1
|
Beasley A, Abbas G, Hughes K, El-Hage C, Jacobson C, Bauquier J, Wilkes E, Carrigan P, Cudmore L, Hurley J, Beveridge I, Nielsen M, Jabbar A. Australian guidelines for equine internal parasite management. Aust Vet J 2025. [PMID: 39837536 DOI: 10.1111/avj.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025]
Abstract
Over the past few decades, the emergence of resistance amongst intestinal parasites of horses to all available anthelmintic classes has emphasised the need for a paradigm shift in parasite control approaches within the Australian equine industry. Findings of a recent Australia-wide research project have provided new insights into intestinal parasites (i.e. strongyles and ascarids) and parasite control from the perspectives of Australian horse breeders and equine veterinarians. The published data have revealed recent trends in parasite prevalence and distribution, breeders' and veterinarians' attitudes and perspectives on controlling horse internal parasites, the efficacy of commonly used anthelmintic products and post-treatment egg reappearance periods. These studies have formed the basis of newly developed guidelines managing and treating gastrointestinal nematodes in horses. Tailored for equine veterinarians, these guidelines contain information on target parasites and risk factors for their transmission, as well as practical advice for surveillance, anthelmintic choice, timing of treatment, testing for anthelmintic resistance and managing refugia. The Australian Guidelines for Equine Internal Parasite Management (AGEIPM) will serve as a pocket companion for equine veterinarians, providing best-practice recommendations grounded in locally conducted scientific research. Dissemination and extension of the AGEIPM to industry will strengthen the client-practitioner relationship. The aim is to reduce reliance on blanket deworming in equine parasite management programs and help curb the progression of resistance to the limited anthelmintic classes available for treating horses.
Collapse
Affiliation(s)
- A Beasley
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland, Australia
| | - G Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
| | - K Hughes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - C El-Hage
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
| | - C Jacobson
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia, Australia
| | - J Bauquier
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
| | - E Wilkes
- Racing Victoria, Flemington, Victoria, Australia
| | - P Carrigan
- Scone Equine Hospital, Scone, New South Wales, Australia
| | - L Cudmore
- Scone Equine Hospital, Scone, New South Wales, Australia
| | - J Hurley
- Swettenham Stud, Nagambie, Victoria, Australia
| | - I Beveridge
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
| | - M Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - A Jabbar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, 3030, Australia
| |
Collapse
|
2
|
Kruth PS, Whale J, Léveillé AN, Brisbin J, Barta JR. Development of a molecular assay for the determination of Eimeria tenella oocyst viability. Parasitol Res 2024; 123:422. [PMID: 39730923 DOI: 10.1007/s00436-024-08429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024]
Abstract
Coccidiosis is caused by apicomplexan parasites of the genus Eimeria, which infect epithelial cells of the intestinal tract causing diarrhea and negatively impacting production in the poultry industry. The self-limiting and highly immunogenic nature of infection by Eimeria spp. make live vaccination an effective means of coccidiosis control. Paramount to vaccine efficacy is the ability to administer precise numbers of viable oocysts. Unfortunately, no rapid and accurate method for determination of oocyst viability is available presently. This study presents the development of a qPCR-based assay for assessment of Eimeria tenella Tyzzer, 1929 oocyst viability. Transcriptome sequencing supported identification of three viability assay target transcripts based on significant increase in abundance with heat-stimulation. Measurement of shifts in target abundances in response to heat stimulation in oocysts, that ranged from high viability to non-infectious, was achieved via qPCR. Omission of DNase treatment supported use of background DNA in RNA samples for normalization for parasite numbers and oocyst disruption efficiency, while spike in of exogenous RNA supported normalization for variations in RNA recovery and reverse transcription efficiency. The assay demonstrated strong correlation with oocyst viability as confirmed through live infection trials, showing the highest predictive value for a transcript encoding a putative partial translationally controlled tumor protein, XM_013379639.1. This assay provides results in hours and could reduce the reliance on time-consuming and expensive live-infection trials in oocyst viability testing and could improve the accessibility and efficacy of coccidiosis vaccines. Future iterations may facilitate multivalent vaccine quality control and environmental monitoring.
Collapse
Affiliation(s)
- P S Kruth
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - J Whale
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - A N Léveillé
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - J Brisbin
- Ceva Animal Health Inc, Guelph, ON, Canada
| | - J R Barta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
3
|
Steuer A, Fritzler J, Boggan S, Daniel I, Cowles B, Penn C, Goldstein R, Lin D. Validation of Vetscan Imagyst ®, a diagnostic test utilizing an artificial intelligence deep learning algorithm, for detecting strongyles and Parascaris spp. in equine fecal samples. Parasit Vectors 2024; 17:465. [PMID: 39533358 PMCID: PMC11558902 DOI: 10.1186/s13071-024-06525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Current methods for obtaining fecal egg counts in horses are often inaccurate and variable depending on the analyst's skill and experience. Automated digital scanning of fecal sample slides integrated with analysis by an artificial intelligence (AI) algorithm is a viable, emerging alternative that can mitigate operator variation compared to conventional methods in companion animal fecal parasite diagnostics. Vetscan Imagyst is a novel fecal parasite detection system that uploads the scanned image to the cloud where proprietary software analyzes captured images for diagnostic recognition by a deep learning, object detection AI algorithm. The study describes the use and validation of Vetscan Imagyst in equine parasitology. METHODS The primary objective of the study was to evaluate the performance of the Vetscan Imagyst system in terms of diagnostic sensitivity and specificity in testing equine fecal samples (n = 108) for ova from two parasites that commonly infect horses, strongyles and Parascaris spp., compared to reference assays performed by expert parasitologists using a Mini-FLOTAC technique. Two different fecal flotation solutions were used to prepare the sample slides, NaNO3 and Sheather's sugar solution. RESULTS Diagnostic sensitivity of the Vetscan Imagyst algorithm for strongyles versus the manual reference test was 99.2% for samples prepared with NaNO3 solution and 100.0% for samples prepared with Sheather's sugar solution. Sensitivity for Parascaris spp. was 88.9% and 99.9%, respectively, for samples prepared with NaNO3 and Sheather's sugar solutions. Diagnostic specificity for strongyles was 91.4% and 99.9%, respectively, for samples prepared with NaNO3 and Sheather's sugar solutions. Specificity for Parascaris spp. was 93.6% and 99.9%, respectively, for samples prepared with NaNO3 and Sheather's sugar solutions. Lin's concordance correlation coefficients for VETSCAN IMAGYST eggs per gram counts versus those determined by the expert parasitologist were 0.924-0.978 for strongyles and 0.944-0.955 for Parascaris spp., depending on the flotation solution. CONCLUSIONS Sensitivity and specificity results for detecting strongyles and Parascaris spp. in equine fecal samples showed that Vetscan Imagyst can consistently provide diagnostic accuracy equivalent to manual evaluations by skilled parasitologists. As an automated method driven by a deep learning AI algorithm, VETSCAN IMAGYST has the potential to avoid variations in analyst characteristics, thus providing more consistent results in a timely manner, in either clinical or laboratory settings.
Collapse
Affiliation(s)
- Ashley Steuer
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Drive, Amarillo, TX, 79106, USA
- Zoetis Inc, 10 Sylvan Way, Parsippany, NJ, 07054, USA
| | - Jason Fritzler
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Drive, Amarillo, TX, 79106, USA
| | - SaraBeth Boggan
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Drive, Amarillo, TX, 79106, USA
| | - Ian Daniel
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Drive, Amarillo, TX, 79106, USA
| | - Bobby Cowles
- Zoetis Inc, 10 Sylvan Way, Parsippany, NJ, 07054, USA.
| | - Cory Penn
- Zoetis Inc, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Richard Goldstein
- Zoetis Inc, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Dan Lin
- Analitix Giant Clinical Research Co., LTD, Commercial Center Bldg 1, 258 Lvdi Avenue, Huaqiao, Kunshan, Suzhou, 21532, China
| |
Collapse
|
4
|
Capuozzo S, Marrone S, Gravina M, Cringoli G, Rinaldi L, Maurelli MP, Bosco A, Orrù G, Marcialis GL, Ghiani L, Bini S, Saggese A, Vento M, Sansone C. Automating parasite egg detection: insights from the first AI-KFM challenge. Front Artif Intell 2024; 7:1325219. [PMID: 39268195 PMCID: PMC11390596 DOI: 10.3389/frai.2024.1325219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
In the field of veterinary medicine, the detection of parasite eggs in the fecal samples of livestock animals represents one of the most challenging tasks, since their spread and diffusion may lead to severe clinical disease. Nowadays, the scanning procedure is typically performed by physicians with professional microscopes and requires a significant amount of time, domain knowledge, and resources. The Kubic FLOTAC Microscope (KFM) is a compact, low-cost, portable digital microscope that can autonomously analyze fecal specimens for parasites and hosts in both field and laboratory settings. It has been shown to acquire images that are comparable to those obtained with traditional optical microscopes, and it can complete the scanning and imaging process in just a few minutes, freeing up the operator's time for other tasks. To promote research in this area, the first AI-KFM challenge was organized, which focused on the detection of gastrointestinal nematodes (GINs) in cattle using RGB images. The challenge aimed to provide a standardized experimental protocol with a large number of samples collected in a well-known environment and a set of scores for the approaches submitted by the competitors. This paper describes the process of generating and structuring the challenge dataset and the approaches submitted by the competitors, as well as the lessons learned throughout this journey.
Collapse
Affiliation(s)
- Salvatore Capuozzo
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Stefano Marrone
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Michela Gravina
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Maria Paola Maurelli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Antonio Bosco
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Giulia Orrù
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Gian Luca Marcialis
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Luca Ghiani
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Bini
- Department of Information Engineering, Electrical Engineering and Applied Mathematics, University of Salerno, Salerno, Italy
| | - Alessia Saggese
- Department of Information Engineering, Electrical Engineering and Applied Mathematics, University of Salerno, Salerno, Italy
| | - Mario Vento
- Department of Information Engineering, Electrical Engineering and Applied Mathematics, University of Salerno, Salerno, Italy
| | - Carlo Sansone
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Cain JL, Wilson D, Slusarewicz P. An automated faecal egg count system for detection of Ascaridia galli ova in chickens. J Helminthol 2024; 98:e49. [PMID: 39189369 DOI: 10.1017/s0022149x24000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Chicken production has increased over the past decade, resulting in a concomitant rise in the demand for more humane options for poultry products including cage-free, free-range, and organic meat and eggs. These husbandry changes, however, have come hand-in-hand with increased prevalence of Ascaridia galli infection, which can cause clinical disease in chickens as well as the occasional appearance of worms in eggs. Additionally, development of anthelmintic resistance in closely related helminths of turkeys highlights the need for closely monitored anthelmintic treatment programs. Manual faecal egg counts (FECs) can be time-consuming and require specialist training. As such, this study sought to validate an automated FEC system for use in detection and quantification of A. galli eggs in chicken faeces. Automated counts using the Parasight System (PS) were compared to traditional manual McMaster counting for both precision and correlation between methods. Overall, ten repeated counts were performed on twenty individual samples for a total of 200 counts performed for each method. A strong, statistically significant correlation was found between methods (R2 = 0.7879, P < 0.0001), and PS counted more eggs and performed with statistically significant higher precision (P = 0.0391) than manual McMaster counting. This study suggests that PS is a good alternative method for performing A. galli FECs and provides a new tool for use in helminth treatment and control programs in chicken operations.
