1
|
Ibrahium SM, Abdel-Baki AAS, Gadelhaq SM, Aboelhadid SM, Mahran HA, Al-Quraishy S, Reyad A, Kamel AA. Toxicity of Common Acaricides, Disinfectants, and Natural Compounds against Eggs of Rhipicephalus annulatus. Pathogens 2024; 13:824. [PMID: 39452696 PMCID: PMC11510607 DOI: 10.3390/pathogens13100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Ticks pose a significant threat due to their ability to lay thousands of eggs, which can persist in the environment for extended periods. While the impact of various compounds on adult and larval ticks has been studied, research on their efficacy against tick eggs is limited. This study evaluated the ovicidal activity of commercial acaricides, disinfectants, and natural products against Rhipicephalus annulatus eggs using the egg hatch assay (EHA). Deltamethrin and cypermethrin caused a non-significant inhibition of hatching (IH%), even at concentrations higher than the recommended levels. By contrast, the acaricides chlorpyrifos, phoxim, and amitraz significantly inhibited hatching at all tested concentrations. Ivermectin also demonstrated significant IH% at various concentrations but did not fully inhibit the hatching process. Among the disinfectants tested, Virkon-S®, TH4, and Chlorox showed insignificant effects, whereas formalin achieved an IH% of only 34.1% at a high concentration of 200 mg/mL. Natural products, carvacrol and thymol, exhibited significant ovicidal activity, with a significant IH%. In a semi-field application, phoxim (0.5 mg/mL) and deltamethrin (0.05 mg/mL) were sprayed on tick eggs on pasture soil from a farm. The results indicated that phoxim-treated eggs had a 40% IH%, while deltamethrin-treated eggs showed only an 8.79% IH%. In conclusion, the acaricides amitraz, phoxim, and chlorpyrifos, as well as the natural products carvacrol and thymol, caused significant toxicity to R. annulatus eggs.
Collapse
Affiliation(s)
- Samar M. Ibrahium
- Parasitology Department, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Fayoum 16101, Egypt;
| | - Abdel-Azeem S. Abdel-Baki
- Department of Parasitology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Sahar M. Gadelhaq
- Parasitology Department, Faculty of Veterinary Medicine, Minia University, Minia 61519, Egypt;
| | - Shawky M. Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Hesham A. Mahran
- Hygeine Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 52611, Egypt;
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh P.O. Box 2455, Saudi Arabia;
| | - Abdulrahman Reyad
- Hydrobiology Department, Debrecen University, 4002 Debrecen, Hungary;
| | - Asmaa A. Kamel
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| |
Collapse
|
2
|
Jiang N, Xie T, Li C, Ma R, Gao A, Liu M, Wang S, Zhou Q, Wei X, Li J, Hu W, Feng X. Molecular assessment of voltage-gated sodium channel (VGSC) gene mutations in Rhipicephalus microplus from Guangxi, China. Parasit Vectors 2024; 17:307. [PMID: 39014392 PMCID: PMC11253372 DOI: 10.1186/s13071-024-06383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/29/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Pyrethroid chemicals are one of the main acaricides used against ticks. Resistance to these chemicals has been reported to be associated with mutations in the voltage-gated sodium channel (VGSC) gene of the Rhipicephalus microplus. This study investigates R. microplus resistance to pyrethroids in Guangxi region of China, marking one of the first research efforts in this area. The findings are intended to provide vital baseline for the effective implementation of localized tick control strategies. METHODS From March to July 2021, 447 R. microplus tick samples were collected from five prefecture-level cities in Guangxi. Allele-specific polymerase chain reaction (AS-PCR) was used to amplify segments C190A and G215T of the domain II S4-5 linker and T2134A of domain III S6 in the VGSC, to detect nucleotide mutations associated with resistance to pyrethroid acaricides. Subsequent analyses were conducted to ascertain the prevalence, types of mutations, and genotypic distributions within the sampled populations. RESULTS Mutations within VGSC gene were identified across all five studied populations of R. microplus, although the mutation rates remained generally low. Specifically, the most prevalent mutation was C190A, observed in 4.9% of the samples (22/447), followed by G215T at 4.0% (18/447), and T2134A at 1.3% (6/447). The distribution of mutations across three critical sites of the VGSC gene revealed four distinct mutation types: C190A, G215T, C190A + G215T, and T2134A. Notably, the single mutation C190A had the highest mutation frequency, accounting for 4.3%, and the C190A + G215T combination had the lowest, at only 0.7%. The analysis further identified seven genotypic combinations, with the wild-type combination C/C + G/G + T/T predominating at a frequency of 90.4%. Subsequently, the C/A + G/G + T/T combination was observed at a frequency of 4.3%, whereas the C/C + T/T + T/T combination exhibited the lowest frequency (0.2%). Additionally, no instances of simultaneous mutations at all three sites were detected. Geographical differences in mutation types were apparent. Both samples from Hechi to Chongzuo cities exhibited the same three mutation types; however, C190A was the most prevalent in Hechi, while G215T dominated in Chongzuo. In contrast, samples from Beihai to Guilin each exhibited only one mutation type: G215T occurred in 12.5% (4/32) of Beihai samples, and C190A in 7.5% (4/53) of Guilin samples. CONCLUSIONS These findings underscore the relatively low frequency of VGSC gene mutations in R. microplus associated with pyrethroid resistance in the Guangxi, China. Moreover, the variation in mutation types and genotypic distributions across different locales highlights the need for regionalized strategies in monitoring and managing pyrethroid resistance in tick populations. This molecular surveillance is crucial for informing targeted control measures and mitigating the risk of widespread resistance emergence.
Collapse
Affiliation(s)
- Na Jiang
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ting Xie
- Hechi Animal Disease Prevention and Control Center, Hechi, Guangxi, China
| | - Chunfu Li
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Rui Ma
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ai Gao
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Mengyun Liu
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shurong Wang
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Qingan Zhou
- Guangxi Center for Animal Disease Control and Prevention, Nanning, Guangxi, China
| | - Xiankai Wei
- Guangxi Center for Animal Disease Control and Prevention, Nanning, Guangxi, China
| | - Jian Li
- College of Life Sciences, Inner Mongolia University, Hohhot, China.
- Basic Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| | - Wei Hu
- College of Life Sciences, Inner Mongolia University, Hohhot, China.
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Xinyu Feng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 20025, China.
| |
Collapse
|
3
|
Ruiz-Arias MA, Medina-Díaz IM, Bernal-Hernández YY, Barrón-Vivanco BS, González-Arias CA, Romero-Bañuelos CA, Verdín-Betancourt FA, Herrera-Moreno JF, Ponce-Vélez G, Gaspar-Ramírez O, Bastidas-Bastidas PDJ, González FB, Rojas-García AE. The situation of chlorpyrifos in Mexico: a case study in environmental samples and aquatic organisms. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6323-6351. [PMID: 37301778 DOI: 10.1007/s10653-023-01618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Chlorpyrifos (CPF) is one of the most commonly used organophosphate pesticides. Because CPF was described as a toxic compound without safe levels of exposure for children, certain countries in Latin America and the European Union have banned or restricted its use; however, in Mexico it is used very frequently. The aim of this study was to describe the current situation of CPF in Mexico, as well as its use, commercialization, and presence in soil, water, and aquatic organisms in an agricultural region of Mexico. Structured questionnaires were applied to pesticide retailers to determine the sales pattern of CPF (ethyl and methyl); in addition, monthly censuses were conducted with empty pesticide containers to assess the CPF pattern of use. Furthermore, samples of soil (48 samples), water (51 samples), and fish (31 samples) were collected, which were analyzed chromatographically. Descriptive statistics were performed. The results indicate that CPF was one of the most sold (3.82%) and employed OP (14.74%) during 2021. Only one soil sample was found above the CPF limit of quantification (LOQ); in contrast, all water samples had CPF levels above the LOQ (x̄ = 4614.2 ng/L of CPF). In the case of fish samples, 6.45% demonstrated the presence of methyl-CPF. In conclusion, the information obtained in this study indicates the need for constant monitoring in the area, since the presence of CPF in soil, water, and fish constitutes a threat to the health of wildlife and humans. Therefore, CPF should be banned in Mexico to avoid a serious neurocognitive health problem.
