1
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Rufino-Moya PJ, Zafra Leva R, Martínez-Moreno Á, Buffoni L, Valderas García E, Pérez Arévalo J, Molina-Hernández V, Ruiz-Campillo MT, Herrera-Torres G, Martínez-Moreno FJ. Advancement in Diagnosis, Treatment, and Vaccines against Fasciola hepatica: A Comprehensive Review. Pathogens 2024; 13:669. [PMID: 39204269 PMCID: PMC11357060 DOI: 10.3390/pathogens13080669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In this review article, we aim to provide an overview of fasciolosis in ruminants. Diagnosis through new coprological methods (such as Flukefinder®, FLOTAC®, and Mini-FLOTAC®) remains the most suitable approach for farms. Regarding treatment, there is a scarcity of available drugs, and resistance to them has prompted new approaches (including drug combinations, enhanced metabolism, or the use of natural compounds) to address this issue. Additionally, several researchers have developed vaccines to control the disease, but their efficacy varies, and none are currently sufficient for commercial use. Further studies are needed to better understand all aspects discussed in this manuscript, with the goal of improving diagnosis, treatment, and disease control. It is important to note that this manuscript does not delve into in-depth knowledge of the discussed aspects; rather, it provides an overview of the different methodologies related to these three aspects of parasitic disease.
Collapse
Affiliation(s)
- Pablo José Rufino-Moya
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
| | - Rafael Zafra Leva
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
| | - Álvaro Martínez-Moreno
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
| | - Leandro Buffoni
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
| | - Elora Valderas García
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24004 León, Spain
| | - José Pérez Arévalo
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain
| | - Verónica Molina-Hernández
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain
| | - María T. Ruiz-Campillo
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain
| | - Guillem Herrera-Torres
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain
| | - Francisco J. Martínez-Moreno
- Animal Health Department (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (P.J.R.-M.); (Á.M.-M.); (L.B.P.); (E.V.G.); (F.J.M.-M.)
- UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Faculty of Veterinary Medicine, University of Córdoba, Sanidad Animal Building, Rabanales Campus, 14014 Córdoba, Spain; (J.P.A.); (V.M.-H.); (M.T.R.-C.); (G.H.-T.)
| |
Collapse
|
3
|
O'Kelly E, Cwiklinski K, De Marco Verissimo C, Calvani NED, López Corrales J, Jewhurst H, Flaus A, Lalor R, Serrat J, Dalton JP, González-Miguel J. Moonlighting on the Fasciola hepatica tegument: Enolase, a glycolytic enzyme, interacts with the extracellular matrix and fibrinolytic system of the host. PLoS Negl Trop Dis 2024; 18:e0012069. [PMID: 39213442 PMCID: PMC11392403 DOI: 10.1371/journal.pntd.0012069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Enolase is a 47 kDa enzyme that functions within the glycolysis and gluconeogenesis pathways involved in the reversible conversion of D-2-phosphoglycerate (2PGA) to phosphoenolpyruvate (PEP). However, in the context of host-pathogen interactions, enolase from different species of parasites, fungi and bacteria have been shown to contribute to adhesion processes by binding to proteins of the host extracellular matrix (ECM), such as fibronectin (FN) or laminin (LM). In addition, enolase is a plasminogen (PLG)-binding protein and induces its activation to plasmin, the main protease of the host fibrinolytic system. These secondary 'moonlighting' functions of enolase are suggested to facilitate pathogen migration through host tissues. This study aims to uncover the moonlighting role of enolase from the parasite Fasciola hepatica, shedding light on its relevance to host-parasite interactions in fasciolosis, a global zoonotic disease of increasing concern. A purified recombinant form of F. hepatica enolase (rFhENO), functioning as an active homodimeric glycolytic enzyme of ~94 kDa, was successfully obtained, fulfilling its canonical role. Immunoblotting studies on adult worm extracts showed that the enzyme is present in the tegument and the excretory/secretory products of the parasite, which supports its key role at the host-parasite interface. Confocal immunolocalisation studies of the protein in newly excysted juveniles and adult worms also localised its expression within the parasite tegument. Finally, we showed by ELISA that rFhENO can act as a parasitic adhesin by binding host LM, but not FN. rFhENO also binds PLG and enhances its conversion to plasmin in the presence of the tissue-type and urokinase-type PLG activators (t-PA and u-PA). This moonlighting adhesion-like function of the glycolytic protein enolase could contribute to the mechanisms by which F. hepatica efficiently invades and migrates within its host and encourages further research efforts that are designed to impede this function by vaccination or drug design.