Collapse
Affiliation(s)
- J L Cain
- Parasight System, Inc., Suite 2130, Lexington, Kentucky, USA
| | - D Wilson
- Wilson Veterinary Co., Needham, Indiana, USA
| | - P Slusarewicz
- Parasight System, Inc., Suite 2130, Lexington, Kentucky, USA
| |
Collapse
|
6
|
Castle TG, Britton L, Ripley B, Ubelhor E, Slusarewicz P. Evaluation of Parasight All-in-One system for the automated enumeration of helminth ova in canine and feline feces. Parasit Vectors 2024; 17:275. [PMID: 38937854 PMCID: PMC11210176 DOI: 10.1186/s13071-024-06351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Digital imaging combined with deep-learning-based computational image analysis is a growing area in medical diagnostics, including parasitology, where a number of automated analytical devices have been developed and are available for use in clinical practice. METHODS The performance of Parasight All-in-One (AIO), a second-generation device, was evaluated by comparing it to a well-accepted research method (mini-FLOTAC) and to another commercially available test (Imagyst). Fifty-nine canine and feline infected fecal specimens were quantitatively analyzed by all three methods. Since some samples were positive for more than one parasite, the dataset consisted of 48 specimens positive for Ancylostoma spp., 13 for Toxocara spp. and 23 for Trichuris spp. RESULTS The magnitude of Parasight AIO counts correlated well with those of mini-FLOTAC but not with those of Imagyst. Parasight AIO counted approximately 3.5-fold more ova of Ancylostoma spp. and Trichuris spp. and 4.6-fold more ova of Toxocara spp. than the mini-FLOTAC, and counted 27.9-, 17.1- and 10.2-fold more of these same ova than Imagyst, respectively. These differences translated into differences between the test sensitivities at low egg count levels (< 50 eggs/g), with Parasight AIO > mini-FLOTAC > Imagyst. At higher egg counts Parasight AIO and mini-FLOTAC performed with comparable precision (which was significantly higher that than Imagyst), whereas at lower counts (> 30 eggs/g) Parasight was more precise than both mini-FLOTAC and Imagyst, while the latter two methods did not significantly differ from each other. CONCLUSIONS In general, Parasight AIO analyses were both more precise and sensitive than mini-FLOTAC and Imagyst and quantitatively correlated well with mini-FLOTAC. While Parasight AIO produced lower raw counts in eggs-per-gram than mini-FLOTAC, these could be corrected using the data generated from these correlations.
Collapse
Affiliation(s)
| | - Leah Britton
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY, 40505, USA
| | - Britt Ripley
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY, 40505, USA
| | - Elizabeth Ubelhor
- Lexington Humane Society, 1600 Old Frankfort Pike, Lexington, KY, 40504, USA
| | - Paul Slusarewicz
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY, 40505, USA.
| |
Collapse
|
7
|
Rendle D, Hughes K, Bowen M, Bull K, Cameron I, Furtado T, Peachey L, Sharpe L, Hodgkinson J. BEVA primary care clinical guidelines: Equine parasite control. Equine Vet J 2024; 56:392-423. [PMID: 38169127 DOI: 10.1111/evj.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND There is a lack of consensus on how best to balance our need to minimise the risk of parasite-associated disease in the individual horse, with the need to limit the use of anthelmintics in the population to preserve their efficacy through delaying further development of resistance. OBJECTIVES To develop evidence-based guidelines utilising a modified GRADE framework. METHODS A panel of veterinary scientists with relevant expertise and experience was convened. Relevant research questions were identified and developed with associated search terms being defined. Evidence in the veterinary literature was evaluated using the GRADE evidence-to-decision framework. Literature searches were performed utilising CAB abstracts and PubMed. Where there was insufficient evidence to answer the research question the panel developed practical guidance based on their collective knowledge and experience. RESULTS Search results are presented, and recommendation or practical guidance were made in response to 37 clinically relevant questions relating to the use of anthelmintics in horses. MAIN LIMITATIONS There was insufficient evidence to answer many of the questions with any degree of certainty and practical guidance frequently had to be based upon extrapolation of relevant information and the panel members' collective experience and opinions. CONCLUSIONS Equine parasite control practices and current recommendations have a weak evidence base. These guidelines highlight changes in equine parasite control that should be considered to reduce the threat of parasite-associated disease and delay the development of further anthelmintic resistance.
Collapse
Affiliation(s)
| | - Kristopher Hughes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Mark Bowen
- Medicine Vet Referrals, Nottinghamshire, UK
| | - Katie Bull
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | | | - Tamzin Furtado
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - Laura Peachey
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | | | - Jane Hodgkinson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| |
Collapse
|
8
|
Chen X, Qiu X, Ni J, Liao S, Qi N, Li J, Lv M, Lin X, Cai H, Hu J, Song Y, Yin L, Zhu Y, Zhang J, Zhang H, Sun M. Immunoprotective effects of DNA vaccine against Eimeria tenella based on EtAMA3 and EtRON2 L2. Vet Parasitol 2024; 327:110141. [PMID: 38367528 DOI: 10.1016/j.vetpar.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
Eimeria tenella is the most pathogenic and harmful intestinal parasitic protozoan. Recombinant DNA vaccines open options for promising strategies for preventing avian coccidiosis, replacing chemical drugs and live oocyst vaccines. Two important antigenic proteins, EtAMA3 (also known as SporoAMA1) and EtRON2L2, act together to promote the invasion of E. tenella sporozoites. In this study, a recombinant DNA vaccine, designated pcDNA3.1(+)-AR, was constructed based on EtAMA3DII, EtRON2L2D3, and EtRON2L2D4. Chickens were intramuscularly immunized with different doses (25, 50, or 100 μg) of pcDNA3.1(+)-AR to evaluate its immunoprotective effects in vivo. The chickens in the 50 μg and 100 μg groups had higher cytokine concentrations (interleukin 2, interferon-gamma, and interleukin 10), and lesion scores (81.9% and 67.57%, respectively) and relative oocyst production (47% and 19%, respectively) reduced compared with the unchallenged group, indicating partial protection against E. tenella. These results suggest that pcDNA3.1(+)-AR is a promising vaccine candidate against avian coccidiosis.
Collapse
Affiliation(s)
- Xiangjie Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xixi Qiu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junli Ni
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yongle Song
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lijun Yin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yibin Zhu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianfei Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haoji Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
9
|
Britton L, Ripley B, Slusarewicz P. Relative egg extraction efficiencies of manual and automated fecal egg count methods in equines. Helminthologia 2024; 61:20-29. [PMID: 38659463 PMCID: PMC11038241 DOI: 10.2478/helm-2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/18/2024] [Indexed: 04/26/2024] Open
Abstract
The World Association for the Advancement of Veterinary Parasitology recently released new recommendations for the design of fecal egg count (FEC) reduction tests for livestock. These provide suggestions as to the number of animals to be sampled and the minimum number of eggs that must be counted to produce statistically meaningful results. One of the considerations for study design is the multiplication factor of the FEC method to be used; methods with lower multiplication factors require fewer animals to be sampled because they are presumed to count more eggs per test. However, multiplication factor is not the sole determinant of the number of eggs counted by any given method, since different techniques use very different sample extraction methodologies that could affect the number of eggs detected beyond just the amount of feces examined. In this light, we compared three commonly used manual FEC methods (mini-FLOTAC, McMaster and Wisconsin) and two automated methods (Imagyst and Parasight All-in-One) with respect to how many equine strongylid and ascarid eggs they counted in the same samples. McMaster and mini-FLOTAC (multiplication factors of 25x and 5x, respectively) produced the most accurate results of the methods tested but mini-FLOTAC counted approximately 5-times more eggs than McMaster. However, Wisconsin and Parasight (multiplication factor = 1x) counted 3-times more ova than mini-FLOTAC, which was less than the 5-fold difference in their multiplication factors. As a result, these tests perform with multiplication factors more akin to 1.6x relative to mini-FLOTAC. Imagyst, due to its unique sample preparation methodology, does not have a traditional multiplication factor but performed similarly to McMaster with respect to egg recovery.
Collapse
Affiliation(s)
- L. Britton
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY40505, USA
| | - B. Ripley
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY40505, USA
| | - P. Slusarewicz
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY40505, USA
| |
Collapse
|
10
|
Cain JL, Gianechini LS, Vetter AL, Davis SM, Britton LN, Myka JL, Slusarewicz P. Rapid, automated quantification of Haemonchus contortus ova in sheep faecal samples. Int J Parasitol 2024; 54:47-53. [PMID: 37586585 DOI: 10.1016/j.ijpara.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/18/2023]
Abstract
Haemonchus contortus is one of the most pathogenic nematodes affecting small ruminants globally and is responsible for large economic losses in the sheep and goat industry. Anthelmintic resistance is rampant in this parasite and thus parasite control programs must account for drug efficacy on individual farms and, sometimes, whether H. contortus is the most prevalent trichostrongylid. Historically, coproculture has been the main way to determine the prevalence of H. contortus in faecal samples due to the inability to morphologically differentiate between trichostrongylid egg types, but this process requires a skilled technician and takes multiple days to complete. Fluoresceinated peanut agglutinin (PNA) has been shown to specifically bind H. contortus and thus differentiate eggs based on whether they fluoresce, but this method has not been widely adopted. The ParasightTM System (PS) fluorescently stains helminth eggs in order to identify and quantify them, and the H. contortus PNA staining method was therefore adapted to this platform using methodology requiring only 20 min to obtain results. In this study, 74 fecal samples were collected from sheep and analyzed for PNA-stained H. contortus, using both PS and manual fluorescence microscopy. The percentage of H. contortus was determined based on standard total strongylid counts with PS or brightfield microscopy. Additionally, 15 samples were processed for coproculture with larval identification, and analyzed with both manual and automated PNA methods. All methods were compared using the coefficient of determination (R2) and the Lin's concordance correlation coefficient (ρc). ParasightTM and manual PNA percent H. contortus results were highly correlated with R2 = 0.8436 and ρc = 0.9100 for all 74 fecal samples. Coproculture versus PS percent H. contortus were also highly correlated with R2 = 0.8245 and ρc = 0.8605. Overall, this system provides a rapid and convenient method for determining the percentage of H. contortus in sheep and goat fecal samples without requiring specialized training.
Collapse
Affiliation(s)
- Jennifer L Cain
- Parasight(TM) System, Inc, 1532 N Limestone, Lexington, KY 40505, USA.
| | - Leonor Sicalo Gianechini
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602, USA
| | - Abigail L Vetter
- Parasight(TM) System, Inc, 1532 N Limestone, Lexington, KY 40505, USA; M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Rd, Lexington, KY 40506, USA
| | - Sarah M Davis
- Parasight(TM) System, Inc, 1532 N Limestone, Lexington, KY 40505, USA; M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Rd, Lexington, KY 40506, USA
| | - Leah N Britton
- Parasight(TM) System, Inc, 1532 N Limestone, Lexington, KY 40505, USA; M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Rd, Lexington, KY 40506, USA
| | - Jennifer L Myka
- Free Radical Ranch, 15299 Parkers Grove Rd., Morning View, KY 41063, USA
| | - Paul Slusarewicz
- Parasight(TM) System, Inc, 1532 N Limestone, Lexington, KY 40505, USA; M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Rd, Lexington, KY 40506, USA
| |
Collapse
|
11
|
Nagamori Y, Scimeca R, Hall-Sedlak R, Blagburn B, Starkey LA, Bowman DD, Lucio-Forster A, Little SE, Cree T, Loenser M, Larson BS, Penn C, Rhodes A, Goldstein R. Multicenter evaluation of the Vetscan Imagyst system using Ocus 40 and EasyScan One scanners to detect gastrointestinal parasites in feces of dogs and cats. J Vet Diagn Invest 2024; 36:32-40. [PMID: 38014739 PMCID: PMC10734580 DOI: 10.1177/10406387231216185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
The Vetscan Imagyst system (Zoetis) is a novel, artificial intelligence-driven detection tool that can assist veterinarians in the identification of enteric parasites in dogs and cats. This system consists of a sample preparation device, an automated digital microscope scanner, and a deep-learning algorithm. The EasyScan One scanner (Motic) has had good diagnostic performance compared with manual examinations by experts; however, there are drawbacks when used in veterinary practices in which space for equipment is often limited. To improve the usability of this system, we evaluated an additional scanner, the Ocus 40 (Grundium). Our objectives were to 1) qualitatively evaluate the performance of the Vetscan Imagyst system with the Ocus 40 scanner for identifying Ancylostoma, Toxocara, and Trichuris eggs, Cystoisospora oocysts, and Giardia cysts in canine and feline fecal samples, and 2) expand the assessment of the performance of the Vetscan Imagyst system paired with either the Ocus 40 or EasyScan One scanner to include a larger dataset of 2,191 fecal samples obtained from 4 geographic regions of the United States. When tested with 852 canine and feline fecal samples collected from different geographic regions, the performance of the Vetscan Imagyst system combined with the Ocus 40 scanner was correlated closely with manual evaluations by experts. Sensitivities were 80.0‒97.0% and specificities were 93.7‒100.0% across the targeted parasites. When tested with 1,339 fecal samples, the Vetscan Imagyst system paired with the EasyScan One scanner successfully identified the targeted parasite stages; sensitivities were 73.6‒96.4% and specificities were 79.7‒100.0%.