Collapse
Affiliation(s)
- Miguel Alfonso Ruiz-Arias
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
- Programa de Doctorado en Ciencias Biológico Agropecuarias. Área de Ciencias Ambientales, Universidad Autónoma de Nayarit, Unidad Académica de Agricultura. Km. 9 Carretera Tepic-Compostela, C.P. 63780, Xalisco, Nayarit, México
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Carlos Alberto Romero-Bañuelos
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Francisco Alberto Verdín-Betancourt
- Unidad Especializada de Ciencias Ambientales, CENITT, Av. Emilio M. González S/N, Ciudad del Conocimiento, Tepic, Nayarit, C.P. 63173, México
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Guadalupe Ponce-Vélez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, C.P. 04510, Cd. de México, México
| | - Octavio Gaspar-Ramírez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad Noreste (CIATEJ), Apodaca, N.L, C.P. 66629, Mexico
| | - Pedro de Jesús Bastidas-Bastidas
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (Residuos de Plaguicidas), Centro de Investigación en Alimentación Y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km. 5.5, Unidad Culiacán, C.P. 80110, Mexico
| | - Fernando Bejarano González
- Red de Acción Sobre Plaguicidas y Alternativas en México, A. C. (RAPAM), Amado Nervo 23, Int. 3, Col. San Juanito, C.P. 56121, Texcoco, Estado de México, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México.
| |
Collapse
|
4
|
Identification of the G184C, C190A and T2134A mutations in the para-sodium channel gene of the southern cattle tick Rhipicephalus (Boophilus) microplus associated with resistance to cypermethrin in northern Veracruz, Mexico. Vet Parasitol Reg Stud Reports 2023; 39:100838. [PMID: 36878623 DOI: 10.1016/j.vprsr.2023.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The southern cattle tick (Rhipicephalus microplus) represents one of the ectoparasites with the greatest distribution worldwide. Infestations by this arthropod can cause a decrease in the production of meat and milk, as well as anaemia and the transmission of bacterial and parasitic agents. For this reason, several active molecules have been developed to control these arthropods. A widely used group of ixodicides are pyrethroids, especially cypermethrin, which have knockdown effects on ticks. Resistance to cypermethrin has been reported in ticks since the 2000s; it was registered for the first time in Mexico in 2009. Even though multiple studies have evaluated resistance with conventional tests, there are few studies in Mexico that have identified the presence of single nucleotide polymorphisms (SNPs) associated with resistance. Hence, the aim of this work was to monitor three mutations associated with resistance in the sodium/chlorine channel in eight populations of ticks from northern Veracruz. Engorged adult females were collected from which genomic DNA was extracted. Subsequently, three mutations in domains II and III of para‑sodium channel gene were detected by conventional PCR and sequencing. Global alignments were done with the reference sequences deposited in GenBank. A total of 116 engorged females were analysed, of which 10 tested positive for G184C and C190A of domain II of the para‑sodium channel gene. T2134A was present in domain III in a single production unit. This is the first work where molecular monitoring of cypermethrin resistance has been carried out in the northern zone of the state of Veracruz.
Collapse
|
5
|
Showler AT, Harlien JL. Desiccant Dusts, With and Without Bioactive Botanicals, Lethal to Rhipicephalus (Boophilus) microplus Canestrini (Ixodida: Ixodidae) in the Laboratory and on Cattle. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:346-355. [PMID: 36734019 DOI: 10.1093/jme/tjad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Indexed: 06/18/2023]
Abstract
The exotic southern cattle fever tick, Rhipicephalus (Boophilus) microplus (Canestrini) (Ixodida: Ixodidae), since its eradication from the United States in 1943, made a strong incursion into Texas, beginning 2016. The pest is arguably the most economically detrimental ectoparasite of cattle, Bos taurus L., worldwide. Current R. (B.) microplus control mostly relies on conventional synthetic acaricides to which the ixodid has been developing resistance. Our study demonstrates that commercially available desiccant dust products, with and without bioactive botanical additives, are strongly lethal, when applied dry, against larval R. (B.) microplus in the laboratory, and after being released on dust-treated cattle. Deadzone (renamed Celite 610, a diatomaceous earth product), Drione (silica gel + pyrethrins + piperonyl butoxide synergist), and EcoVia (silica gel + thyme oil), each prophylactically prevented larval R. (B.) microplus from attaching to and feeding on stanchioned calves. Desiccant dust-based products are less likely than conventional synthetic acaricides to decline in terms of efficacy as a result of ixodid resistance, and other desiccant dust advantages, including extended residual, flexibility in terms of application methods, environmental, animal, and human safety, and possible compatibility with organic, or 'green', production systems, are discussed. We anticipate that the desiccant dusts we evaluated, and others not included in this study (e.g., kaolin, perlite, and silica gel) will be effective when used with other control tactics in integrated pest management approaches for controlling R. (B.) microplus (and other ixodid species).
Collapse
Affiliation(s)
- Allan T Showler
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX 78028, USA
| | - Jessica L Harlien
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX 78028, USA
| |
Collapse
|
6
|
Obaid MK, Islam N, Alouffi A, Khan AZ, da Silva Vaz I, Tanaka T, Ali A. Acaricides Resistance in Ticks: Selection, Diagnosis, Mechanisms, and Mitigation. Front Cell Infect Microbiol 2022; 12:941831. [PMID: 35873149 PMCID: PMC9299439 DOI: 10.3389/fcimb.2022.941831] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Ticks are blood-feeding ecto-parasites that have a cosmopolitan distribution in tropical and subtropical regions of the world. Ticks cause economic losses in the form of reduced blood, meat and dairy products, as well as pathogen transmission. Different acaricides such as organochlorines, organophosphates, formamidines (e.g. amitraz), synthetic pyrethroids, macrocyclic lactones, fipronil, and fluazuron are currently used sequentially or simultaneously to control tick infestations. Most acaricide treatments now face increasingly high chances of failure, due to the resistance selection in different tick populations against these drugs. Acaricide resistance in ticks can be developed in different ways, including amino acid substitutions that result in morphological changes in the acaricide target, metabolic detoxification, and reduced acaricide entry through the outer layer of the tick body. The current literature brings a plethora of information regarding the use of different acaricides for tick control, resistance selection, analysis of mutations in target sites, and resistance mitigation. Alternatives such as synergistic use of different acaricides, plant-derived phytochemicals, fungi as biological control agents, and anti-tick vaccines have been recommended to avoid and mitigate acaricide resistance. The purpose of this review was to summarize and discuss different acaricides applied for tick control, their mechanisms of action and resistance selection, genetic polymorphisms in their target molecules, as well as the approaches used for diagnosis and mitigation of acaricide resistance, specifically in Rhipicephalus microplus ticks.
Collapse
Affiliation(s)
| | - Nabila Islam
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Alam Zeb Khan
- Department of Pediatrics, Yale School of Medicine Yale University, New Haven, CT, United States
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
7
|
Acaricidal activity of Mexican plants against Rhipicephalus microplus resistant to amitraz and cypermethrin. Vet Parasitol 2022; 307-308:109733. [DOI: 10.1016/j.vetpar.2022.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
|
8
|
González-Tokman D, Bauerfeind SS, Schäfer MA, Walters RJ, Berger D, Blanckenhorn WU. Heritable responses to combined effects of heat stress and ivermectin in the yellow dung fly. CHEMOSPHERE 2022; 286:131030. [PMID: 34144808 DOI: 10.1016/j.chemosphere.2021.131030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
In current times of global change, several sources of stress such as contaminants and high temperatures may act synergistically. The extent to which organisms persist in stressful conditions will depend on the fitness consequences of multiple simultaneously acting stressors and the genetic basis of compensatory genetic responses. Ivermectin is an antiparasitic drug used in livestock that is excreted in dung of treated cattle, causing severe negative consequences on non-target fauna. We evaluated the effect of a combination of heat stress and exposure to ivermectin in the yellow dung fly, Scathophaga stercoraria (Diptera: Scathophagidae). In a first experiment we investigated the effects of high rearing temperature on susceptibility to ivermectin, and in a second experiment we assayed flies from a latitudinal gradient to assess potential effects of local thermal adaptation on ivermectin sensitivity. The combination of heat and ivermectin synergistically reduced offspring survival, revealing severe effects of the two stressors when combined. However, latitudinal populations did not systematically vary in how ivermectin affected offspring survival, body size, development time, cold and heat tolerance. We also found very low narrow-sense heritability of ivermectin sensitivity, suggesting evolutionary constraints for responses to the combination of these stressors beyond immediate maternal or plastic effects. If the revealed patterns hold also for other invertebrates, the combination of increasing climate warming and ivermectin stress may thus have severe consequences for biodiversity. More generally, our study underlines the need for quantitative genetic analyses in understanding wildlife responses to interacting stressors that act synergistically and threat biodiversity.
Collapse
Affiliation(s)
- Daniel González-Tokman
- CONACYT. Red de Ecoetología, Instituto de Ecología A. C. Carretera Antigua a Coatepec 351. El Haya, Xalapa, Veracruz, 91073, Mexico.
| | - Stephanie S Bauerfeind
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Martin A Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Richard J Walters
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Department of Ecology and Genetics, Uppsala University, Sweden, Norbyvägen 18D, S-752 36, Uppsala, Sweden.
