA ends (RACE) was performed to amplify the 5' and 3' ends of Hf-Hsc70. The expression profiles of Hf-Hsc70 were studied by semi-quantitative real-time PCR (RT-PCR). The full-length of Hf-Hsc70 was 2363 bp, and contained an ORF of 1965 bp encoding a protein of 648 amino acids. The expression levels of Hf-Hsc70 at different life phases were in the order of female larvae < female fully engorged nymphs < male adult ticks < female full engorged adult ticks < female half engorged adult ticks. The relative expression of Hf-Hsc70 in salivary glands was steadily higher than that in midguts (p < 0.05) regardless of feeding status. A 3-h of heat stress did not significantly induce the up-regulation of Hf-Hsc70 transcription. These results indicated that Hf-Hsc70 was a constitutive form of HSP70 family, and its expression pattern in different life phases and organs suggested a possible role in blood feeding, which would further make Hsc70 a potential candidate for the development of vaccines against ticks.
Collapse
Affiliation(s)
- Lei Liu
- College of Veterinary Medicine, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, China
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, China.
| | - Ya Yang
- College of Veterinary Medicine, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
15
|
Vora A, Taank V, Dutta SM, Anderson JF, Fish D, Sonenshine DE, Catravas JD, Sultana H, Neelakanta G. Ticks elicit variable fibrinogenolytic activities upon feeding on hosts with different immune backgrounds. Sci Rep 2017; 7:44593. [PMID: 28300174 PMCID: PMC5353578 DOI: 10.1038/srep44593] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
Ticks secrete several anti-hemostatic factors in their saliva to suppress the host innate and acquired immune defenses against infestations. Using Ixodes scapularis ticks and age-matched mice purchased from two independent commercial vendors with two different immune backgrounds as a model, we show that ticks fed on immunodeficient animals demonstrate decreased fibrinogenolytic activity in comparison to ticks fed on immunocompetent animals. Reduced levels of D-dimer (fibrin degradation product) were evident in ticks fed on immunodeficient animals in comparison to ticks fed on immunocompetent animals. Increased engorgement weights were noted for ticks fed on immunodeficient animals in comparison to ticks fed on immunocompetent animals. Furthermore, the LC-MS/MS and quantitative real-time-PCR analysis followed by inhibitor and antibody-blocking assays revealed that the arthropod HSP70-like molecule contributes to differential fibrinogenolysis during tick feeding. Collectively, these results not only indicate that ticks elicit variable fibrinogenolysis upon feeding on hosts with different immune backgrounds but also provide insights for the novel role of arthropod HSP70-like molecule in fibrinogenolysis during blood feeding.
Collapse
Affiliation(s)
- Ashish Vora
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Vikas Taank
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Sucharita M Dutta
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - John F Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Durland Fish
- School of Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel E Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.,School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
16
|
Tian Z, Du J, Gao S, Yang J, Luo J, Xing S, Du X, Liu G, Luo J, Yin H. Primary characterization of a putative novel TBC1 domain family member 13 from Haemaphysalis qinghaiensis. Vet Parasitol 2016; 223:14-9. [PMID: 27198770 DOI: 10.1016/j.vetpar.2016.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/29/2016] [Accepted: 04/02/2016] [Indexed: 11/27/2022]
Abstract
A putative novel TBC1 domain family member 13 (HqTBC1D13) from Haemaphysalis qinghaiensis was cloned using rapid amplification of the cDNA ends (RACE), the HqTBC1D13 cDNA is 1702bp in length and encodes 396 amino acid residues with predicted molecular weight of 46.09kDa. The TBC-domain containing protein has a catalytic 'arginine finger' analogous to those of Ras and Rho family GAPs, which is critical determinants of GAP activity. The amino acid sequences of TBC domain were evolutionarily highly conserved across species. The partial coding sequence of HqTBC1D13 with the predicted molecular weight of 37.2kDa was expressed and purified in the PGEX-4T-1 vector. Real-time RT PCR analysis showed that the HqTBC1D13 was extensively expressed in the tested organs (salivary glands, midguts, ovaries and cuticles), and its transcriptional levels in salivary glands were significantly up-regulate induced by blood-feeding. The recombinant HqTBC1D13 protein vaccination in the rabbit model resulted in the extension of the duration of feeding and the reduction of 37% female engorgement and 14.8% oviposition compared to the control group. These results indicated that the HqTBC1D13 in ticks could be invovled in the regulation of feeding and oviposition.