Collapse
Affiliation(s)
| | - Ruth Scimeca
- Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | | | - Byron Blagburn
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Lindsay A. Starkey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Dwight D. Bowman
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Araceli Lucio-Forster
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Susan E. Little
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Travis Cree
- Zoetis, Global Diagnostics, Parsippany, NJ, USA
| | | | | | - Cory Penn
- Zoetis, Global Diagnostics, Parsippany, NJ, USA
| | | | | |
Collapse
|
12
|
Ripley NE, Gravatte HS, Britton LN, Davis SM, Perrin GM, Warner S, Rexroat EK, Vetter AL, Maron EES, Finnerty CA, Stanton V, Nielsen MK. Parascaris spp. eggs shedding patterns in juvenile horses. Vet Parasitol 2023; 322:110029. [PMID: 37734131 DOI: 10.1016/j.vetpar.2023.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Parascaris spp. infect foals worldwide and foals typically shed eggs in the feces from about three to six months of age, upon which natural immunity is incurred. High levels of anthelmintic resistance of Parascaris spp. are a global concern, and further understanding egg shedding patterns and fecal egg counting (FEC) data variability is of high importance. The aims of this study were to monitor Parascaris spp. egg shedding in untreated foals during 12-23 weeks of age, estimate sources of data variability, and assess precision of two ascarid FEC techniques. Fecal samples were collected weekly from 11 foals born in 2022, from May through November (29 weeks). Six subsamples were extracted from each weekly sample to determine 30 FECs between two techniques: a McMaster technique and an Automated Egg Counting System (AECS). Mixed linear modeling was carried out with age, sex, birth month, seasonality, spring- or summer-born foals, and egg counting technique as explanatory variables. Ascarid FECs were associated with age (p < 0.001), seasonality (p < 0.001), and technique (p < 0.001). The McMaster technique was more precise with a mean coefficient of variation (CV) of 34.57% and a 95% confidence interval (CI) of 30.80%- 38.30% compared to the CV for the AECS, which was 42.22% (CI: 37.70%-46.70%). Seasonality accounted for the highest proportion of variance (PV) of all covariates, but differences in PVs for covariates existed between techniques with foal age and subsample contributing more variance to the McMaster, and individual foal and seasonality contributing more to the AECS. Subsamples and replicate counts accounted for less than 1% of the total data variance. The results highlighted substantial differences in PVs between the two techniques at the subsample (AECS: 57.14%; McMaster: 77.51%) and replicate count levels (AECS: 42.86%; McMaster: 22.49%). While differences in precision were observed between the two FEC techniques, they were negligible in the data set, as the overwhelming majority of the data variability in ascarid FECs was attributed to individual foal, seasonality, and foal age.
Collapse
Affiliation(s)
- Nichol E Ripley
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40503, USA.
| | - Holli S Gravatte
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40503, USA
| | - Leah N Britton
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40503, USA
| | - Sarah M Davis
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40503, USA
| | - Grace M Perrin
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40503, USA
| | - Shaelin Warner
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40503, USA
| | - Elizabeth K Rexroat
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40503, USA
| | - Abigail L Vetter
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40503, USA
| | - Emily E S Maron
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40503, USA
| | - Constance A Finnerty
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40503, USA
| | - Victoria Stanton
- Department of Statistics, University of Kentucky, 725 Rose Street, Lexington, KY 40536, USA
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40503, USA
| |
Collapse
|
13
|
Martins AV, Corrêa LL, Ribeiro MS, Lobão LF, Dib LV, Palmer JPS, de Moura LC, Knackfuss FB, Uchôa CMA, Molento MB, Barbosa ADS. Prevalence, Risk Factors and Diagnosis of Helminths in Thoroughbred Horses Kept at Training Centers in Rio de Janeiro, Brazil. J Equine Vet Sci 2023; 127:104536. [PMID: 37448261 DOI: 10.1016/j.jevs.2023.104536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 07/15/2023]
Abstract
The aims of this study were to determine the prevalence of helminths in Thoroughbred horses in Rio de Janeiro; make correlations with risk factors for these infections; and compare the efficiency of three floatation solutions applied in the quantitative Mini-FLOTAC technique. Fecal samples from 520 horses were collected from six training centers between 2019 and 2021. These were subjected to the Mini-FLOTAC technique using three solutions: NaCl (density = 1.200 g/mL), ZnSO4 (1.350 g/mL) and ZnSO4 (1.200 g/mL); and also to qualitative techniques. Information on the horses' sex and age of horses was retrieved from the studbook; data on management from a questionnaire. The overall prevalence of intestinal parasites was 71.9%, with significant differences between training centers (P ≤ .05). On farm C, 87.7% of the samples presented strongylids and 38.7% had Parascaris spp., with the highest egg counts per gram of feces (EPG), of 358.33 and 40.41 respectively. Horses less than 3 years of age were about eight times more likely to be parasitized by strongylids and eleven times more likely to have EPG ≥500. The NaCl solution used in Mini-FLOTAC enabled recovery of the greatest number of samples with high EPG and reached the highest sensitivity values in the diagnosis when compared to the other solutions. Moreover, in the diagnoses, the levels of agreement between the results from the solutions used in Mini-FLOTAC were substantial. However, in estimating the EPG, full agreement between the results from the solutions used in Mini-FLOTAC was not obtained.
Collapse
Affiliation(s)
- André V Martins
- Laboratório de Bioagentes Ambientais, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil; Laboratório de Parasitologia e Doenças Parasitárias, Faculdade de Medicina Veterinária, Centro Universitário Serra dos Órgãos, Teresópolis, Rio de Janeiro, Brazil
| | - Laís L Corrêa
- Laboratório de Bioagentes Ambientais, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Mariana S Ribeiro
- Laboratório de Bioagentes Ambientais, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Lucas F Lobão
- Laboratório de Bioagentes Ambientais, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Laís V Dib
- Laboratório de Bioagentes Ambientais, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil; Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - João P S Palmer
- Laboratório de Bioagentes Ambientais, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Lucas C de Moura
- Laboratório de Parasitologia e Doenças Parasitárias, Faculdade de Medicina Veterinária, Centro Universitário Serra dos Órgãos, Teresópolis, Rio de Janeiro, Brazil
| | - Fabiana B Knackfuss
- Zootecnia e Estatística, Escola de Ciências da Saúde, Universidade do Grande Rio, Duque de Caxias, Rio de Janeiro, Brazil
| | - Claudia M A Uchôa
- Laboratório de Bioagentes Ambientais, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Marcelo B Molento
- Laboratório de Parasitologia Clínica Veterinária, Departamento de Medicina Veterinária, Universidade Federal do Paraná. Curitiba, Paraná, Brazil
| | - Alynne da Silva Barbosa
- Laboratório de Bioagentes Ambientais, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil; Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Molecular diagnostics for gastrointestinal helminths in equids: Past, present and future. Vet Parasitol 2023; 313:109851. [PMID: 36521296 DOI: 10.1016/j.vetpar.2022.109851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
This review is aimed to (i) appraise the literature on the use of molecular techniques for the detection, quantification and differentiation of gastrointestinal helminths (GIH) of equids, (ii) identify the knowledge gaps and, (iii) discuss diagnostic prospects in equine parasitology. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews, we retrieved 54 studies (horses: 50/54; donkeys and zebras: 4/54) from four databases. Polymerase chain reaction (PCR) was employed in all of the studies whereas PCR amplicons were sequenced in only 18 of them. Other techniques used (including modifications of PCR) were reverse line blot, quantitative (q)PCR, restriction fragment length polymorphism, nested-PCR, PCR-directed next-generation sequencing, Southern blotting, single strand conformation polymorphism, PCR-enzyme linked immunosorbent assay, matrix-assisted laser desorption/ionisation-time of flight and random amplification of polymorphic DNA. Most of the studies (53/54) used nuclear ribosomal RNA (including the internal transcribed spacers, intergenic spacer, 5.8 S, 18 S, 28 S and 12 S) as target loci while cytochrome c oxidase subunit 1 and random genomic regions were targeted in only three and one studies, respectively. Overall, to date, the majority of molecular studies have focused on the diagnosis and identification of GIHs of equids (i.e. species of Anoplocephala, Craterostomum, cyathostomins, Oesophagodontus, Parascaris, Strongylus, Strongyloides and Triodontophorus), with a recent shift towards investigations on anthelmintic resistance and the use of high-throughput nemabiome metabarcoding. With the increasing reports of anthelmintic resistance in equid GIHs, it is crucial to develop and apply techniques such as advanced metabarcoding for surveillance of parasite populations in order to gain detailed insights into their diversity and sustainable control. To the best of our knowledge, this is the first systematic review that evaluates molecular investigations published on the diagnosis and quantification of equid GIHs and provides useful insights into important knowledge gaps and future research directions in equid molecular parasitology.
Collapse
|
15
|
Rinaldi L, Krücken J, Martinez-Valladares M, Pepe P, Maurelli MP, de Queiroz C, Castilla Gómez de Agüero V, Wang T, Cringoli G, Charlier J, Gilleard JS, von Samson-Himmelstjerna G. Advances in diagnosis of gastrointestinal nematodes in livestock and companion animals. ADVANCES IN PARASITOLOGY 2022; 118:85-176. [PMID: 36088084 DOI: 10.1016/bs.apar.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diagnosis of gastrointestinal nematodes in livestock and companion animals has been neglected for years and there has been an historical underinvestment in the development and improvement of diagnostic tools, undermining the undoubted utility of surveillance and control programmes. However, a new impetus by the scientific community and the quickening pace of technological innovations, are promoting a renaissance of interest in developing diagnostic capacity for nematode infections in veterinary parasitology. A cross-cutting priority for diagnostic tools is the development of pen-side tests and associated decision support tools that rapidly inform on the levels of infection and morbidity. This includes development of scalable, parasite detection using artificial intelligence for automated counting of parasitic elements and research towards establishing biomarkers using innovative molecular and proteomic methods. The aim of this review is to assess the state-of-the-art in the diagnosis of helminth infections in livestock and companion animals and presents the current advances of diagnostic methods for intestinal parasites harnessing (i) automated methods for copromicroscopy based on artificial intelligence, (ii) immunodiagnosis, and (iii) molecular- and proteome-based approaches. Regardless of the method used, multiple factors need to be considered before diagnostics test results can be interpreted in terms of control decisions. Guidelines on how to apply diagnostics and how to interpret test results in different animal species are increasingly requested and some were recently made available in veterinary parasitology for the different domestic species.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy.