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
9
|
Rodriguez-Vivas RI, España ER, Blanco IL, Ojeda-Chi MM, Trinidad-Martinez I, Islas JAT, Bhushan C. Monitoring the resistance of Rhipicephalus microplus to amitraz, flumethrin, coumaphos, and ivermectin on cattle farms in Mexico. Vet Parasitol Reg Stud Reports 2021; 26:100644. [PMID: 34879955 DOI: 10.1016/j.vprsr.2021.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Abstract
The prevalence, resistance ratios and factor associated with Rhipicephalu microplus populations resistant to amitraz, flumethrin, coumaphos, and ivermectina (IVM) in Mexico were studied. Field tick populations were collected from 54 farms in 15 different states of Mexico. The dose-response bioassays were carried out using the larval immersion test (amitraz and IVM) and the modified larval packet test (flumethrin and coumaphos) against R. microplus. Mortality data were subjected to probit analysis to calculate lethal concentrations at 50%. A logistic regression model was used to evaluate the relation between resistance and possible associated factors. The phenotype was defined as high resistant (HR), low resistant (LR) or susceptible (S). The overall prevalence of cattle farms with R. microplus resistant to coumaphos, amitraz, flumethrin and IVM were 25.9, 46.2, 31.5 and 68.5%, respectively. For coumaphos, 74.1, 22.2, and 3.7% were classified as S, LR, and HR, respectively, whereas, for amitraz, 53.7, 24.1, and 22.2% of phenotypes were S, LR, and HR, respectively, for flumethrin 68.5, 14.8, and 16.7% were S, LR and HR respectively, and for IVM, 31.5, 46.3, and 22.2% were S, LR, and HR, respectively. We identified that cattle farms without acaricide rotation program (OR: 7.66, CL95%: 1.70-34.47, P: 0.008) had a higher probability of developing R. microplus resistant to amitraz. We concluded that amitraz and IVM resistance in R. microplus is frequent, but mainly at a low level in cattle farms of Mexico. Cattle farms without acaricide rotation program had higher probability of developing R. microplus resistant to amitraz.
Collapse
Affiliation(s)
- Roger I Rodriguez-Vivas
- Facultad de Medicina Veterinaria y Zootecnia, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, km. 15.5 Carretera Mérida-Xmatkuil, Código 97000, Mérida, Mexico.
| | - Eduardo Ramirez España
- Elanco Salud Animal SA de CV, Boulevard Puerta de Hierro 5153, piso 18, Col. Puerta de Hierro CP, 45116 Zapopan, Jalisco, Mexico
| | - Ivan Lozano Blanco
- Elanco Salud Animal SA de CV, Boulevard Puerta de Hierro 5153, piso 18, Col. Puerta de Hierro CP, 45116 Zapopan, Jalisco, Mexico
| | - Melina M Ojeda-Chi
- Facultad de Medicina Veterinaria y Zootecnia, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, km. 15.5 Carretera Mérida-Xmatkuil, Código 97000, Mérida, Mexico
| | - Iris Trinidad-Martinez
- Facultad de Medicina Veterinaria y Zootecnia, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, km. 15.5 Carretera Mérida-Xmatkuil, Código 97000, Mérida, Mexico
| | - Juan Agustin Torres Islas
- Elanco Salud Animal SA de CV, Boulevard Puerta de Hierro 5153, piso 18, Col. Puerta de Hierro CP, 45116 Zapopan, Jalisco, Mexico
| | - Chandra Bhushan
- Elanco Animal Health, Alfred-Nobel Str. 50, 40789 Monheim, Germany
| |
Collapse
|
10
|
Current status of resistance to ivermectin in Rhipicephalus sanguineus sensu stricto infesting dogs in three provinces in Argentina. Vet Parasitol Reg Stud Reports 2021; 26:100624. [PMID: 34879936 DOI: 10.1016/j.vprsr.2021.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022]
Abstract
Intensive use of macrocyclic lactones for parasite control exerts strong selective pressure for arthropods such as ticks to become resistant to them. Rhipicephalus sanguineus sensu stricto is a tick and disease vector of significant public health and veterinary importance worldwide. We assessed the toxicological response to the macrocyclic lactone ivermectin (IVM) in R. sanguineus s.s. infesting dogs in Argentina. Samples of nine tick populations were obtained by inspecting dogs at veterinary clinics, hospitals, or rural areas in the provinces of San Luis, Rio Negro, and Buenos Aires. Pet owners were interviewed to gather data on the history of dog treatment with ectoparasiticides. The larval immersion test was used to assess the toxicological response of R. sanguineus s.s. to IVM. Dose-response mortality regressions, lethal concentrations (LC), and slope were calculated by probit analysis. The lowest LC concentrations were used to designate the reference susceptible population because a laboratory reference strain of R. sanguineus s.s. does not exist in Argentina. Compared with the most susceptible tick population in this study, six populations (66.66%) were classified as resistant to IVM. A clear interpopulation variation in the level of IVM resistance was present (resistance ratios at LC50% ranged from 1.0 to 18.33 and at LC99% ranged from 1.0 to 8.96). In San Luis Province, all tick populations were classified as resistant. The highest level of IVM resistance (resistance ratio at LC50%:18.83 and LC99%:8.96) was found in a population of R. sanguineus s.s. from a rural area in the province of Buenos Aires. It is concluded that populations of R. sanguineus s.s. from dogs in three provinces of Argentina were resistant to IVM. Clear interpopulation variation in the level of IVM resistance was present.
Collapse
|
11
|
An Update on Cephenemyiosis in the European Roe Deer: Emergent Myiasis in Spain. Animals (Basel) 2021; 11:ani11123382. [PMID: 34944159 PMCID: PMC8697868 DOI: 10.3390/ani11123382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Cephenemyia stimulator is a Palearctic species developing in the nasal cavity and pharynx of roe deer (Capreolus capreolus). It is widely spread in the range of distribution of this ungulate in Europe. Since the first report of C. stimulator in Spain in 2001, a rapid geographic expansion has been observed, first in the north of the country, with high prevalence and intensities of infestation that caused some mortal cases, and, lately, also in Extremadura and Andalucía, the southernmost populations of European roe deer. These observations suggest an adaptation of this parasite to different ecosystems of the Iberian Peninsula. Almost simultaneously, C. stimulator is also expanding its range to northern Europe, with the first cases being reported in Sweden. Thus, Cephenemyia stimulator may be an example of a parasite currently displaying distributional changes along its southernmost and northernmost range margins. Thus, it is of the utmost importance to unravel all the epidemiological and clinical aspects of this myiasis, as well as implementing surveillance measures including reliable and non-invasive diagnostic techniques to monitor its expansion and adaptation to different ecosystems and/or hosts and to reduce the negative impact on roe deer populations.
Collapse
|
12
|
Vaccine approaches applied to controlling dog ticks. Ticks Tick Borne Dis 2021; 12:101631. [PMID: 33494026 DOI: 10.1016/j.ttbdis.2020.101631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022]
Abstract
Ticks are considered the most important vectors in veterinary medicine with a profound impact on animal health worldwide, as well as being key vectors of diseases affecting household pets. The leading strategy applied to dog tick control is the continued use of acaricides. However, this approach is not sustainable due to surging tick resistance, growing public concern over pesticide residues in food and in the environment, and the rising costs associated with their development. In contrast, tick vaccines are a cost-effective and environmentally friendly alternative against tick-borne diseases by controlling vector infestations and reducing pathogen transmission. These premises have encouraged researchers to develop an effective vaccine against ticks, with several proteins having been characterized and used in native, synthetic, and recombinant forms as antigens in immunizations. The growing interaction between domestic pets and people underscores the importance of developing new tick control measures that require effective screening platforms applied to vaccine development. However, as reviewed in this paper, very little progress has been made in controlling ectoparasite infestations in pets using the vaccine approach. The control of tick infestations and pathogen transmission could be obtained through immunization programs aimed at reducing the tick population and interfering in the pathogenic transmission that affects human and animal health on a global scale.