Collapse
Affiliation(s)
- Eve O'Kelly
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | | | | | - Jesús López Corrales
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Andrew Flaus
- Centre for Chromosome Biology, School of Natural Science, University of Galway, H91 TK33 Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Judit Serrat
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - John P Dalton
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
4
|
Chowdhury S, Ricafrente A, Cwiklinski K, Sais D, Dalton JP, Tran N, Donnelly S. Exploring the utility of circulating miRNAs as diagnostic biomarkers of fasciolosis. Sci Rep 2024; 14:7431. [PMID: 38548871 PMCID: PMC10978983 DOI: 10.1038/s41598-024-57704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024] Open
Abstract
Effective management and control of parasitic infections on farms depends on their early detection. Traditional serological diagnostic methods for Fasciola hepatica infection in livestock are specific and sensitive, but currently the earliest detection of the parasite only occurs at approximately three weeks post-infection. At this timepoint, parasites have already entered the liver and caused the tissue damage and immunopathology that results in reduced body weight and loss in productivity. Here, we investigated whether the differential abundance of micro(mi)miRNAs in sera of F. hepatica-infected sheep has potential as a tool for the early diagnosis of infection. Using miRNA sequencing analysis, we discovered specific profiles of sheep miRNAs at both the pre-hepatic and hepatic infection phases in comparison to non-infected sheep. In addition, six F. hepatica-derived miRNAs were specifically identified in sera from infected sheep. Thus, a panel of differentially expressed miRNAs comprising four sheep (miR-3231-3p; miR133-5p; 3957-5p; 1197-3p) and two parasite miRNAs (miR-124-3p; miR-Novel-11-5p) were selected as potential biomarkers. The expression of these candidates in sera samples from longitudinal sheep infection studies collected between 7 days and 23 weeks was quantified using RT-qPCR and compared to samples from age-matched non-infected sheep. We identified oar-miR-133-5p and oar-miR-3957-5p as promising biomarkers of fasciolosis, detecting infection as early as 7 days. The differential expression of the other selected miRNAs was not sufficient to diagnose infection; however, our analysis found that the most abundant forms of fhe-miR-124-3p in sera were sequence variants (IsomiRs) of the canonical miRNA, highlighting the critical importance of primer design for accurate diagnostic RT-qPCR. Accordingly, this investigative study suggests that certain miRNAs are biomarkers of F. hepatica infection and validates miRNA-based diagnostics for the detection of fasciolosis in sheep.
Collapse
Affiliation(s)
- Sumaiya Chowdhury
- The School of Life Sciences, University of Technology, Sydney, Australia
| | - Alison Ricafrente
- The School of Life Sciences, University of Technology, Sydney, Australia
| | - Krystyna Cwiklinski
- Centre for One Health, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Dayna Sais
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - John P Dalton
- Centre for One Health, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Sheila Donnelly
- The School of Life Sciences, University of Technology, Sydney, Australia.
| |
Collapse
|
5
|
Duan J, Zhang N, Liu S, Li J, Gong P, Wang X, Li X, Zhang X, Tang B, Zhang X. The Detection of Circulating Antigen Glutathione S-Transferase in Sheep Infected with Fasciola hepatica with Double-Antibody Sandwich Signal Amplification Enzyme-Linked Immunosorbent Assay. Animals (Basel) 2024; 14:506. [PMID: 38338149 PMCID: PMC10854876 DOI: 10.3390/ani14030506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Fasciolosis is a global zoonotic parasitic disease caused by F. hepatica infection that is particularly harmful to cattle and sheep. A biotin-streptavidin signal amplification ELISA (streptavidin-ELISA/SA-ELISA) based on circulating antigens can allow for the early detection of F. hepatica-infected animals and is suitable for batch detection. It is considered to be a better means of detecting F. hepatica infection than traditional detection methods. In this study, using the serum of sheep artificially infected with F. hepatica, the cDNA expression library of F. hepatica was screened, 17 immunodominant antigen genes of F. hepatica were obtained, and glutathione s-transferase (GST) was selected as the candidate detection antigen. Firstly, the GST cDNA sequence was amplified from F. hepatica, followed by the preparation of recombinant protein GST (rFhGST). Then, monoclonal and polyclonal antibodies against rFhGST were prepared using the GST protein. Afterward, the immunolocalization of the target protein in the worm was observed via confocal microscopy, and it was found that the GST protein was localized in the uterus, intestinal tract, and body surface of F. hepatica. Finally, a double-antibody sandwich SA-ELISA based on the detection of circulating antigens was established. There was no cross-reaction with positive sera infected with Dicrocoelium lanceatum (D. lanceatum), Haemonchus contortus (H. contortus), Neospora caninum (N. caninum), or Schistosoma japonicum (S. japonicum). Forty serum and fecal samples from the same batch of sheep in Nong'an County, Changchun City, Jilin Province, China were analyzed using the established detection method and fecal detection method. The positive rate of the SA-ELISA was 17.5%, and the positive rate of the fecal detection method was 15%. The detection results of this method were 100% consistent with commercial ELISA kits. A total of 152 sheep serum samples were tested in Nong'an County, Changchun City, Jilin Province, and the positive rate was 5.92%. This study laid the foundation for the development of serological detection preparations for F. hepatica infection based on the detection of circulating antigens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bo Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (J.D.); (N.Z.); (X.L.)