| | - J Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - M Martinez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - P Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - M P Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - C de Queiroz
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada; Faculty of Veterinary Medicine, St Georges University, Grenada
| | - V Castilla Gómez de Agüero
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - T Wang
- Kreavet, Kruibeke, Belgium
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | | | - J S Gilleard
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada
| | - G von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
16
|
Boelow H, Krücken J, Thomas E, Mirams G, von Samson-Himmelstjerna G. Comparison of FECPAK G2, a modified Mini-FLOTAC technique and combined sedimentation and flotation for the coproscopic examination of helminth eggs in horses. Parasit Vectors 2022; 15:166. [PMID: 35549990 PMCID: PMC9097362 DOI: 10.1186/s13071-022-05266-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/30/2022] [Indexed: 01/24/2023] Open
Abstract
Background Due to high prevalence of anthelmintic resistance in equine helminths, selective treatment is increasingly promoted and in some countries a positive infection diagnosis is mandatory before treatment. Selective treatment is typically recommended when the number of worm eggs per gram faeces (epg) exceeds a particular threshold. In the present study we compared the semi-quantitative sedimentation/flotation method with the quantitative methods Mini-FLOTAC and FECPAKG2 in terms of precision, sensitivity, inter-rater reliability and correlation of worm egg counts to improve the choice of optimal diagnostic tools. Methods Using sedimentation/flotation (counting raw egg numbers up to 200), we investigated 1067 horse faecal samples using a modified Mini-FLOTAC approach (multiplication factor of 5 to calculate epgs from raw egg counts) and FECPAKG2 (multiplication factor of 45). Results Five independent analyses of the same faecal sample with all three methods revealed that variance was highest for the sedimentation/flotation method while there were no significant differences between methods regarding the coefficient of variance. Sedimentation/flotation detected the highest number of samples positive for strongyle and Parascaris spp. eggs, followed by Mini-FLOTAC and FECPAKG2. Regarding Anoplocephalidae, no significant difference in frequency of positive samples was observed between Mini-FLOTAC and sedimentation/flotation. Cohen’s κ values comparing individual methods with the combined result of all three methods revealed almost perfect agreement (κ ≥ 0.94) for sedimentation/flotation and strong agreement for Mini-FLOTAC (κ ≥ 0.83) for strongyles and Parascaris spp. For FECPAKG2, moderate and weak agreements were found for the detection of strongyle (κ = 0.62) and Parascaris (κ = 0.51) eggs, respectively. Despite higher sensitivity, the Mini-FLOTAC mean epg was significantly lower than that with FECPAKG2 due to samples with > 200 raw egg counts by sedimentation/flotation, while in samples with lower egg shedding epgs were higher with Mini-FLOTAC than with FECPAKG2. Conclusions For the simple detection of parasite eggs, for example, to treat foals infected with Parascaris spp., sedimentation/flotation is sufficient and more sensitive than the other two quantitative investigared in this study. Mini-FLOTAC is predicted to deliver more precise results in faecal egg count reduction tests due to higher raw egg counts. Finally, to identify animals with a strongyle epg above a certain threshold for treatment, FECPAKG2 delivered results comparable to Mini-FLOTAC. Grpahical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05266-y.
Collapse
Affiliation(s)
- Heike Boelow
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
| | - Eurion Thomas
- Techion UK, Peithyll Centre, Capel Dewi, Aberystwyth, SY23 3HU, Wales, UK
| | - Greg Mirams
- Techion New Zealand, Invermay Agriculture Centre, Block A, 176 Puddle Alley, Mosgiel, 9092, New Zealand
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| |
Collapse
|
17
|
Steuer AE, Anderson HP, Shepherd T, Clark M, Scare JA, Gravatte HS, Nielsen MK. Parasite dynamics in untreated horses through one calendar year. Parasit Vectors 2022; 15:50. [PMID: 35135605 PMCID: PMC8822790 DOI: 10.1186/s13071-022-05168-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Horses are host to a plethora of parasites. Knowledge of the seasonality of parasite egg shedding and transmission is important for constructing parasite control programs. However, studies describing these patterns are sparse, and have largely been conducted only in the United Kingdom. This study evaluated strongylid egg shedding patterns and transmission dynamics of Strongylus vulgaris in naturally infected and untreated mares and foals through one calendar year in Kentucky, USA. The study also investigated the existence of a peri-parturient rise (PPR) in strongylid egg counts in foaling mares and collected information about Strongyloides westeri and Parascaris spp. in the foals. Methods This study was conducted from January to December 2018. A herd of 18 mares, one stallion, and 14 foals born in 2018 were followed throughout the year. Sera and feces were collected biweekly from all horses, and worm burdens enumerated in 13 foals at necropsy. An S. vulgaris ELISA antibody test was run on all serum samples. Fecal egg counts were determined for all horses, and coproculture and qPCR assay were employed to test for the presence of S. vulgaris in the mature horses. Data were analyzed using the proc glimmix procedure in the SAS 9.4 software program. Results We found a general lack of seasonality in strongylid egg shedding throughout the year among the mature horses, and no PPR was demonstrated. Shedding of S. vulgaris eggs displayed a higher abundance during the spring, but findings were variable and not statistically significant. Anti-S. vulgaris antibody concentrations did not display significant fluctuations in the mature horses, but evidence of passive transfer of antibodies to the foals was demonstrated, and foals assumed their own production of antibodies starting at approximately 20 weeks of age. Overall, colts shed higher numbers of strongylid, ascarid, and S. westeri eggs than fillies. Conclusions This study demonstrated a lack of seasonality in strongylid egg shedding for the study population, which is in stark contrast to previous studies conducted elsewhere. This strongly suggests that more studies should be done investigating these patterns under different climatic conditions. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Ashley E Steuer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA.
| | - Haley P Anderson
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Taylor Shepherd
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Morgan Clark
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Jessica A Scare
- Department of Animal Science, Eastern Kentucky University, Richmond, KY, USA
| | - Holli S Gravatte
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - Martin K Nielsen
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
18
|
Development and validation of software that quantifies the larval mortality of Rhipicephalus (Boophilus) microplus cattle tick. Ticks Tick Borne Dis 2022; 13:101930. [DOI: 10.1016/j.ttbdis.2022.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
|
19
|
Bogdan G, Struți DI, Sima NF, Păpuc TA, Mihaela BA. A Comprehensive Method for the Evaluation of Hermetia illucens Egg Quality Parameters: Implications and Influence Factors. INSECTS 2021; 13:17. [PMID: 35055860 PMCID: PMC8781090 DOI: 10.3390/insects13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/27/2022]
Abstract
The significant momentum received by Hermetia illucens as a worldwide species is due to its biological traits and large applicability in scientific research, environmental entomoremediation, insect meal production, and for biodiesel yield. The aim of this research is to develop a method for the preparation and precise egg counting of the H. illucens egg clutch, as well as an accurate technique for evaluating egg biometric parameters. The precise proposed method for egg preparation and counting consists in dispersing the eggs clutch under a stereo microscope and counting the eggs on a photographic capture using the Clickmaster software. Five solution types were used to disperse the egg clutches: glycerin 50%, ethanol 70%, ethanol 80%, physiological serum 0.9% and purified water. The efficiency of the estimation method for eggs number evaluation was also tested by using the estimated egg weight as a conversion factor. The biometric parameters of single eggs (length and width) were determined using the free Toupview software. The precise method of egg preparation and counting allows for the registration of the eggs number manually identified by the operator. The appropriate dispersion solutions were glycerin 50% and ethanol 70%. The method has an error of 1.4 eggs for each 500 counted eggs, thus an accuracy of over 99.4%. The eggs number estimation method is not applicable without significant errors, the accuracy being less than 32%, due to egg heterogeneity in the clutch. Biometric parameters (length and width) are positively correlated with egg weight (r = 0.759) and with the number of eggs in the clutch (r = 0.645). In conclusion, the results clearly suggest the method of egg preparation and precise counting for an accurate evaluation of quality parameters of the H. illucens clutches, as well as the technique for evaluating egg biometric parameters.
Collapse
Affiliation(s)
- Georgescu Bogdan
- Department of Zoology and Ecology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.B.); (T.A.P.)
| | - Dănuț Ioan Struți
- Department of Zoology and Ecology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.B.); (T.A.P.)
| | - Nicușor Flavius Sima
- Department of Technological Science, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Tudor Andrei Păpuc
- Department of Zoology and Ecology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.B.); (T.A.P.)
| | - Boaru Anca Mihaela
- Department of Zoology and Ecology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.B.); (T.A.P.)
| |
Collapse
|
20
|
Nielsen MK, Doran D, Slusarewicz P. Effects of sample homogenizing on the performance of an automated strongylid egg counting system. Vet Parasitol 2021; 300:109623. [PMID: 34837877 DOI: 10.1016/j.vetpar.2021.109623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
Fecal egg counts are essential monitoring tools in veterinary parasite control. In recent years, several groups have developed automated egg counting systems based on image analysis and deep learning algorithms. Work in our laboratory demonstrated that an automated system performed with significantly better precision than traditional egg counting techniques. However, while the counting process is no longer operator dependent, the pre-analytical homogenization steps still are. This study aimed at evaluating the influence of sample homogenization on diagnostic performance on an automated equine strongylid egg counting system. Samples were collected from 12 horses and assigned to three egg count categories (four samples per category): Low (0-500 eggs per gram (EPG)), Moderate (501-1000 EPG), and High (1001-2000 EPG). Within each category, all samples were divided into four portions and each was analyzed with the automated system using the following four homogenizing procedures using a homogenizing device supplied with the system: 1) pressing the plunger five times and pouring directly into the counting chamber, 2) pressing the plunger five times and shaking the bottle prior to pouring, 3) pressing the plunger ten times with direct pouring, and 4) pressing the plunger ten times with shaking the bottle before pouring. There were no differences in precision expressed as coefficient of variation between these four procedures but shaking of the bottle prior to pouring was significantly associated with higher counts (p = 0.0068). These results demonstrate that the homogenization process can affect the diagnostic performance of an automated egg counting system and suggest that more efforts should be invested in standardizing and optimizing homogenization procedures.
Collapse
Affiliation(s)
- Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| | - Daniel Doran
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Paul Slusarewicz
- MEP Equine Solutions, 3905 English Oak Circle, Lexington, KY, USA
| |
Collapse
|
21
|
Ngwili N, Thomas L, Githigia S, Muloi D, Marshall K, Wahome R, Roesel K. Co-infection of pigs with Taenia solium cysticercosis and gastrointestinal parasites in Eastern and Western Uganda. Parasitol Res 2021; 121:177-189. [PMID: 34816302 PMCID: PMC8610610 DOI: 10.1007/s00436-021-07380-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022]
Abstract
A study was carried out in Kamuli and Hoima districts in Eastern and Western regions of Uganda to determine the Taenia solium porcine cysticercosis (PCC) and gastrointestinal (GI) parasites co-infection status in pigs. One hundred sixty-one households were selected randomly and visited between November and December 2019. A household questionnaire was administered, and faecal and blood samples were collected from at least one pig older than 3 months per household. A blood sample was obtained from a jugular venipuncture, and a rectal faecal sample was obtained. Taenia spp. circulating antigen levels in the sample sera were tested using a commercial enzyme-linked immunosorbent assay kit, apDia™ cysticercosis Ag ELISA. The modified McMaster technique was used to identify and quantify the GI parasites. The apparent animal-level seroprevalence for PCC was 4.8% (95% CI 2.7–7.1) and differed across the two districts (p = 0.018). At the pig herd level, the prevalence was 9.7% (95% CI 5.5–14.4). The prevalence of the different nematode eggs and coccidian oocysts in the two districts was as follows: strongyles 79.0% (95% CI 74.3–83.6), coccidia 73.3% (95% CI 68.3–78.6), Trichuris spp. 7.4% (95% CI 4.9–10.6), Strongyloides ransomi 2.1 (95% CI 0.7–3.5) and Ascaris spp. 4.9 (95% CI 2.8–7.4). Overall, across the two districts, the arithmetic mean for the oocysts per gram (OPG) for coccidia was 2042.2 ± 5776.1, and eggs per gram (EPG) were the highest in strongyles 616.1 ± 991. Overall, 57.4% of the porcine cysticercosis seropositive pigs were also positive for at least one of the gastrointestinal helminths which included strongyles, Strongyloides ransomi, Trichuris spp. and Ascaris spp. The co-infection status of pigs with both PCC and GI parasites demonstrated by this study can provide an incentive for integrating the control and management of both parasites with oxfendazole. Further studies are required to understand the feasibility of using oxfendazole including cost–benefit analysis and the acceptability by local stakeholders for the control of T. solium cysticercosis and gastrointestinal parasites in pigs.