Collapse
|
13
|
Esteve-Gasent MD, Rodríguez-Vivas RI, Medina RF, Ellis D, Schwartz A, Cortés Garcia B, Hunt C, Tietjen M, Bonilla D, Thomas D, Logan LL, Hasel H, Alvarez Martínez JA, Hernández-Escareño JJ, Mosqueda Gualito J, Alonso Díaz MA, Rosario-Cruz R, Soberanes Céspedes N, Merino Charrez O, Howard T, Chávez Niño VM, Pérez de León AA. Research on Integrated Management for Cattle Fever Ticks and Bovine Babesiosis in the United States and Mexico: Current Status and Opportunities for Binational Coordination. Pathogens 2020; 9:pathogens9110871. [PMID: 33114005 PMCID: PMC7690670 DOI: 10.3390/pathogens9110871] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/23/2022] Open
Abstract
Bovine babesiosis is a reportable transboundary animal disease caused by Babesia bovis and Babesiabigemina in the Americas where these apicomplexan protozoa are transmitted by the invasive cattle fever ticks Rhipicephalus (Boophilus) microplus and Rhipicephalus(Boophilus) annulatus. In countries like Mexico where cattle fever ticks remain endemic, bovine babesiosis is detrimental to cattle health and results in a significant economic cost to the livestock industry. These cattle disease vectors continue to threaten the U.S. cattle industry despite their elimination through efforts of the Cattle Fever Tick Eradication Program. Mexico and the U.S. share a common interest in managing cattle fever ticks through their economically important binational cattle trade. Here, we report the outcomes of a meeting where stakeholders from Mexico and the U.S. representing the livestock and pharmaceutical industry, regulatory agencies, and research institutions gathered to discuss research and knowledge gaps requiring attention to advance progressive management strategies for bovine babesiosis and cattle fever ticks. Research recommendations and other actionable activities reflect commitment among meeting participants to seize opportunities for collaborative efforts. Addressing these research gaps is expected to yield scientific knowledge benefitting the interdependent livestock industries of Mexico and the U.S. through its translation into enhanced biosecurity against the economic and animal health impacts of bovine babesiosis and cattle fever ticks.
Collapse
Affiliation(s)
- Maria D. Esteve-Gasent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Roger I. Rodríguez-Vivas
- Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, km. 15.5 Carretera Mérida-Xmatkuil, Mérida, Yucatán 97000, Mexico
- Correspondence:
| | - Raúl F. Medina
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Dee Ellis
- Institute for Infectious Animal Diseases, Texas A&M AgriLife Research, College Station, TX 77843, USA; (D.E.); (C.H.)
| | - Andy Schwartz
- Texas Animal Health Commission, Austin, TX 78758, USA;
| | - Baltazar Cortés Garcia
- Departamento de Rabia Paralítica y Garrapata, Dirección de Campañas Zoosanitarias, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Avenida Insurgentes Sur N° 489 Piso 9, Colonia Hipódromo, Alcaldía Cuauhtémoc, Ciudad de Mexico 06100, Mexico;
| | - Carrie Hunt
- Institute for Infectious Animal Diseases, Texas A&M AgriLife Research, College Station, TX 77843, USA; (D.E.); (C.H.)
| | - Mackenzie Tietjen
- United States Department of Agriculture, Agricultural Research Service (USDA–ARS), Knipling–Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX 78028, USA; (M.T.); (A.A.P.d.L.)
| | - Denise Bonilla
- Veterinary Services, Animal and Plant Health Inspection Service International Services, United States Department of Agriculture (USDA-APHIS), Fort Collins, CO 80526, USA;
| | - Don Thomas
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Cattel Fever Tick Research Laboratory, Moore Air Base, Edinburg, TX 78541, USA;
| | - Linda L. Logan
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Hallie Hasel
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, (USDA-APHIS-VS), Austin, TX 78701, USA;
| | - Jesús A. Alvarez Martínez
- CENID-SAI, Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla No. 8534, Col. Progreso. Jiutepec, Morelos 62390, Mexico;
| | - Jesús J. Hernández-Escareño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, General Francisco Villa S/N, Hacienda del Canada, Ciudad General Escobedo, Nuevo León 66054, Mexico;
| | - Juan Mosqueda Gualito
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Carretera a Chichimequillas, Ejido Bolaños, Queretaro Queretaro 76140, Mexico;
| | - Miguel A. Alonso Díaz
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de la Torre, Martínez de la Torre, Veracruz 93600, Mexico;
| | - Rodrigo Rosario-Cruz
- BioSA Research Lab., Natural Sciences College, Campus el ‘Shalako’ Las Petaquillas, Autonomous Guerrero State University, Chilpancingo, Guerrero 62105, Mexico;
| | - Noé Soberanes Céspedes
- Lapisa S.A. de C.V. Carretera La Piedad-Guadalajara Km 5.5, Col. Camelinas, La Piedad, Michoacán 59375, Mexico;
| | - Octavio Merino Charrez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5 Carretera Victoria-Mante, Ciudad Victoria, Tamaulipas 87000, Mexico;
| | - Tami Howard
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, (USDA-APHIS-VS), Field Operations, Southern Border Ports, Albuquerque, NM 87109, USA;
| | - Victoria M. Chávez Niño
- United States Department of Agriculture, Animal and Plant Health Inspection Service, International Services, (USDA-APHIS-IS), Mexico, Sierra Nevada 115, Col. Lomas de Chapultepec, Mexico City 11000, Mexico;
| | - Adalberto A. Pérez de León
- United States Department of Agriculture, Agricultural Research Service (USDA–ARS), Knipling–Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX 78028, USA; (M.T.); (A.A.P.d.L.)
| |
Collapse
|
14
|
Klafke GM, Moreno HC, Tidwell JP, Miller RJ, Thomas DB, Feria-Arroyo TP, Pérez de León AA. Partial characterization of the voltage-gated sodium channel gene and molecular detection of permethrin resistance in Rhipicephalus annulatus (Say, 1821). Ticks Tick Borne Dis 2019; 11:101368. [PMID: 31917128 DOI: 10.1016/j.ttbdis.2019.101368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022]
Abstract
The cattle tick, Rhipicephalus annulatus (Say) is a vector of bovine babesiosis and responsible for direct and indirect losses to cattle producing areas located in temperate and subtropical dry regions. Resistance against pyrethroids has been reported for this species in Asia and Africa, but never before in North America. An outbreak strain, Rio Lado, collected close to the border between Mexico and the United States, in Maverick County, Texas, showed low level of resistance to permethrin, a pyrethroid pesticide. We used genomic material from different strains of cattle ticks collected within the Permanent Quarantine Zone (Rio Lado, Vega and Klein Grass strains) to partially characterize the coding gene of the voltage-gated sodium channel (Na-channel), target-site of pyrethroid pesticides, and search for putative mutations associated with resistance using quantitative PCR high resolution melt (HRM) analysis. The two amplified fragments, corresponding to domains II and III of the Na-channel, were 100 % identical to its ortholog in Rhipicephalus microplus (Canestrini). No nucleotide polymorphisms in the Na-channel gene were observed in the pyrethroid-resistant Rio Lado strain, when compared to the susceptible strains Klein Grass and Vega. This study reports the first case of pyrethroid resistance in R. annulatus collected in the United States. Also, we provide new genomic data for this species of tick that allows for the development of a new method to screen for mutations associated with pyrethroid resistance.
Collapse
Affiliation(s)
- Guilherme M Klafke
- United States Department of Agriculture, Agricultural Research Service, Cattle Fever Tick Research Laboratory, 22675 North Moorefield Rd. MAB 6419, Edinburg, TX, 78541, USA; Centro de Pesquisa em Saúde Animal - IPVDF, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Estrada do Conde, 6000. Eldorado do Sul, RS, 92990-000, Brazil.
| | - Hannah C Moreno
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W. University Dr. Science Building 4.635, Edinburg, TX, 78539, USA
| | - Jason P Tidwell
- United States Department of Agriculture, Agricultural Research Service, Cattle Fever Tick Research Laboratory, 22675 North Moorefield Rd. MAB 6419, Edinburg, TX, 78541, USA
| | - Robert J Miller
- United States Department of Agriculture, Agricultural Research Service, Cattle Fever Tick Research Laboratory, 22675 North Moorefield Rd. MAB 6419, Edinburg, TX, 78541, USA
| | - Donald B Thomas
- United States Department of Agriculture, Agricultural Research Service, Cattle Fever Tick Research Laboratory, 22675 North Moorefield Rd. MAB 6419, Edinburg, TX, 78541, USA
| | - Teresa P Feria-Arroyo
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W. University Dr. Science Building 4.635, Edinburg, TX, 78539, USA
| | - Adalberto A Pérez de León
- United States Department of Agriculture, Agricultural Research Service, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, 2700 Fredericksburg Road, Kerrville, TX, 78028, USA.