| | - Xichen Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (J.D.); (N.Z.); (X.L.)
| |
Collapse
|
6
|
Ahumada M, Godino A, Guasconi L, Deheza C, Amaranto M, Pruzzo CI, Vitulli-Moya G, Chiapello L, Carrizo ME, Barra JL, Cervi L. Antibody detection against Kunitz-type protein in Fasciola hepatica experimentally infected sheep using enzyme-linked immunosorbent assay (ELISA). Int J Vet Sci Med 2023; 11:126-137. [PMID: 38173987 PMCID: PMC10763594 DOI: 10.1080/23144599.2023.2273678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/18/2023] [Indexed: 01/05/2024] Open
Abstract
Fasciolosis is a parasitic disease considered as emerging and neglected by the WHO. Sheep are highly susceptible to this disease, and affected flocks experience decreased productivity due to increased mortality, and the reduced quality of their products, such as wool and meat. To effectively control this disease, reliable and early diagnosis is essential for making decisions regarding antiparasitic application and/or the removal of affected animals. Currently, the diagnosis of F. hepatica in sheep relies on the detection of parasite eggs in faeces, a method that becomes reliable from week 10 post-infection. Consequently, there is a need for earlier diagnostic tools based on immune response. However, obtaining antigens for antibody detection has proven to be difficult and expensive. The aim of this study was to evaluate members of the Kunitz protein family of F. hepatica expressed in the form of a fusion protein in the serological diagnosis of F. hepatica in sheep. The performance of three recombinant F. hepatica Kunitz-type inhibitors (FhKT1.1, FhKT1.3, and FhKT4) was compared with a synthetic Kunitz-type peptide (sFhKT) in sera from sheep experimentally infected with F. hepatica, using an ELISA. Of these, FhKT1.1 showed the most promising diagnostic indicators, exhibiting high precision and low cross-reactivity, and thus potential for standardized production. The results of our study demonstrated that the application of FhKT1.1 is a valuable tool for early-stage diagnosis of F. hepatica in sheep. Such an early diagnosis can aid in implementing timely interventions and effectively managing the disease in sheep populations.