Collapse
Affiliation(s)
- Nicholas Ngwili
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya. .,Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya.
| | - Lian Thomas
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Samuel Githigia
- Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Dishon Muloi
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Karen Marshall
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Raphael Wahome
- Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Kristina Roesel
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya.,Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
22
|
Inácio SV, Gomes JF, Falcão AX, Martins dos Santos B, Soares FA, Nery Loiola SH, Rosa SL, Nagase Suzuki CT, Bresciani KDS. Automated Diagnostics: Advances in the Diagnosis of Intestinal Parasitic Infections in Humans and Animals. Front Vet Sci 2021; 8:715406. [PMID: 34888371 PMCID: PMC8650151 DOI: 10.3389/fvets.2021.715406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Abstract
The increasingly close proximity between people and animals is of great concern for public health, given the risk of exposure to infectious diseases transmitted through animals, which are carriers of more than 60 zoonotic agents. These diseases, which are included in the list of Neglected Tropical Diseases, cause losses in countries with tropical and subtropical climates, and in regions with temperate climates. Indeed, they affect more than a billion people around the world, a large proportion of which are infected by one or more parasitic helminths, causing annual losses of billions of dollars. Several studies are being conducted in search for differentiated, more sensitive diagnostics with fewer errors. These studies, which involve the automated examination of intestinal parasites, still face challenges that must be overcome in order to ensure the proper identification of parasites. This includes a protocol that allows for elimination of most of the debris in samples, satisfactory staining of parasite structures, and a robust image database. Our objective here is therefore to offer a critical description of the techniques currently in use for the automated diagnosis of intestinal parasites in fecal samples, as well as advances in these techniques.
Collapse
Affiliation(s)
- Sandra Valéria Inácio
- São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, Brazil
| | - Jancarlo Ferreira Gomes
- School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Institute of Computing (IC), University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Comparison of the Modified McMaster and Mini-FLOTAC methods for the enumeration of nematode eggs in egg spiked and naturally infected chicken excreta. Vet Parasitol 2021; 299:109582. [PMID: 34628179 DOI: 10.1016/j.vetpar.2021.109582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 11/21/2022]
Abstract
Excreta egg counting techniques are used for indirectly estimating the magnitude of gastrointestinal nematode infection in live animals. The aim of this study was to optimise laboratory and field sampling methods for routine monitoring of nematode infections in chickens by evaluating the sensitivity, accuracy, and precision of the Modified McMaster (MM) and Mini-FLOTAC (MF) methods using laying chicken excreta samples spiked with estimated true numbers of eggs (Experiment 1 = 5-1500 EPG (eggs/g); Experiment 2 = 5-500 EPG) without and with operator effects, respectively or using individual fresh excreta (n = 230) and fresh floor excreta (n = 42) from naturally infected free-range layer farms. The Coefficient of Variation (CV) was assessed within and between operators and the time spent on sample preparation and counting was also evaluated. MF was more sensitive than MM at ≤ 50 EPG level but not above this while MM had a significantly higher egg recovery rate than MF for ≥ 50 EPG levels (MM = 89.7 %, MF = 68.2 %; P < 0.0001). Operator factors did not have a significant effect (P = 0.358-0.998) on egg counts across methods and EPG levels. The CV between replicates of the MM and MF methods for ≥ 50 EPG was 43.4 and 36.5 %, respectively. The inter-observer CV of the MM and MF methods for ≥ 50 EPG levels was 63.8 and 44.3 % respectively. When the naturally infected free-range layers which were individual caged for excreta sampling, the proportion of samples positive for MM and MF were 91.7 and 96.5 %, respectively (P = 0.023). MM resulted in significantly (P = 0.029) higher excreta egg counts (604) than MF (460) with the difference between methods greatest at higher EPG levels. Fresh floor excreta (pooled or individual) and individual caged chicken excreta did not have significant effect on egg counts (P = 0.274). The total time taken for sample preparation and egg counting was significantly lower using the MM method (4.3-5.7 min) than the MF method (16.9-23.8 min) (P < 0.0001). In conclusion, MM was more accurate than MF, particularly at higher EPG levels, but slightly less precise and sensitive, particularly at low EPG levels, while taking less than 25 % of the laboratory time per sample. Our observations indicate that the MM method is more appropriate for rapid diagnosis of chicken nematodes in the field. Pooled fresh floor excreta samples would be sufficient to indicate infection level in free range farms.
Collapse
|
24
|
Affiliation(s)
- M. K. Nielsen
- Department of Veterinary Science M.H. Gluck Equine Research Center University of Kentucky Lexington Kentucky USA
| |
Collapse
|
25
|
Ghafar A, Abbas G, King J, Jacobson C, Hughes KJ, El-Hage C, Beasley A, Bauquier J, Wilkes EJ, Hurley J, Cudmore L, Carrigan P, Tennent-Brown B, Nielsen MK, Gauci CG, Beveridge I, Jabbar A. Comparative studies on faecal egg counting techniques used for the detection of gastrointestinal parasites of equines: A systematic review. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100046. [PMID: 35284858 PMCID: PMC8906068 DOI: 10.1016/j.crpvbd.2021.100046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/04/2022]
Abstract
Faecal egg counting techniques (FECT) form the cornerstone for the detection of gastrointestinal parasites in equines. For this purpose, several flotation, centrifugation, image- and artificial intelligence-based techniques are used, with varying levels of performance. This review aimed to critically appraise the literature on the assessment and comparison of various coprological techniques and/or modifications of these techniques used for equines and to identify the knowledge gaps and future research directions. We searched three databases for published scientific studies on the assessment and comparison of FECT in equines and included 27 studies in the final synthesis. Overall, the performance parameters of McMaster (81.5%), Mini-FLOTAC® (33.3%) and simple flotation (25.5%) techniques were assessed in most of the studies, with 77.8% of them comparing the performance of at least two or three methods. The detection of strongyle, Parascaris spp. and cestode eggs was assessed for various FECT in 70.4%, 18.5% and 18.5% studies, respectively. A sugar-based flotation solution with a specific gravity of ≥1.2 was found to be the optimal flotation solution for parasitic eggs in the majority of FECT. No uniform or standardised protocol was followed for the comparison of various FECT, and the tested sample size (i.e. equine population and faecal samples) also varied substantially across all studies. To the best of our knowledge, this is the first systematic review to evaluate studies on the comparison of FECT in equines and it highlights important knowledge gaps in the evaluation and comparison of such techniques.
Collapse
Affiliation(s)
- Abdul Ghafar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Justine King
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Caroline Jacobson
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia, Australia
| | - Kristopher J. Hughes
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Charles El-Hage
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Anne Beasley
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
| | - Jenni Bauquier
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Edwina J.A. Wilkes
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - John Hurley
- Swettenham Stud, Nagambie, Victoria, Australia
| | - Lucy Cudmore
- Scone Equine Hospital, Scone, New South Wales, Australia
| | - Peter Carrigan
- Scone Equine Hospital, Scone, New South Wales, Australia
| | - Brett Tennent-Brown
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Martin K. Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Charles G. Gauci
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Ian Beveridge
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Abdul Jabbar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
26
|
Improving the sensitivity of gastrointestinal helminth detection using the Mini-FLOTAC technique in wild birds. Parasitol Res 2021; 120:3319-3324. [PMID: 34347167 DOI: 10.1007/s00436-021-07267-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
High-performance-validated tests are essential for successful epidemiological monitoring, surveillance of parasitic infections, and comparative studies in wildlife populations. The Mini-FLOTAC is a novel flotation-based technique for the sensitive detection and quantification of gastrointestinal parasites that is recently being explored for use in wildlife. A limitation of any flotation-based copromicroscopic method is the selection of the flotation solution (FS), which might influence the performance of the test. However, no study has compared the influence of using different FS in the Mini-FLOTAC technique for parasite detection in wild birds. Here, we evaluated the diagnostic performance of the Mini-FLOTAC in three waterbird host species using two widely used FS: saturated salt (NaCl; specific gravity 1.20) and saturated zinc sulfate (ZnSO4; specific gravity 1.35). One hundred fresh fecal samples were analyzed for parasite fecal egg counts (FEC). Regardless of the host species, fecal samples evaluated with the Mini-FLOTAC method using ZnSO4 resulted in a significantly higher detection rate and higher FEC of strongylid, capillarid, cestode, and trematode parasites, than samples analyzed with the NaCl solution. Our concise study demonstrated the importance of using an appropriate FS for the identification of parasite eggs in wildlife species, especially in hosts with an expected aggregated distribution and low parasite load such as waterbird hosts. The higher analytical sensitivity of the Mini-FLOTAC technique achieved with ZnSO4, and its applicability to fieldwork, highlights this method as a promising tool for the quantitative surveillance of parasite infections in wild bird populations.
Collapse
|
27
|
Nielsen MK. What makes a good fecal egg count technique? Vet Parasitol 2021; 296:109509. [PMID: 34218175 DOI: 10.1016/j.vetpar.2021.109509] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
The first parasite fecal egg counting techniques were described over 100 years ago, and fecal egg counting remains essential in parasitology research as well as in clinical practice today. Several novel techniques have been introduced and validated in recent years, but this work has also highlighted several current issues in this research field. There is a lack of consensus on which diagnostic parameters to evaluate and how to properly design studies doing so. Furthermore, there is a confusing and sometimes incorrect use of terminology describing performance of fecal egg counting techniques, and it would be helpful to address these. This manuscript reviews qualitative and quantitative diagnostic performance parameters, discusses their relevance for fecal egg counting techniques, and highlights some of the challenges with determining them. Qualitative parameters such as diagnostic sensitivity and specificity may be considered classic diagnostic performance metrics, but they generally only have implications at low egg count levels. The detection limit of a given technique is often referred to as the "analytical sensitivity", but this is misleading as the detection limit is a theoretically derived number, whereas analytical sensitivity is determined experimentally. Thus, the detection limit is not a diagnostic performance parameter and does not inform on the diagnostic sensitivity of a technique. Quantitative performance parameters such as accuracy and precision are highly relevant for describing the performance of fecal egg counting techniques, and precision is arguably the more important of the two. An absolute determination of accuracy can only be achieved by use of samples spiked with known quantities of parasite ova, but spiking does not necessarily mimic the true distribution of eggs within a sample, and accuracy estimates are difficult to reproduce between laboratories. Instead, analysis of samples from naturally infected animals can be used to achieve a relative ranking of techniques according to egg count magnitude. Precision can be estimated in a number of different approaches, but it is important to ensure a relevant representation of egg count levels in the study sample set, as low egg counts tend to associate with lower precision estimates. Coefficients of variation generally provide meaningful measures of precision that are independent of the multiplication factor of the techniques evaluated. Taken together, there is a need for clear guidelines for studies validating fecal egg counting techniques in veterinary parasitology with emphasis on what should be evaluated, how studies could be designed, and how to appropriately analyze the data. Furthermore, there is a clear need for better consensus regarding use of terminology describing the diagnostic performance of fecal egg count techniques.
Collapse
Affiliation(s)
- Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
28
|
Development and performance of an automated fecal egg count system for small ruminant strongylids. Vet Parasitol 2021; 295:109442. [PMID: 34020379 DOI: 10.1016/j.vetpar.2021.109442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 11/24/2022]
Abstract
An automated equine fecal egg count test, known as the Parasight System, was modified for use with small ruminants. Modifications included the introduction of a short centrifugation step in a floatation medium, an adjustment in pre-test sample filtering, and training of an image analysis-based egg counting algorithm to recognize and enumerate trichostrongylid eggs. In preliminary assessments, the modified method produced trichostrongylid egg counts comparable to manual McMaster analyses of the same samples from both ovine and caprine sources. The coefficient of determination (R2) for the linear correlation between McMaster and automated counts from these samples was 0.958, and there were no significant differences when comparing counts using feces from either sheep or goats. More extensive comparison utilized ovine samples split into three groups based on trichostrongylid egg content: Low (201-500 EPG), Medium (501-1000 EPG) and High (1001 or greater EPG). Each group contained 5 samples, each of which was used to produce individual slurries that were counted 8 times each using both McMaster and the automated method. This, again, showed no difference in accuracy between the techniques, but revealed significantly higher precision, as assessed by coefficients of variation (CoV), for the automated method for determining egg counts in the Low and Medium groups. The CoV of the McMaster method was 2.2, 2.5 and 1.3 times greater than the automated in the Low, Medium and High groups, respectively. Overall, the automated egg counting system showed good linear agreement with trichostrongylid egg counts determined with the McMaster method, and demonstrated significantly better precision. This technology reduces operator error and the results presented here illustrate its utility for determination of small ruminant trichostrongylid fecal egg counts.