| |
Collapse
|
15
|
Suraj RA, Rambarran R, Ali K, Harbajan D, Charles R, Sant C, Georges K, Suepaul S. A comparison of the efficacy of two commercial acaricides (fipronil and amitraz) with Azadirachta indica (neem) on the brown dog tick (Rhipicephalus sanguineus) from canines in Trinidad. Transbound Emerg Dis 2019; 67 Suppl 2:142-148. [PMID: 31746117 DOI: 10.1111/tbed.13388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 01/26/2023]
Abstract
The brown dog tick (Rhipicephalus sanguineus) is prevalent on canids in Trinidad. It is directly (by causing anaemia) and indirectly (by acting as a vector of tick-borne pathogens) responsible for morbidity and mortalities in the canine population. The most commonly used commercial acaricides available to pet owners in Trinidad are amitraz and fipronil. Often, these acaricides may be abused and misused in a desperate attempt to rid pets of ticks. The objective of this study was to compare the efficacy of amitraz and fipronil with the herbal alternative, neem (Azadirachta indica). Triplicate in vitro trials utilizing the Larval Packet Test (LPT) were conducted using three concentrations (low, recommended and high) of fipronil (0.025%, 0.05% and 0.1%), amitraz (0.01%, 0.02% and 1%), neem oil (10%, 20% and 40%) and neem leaf extract (0.25%, 0.5% and 2%) for each trial. Statistical analysis using the mixed-effect Poisson regression analysis indicated that there was a significant difference (p < .05) in the survival of ticks pre-treatment versus post-treatment with amitraz, fipronil and all controls when compared to the neem oil. Fipronil and amitraz caused ≥99% mortality for all concentrations used in this study. Mortalities for neem oil and neem leaf extract ranged from 72.7% to 82% and 38% to 95.3%, respectively, with the greatest percentage of mortalities occurring at the lower concentrations. Neem oil and neem leaf extract can be used as alternative acaricides, and however, they are less efficacious against the brown dog tick than amitraz and fipronil.
Collapse
Affiliation(s)
- Rachel-Ann Suraj
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Rhea Rambarran
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Krista Ali
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Danyelle Harbajan
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Roxanne Charles
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Candice Sant
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Karla Georges
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sharianne Suepaul
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
16
|
Batiha GE, El-Far AH, El-Mleeh AA, Alsenosy AA, Abdelsamei EK, Abdel-Daim MM, El-Sayed YS, Shaheen HM. In vitro study of ivermectin efficiency against the cattle tick, Rhipicephalus ( Boophilus) annulatus, among cattle herds in El-Beheira, Egypt. Vet World 2019; 12:1319-1326. [PMID: 31641314 PMCID: PMC6755390 DOI: 10.14202/vetworld.2019.1319-1326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND AIM Ivermectin (IVM) has been used in veterinary practice to control different parasitic infestations over the past two decades. This study aimed to re-assess the acaricidal effects of IVM, as well as to evaluate its efficacy against Rhipicephalus (Boophilus) annulatus by determining the mortality rate, γ-aminobutyric acid (GABA) level, and oxidative/antioxidative homeostasis (malondialdehyde [MDA] levels and glutathione S-transferase [GST] activities). MATERIALS AND METHODS Adult female Rhipicephalus (Boophilus) annulatus were picked from cattle farms in El-Beheira Governorate, Egypt. Ticks were equally allocated to seven experimental groups to assess the acaricidal potential of IVM chemotherapeutics in controlling R. (B.) annulatus. IVM was prepared at three concentrations (11.43, 17.14, and 34.28 µM of IVM). RESULTS Mortality rate was calculated among the treated ticks. In addition, GABA, GST, and MDA biomarker levels were monitored. The data revealed a noticeable change in GST activity, a detoxification enzyme found in R. (B.) annulatus, through a critical elevation in mortality percentage. CONCLUSION IVM-induced potent acaricidal effects against R. (B.) annulatus by repressing GST activity for the initial 24 h after treatment. Collectively, this paper reports the efficacy of IVM in a field population of R. (B.) annulatus in Egypt.
Collapse
Affiliation(s)
- Gaber E. Batiha
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Egypt
| | - Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Egypt
| | - Amany A. El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Egypt
| | | | - Eman K. Abdelsamei
- Department of Parasitology, Faculty of Veterinary Medicine, Menoufia University, Egypt
| | - Mohamed M. Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Yasser S. El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Egypt
| | - Hazem M. Shaheen
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Egypt
| |
Collapse
|
17
|
Martínez-Arzate SG, Sánchez-Bermúdez JC, Sotelo-Gómez S, Diaz-Albiter HM, Hegazy-Hassan W, Tenorio-Borroto E, Barbabosa-Pliego A, Vázquez-Chagoyán JC. Genetic diversity of Bm86 sequences in Rhipicephalus (Boophilus) microplus ticks from Mexico: analysis of haplotype distribution patterns. BMC Genet 2019; 20:56. [PMID: 31299900 PMCID: PMC6626424 DOI: 10.1186/s12863-019-0754-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/20/2019] [Indexed: 11/25/2022] Open
Abstract
Background Ticks are a problem for cattle production mainly in tropical and subtropical regions, because they generate great economic losses. Acaricides and vaccines have been used to try to keep tick populations under control. This has been proven difficult given the resistance to acaricides and vaccines observed in ticks. Resistance to protein rBm86-based vaccines has been associated with the genetic diversity of Bm86 among the ectoparasite’s populations. So far, neither genetic diversity, nor spatial distribution of circulating Bm86 haplotypes, have been studied within the Mexican territory. Here, we explored the genetic diversity of 125 Bm86 cDNA gene sequences from R. microplus from 10 endemic areas of Mexico by analyzing haplotype distribution patterns to help in understanding the population genetic structure of Mexican ticks. Results Our results showed an average nucleotide identity among the Mexican isolates of 98.3%, ranging from 91.1 to 100%. Divergence between the Mexican and Yeerongpilly (the Bm86 reference vaccine antigen) sequences ranged from 3.1 to 7.4%. Based on the geographic distribution of Bm86 haplotypes in Mexico, our results suggest gene flow occurrence within different regions of the Mexican territory, and even the USA. Conclusions The polymorphism of Bm86 found in the populations included in this study, could account for the poor efficacy of the current Bm86 antigen based commercial vaccine in many regions of Mexico. Our data may contribute towards designing new, highly-specific, Bm86 antigen vaccine candidates against R. microplus circulating in Mexico.
Collapse
Affiliation(s)
- S G Martínez-Arzate
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Kilometro 15.5 Carretera Panamericana, CP 50200, Toluca-Atlacomulco, Mexico
| | - J C Sánchez-Bermúdez
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Kilometro 15.5 Carretera Panamericana, CP 50200, Toluca-Atlacomulco, Mexico
| | - S Sotelo-Gómez
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Kilometro 15.5 Carretera Panamericana, CP 50200, Toluca-Atlacomulco, Mexico
| | - H M Diaz-Albiter
- Wellcome Centre for Molecular Parasitology, University of Glasgow, University Place, Glasgow, G12 8TA, UK.,Colegio de la Frontera del Sur, Carretera Villahermosa-Reforma Km 15.5, Ranchería Guineo, sección II, CP 86280, Villahermosa, Tabasco, Mexico
| | - W Hegazy-Hassan
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Kilometro 15.5 Carretera Panamericana, CP 50200, Toluca-Atlacomulco, Mexico
| | - E Tenorio-Borroto
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Kilometro 15.5 Carretera Panamericana, CP 50200, Toluca-Atlacomulco, Mexico
| | - A Barbabosa-Pliego
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Kilometro 15.5 Carretera Panamericana, CP 50200, Toluca-Atlacomulco, Mexico
| | - J C Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Kilometro 15.5 Carretera Panamericana, CP 50200, Toluca-Atlacomulco, Mexico.
| |
Collapse
|
18
|
Ramos IADS, Herrera HM, Mendes NS, Fernandes SDJ, Campos JBV, Alves JVA, Macedo GCD, Machado RZ, André MR. Phylogeography of msp4 genotypes of Anaplasma marginale in beef cattle from the Brazilian Pantanal. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2019; 28:451-457. [DOI: 10.1590/s1984-29612019049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/16/2019] [Indexed: 01/18/2023]
Abstract
Abstract The msp4 gene of A. marginale is unicodon, stable and mostly homogeneous, being considered as a useful marker for phylogeographic characterization of this bacterium. The objective of this work was to analyze the phylogeography of A. marginale based on the msp4 gene in beef cattle from the Brazilian Pantanal, compared to those found in other regions worldwide. The blood samples investigated were collected from 400 animals (200 cows and 200 calves) reared in five extensive breeding farms in this region. The results indicated that of the evaluated samples, 56.75% (227/400) were positive for A. marginale based on the msp1β gene by quantitatitve PCR (qPCR), while 8.37% (19/227) were positive for the msp4 gene in the conventional PCR. In the Network distance analysis, 14 sequences from the Brazilian Pantanal were grouped into a single group with those from Thailand, India, Spain, Colombia, Parana (Brazil), Mexico, Portugal, Argentina, China, Venezuela, Australia, Italy and Minas Gerais (Brazil). Among 68 sequences from Brazil and the world, 15 genotypes were present while genotype number one (#1) was the most distributed worldwide. Both Splitstree and network analyses showed that the A. marginale msp4 sequences detected in beef cattle from the Brazilian Pantanal showed low polymorphism, with the formation of one genogroup phylogenetically related to those found in ruminants from South and Central America, Europe, and Asia.