Collapse
Affiliation(s)
- Zhancheng Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| | - Junzheng Du
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Shandian Gao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Jin Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Shanshan Xing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Xiaoyue Du
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
17
|
Xu XL, Cheng TY, Yang H, Yan F, Yang Y. De novo sequencing, assembly and analysis of salivary gland transcriptome of Haemaphysalis flava and identification of sialoprotein genes. INFECTION GENETICS AND EVOLUTION 2015; 32:135-42. [PMID: 25784566 DOI: 10.1016/j.meegid.2015.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 11/17/2022]
Abstract
Saliva plays an important role in feeding and pathogen transmission, identification and analysis of tick salivary gland (SG) proteins is considered as a hot spot in anti-tick researching area. Herein, we present the first description of SG transcriptome of Haemaphysalis flava using next-generation sequencing (NGS). A total of over 143 million high-quality reads were assembled into 54,357 unigenes, of which 20,145 (37.06%) had significant similarities to proteins in the Swiss-Prot database. 13,513 annotated sequences were associated with GO terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 14,280 unigenes were assigned to 279 KEGG pathways in total. Reads per kb per million reads (RPKM) analysis showed that there were 3035 down-regulated unigenes and 2260 up-regulated unigenes in the engorged ticks (ET) compared with the semi-engorged one (SET). Several important genes are associated with blood feeding and ingestion as secreted salivary proteins, concluding cysteine, longipain, 4D8, calreticulin, metalloproteases, serine protease inhibitor, enolase, heat shock protein and AV422 in SG, were identified. The qRT-PCR results confirmed that patterns of these genes (except for the longipain gene) expression were consistent with RNA-seq results. This de novo assembly of SG transcriptome of H. flava not only provides more chance for screening and cloning functional genes, but also forms a solid basis for further insight into the changes of salivary proteins during blood-feeding.
Collapse
Affiliation(s)
- Xing-Li Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; College of Life Sciences and Resource Environment, Jiangxi Yichun University, Jiangxi, Yichun 336000, PR China
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China.
| | - Hu Yang
- College of Life Sciences and Resource Environment, Jiangxi Yichun University, Jiangxi, Yichun 336000, PR China
| | - Fen Yan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Ya Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
18
|
Hu Y, Zhang J, Yang S, Wang H, Zeng H, Zhang T, Liu J. Screening and molecular cloning of a protective antigen from the midgut of Haemaphysalis longicornis. THE KOREAN JOURNAL OF PARASITOLOGY 2013; 51:327-34. [PMID: 23864744 PMCID: PMC3712107 DOI: 10.3347/kjp.2013.51.3.327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 11/23/2022]
Abstract
Vaccination is considered a promising alternative for controlling tick infestations. Haemaphysalis longicornis midgut proteins separated by SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membrane were screened for protective value against bites. The western blot demonstrated the immunogenicity of 92 kDa protein (P92). The analysis of the P92 amino acid sequence by LC-MS/MS indicated that it was a H. longicornis paramyosin (Hl-Pmy). The full lenghth cDNA of Hl-Pmy was obtained by rapid amplification of cDNA ends (RACE) which consisted of 2,783 bp with a 161 bp 3' untranslated region. Sequence alignment of tick paramyosin (Pmy) showed that Hl-Pmy shared a high level of conservation among ticks. Comparison with the protective epitope sequence of other invertebrate Pmy, it was calculated that the protective epitope of Hl-Pmy was a peptide (LEEAEGSSETVVEMNKKRDTE) named LEE, which was close to the N-terminal of Hl-Pmy protein. The secondary structure analysis suggested that LEE had non-helical segments within an α-helical structure. These results provide the basis for developing a vaccine against biting H. longicornis ticks.