Collapse
|
29
|
Nagamori Y, Sedlak RH, DeRosa A, Pullins A, Cree T, Loenser M, Larson BS, Smith RB, Penn C, Goldstein R. Further evaluation and validation of the VETSCAN IMAGYST: in-clinic feline and canine fecal parasite detection system integrated with a deep learning algorithm. Parasit Vectors 2021; 14:89. [PMID: 33514412 PMCID: PMC7844936 DOI: 10.1186/s13071-021-04591-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/11/2021] [Indexed: 11/12/2022] Open
Abstract
Background Fecal examinations in pet cats and dogs are key components of routine veterinary practice; however, their accuracy is influenced by diagnostic methodologies and the experience level of personnel performing the tests. The VETSCAN IMAGYST system was developed to provide simpler and easier fecal examinations which are less influenced by examiners’ skills. This system consists of three components: a sample preparation device, an automated microscope scanner, and analysis software. The objectives of this study were to qualitatively evaluate the performance of the VETSCAN IMAGYST system on feline parasites (Ancylostoma and Toxocara cati) and protozoan parasites (Cystoisospora and Giardia) and to assess and compare the performance of the VETSCAN IMAGYST centrifugal flotation method to reference centrifugal and passive flotation methods. Methods To evaluate the diagnostic performance of the scanning and algorithmic components of the VETSCAN IMAGYST system, fecal slides were prepared by the VETSCAN IMAGYST centrifugal flotation technique with pre-screened fecal samples collected from dogs and cats and examined by both an algorithm and parasitologists. To assess the performance of the VETSCAN IMAGYST centrifugal flotation technique, diagnostic sensitivity and specificity were calculated and compared to those of conventional flotation techniques. Results The performance of the VETSCAN IMAGYST algorithm closely correlated with evaluations by parasitologists, with sensitivity of 75.8–100% and specificity of 93.1-100% across the targeted parasites. For samples with 50 eggs or less per slide, Lin’s concordance correlation coefficients ranged from 0.70 to 0.95 across the targeted parasites. The results of the VETSCAN IMAGYST centrifugal flotation method correlated well with those of the conventional centrifugal flotation method across the targeted parasites: sensitivity of 65.7–100% and specificity of 97.6–100%. Similar results were observed for the conventional passive flotation method compared to the conventional centrifugal flotation method: sensitivity of 56.4–91.7% and specificity of 99.4–100%. Conclusions The VETSCAN IMAGYST scanning and algorithmic systems with the VETSCAN IMAGYST fecal preparation technique demonstrated a similar qualitative performance to the parasitologists’ examinations with conventional fecal flotation techniques. Given the deep learning nature of the VETSCAN IMAGYST system, its performance is expected to improve over time, enabling it to be utilized in veterinary clinics to perform fecal examinations accurately and efficiently.![]()
Collapse
Affiliation(s)
- Yoko Nagamori
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, 74078, USA. .,Petcare, Zoetis, 10 Sylvan Way, Parsippany, NJ, 07054, USA.
| | - Ruth Hall Sedlak
- Veterinary Medicine Research and Development, Zoetis, 333 Portage Street, Kalamazoo, MI, 49007, USA
| | - Andrew DeRosa
- Veterinary Medicine Research and Development, Zoetis, 333 Portage Street, Kalamazoo, MI, 49007, USA
| | - Aleah Pullins
- Veterinary Medicine Research and Development, Zoetis, 333 Portage Street, Kalamazoo, MI, 49007, USA
| | - Travis Cree
- Veterinary Medicine Research and Development, Zoetis, 333 Portage Street, Kalamazoo, MI, 49007, USA
| | - Michael Loenser
- Global Diagnostics, Zoetis, 10 Sylvan Way, Parsippany, NJ, 07054, USA
| | | | | | - Cory Penn
- Global Diagnostics, Zoetis, 10 Sylvan Way, Parsippany, NJ, 07054, USA
| | - Richard Goldstein
- Global Diagnostics, Zoetis, 10 Sylvan Way, Parsippany, NJ, 07054, USA
| |
Collapse
|
30
|
Abstract
The Kubic FLOTAC microscope (KFM) is a compact, low-cost, versatile and portable digital microscope designed to analyse fecal specimens prepared with Mini-FLOTAC or FLOTAC, in both field and laboratory settings. In this paper, we present the characteristics of the KFM along with its first validation for fecal egg count (FEC) of gastrointestinal nematodes (GINs) in cattle. For this latter purpose, a study was performed on 30 fecal samples from cattle experimentally infected by GINs to compare the performance of Mini-FLOTAC either using a traditional optical microscope (OM) or the KFM. The results of the comparison showed a substantial agreement (concordance correlation coefficient = 0.999), with a very low discrepancy (−0.425 ± 7.370) between the two microscopes. Moreover, the KFM captured images comparable with the view provided by the traditional OM. Therefore, the combination of sensitive, accurate, precise and standardized FEC techniques, as the Mini-FLOTAC, with a reliable automated system, will permit the real-time observation and quantification of parasitic structures, thanks also to artificial intelligence software, that is under development. For these reasons, the KFM is a promising tool for an accurate and efficient FEC to improve parasite diagnosis and to assist new generations of operators in veterinary and public health.
Collapse
|
31
|
Maurelli MP, Dourado Martins OM, Morgan ER, Charlier J, Cringoli G, Mateus TL, Bacescu B, Chartier C, Claerebout E, de Waal T, Helm C, Hertzberg H, Hinney B, Höglund J, Kyriánová IA, Mickiewicz M, Petkevičius S, Simin S, Sotiraki S, Tosheska M, Toth M, Martínez-Valladares M, Varady M, Sekovska B, von Samson-Himmelstjerna G, Rinaldi L. A Qualitative Market Analysis Applied to Mini-FLOTAC and Fill-FLOTAC for Diagnosis of Helminth Infections in Ruminants. Front Vet Sci 2020; 7:580649. [PMID: 33195595 PMCID: PMC7642452 DOI: 10.3389/fvets.2020.580649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023] Open
Abstract
Helminth infections, mainly by gastrointestinal nematodes (GIN), are one of the main concerns for animal health, welfare and productivity in grazing ruminant livestock worldwide. The use of a sensitive, precise, accurate, low-cost, and easy-to-perform copromicroscopic technique is of pivotal importance to perform reliable fecal egg count (FEC) and fecal egg count reduction test (FECRT), in order to determine the need of anthelmintic treatment, but also anthelmintic efficacy or resistance. This approach is fundamental to a correct and efficient control of GIN. Unfortunately, in worldwide ruminant farm practice, repeated anthelmintic treatments are carried out, without prior diagnosis of infection, contributing to the spread of Anthelmintic Resistance (AR). Tackling this phenomenon, improving mainly the GIN diagnosis and AR status in farm animals, is a priority of the European COST Action “COMBAR—COMBatting Anthelmintic Resistance in Ruminants” and of the STAR-IDAZ International Research Consortium on Animal Health. One of the specific objectives of the COMBAR Working Group 1 (WG1) is to conduct an European market analysis of new diagnostics and develop a business plan for commercial test introduction, leveraging technical know-how of participants. Since the Mini-FLOTAC in combination with the Fill-FLOTAC may be considered a good candidate for a standardized FEC and FECRT in the laboratory, as well as directly in the field, the aim of this study was to conduct SWOT (Strength—Weaknesses—Opportunities—Threats) and PESTEL (Political, Economic, Social, Technological, Environmental, and Legal) analyses of these tools in 20 European countries involved in the COMBAR WG1, in order to identify the opportunities, barriers, and challenges that might affect the Mini-FLOTAC and Fill-FLOTAC commercialization in Europe.
Collapse
Affiliation(s)
- Maria Paola Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | - Eric R Morgan
- Institute of Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | | | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Teresa Letra Mateus
- CISAS-Centre for Research and Development in Agrifood Systems and Sustainability, Escola Superior Agrária, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Àlvares, Viana do Castelo, Portugal.,EpiUnit-Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Bogdan Bacescu
- Faculty of Veterinary Medicine, Spiru Haret University, Bucharest, Romania
| | | | - Edwin Claerebout
- Laboratory for Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Theo de Waal
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Christina Helm
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universitaet Berlin, Berlin, Germany
| | | | - Barbara Hinney
- Institute of Parasitology, Vetmeduni Vienna, Vienna, Austria
| | - Johan Höglund
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Iveta Angela Kyriánová
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marcin Mickiewicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Stanislav Simin
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | | | | | - Mariann Toth
- Institutes of Agricultural Research and Educational Farm, Research Institute of Karcag, University of Debrecen, Debrecen, Hungary
| | | | - Marian Varady
- Institute of Parasitology of the Slovak Academy of Sciences, Košice, Slovakia
| | - Blagica Sekovska
- Faculty of Veterinary Medicine, St. Cyril and Methodius University, Skopje, North Macedonia
| | | | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
32
|
Cain JL, Slusarewicz P, Rutledge MH, McVey MR, Wielgus KM, Zynda HM, Wehling LM, Scare JA, Steuer AE, Nielsen MK. Diagnostic performance of McMaster, Wisconsin, and automated egg counting techniques for enumeration of equine strongyle eggs in fecal samples. Vet Parasitol 2020; 284:109199. [PMID: 32801106 DOI: 10.1016/j.vetpar.2020.109199] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
Fecal egg counts are the cornerstone of equine parasite control programs. Previous work led to the development of an automated, image-analysis-based parasite egg counting system. The system has been further developed to include an automated reagent dispenser unit and a custom camera (CC) unit that generates higher resolution images, as well as a particle shape analysis (PSA) algorithm and machine learning (ML) algorithm. The first aim of this study was to conduct a comprehensive comparison of method precision between the original smartphone (SP) unit with the PSA algorithm, CC/PSA, CC/ML, and the traditional McMaster (MM) and Wisconsin (MW) manual techniques. Additionally, a Bayesian analysis was performed to estimate and compare sensitivity and specificity of all five methods. Feces were collected from horses, screened with triplicate Mini-FLOTAC counts, and placed into five categories: negative (no eggs seen), > 0 - ≤ 200 eggs per gram (EPG), > 200 - ≤ 500 EPG, > 500 - ≤ 1000 EPG, and > 1000 EPG. Ten replicates per horse were analyzed for each technique. Technical variability for samples > 200 EPG was significantly higher for MM than CC/PSA and CC/ML (p < 0.0001). Biological variability for samples> 0 was numerically highest for CC/PSA, but with samples > 200 EPG, MM had a significantly lower CV than MW (p = 0.001), MW had a significantly lower CV than CC/PSA (p < 0.0001), CC/ML had a significantly lower CV than both MW and SP/PSA (p < 0.0001, p = 0.0003), and CC/PSA had a significantly lower CV than CC/SP (p = 0.0115). Sensitivity was> 98 % for all five methods with no significant differences. Specificity, however, was significantly the highest for CC/PSA, followed numerically by SP/PSA, MM, CC/ML, and finally MW. Overall, the automated counting system is a promising new development in equine parasitology. Continued refinement to the counting algorithms will help improve precision and specificity, while additional research in areas such as egg loss, analyst variability at the counting step, and accuracy will help create a complete picture of its impact as a new fecal egg count method.