Collapse
|
19
|
Lima ADS, Landulfo GA, Costa-Junior LM. Repellent Effects of Encapsulated Carvacrol on the Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:881-885. [PMID: 30805609 DOI: 10.1093/jme/tjy240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Indexed: 06/09/2023]
Abstract
Rhipicephalus (Boophilus) microplus (Canestrini) is a problem for livestock production systems, and its control has become challenging due to the selection of tick populations resistant to synthetic chemical acaricides. The use of repellent compounds prevents contact between the arthropod parasite and the host and can, thus, contribute to increases in the efficacy of these acaricides. Carvacrol monoterpenic phenol is a possible alternative method for controlling R. (B.) microplus; however, this compound is highly volatile, and its volatilization can be decreased through microencapsulation, which results in the timed release of the compound. The cell wall of Saccharomyces cerevisiae can be utilized for the protection of volatile molecules. The aim of this study was to evaluate the in vitro repellent effect of yeast cell wall-encapsulated carvacrol on susceptible R. (B.) microplus larvae. Specifically, the vertical filter paper bioassay was employed to analyze the repellent activity of encapsulated carvacrol, nonencapsulated carvacrol, and N,N-diethyl-meta-toluamide at concentrations ranging from 0.75 to 0.001 mg/cm2, and the repellent activities were evaluated. Both carvacrol and encapsulated carvacrol exhibited repellent effects on R. (B.) microplus larvae, and the encapsulated compound showed the highest repellent activities at the lowest concentrations. Carvacrol encapsulated exhibited a low repellent concentration in all times (≤0.05 mg/cm2), whereas the carvacrol nonencapsulated ranged CR50 from 0.13 to 0.27 mg/cm2 at 1- to 6-h posttreatment. The present paper provides the first description of the use of a microencapsulation technique for achieving the highest repellent effect of carvacrol and indicates that this technique might be used to obtain new delivery systems for volatile and hydrophobic compounds.
Collapse
Affiliation(s)
| | | | - Livio M Costa-Junior
- Departamento de Patologia, Universidade Federal do Maranhão - UFMA, Maranhão, Brazil
| |
Collapse
|
20
|
Klafke GM, Miller RJ, Tidwell JP, Thomas DB, Sanchez D, Feria Arroyo TP, Pérez de León AA. High-resolution melt (HRM) analysis for detection of SNPs associated with pyrethroid resistance in the southern cattle fever tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 9:100-111. [PMID: 30889438 PMCID: PMC6423475 DOI: 10.1016/j.ijpddr.2019.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 01/30/2023]
Abstract
The southern cattle fever tick, Rhipicephalus (Boophilus) microplus, is the most economically important ectoparasite of cattle worldwide. A limitation for sustainable control and eradication is the emergence of acaricide resistance among tick populations. Molecular diagnostic tools offer the opportunity to detect resistance rapidly, which can be complemented with confirmatory bioassays with larvae and adult ticks that are more resource and time consuming to generate. Synthetic pyrethroid resistance is one of the most prevalent and well-studied forms of resistance in arthropods, being linked with target site alterations in the sodium ion channel gene. Here, we report research on a novel molecular method to detect mutations in the para-sodium channel gene of R. microplus associated with acaricide resistance that is based on quantitative PCR high-resolution melt (HRM) analysis. Genomic DNA fragments of domains II and III of the para-sodium channel gene were amplified by real-time PCR in the presence of EVA®Green dye to test resistant and susceptible reference ticks from the U.S., Brazil, and Mexico. Larval packet tests with discriminating doses and a modified lethal time analysis were performed to confirm resistance to permethrin, cypermethrin, deltamethrin, and flumethrin in laboratory strains. Tick specimens collected from cattle that were inspected at the United States Port-of-Entry at the Texas-Mexico border were also genotyped. Previously described mutations associated with pyrethroid resistance (T170C, C190A, G184C, and T2134A) were successfully detected by qPCR-HRM in different genotypes and confirmed by sequencing. A novel non-synonymous SNP located at domain III (C2136A) and the G215T mutation in domain II, previously described only in Asian R. microplus and R. australis, were also detected with the HRM and confirmed by sequencing. This technique could be adapted for high-throughput screening, detection, and discovery of allele-specific mutations in cattle tick outbreak populations to inform eradication strategies in the USA. This knowledge could also be applied to integrated control programs in other parts of the world where R. microplus is endemic and where similar SNPs have been identified associated with pyrethroid resistance. This study highlights the existence of several mutations in the para-sodium channel gene in different combinations in field populations of R. microplus from Mexico. Molecular detection of acaricide resistance in Rhipicephalus (Boophilus) microplus is needed. Mutations associated with pyrethroid resistance can be detected with PCR. A quantitative PCR with high-resolution melt (qPCR-HRM) analysis was developed. The qPCR-HRM was successful in detecting pyrethroid resistance in R. microplus.
Collapse
Affiliation(s)
- Guilherme M Klafke
- Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Irrigação, Estrada do Conde 6000, Eldorado do Sul, RS, 92990-000, Brazil; United States Department of Agriculture, Agricultural Research Service, Cattle Fever Tick Research Laboratory, 22675 North Moorefield Rd, MAB 6419, Edinburg, TX, 78541, USA.
| | - Robert J Miller
- United States Department of Agriculture, Agricultural Research Service, Cattle Fever Tick Research Laboratory, 22675 North Moorefield Rd, MAB 6419, Edinburg, TX, 78541, USA
| | - Jason P Tidwell
- United States Department of Agriculture, Agricultural Research Service, Cattle Fever Tick Research Laboratory, 22675 North Moorefield Rd, MAB 6419, Edinburg, TX, 78541, USA
| | - Donald B Thomas
- United States Department of Agriculture, Agricultural Research Service, Cattle Fever Tick Research Laboratory, 22675 North Moorefield Rd, MAB 6419, Edinburg, TX, 78541, USA
| | - Daniela Sanchez
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W. University Dr. Science Building 4.635, Edinburg, TX, 78539, USA
| | - Teresa P Feria Arroyo
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W. University Dr. Science Building 4.635, Edinburg, TX, 78539, USA
| | - Adalberto A Pérez de León
- United States Department of Agriculture, Agricultural Research Service, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, 2700 Fredericksburg Road, Kerrville, TX, 78028, USA.
| |
Collapse
|
21
|
Brock CM, Temeyer KB, Tidwell J, Yang Y, Blandon MA, Carreón-Camacho D, Longnecker MT, Almazán C, Pérez de León AA, Pietrantonio PV. The leucokinin-like peptide receptor from the cattle fever tick, Rhipicephalus microplus, is localized in the midgut periphery and receptor silencing with validated double-stranded RNAs causes a reproductive fitness cost. Int J Parasitol 2019; 49:287-299. [PMID: 30673587 DOI: 10.1016/j.ijpara.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 12/25/2022]
Abstract
The cattle fever tick, Rhipicephalus microplus (Canestrini) (Acari: Ixodidae), is a one-host tick that infests primarily cattle in tropical and sub-tropical regions of the world. This species transmits deadly cattle pathogens, especially Babesia spp., for which a recombinant vaccine is not available. Therefore, disease control depends on tick vector control. Although R. microplus was eradicated in the USA, tick populations in Mexico and South America have acquired resistance to many of the applied acaricides. Recent acaricide-resistant tick reintroductions detected in the U.S. underscore the need for novel tick control methods. The octopamine and tyramine/octopamine receptors, both G protein-coupled receptors (GPCR), are believed to be the main molecular targets of the acaricide amitraz. This provides the proof of principle that investigating tick GPCRs, especially those that are invertebrate-specific, may be a feasible strategy for discovering novel targets and subsequently new anti-tick compounds. The R. microplus leucokinin-like peptide receptor (LKR), also known as the myokinin- or kinin receptor, is such a GPCR. While the receptor was previously characterized in vitro, the function of the leucokinin signaling system in ticks remains unknown. In this work, the LKR was immunolocalized to the periphery of the female midgut and silenced through RNA interference (RNAi) in females. To optimize RNAi experiments, a dual-luciferase system was developed to determine the silencing efficiency of LKR-double stranded RNA (dsRNA) constructs prior to testing those in ticks placed on cattle. This assay identified two effective dsRNAs. Silencing of the LKR with these two validated dsRNA constructs was verified by quantitative real time PCR (qRT-PCR) of female tick dissected tissues. Silencing was significant in midguts and carcasses. Silencing caused decreases in weights of egg masses and in the percentages of eggs hatched per egg mass, as well as delays in time to oviposition and egg hatching. A role of the kinin receptor in tick reproduction is apparent.