Collapse
Affiliation(s)
- Yonghong Hu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Ibelli AMG, Hermance MM, Kim TK, Gonzalez CL, Mulenga A. Bioinformatics and expression analyses of the Ixodes scapularis tick cystatin family. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 60:41-53. [PMID: 23053911 PMCID: PMC4058331 DOI: 10.1007/s10493-012-9613-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/13/2012] [Indexed: 06/01/2023]
Abstract
The cystatins are inhibitors of papain- and legumain-like cysteine proteinases, classified in MEROPS subfamilies I25A-I25C. This study shows that 84 % (42/50) of tick cystatins are putatively extracellular in subfamily I25B and the rest are putatively intracellular in subfamily I25A. On the neighbor joining phylogeny guide tree, subfamily I25A members cluster together, while subfamily I25B cystatins segregate among prostriata or metastriata ticks. Two Ixodes scapularis cystatins, AAY66864 and ISCW011771 that show 50-71 % amino acid identity to metastriata tick cystatins may be linked to pathways that are common to all ticks, while ISCW000447 100 % conserved in I. ricinus is important among prostriata ticks. Likewise metastriata tick cystatins, Dermacentor variabilis-ACF35512, Rhipicephalus microplus-ACX53850, A. americanum-AEO36092, R. sanguineus-ACX53922, D. variabilis-ACF35514, R. sanguineus-ACX54033 and A. maculatum-AEO35155 that show 73-86 % amino acid identity may be essential to metastriata tick physiology. RT-PCR expression analyses revealed that I. scapularis cystatins were constitutively expressed in the salivary glands, midguts and other tissues of unfed ticks and ticks that were fed for 24-120 h, except for ISCW017861 that are restricted to the 24 h feeding time point. On the basis of mRNA expression patterns, I. scapularis cystatins, ISCW017861, ISCW011771, ISCW002215 and ISCW0024528 that are highly expressed at 24 h are likely involved in regulating early stage tick feeding events such as tick attachment onto host skin and creation of the feeding lesion. Similarly, ISCW018602, ISCW018603 and ISCW000447 that show 2-3 fold transcript increase by 120 h of feeding are likely associated with blood meal up take, while those that maintain steady state expression levels (ISCW018600, ISCW018601 and ISCW018604) during feeding may not be associated with tick feeding regulation. We discuss our findings in the context of advancing our knowledge of tick molecular biology.
Collapse
Affiliation(s)
- Adriana Mércia Guaratini Ibelli
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA; Graduate Program in Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Meghan M. Hermance
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Tae Kwon Kim
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Cassandra Lee Gonzalez
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Albert Mulenga
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| |
Collapse
|
20
|
Vu Hai V, Almeras L, Audebert S, Pophillat M, Boulanger N, Parola P, Raoult D, Pages F. Identification of salivary antigenic markers discriminating host exposition between two European ticks: Rhipicephalus sanguineus and Dermacentor reticulatus. Comp Immunol Microbiol Infect Dis 2012; 36:39-53. [PMID: 23040662 DOI: 10.1016/j.cimid.2012.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/06/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
Abstract
To succeed blood meal, ticks inject salivary proteins to mammalian hosts, eliciting an antibody response against these foreign antigens. Although this immune response has been proposed as a surrogate marker of exposure to tick bites, identification of the corresponding antigens remains elusive. For this aim, a comparison by immunoblots of the kinetic IgG responses to protein salivary gland extracts from two European tick species, Rhipicephalus sanguineus or Dermacentor reticulatus, in rabbits was performed. A singularity in the immune patterns was observed according to rabbit exposure status and depending on the antigen source. Six and five bands were found specifically associated to R. sanguineus and to D. reticulatus exposures, respectively. The identity of these salivary antigenic proteins was determined using an original immunoproteomic approach. The utilization of these tick salivary proteins as biomarker candidates to discriminate R. sanguineus and/or D. reticulatus tick exposure or to develop anti-tick vaccines is discussed.
Collapse
Affiliation(s)
- Vinh Vu Hai
- Unité des Rickettsies, WHO Collaborative Center for Rickettsial and Other Arthropod-Borne Bacterial Diseases, Unité de Recherche des Maladies Infectieuses et Tropicales Emergente, UMR CNRS IRD, IFR, Institut Hospitalier Universitaire Marseille, Faculté de Médecine, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|