Collapse
Affiliation(s)
- Jennifer L Cain
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| | - Paul Slusarewicz
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA; MEP Equine Solutions, 3905 English Oak Circle, Lexington, KY, USA
| | | | - Morgan R McVey
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Kayla M Wielgus
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Haley M Zynda
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Libby M Wehling
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Jessica A Scare
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Ashley E Steuer
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
33
|
Nagamori Y, Hall Sedlak R, DeRosa A, Pullins A, Cree T, Loenser M, Larson BS, Smith RB, Goldstein R. Evaluation of the VETSCAN IMAGYST: an in-clinic canine and feline fecal parasite detection system integrated with a deep learning algorithm. Parasit Vectors 2020; 13:346. [PMID: 32653042 PMCID: PMC7353785 DOI: 10.1186/s13071-020-04215-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/02/2020] [Indexed: 11/26/2022] Open
Abstract
Background Fecal examination is an important component of routine companion animal wellness exams. Sensitivity and specificity of fecal examinations, however, are influenced by sample preparation methodologies and the level of training and experience of personnel who read fecal slides. The VETSCAN IMAGYST system consists of three components: a sample preparation device, a commercially available scanner, and an analysis software. The VETSCAN IMAGYST automated scanner and cloud-based, deep learning algorithm, locates, classifies, and identifies parasite eggs found on fecal microscopic slides. The main study objectives were (i) to qualitatively evaluate the capabilities of the VETSCAN IMAGYST screening system and (ii) to assess and compare the performance of the VETSCAN IMAGYST fecal preparation methods to conventional fecal flotation techniques. Methods To assess the capabilities of VETSCAN IMAGYST screening components, fecal slides were prepared by the VETSCAN IMAGYST centrifugal and passive flotation techniques with 100 pre-screened fecal samples collected from dogs and cats and examined by both the algorithm and parasitologists. To determine the diagnostic sensitivity and specificity of the VETSCAN IMAGYST sample preparation techniques, fecal flotation slides were prepared by four different techniques (VETSCAN IMAGYST centrifugal and passive flotations, conventional centrifugal flotation, and passive flotation using OVASSAY® Plus) and examined by parasitologists. Additionally, required sample preparation and scanning times were estimated on a subset of samples to evaluate VETSCAN IMAGYST ease-of-use. Results The algorithm performance of the VETSCAN IMAGYST closely matched that of the parasitologists, with Pearsonʼs correlation coefficient (r) ranging from 0.83–0.99 across four taxa of parasites, Ancylostoma, Toxocara, Trichuris and Taeniidae. Both VETSCAN IMAGYST centrifugal and passive flotation methods correlated well with conventional preparation methods on all targeted parasites (diagnostic sensitivity of 75.8–100%, specificity of 91.8–100%, qualitative agreement between methods of 93.8–94.5%). Sample preparation, slide scan and image analysis were completed within 10–14 min by VETSCAN IMAGYST centrifugal and passive flotations, respectively. Conclusions The VETSCAN IMAGYST scanning system with the VETSCAN IMAGYST sample preparation methods demonstrated a qualitative match in comparison to the results of parasitologists’ examinations with conventional fecal flotation techniques. The VETSCAN IMAGYST is an easy-to-use, next generation qualitative and possibly quantitative diagnostic platform that brings expert clinical results into the hands of veterinary clinics.![]()
Collapse
Affiliation(s)
- Yoko Nagamori
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Ruth Hall Sedlak
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA.
| | - Andrew DeRosa
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Aleah Pullins
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Travis Cree
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Michael Loenser
- Zoetis, Global Diagnostics, 10 Sylvan Way, Parsippany, NJ, 07054, USA
| | | | | | - Richard Goldstein
- Zoetis, Global Diagnostics, 10 Sylvan Way, Parsippany, NJ, 07054, USA
| |
Collapse
|
34
|
Daş G, Klauser S, Stehr M, Tuchscherer A, Metges CC. Accuracy and precision of McMaster and Mini-FLOTAC egg counting techniques using egg-spiked faeces of chickens and two different flotation fluids. Vet Parasitol 2020; 283:109158. [PMID: 32544762 DOI: 10.1016/j.vetpar.2020.109158] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022]
Abstract
Faecal egg counting techniques (ECTs) are useful tools for assessing anthelmintic efficacy and selecting hosts resistant to parasite infection. McMaster (MM) is one of the most commonly used ECTs, but it suffers from low sensitivity and precision. Mini-FLOTAC (MF) has been proposed to replace MM, but so far has not been evaluated for gastro-intestinal nematode infections in chickens. This study compared sensitivity, precision, and accuracy of MM and MF with two trials using egg-spiked faecal samples ranging from 50-1250 eggs per gram of faeces (EPG). In addition, effects of two flotation fluids with different specific gravities (SG), namely salt (SG = 1.20) and sucrose solutions (SG = 1.32), on accuracy and time-spent for both ECTs were evaluated. Overall sensitivity based on the composite reads across all EPG-levels was 97.1 % for MM and 100 % for MF. MF was, however, more sensitive (P = 0.003) or tended to (P = 0.087) be more sensitive than MM at only the lowest EPG-level (i.e. 50 EPG) using one of the duplicate reads, whereas there was no significant difference at any EPG-level using composite reads. Overall average precision of MF (79.5 %) was higher (P < 0.001) than that of MM (63.4 %) across all EPG-levels. Precision of MM increased from 22 to 87 % with increasing EPG-levels from 50-1250 EPG. Corresponding precision estimates for MF ranged from 76 to 91 %. Overall recovery rate of MM (74.6 %) was significantly higher (P < 0.001) than that of MF (60.1 %). There was no significant difference in recovery rate of spiked-eggs among different EPG-levels (P = 0.833). Recovery rate of MM ranged from 64 % to 79 % across different EPG-levels, while it ranged from 54 % to 64 % with MF without an interaction between ECT and EPG-level (P = 0.701). It took more time (P < 0.001) to process (prepare and read) samples with MF than with MM using the same flotation fluid. The sugar solution tended to (P = 0.100) increase egg-recovery with both ECTs, while increasing (P < 0.001) time-spent for processing the samples. Our data collectively suggest that MM is less sensitive than MF only at around minimum detection level of MM when using unrepeated reads. We conclude that McMaster is faster, relatively more accurate but less precise than Mini-FLOTAC. The sugar solution with higher SG increases accuracy of both techniques at the expense of increased labour time.
Collapse
Affiliation(s)
- Gürbüz Daş
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Stefanie Klauser
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Manuel Stehr
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| |
Collapse
|
35
|
Amadesi A, Bosco A, Rinaldi L, Cringoli G, Claerebout E, Maurelli MP. Cattle gastrointestinal nematode egg-spiked faecal samples: high recovery rates using the Mini-FLOTAC technique. Parasit Vectors 2020; 13:230. [PMID: 32375871 PMCID: PMC7204292 DOI: 10.1186/s13071-020-04107-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/27/2020] [Indexed: 11/24/2022] Open
Abstract
Background Faecal egg count (FEC) techniques are commonly used to detect gastrointestinal nematodes (GINs) in cattle and to determine anthelmintic efficacy/resistance through the faecal egg count reduction test (FECRT). Mini-FLOTAC is one of the techniques recommended for a standardised FEC/FECRT of helminth eggs in cattle. However, only one paper evaluated the recovery rate of GIN eggs by Mini-FLOTAC (compared to McMaster and modified-Wisconsin method) in cattle, using only a level of contamination of 200 eggs per gram (EPG) of faeces and using GIN eggs collected from goat faeces to spike faecal samples from cattle. To further study the recovery rate of GIN eggs from cattle faeces, this study was conducted in two laboratories, one in Belgium and one in Italy to evaluate the sensitivity, accuracy, precision and reproducibility of the Mini-FLOTAC and McMaster techniques (at two reading levels: grids and chambers) for the detection of GIN eggs in spiked bovine faecal samples. Methods In both countries, spiked cattle faecal samples with five different levels of egg contamination (10, 50, 100, 200 and 500 EPG) of GINs were used. The study was performed in both laboratories by the same expert operator and using the same standard operating procedures (SOPs) for the Mini-FLOTAC and McMaster techniques. Sensitivity, accuracy and precision were calculated for each technique and for each level of contamination. Statistical analyses were performed to evaluate differences in performance between the two techniques. Results Mini-FLOTAC had a higher sensitivity (100% at all EPG levels for Mini-FLOTAC vs 0–66.6% for McMaster chambers and grids at levels< 100 EPG), a higher accuracy (98.1% mean value for Mini-FLOTAC vs 83.2% for McMaster grids and 63.8% for McMaster chambers) and a lower coefficient of variation (10.0% for Mini-FLOTAC vs 47.5% for McMaster grids and 69.4% for McMaster chambers) than McMaster. There was no significant difference in the recovery of GIN eggs between the two studies performed in Belgium and in Italy. Conclusions The high GIN egg recovery rate detected by Mini-FLOTAC and the similar results obtained in Belgium and in Italy indicated that the diagnostic performance of a FEC technique was not dependent on the laboratory environment.![]()
Collapse
Affiliation(s)
- Alessandra Amadesi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy.
| | - Antonio Bosco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy
| | - Edwin Claerebout
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Maria Paola Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Naples, Italy
| |
Collapse
|
36
|
Slovis NM, Browne N, Bozorgmanesh R. Point-of-Care Diagnostics in Equine Practice. Vet Clin North Am Equine Pract 2020; 36:161-171. [PMID: 32145834 DOI: 10.1016/j.cveq.2019.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Point-of-care testing (POCT) refers to benchtop diagnostic modalities that have been translated into portable and easy-to-use formats suitable for patient-side use. Recent advances in diagnostic technology have allowed the development of a growing collection of POCT assays available to equine practitioners. Advantages include rapid results that reduce initial guesswork and promote diagnosis-targeted patient care, which may ultimately provide better clinical outcomes. Small handheld devices comprise most POCT technologies, providing qualitative or quantitative determination of an increasing range of analytes, including critical care analyzers and, more recently, hematology and immunology analyzers. This article discusses commercially available equine POCT.
Collapse
Affiliation(s)
- Nathan M Slovis
- Hagyard Equine Medical Institute, McGee Medical Center, 4250 Iron Works Pike, Lexington, KY 40511, USA.
| | - Nimet Browne
- Hagyard Equine Medical Institute, McGee Medical Center, 4250 Iron Works Pike, Lexington, KY 40511, USA
| | - Rana Bozorgmanesh
- Hagyard Equine Medical Institute, McGee Medical Center, 4250 Iron Works Pike, Lexington, KY 40511, USA
| |
Collapse
|
37
|
Slusarewicz M, Slusarewicz P, Nielsen MK. The effect of counting duration on quantitative fecal egg count test performance. Vet Parasitol 2019; 276S:100020. [PMID: 32904743 PMCID: PMC7458370 DOI: 10.1016/j.vpoa.2019.100020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 11/24/2022]
Abstract
Rapid counting reduces McMaster accuracy by 50–60% and precision by one third. Counting only one McMaster grid does not affect accuracy but decreases precision by one third. Automated counting operates with equal accuracy to McMaster but twice the precision. Strongylid ova suspended in sodium nitrate become translucent over time. Increased translucency is associated with a 5% underestimation of egg counts.
Fecal egg counts are the primary diagnostic tools of equine parasitology and use of the McMaster test and its variants in clinical practice is widely recommended. Manual counting is, however, prone to various sources of human error. For example, in real-world situations analysts can be under significant pressure to process high numbers of samples in a limited time. This practice could affect test result quality, but yet no studies have determined whether this is the case. This study’s purpose was to assess the effect of shortened counting duration (from either restricting counting time or counting only one grid of a slide) on McMaster test performance, and to compare the results to those of an automated test whose output is not subject to such limitations. Fifteen fecal samples from horses infected with strongylid parasites were divided equally into three groups based on high, medium and low levels of egg content (201–500, 501–1000 and 1001+ eggs/g). Slurries were produced from each sample and 10 subsamples of each were counted by both the McMaster and automated methods. McMaster slides were first counted at leisure, and then twice again with counting time being restricted to either one or two min. The effect of reducing sample processing time by counting only one grid of the McMaster slide was also assessed. Counting for one min significantly decreased manual egg counts by 50–60% relative to counts conducted at leisure (p < 0.001). While these decreases were somewhat ameliorated by counting for two min, the results were still approximately 10% lower than the at-leisure counts, a difference that was also statistically significant (p < 0.001). Furthermore, restricted counting duration also resulted in a significant decrease of approximately one-third in McMaster test precision, as assessed by the coefficients of variation (CoVs) of the 10 replicates of each sample, as did counting just a single grid of the McMaster slide. These differences effectively further improved the observed superior precision of the automated method compared to at-leisure manual McMaster counting, and the automated counts and their precision remained relatively unaffected following multiple analyses of the same processed samples. Taken together, these results indicate that analysists should carefully assess the possible effects on test performance of modifications to standard egg-counting procedures that are designed to account for real-world pressures, in order to achieve an optimal compromise between test accuracy and precision on one hand and practicality on the other.