Collapse
Affiliation(s)
- Christina M Brock
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Kevin B Temeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture - Agricultural Research Service, 2700 Fredericksburg Road Kerrville, TX 78028-9184, USA
| | - Jason Tidwell
- Cattle Fever Tick Research Laboratory, United States Department of Agriculture - Agricultural Research Service, 22675 N. Moorefield Rd. Building 6419 Edinburg, TX 78541-5033, USA
| | - Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Maria A Blandon
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Diana Carreón-Camacho
- Universidad Autónoma de Tamaulipas, Facultad de Medicina Veterinaria y Zootecnia, CP87000 Victoria, Tamaulipas, Mexico
| | - Michael T Longnecker
- Department of Statistics, Texas A&M University, College Station, TX 77843-2475, USA
| | - Consuelo Almazán
- Universidad Autónoma de Tamaulipas, Facultad de Medicina Veterinaria y Zootecnia, CP87000 Victoria, Tamaulipas, Mexico
| | - Adalberto A Pérez de León
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture - Agricultural Research Service, 2700 Fredericksburg Road Kerrville, TX 78028-9184, USA
| | | |
Collapse
|
22
|
Fei C, She R, Li G, Zhang L, Fan W, Xia S, Xue F. Safety and clinical efficacy of tenvermectin, a novel antiparasitic 16-membered macrocyclic lactone antibiotics. Eur J Pharm Sci 2018; 117:154-160. [PMID: 29427703 DOI: 10.1016/j.ejps.2018.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/17/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022]
Abstract
Tenvermectin (TVM) is a novel 16-membered macrocyclic lactone antibiotics, which contains component TVM A and TVM B. However there is not any report on safety and clinical efficacy of TVM for developing as a potential drug. In order to understand the part of safety and clinical efficacy of TVM, we conducted the acute toxicity test, the standard bacterial reverse mutation (Ames) test and the clinical deworming test. In the acute toxicity studies, TVM, TVM A and ivermectin (IVM) were administrated once by oral gavage to mice and rats. Results showed that the oral LD50 values of TVM, TVM A and IVM in mice were 74.41, 106.95 and 53.06 mg/kg respectively. The oral LD50 values of TVM and TVM A in rats were determined to be 164.22 and 749.34 mg/kg respectively. TVM and IVM are moderately toxic substances, meanwhile the TVM A belongs to low toxic compounds, implying that the acute toxicity is highly related to the length of side chain of TVM at position C25. In the Ames test, results showed that TVM did not induce mutagenicity in Salmonella typhimurium TA97a, TA98, TA100, TA102 and TA1535 with and without metabolic activation system, speculating that the mutagenicity is probably not related to the side chain at position C25 of 16-membered macrocyclic lactone antibiotics. In the efficacy trail of TVM against swine nematodes, growing pigs natural infection of Ascaris suum and Trichuris suis were treated with a single subcutaneous injection 0.3 mg/kg b.w.. Results showed that TVM and IVM had excellent effect in expelling Ascaris suum, and TVM had potential efficacy against Trichuris suis, however IVM had no effect on Trichuris suis. This study suggests that the side chain of TVM at position C25 may have important biological functions, which is one of the key sites of the studies on structure-activity relationship of 16-membered macrocyclic lactone compounds. TVM is a new compound exhibited some advantages worthy of developing.
Collapse
Affiliation(s)
- Chenzhong Fei
- Key Laboratory for Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, PR China.
| | - Rufeng She
- Key Laboratory for Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, PR China
| | - Guiyu Li
- Zhejiang Hisun Pharmaceutical Co. Ltd., 318000 Taizhou, Zhejiang Province, PR China
| | - Lifang Zhang
- Key Laboratory for Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, PR China
| | - Wushun Fan
- Key Laboratory for Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, PR China
| | - Suhan Xia
- Key Laboratory for Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, PR China
| | - Feiqun Xue
- Key Laboratory for Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, PR China.
| |
Collapse
|
23
|
In-vitro efficacy of a botanical acaricide and its active ingredients against larvae of susceptible and acaricide-resistant strains of Rhipicephalus (Boophilus) microplus Canestrini (Acari: Ixodidae). Ticks Tick Borne Dis 2018; 9:201-206. [DOI: 10.1016/j.ttbdis.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023]
|
24
|
Rodriguez-Vivas RI, Jonsson NN, Bhushan C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol Res 2018; 117:3-29. [PMID: 29152691 PMCID: PMC5748392 DOI: 10.1007/s00436-017-5677-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
Infestations with the cattle tick, Rhipicephalus microplus, constitute the most important ectoparasite problem for cattle production in tropical and subtropical regions worldwide, resulting in major economic losses. The control of R. microplus is mostly based on the use of conventional acaricides and macrocyclic lactones. However, the intensive use of such compounds has resulted in tick populations that exhibit resistance to all major acaricide chemical classes. Consequently, there is a need for the development of alternative approaches, possibly including the use of animal husbandry practices, synergized pesticides, rotation of acaricides, pesticide mixture formulations, manual removal of ticks, selection for host resistance, nutritional management, release of sterile male hybrids, environmental management, plant species that are unfavourable to ticks, pasture management, plant extracts, essential oils and vaccination. Integrated tick management consists of the systematic combination of at least two control technologies aiming to reduce selection pressure in favour of acaricide-resistant individuals, while maintaining adequate levels of animal production. The purpose of this paper is to present a current review on conventional acaricide and macrocyclic lactone resistance for better understanding and control of resistant ticks with particular emphasis on R. microplus on cattle.
Collapse
Affiliation(s)
- Roger I Rodriguez-Vivas
- Facultad de Medicina Veterinaria y Zootecnia, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, km. 15.5 Carretera Mérida-Xmatkuil, 97000, Mérida, Yucatán, Mexico.
| | - Nicholas N Jonsson
- College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK
| | - Chandra Bhushan
- Bayer Animal Health GmbH, Kaiser-Wilhelm-Alee 10, 51368, Leverkusen, Germany
| |
Collapse
|
25
|
Mullens BA, Murillo AC, Zoller H, Heckeroth AR, Jirjis F, Flochlay-Sigognault A. Comparative in vitro evaluation of contact activity of fluralaner, spinosad, phoxim, propoxur, permethrin and deltamethrin against the northern fowl mite, Ornithonyssus sylviarum. Parasit Vectors 2017; 10:358. [PMID: 28768553 PMCID: PMC5541702 DOI: 10.1186/s13071-017-2289-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/13/2017] [Indexed: 11/18/2022] Open
Abstract
Background Northern fowl mites (Ornithonyssus sylviarum) are obligate hematophagous ectoparasites of both feral birds and poultry, particularly chicken layers and breeders. They complete their entire life-cycle on infested birds while feeding on blood. Infestations of O. sylviarum are difficult to control and resistance to some chemical classes of acaricides is a growing concern. The contact susceptibility of O. sylviarum to a new active ingredient, fluralaner, was evaluated, as well as other compounds representative of the main chemical classes commonly used to control poultry mite infestations in Europe and the USA. Methods Six acaricides (fluralaner, spinosad, phoxim, propoxur, permethrin, deltamethrin) were dissolved and serially diluted in butanol:olive oil (1:1) to obtain test solutions used for impregnation of filter paper packets. A carrier-only control was included. Thirty adult northern fowl mites, freshly collected from untreated host chickens, were inserted into each packet for continuous compound exposure. Mite mortality was assessed after incubation of the test packets for 48 h at 75% relative humidity and a temperature of 22 °C. Results Adult mite LC50 /LC99 values were 2.95/8.09 ppm for fluralaner, 1587/3123 ppm for spinosad, 420/750 ppm for phoxim and 86/181 ppm for propoxur. Permethrin and deltamethrin LC values could not be calculated due to lack of mortality observed even at 1000 ppm. Conclusions Northern fowl mites were highly sensitive to fluralaner after contact exposure. They were moderately sensitive to phoxim and propoxur, and less sensitive to spinosad. Furthermore, the tested mite population appeared to be resistant to the pyrethroids, permethrin and deltamethrin, despite not being exposed to acaricides for at least 10 years. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2289-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bradley A Mullens
- Department of Entomology, University of California, Riverside, CA, 92521, USA.
| | - Amy C Murillo
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Hartmut Zoller
- MSD Animal Health Innovation GmbH, Schwabenheim, Germany
| | | | | | | |
Collapse
|
26
|
Rodriguez-Vivas R, Ojeda-Chi M, Trinidad-Martinez I, Pérez de León A. First documentation of ivermectin resistance in Rhipicephalus sanguineus sensu lato (Acari: Ixodidae). Vet Parasitol 2017; 233:9-13. [DOI: 10.1016/j.vetpar.2016.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/30/2022]
|
27
|
Guillemi EC, de la Fourniere S, Orozco M, Peña Martinez J, Correa E, Fernandez J, Lopez Arias L, Paoletta M, Corona B, Pinarello V, Wilkowsky SE, Farber MD. Molecular identification of Anaplasma marginale in two autochthonous South American wild species revealed an identical new genotype and its phylogenetic relationship with those of bovines. Parasit Vectors 2016; 9:305. [PMID: 27229471 PMCID: PMC4882842 DOI: 10.1186/s13071-016-1555-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/28/2016] [Indexed: 11/20/2022] Open
Abstract
Background Anaplasma marginale is a well-known cattle pathogen of tropical and subtropical world regions. Even though, this obligate intracellular bacterium has been reported in other host species different than bovine, it has never been documented in Myrmecophaga tridactyla (giant anteater) or Hippocamelus antisense (taruca), which are two native endangered species. Methods Samples from two sick wild animals: a Myrmecophaga tridactyla (blood) and a Hippocamelus antisense (blood and serum) were studied for the presence of A. marginale DNA through msp5 gene fragment amplification. Further characterization was done through MSP1a tandem repeats analysis and MLST scheme and the genetic relationship among previously characterized A. marginale sequences were studied by applying, eBURST algorithm and AMOVA analysis. Results Anaplasma marginale DNA was identified in the Myrmecophaga tridactyla and Hippocamelus antisense samples. Through molecular markers, we identified an identical genotype in both animals that was not previously reported in bovine host. The analysis through eBURST and AMOVA revealed no differentiation between the taruca/anteater isolate and the bovine group. Conclusions In the present publication we report the identification of A. marginale DNA in a novel ruminant (Hippocamelus antisense) and non-ruminant (Myrmecophaga tridactyla) host species. Genotyping analysis of isolates demonstrated the close relatedness of the new isolate with the circulation population of A. marginale in livestock. Further analysis is needed to understand whether these two hosts contribute to the anaplasmosis epidemiology.
Collapse
Affiliation(s)
- Eliana C Guillemi
- Instituto de Biotecnologia, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, Buenos Aires, Argentina.
| | - Sofía de la Fourniere
- Instituto de Biotecnologia, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, Buenos Aires, Argentina
| | - Marcela Orozco
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires - Instituto de Ecología, Genética y Evolución, CONICET, Buenos Aires, Argentina
| | | | - Elena Correa
- Reserva Experimental Horco Molle, Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Javier Fernandez
- Reserva Experimental Horco Molle, Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Ludmila Lopez Arias
- Instituto de Biotecnologia, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, Buenos Aires, Argentina
| | - Martina Paoletta
- Instituto de Biotecnologia, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, Buenos Aires, Argentina
| | - Belkis Corona
- National Center for Animal and Plant Health, Apartado 10, postal address 32700, San José de las Lajas, Mayabeque, Cuba
| | - Valérie Pinarello
- CIRAD UMR 15/UMR CIRAD-INRA 1309 "contrôle des maladies animales exotiques et émergentes", Domaine Duclos, Prise d'eau, 97170, Petit Bourg, Guadeloupe
| | - Silvina E Wilkowsky
- Instituto de Biotecnologia, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, Buenos Aires, Argentina
| | - Marisa D Farber
- Instituto de Biotecnologia, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, Buenos Aires, Argentina
| |
Collapse
|
28
|
Esteve-Gassent MD, Castro-Arellano I, Feria-Arroyo TP, Patino R, Li AY, Medina RF, Pérez de León AA, Rodríguez-Vivas RI. TRANSLATING ECOLOGY, PHYSIOLOGY, BIOCHEMISTRY, AND POPULATION GENETICS RESEARCH TO MEET THE CHALLENGE OF TICK AND TICK-BORNE DISEASES IN NORTH AMERICA. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 92:38-64. [PMID: 27062414 PMCID: PMC4844827 DOI: 10.1002/arch.21327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The adoption of an evolutionary ecology framework aimed to diminish the impact of tick-borne diseases needs to be part of strategies to protect human and animal populations. We present a review of current knowledge on the adaptation of ticks to their environment, and the impact that global change could have on their geographic distribution in North America. Environmental pressures will affect tick population genetics by selecting genotypes able to withstand new and changing environments and by altering the connectivity and isolation of several tick populations. Research in these areas is particularly lacking in the southern United States and most of Mexico with knowledge gaps on the ecology of these diseases, including a void in the identity of reservoir hosts for several tick-borne pathogens. Additionally, the way in which anthropogenic changes to landscapes may influence tick-borne disease ecology remains to be fully understood. Enhanced knowledge in these areas is needed in order to implement effective and sustainable integrated tick management strategies. We propose to refocus ecology studies with emphasis on metacommunity-based approaches to enable a holistic perspective addressing whole pathogen and host assemblages. Network analyses could be used to develop mechanistic models involving multihost-pathogen communities. An increase in our understanding of the ecology of tick-borne diseases across their geographic distribution will aid in the design of effective area-wide tick control strategies aimed to diminish the burden of pathogens transmitted by ticks.
Collapse
Affiliation(s)
- Maria D. Esteve-Gassent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical sciences, Texas A&M University, College Station, TX-77843, USA
| | - Ivan Castro-Arellano
- Department of Biology, College of Science and Engineering, Texas State University, San Marcos, TX-78666, USA
| | - Teresa P. Feria-Arroyo
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX-78539, USA
| | - Ramiro Patino
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX-78539, USA
| | - Andrew Y. Li
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland 20705, USA
| | - Raul F. Medina
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX-77843, USA
| | - Adalberto A. Pérez de León
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, and Veterinary Pest Genomics Center, Kerrville, TX-78028, USA
| | - Roger Iván Rodríguez-Vivas
- Campus de Ciencias Biológicas y Agropecuarias. Facultad de Medicina Veterinaria y Zootecnia. Km 15.5 carretera Mérida-Xmatkuil. Yucatán, México
| |
Collapse
|
29
|
Ticks collected from humans, domestic animals, and wildlife in Yucatan, Mexico. Vet Parasitol 2016; 215:106-13. [DOI: 10.1016/j.vetpar.2015.11.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/10/2015] [Accepted: 11/19/2015] [Indexed: 11/20/2022]
|
30
|
Cruz BC, Lopes WDZ, Maciel WG, Felippelli G, Fávero FC, Teixeira WFP, Carvalho RS, Ruivo MA, Colli MHA, Sakamoto CAM, Costa AJD, De Oliveira GP. Susceptibility of Rhipicephalus (Boophilus) microplus to ivermectin (200, 500 and 630μg/kg) in field studies in Brazil. Vet Parasitol 2015; 207:309-17. [DOI: 10.1016/j.vetpar.2014.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
|
31
|
Thirty years of tick population genetics: A comprehensive review. INFECTION GENETICS AND EVOLUTION 2015; 29:164-79. [DOI: 10.1016/j.meegid.2014.11.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 11/22/2022]
|
32
|
Rodríguez-Vivas RI, Pérez-Cogollo LC, Rosado-Aguilar JA, Ojeda-Chi MM, Trinidad-Martinez I, Miller RJ, Li AY, de León AP, Guerrero F, Klafke G. Rhipicephalus(Boophilus) microplus resistant to acaricides and ivermectin in cattle farms of Mexico. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2014; 23:113-22. [DOI: 10.1590/s1984-29612014044] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/17/2014] [Indexed: 11/21/2022]
Abstract
Ticks and the diseases they transmit cause great economic losses to livestock in tropical countries. Non-chemical control alternatives include the use of resistant cattle breeds, biological control and vaccines. However, the most widely used method is the application of different chemical classes of acaricides and macrocyclic lactones. Populations of the cattle tick, Rhipicephalus (Boophilus) microplus, resistant to organophosphates (OP), synthetic pyrethroids (SP), amitraz and fipronil have been reported in Mexico. Macrocyclic lactones are the most sold antiparasitic drug in the Mexican veterinary market. Ivermectin-resistant populations of R. (B.) microplus have been reported in Brazil, Uruguay and especially in Mexico (Veracruz and Yucatan). Although ivermectin resistance levels in R. (B.) microplus from Mexico were generally low in most cases, some field populations of R. (B.) microplus exhibited high levels of ivermectin resistance. The CHPAT population showed a resistance ratio of 10.23 and 79.6 at lethal concentration of 50% and 99%, respectively. Many field populations of R. (B.) microplus are resistant to multiple classes of antiparasitic drugs, including organophosphates (chlorpyrifos, coumaphos and diazinon), pyrethroids (flumethrin, deltamethrin and cypermethrin), amitraz and ivermectin. This paper reports the current status of the resistance of R. (B.) microplus to acaricides, especially ivermectin, in Mexican cattle.
Collapse
|