Collapse
Affiliation(s)
- Megan Slusarewicz
- MEP Equine Solutions, 3905 English Oak Circle, Lexington, KY 40514, USA
| | - Paul Slusarewicz
- MEP Equine Solutions, 3905 English Oak Circle, Lexington, KY 40514, USA.,M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40546, USA
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40546, USA
| |
Collapse
|
38
|
Pixel by pixel: real-time observation and quantification of passive flotation speeds of three common equine endoparasite egg types. Int J Parasitol 2019; 49:885-892. [PMID: 31545964 DOI: 10.1016/j.ijpara.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 11/23/2022]
Abstract
The efficacy of anthelmintic treatments against populations of endoparasites infecting livestock throughout the world is decreasing. To mitigate this, the use of fecal egg counts is recommended to determine both the necessity, and to ensure the appropriate choice, of anthelmintic treatment. Traditionally, and in order to facilitate easier identification and/or enumeration, samples are analysed after separating eggs from other fecal particulates by exposing them to a solution with a density higher than that of the eggs, but lower than the remaining fecal contents. While many parasite egg flotation protocols exist, little is known about the characteristics of these eggs with respect to their movement through a flotation solution. In this study, we have demonstrated a novel method for the observation and quantification of microscopic (65-100 µm) objects as they experience unassisted flotation. This also represents, to our knowledge for the first time, that the flotation of parasite eggs has been observed and their movement characteristics quantified as they float through solution. Particle tracking and video analysis software were utilised to automatically detect and track the movement of individual eggs as they floated. Three 30 s videos and one 2 min video of each egg type were analysed. If the first 30 s of video were discounted, the differences in mean flotation speed among all videos was statistically significant between egg types (P = 0.0004). Strongyle type eggs (n = 201) moved the fastest with a mean 51.08 µm/s (95% confidence interval: 47.54-54.62). This was followed by Parascaris spp. (n = 131) and Anoplocephala perfoliata eggs (n = 322), with mean speeds of 44.43 µm/s (95% confidence interval: 39.47-49.4) and 31.11 µm/s (95% confidence interval: 29.6-32.61), respectively. This method for evaluating the mean speed of passive flotation may represent a first step towards further optimizing fecal egg flotation and be of interest to parasitologists and veterinary practitioners.
Collapse
|
39
|
Rinaldi L, Amadesi A, Dufourd E, Bosco A, Gadanho M, Lehebel A, Maurelli MP, Chauvin A, Charlier J, Cringoli G, Ravinet N, Chartier C. Rapid assessment of faecal egg count and faecal egg count reduction through composite sampling in cattle. Parasit Vectors 2019; 12:353. [PMID: 31311591 PMCID: PMC6636157 DOI: 10.1186/s13071-019-3601-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/06/2019] [Indexed: 11/22/2022] Open
Abstract
Background Faecal egg counts (FEC) and the FEC reduction test (FECRT) for assessing gastrointestinal nematode (GIN) infection and efficacy of anthelmintics are rarely carried out on ruminant farms because of the cost of individual analyses. The use of pooled faecal samples is a promising method to reduce time and costs, but few studies are available for cattle, especially on the evaluation of different pool sizes and FECRT application. Methods A study was conducted to assess FEC strategies based on pooled faecal samples using different pool sizes and to evaluate the pen-side use of a portable FEC-kit for the assessment of FEC on cattle farms. A total of 19 farms representing 29 groups of cattle were investigated in Italy and France. On each farm, individual faecal samples from heifers were collected before (D0) and two weeks after (D14) anthelmintic treatment with ivermectin or benzimidazoles. FEC were determined individually and as pooled samples using the Mini-FLOTAC technique. Four different pool sizes were used: 5 individual samples, 10 individual samples, global and global on-farm. Correlations and agreements between individual and pooled results were estimated with Spearman’s correlation coefficient and Lin’s concordance correlation coefficients, respectively. Results High correlation and agreement coefficients were found between the mean of individual FEC and the mean of FEC of the different pool sizes when considering all FEC obtained at D0 and D14. However, these parameters were lower for FECR calculation due to a poorer estimate of FEC at D14 from the faecal pools. When using FEC from pooled samples only at D0, higher correlation and agreement coefficients were found between FECR data, the better results being obtained with pools of 5 samples. Interestingly, FEC obtained on pooled samples by the portable FEC-kit on-farm showed high correlation and agreement with FEC obtained on individual samples in the laboratory. This field approach has to be validated on a larger scale to assess its feasibility and reliability. Conclusions The present study highlights that the pooling strategy and the use of portable FEC-kits on-farm are rapid and cost-effective procedures for the assessment of GIN egg excretion and can be used cautiously for FECR calculation following the administration of anthelmintics in cattle.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, CREMOPAR, Napoli, Italy.
| | - Alessandra Amadesi
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, CREMOPAR, Napoli, Italy
| | | | - Antonio Bosco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, CREMOPAR, Napoli, Italy
| | | | | | - Maria Paola Maurelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, CREMOPAR, Napoli, Italy
| | | | | | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, CREMOPAR, Napoli, Italy
| | | | | |
Collapse
|
40
|
Nápravníková J, Petrtýl M, Stupka R, Vadlejch J. Reliability of three common fecal egg counting techniques for detecting strongylid and ascarid infections in horses. Vet Parasitol 2019; 272:53-57. [PMID: 31395205 DOI: 10.1016/j.vetpar.2019.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
The detection and quantification of nematode eggs using fecal egg count techniques have an irreplaceable role in equine parasitic control. The reliability, particularly precision and accuracy, of individual techniques have been described only for strongylid infections. The aim of this study was to compare three fecal egg count techniques used for the detection of the two most common equine nematode infections: strongylid and ascarid. The Simple McMaster, Concentration McMaster and Mini-FLOTAC techniques were tested on spiked fecal samples with various levels of egg concentration (50, 100, 200, 500, 1000 and 3000 eggs per gram) and naturally infected mixed strongylid-ascarid samples with 30 replicates. The Simple McMaster, Concentration McMaster and Mini-FLOTAC techniques had precision coefficients of variation of 44.33, 35.64 and 18.25% for the strongylid infection and 62.95, 35.71 and 18.95% for the ascarid infection, and percent accuracies (mean count/number of eggs spiked) of 97.53, 88.39 and 74.18% for the strongylid infection and 65.53, 83.18 and 90.28% for the ascarid infection, respectively. Accuracy depended greatly on the type of nematode, but precision did not. The Mini-FLOTAC technique was more precise than the Simple and Concentration McMaster techniques regardless of nematode type. Simple McMaster was the most accurate technique for detecting strongylid eggs, and Mini-FLOTAC was the most accurate technique for detecting ascarid eggs. Our results indicated that none of the current techniques were universally and sufficiently reliable for the simultaneous quantification of both of these common equine nematodes.
Collapse
Affiliation(s)
- J Nápravníková
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - M Petrtýl
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - R Stupka
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - J Vadlejch
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic.
| |
Collapse
|
41
|
Effects of homogenizing methods on accuracy and precision of equine strongylid egg counts. Vet Parasitol 2018; 261:91-95. [DOI: 10.1016/j.vetpar.2018.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 11/23/2022]
|
42
|
Bortoluzzi C, Paras KL, Applegate TJ, Verocai GG. Comparison between McMaster and Mini-FLOTAC methods for the enumeration of Eimeria maxima oocysts in poultry excreta. Vet Parasitol 2018; 254:21-25. [PMID: 29657006 DOI: 10.1016/j.vetpar.2018.02.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
Abstract
Monitoring Eimeria shedding has become more important due to the recent restrictions to the use of antibiotics within the poultry industry. Therefore, there is a need for the implementation of more precise and accurate quantitative diagnostic techniques. The objective of this study was to compare the precision and accuracy between the Mini-FLOTAC and the McMaster techniques for quantitative diagnosis of Eimeria maxima oocyst in poultry. Twelve pools of excreta samples of broiler chickens experimentally infected with E. maxima were analyzed for the comparison between Mini-FLOTAC and McMaster technique using, the detection limits (dl) of 23 and 25, respectively. Additionally, six excreta samples were used to compare the precision of different dl (5, 10, 23, and 46) using the Mini-FLOTAC technique. For precision comparisons, five technical replicates of each sample (five replicate slides on one excreta slurry) were read for calculating the mean oocyst per gram of excreta (OPG) count, standard deviation (SD), coefficient of variation (CV), and precision of both aforementioned comparisons. To compare accuracy between the methods (McMaster, and Mini-FLOTAC dl 5 and 23), excreta from uninfected chickens was spiked with 100, 500, 1,000, 5,000, or 10,000 OPG; additional samples remained unspiked (negative control). For each spiking level, three samples were read in triplicate, totaling nine reads per spiking level per technique. Data were transformed using log10 to obtain normality and homogeneity of variances. A significant correlation (R = 0.74; p = 0.006) was observed between the mean OPG of the McMaster dl 25 and the Mini-FLOTAC dl 23. Mean OPG, CV, SD, and precision were not statistically different between the McMaster dl 25 and Mini-FLOTAC dl 23. Despite the absence of statistical difference (p > 0.05), Mini-FLOTAC dl 5 showed a numerically lower SD and CV than Mini-FLOTAC dl 23. The Pearson correlation coefficient revealed significant and positive correlation among the four dl (p ≤ 0.05). In the accuracy study, it was observed that the Mini-FLOTAC dl 5 and 23 were more accurate than the McMaster for 100 OPG, and the Mini-FLOTAC dl 23 had the highest accuracy for 500 OPG. The McMaster and Mini-FLOTAC dl 23 techniques were more accurate than the Mini-FLOTAC dl 5 for 5,000 OPG, and both dl of the Mini-FLOTAC were less accurate for 10,000 OPG counts than the McMaster technique. However, the overall accuracy of the Mini-FLOTAC dl 23 was higher than the McMaster and Mini-FLOTAC dl 5 techniques.
Collapse
Affiliation(s)
- C Bortoluzzi
- Department of Poultry Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, 30602, USA.
| | - K L Paras
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - T J Applegate
- Department of Poultry Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, 30602, USA
| | - G G Verocai
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
43
|
Bosco A, Maurelli MP, Ianniello D, Morgoglione ME, Amadesi A, Coles GC, Cringoli G, Rinaldi L. The recovery of added nematode eggs from horse and sheep faeces by three methods. BMC Vet Res 2018; 14:7. [PMID: 29304858 PMCID: PMC5756441 DOI: 10.1186/s12917-017-1326-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Nematode infections in horses are widespread across the world. Increasing levels of anthelmintic resistance, reported worldwide in equine parasites, have led to the creation of programs for the control of nematodes based on faecal egg counts (FEC). To improve nematode egg counting in equine faecal samples and establish whether the matrix of equine faeces or the eggs affect the counts, the analytical sensitivity, accuracy and precision of Mini-FLOTAC (combined with Fill-FLOTAC), McMaster and Cornell-Wisconsin techniques were compared. Known numbers of eggs extracted from equine or ovine faeces were added to egg free ovine and equine faeces to give counts of 10, 50, 200 and 500 eggs per gram (EPG) of faeces. RESULTS The Cornell-Wisconsin significantly underestimated egg counts and McMaster showed a low analytical sensitivity, revealing 100% of sensitivity only for concentrations greater than 200 EPG. EPG values detected by Mini-FLOTAC did not differ significantly from expected counts at any level of egg density. CONCLUSIONS Mini-FLOTAC combined to Fill-FLOTAC which provides an accurate method of weighing without need for a balance and filtering out debris, could be used for FEC on the farm as well as in the laboratory.
Collapse
Affiliation(s)
- Antonio Bosco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR Campania Region, Naples, Italy
| | - Maria Paola Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR Campania Region, Naples, Italy
| | - Davide Ianniello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR Campania Region, Naples, Italy
| | - Maria Elena Morgoglione
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR Campania Region, Naples, Italy
| | - Alessandra Amadesi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR Campania Region, Naples, Italy
| | - Gerald C. Coles
- University of Bristol, School of Veterinary Sciences, Langford House, Bristol, BS40 5DU UK
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR Campania Region, Naples, Italy
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR Campania Region, Naples, Italy
| |
Collapse
|