Collapse
Affiliation(s)
- María Ahumada
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Facultad de Ciencias Agropecuarias, Universidad Católica de Córdoba, Córdoba, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) Estación Experimental Agropecuaria Manfredi, Córdoba, Argentina
| | - Agustina Godino
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Lorena Guasconi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Carla Deheza
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Marilla Amaranto
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Cesar Iván Pruzzo
- Departamento de Epizootiología y Salud Pública, Universidad Nacional de La Plata, La Plata, Argentina
- Centro de Diagnósticos e Investigación Veterinaria (CEDIVE), Universidad Nacional de La Plata, La Plata, Argentina
| | - Gabriel Vitulli-Moya
- Centro de Diagnósticos e Investigación Veterinaria (CEDIVE), Universidad Nacional de La Plata, La Plata, Argentina
| | - Laura Chiapello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Elena Carrizo
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - José Luis Barra
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
7
|
Cwiklinski K, McEvoy A, López Corrales J, Jewhurst H, Calvani NED, De Marco Verissimo C, Dorey AL, Keane OM, Dalton JP, Lalor R. Fasciola hepatica antioxidant and protease-inhibitor cocktail recombinant vaccines administered five times elicit potent and sustained immune responses in sheep but do not confer protection. Vet Parasitol 2023; 323:110049. [PMID: 37826973 DOI: 10.1016/j.vetpar.2023.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Our laboratory's vaccine development strategy against the livestock parasite Fasciola hepatica centres around disrupting key biological processes by combining groups of antigens with similar/complementary functional actions into a single vaccine cocktail. In this study the focus was on antioxidant protein vaccines and a protease inhibitor vaccine aimed at disrupting the parasite's ability to defend against oxidative stress and protease-inhibitor balance, respectively. Two combinations of recombinantly expressed antioxidants were assessed, namely peroxiredoxin (rFhPrx), thioredoxin (rFhTrx) and thioredoxin-glutathione reductase (rFhTGR) (Group 1) and rFhPrx, rFhTrx, and two superoxide dismutases (rFhSOD1 and rFhSOD3) (Group 2). The protease inhibitor vaccine cocktail included representatives of each of the key secreted protease inhibitor families, namely a Kunitz-type inhibitor (rFhKT1), a serpin (rFhSrp1) and a stefin, (rFhStf1) (Group 3). The vaccine combinations were formulated in adjuvant Montanide 61VG administered at five timepoints; two before experimental challenge with 60 F. hepatica metacercariae and three after infection. The vaccine combinations did not reduce the liver fluke burden, and only Group 2 displayed a marginal reduction in egg viability (8.2%). Despite previous results showing an effect of liver fluke vaccines on overall weight gain in infected animals, no significant (P value >0.05) impact on weight gain was observed in this study. Antibodies were elicited against all the vaccine antigens within the cocktails and were maintained at high levels to the end of the trial, due to our strategy of continuing vaccine administration after infection. However, these responses were not boosted by the challenge F. hepatica infection. A comparative analysis with previous vaccine data using a protease inhibitor vaccine found no repeat of the promising outcomes associated with this vaccine, indicating that the addition of rFhSrp1 to the vaccine cocktail did not improve vaccine efficacy. Assessment of liver pathology across the two trials using a modified liver enzyme score (glutamate dehydrogenase to platelet ratio) at eight weeks post infection suggests an association with liver fluke burden above 45 flukes, which could be used to predict liver pathology in future trials. The results reported in this study highlight the ambiguousness in liver fluke vaccine development and the difficulty in obtaining consistent and repeatable protection. This work stresses the need for repetition of trials and the use of sufficiently sized groups to assess vaccine efficacy with adequate statistical power.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK.
| | - Amanda McEvoy
- Animal & Bioscience Department, Teagasc Mellows Campus, Athenry, Co., Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| | - Nichola Eliza Davies Calvani
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| | - Amber Louise Dorey
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| | - Orla M Keane
- Animal & Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| |
Collapse
|
8
|
Gong JZ, Fan YM, Yuan W, Pan M, Liu D, Tao JP, Huang SY. Development of a novel method for diagnosis of fasciolosis based on cathepsin L7 in ruminants. Vet Parasitol 2023; 322:110021. [PMID: 37657153 DOI: 10.1016/j.vetpar.2023.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Fasciolosis is a widely distributed zoonosis reported over 81 countries around the world. Good and early diagnostic method is critical in controlling this disease and prevention of injury to the liver and bile ducts. In this study, we identified a novel member (cathepsin L7) of cathepsin family from Fasciola spp.. Firstly, the biological character of CL7 was analyzed according to the information of cathepsin L family, and then rCL7 was expressed and purified, a new iELISA based on CL7 was developed. The results exhibited CL7 iELISA had 100% sensitivity 100% specificity in sheep (cut-off 1.329) and 100% sensitivity 93.75% specificity in cattle (cut-off 0.756). Moreover, anti-Fasciola CL7 antibodies could be detected in early Fasciola gigantica infected buffaloes, as early as 3 week-post-infection (WPI). In conclusion, it is suggested that CL7 with low cost, early detection, good specificity and sensitivity could be used as a candidate antigen for detection of ruminant fasciolosis.
Collapse
Affiliation(s)
- Jing-Zhi Gong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Yi-Min Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China
| | - Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Dandan Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jian-Ping Tao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
9
|
Corrales JL, McEvoy A, Lalor R, Cwiklinski K, Doyle S, Parkinson M, Keane OM, Dalton JP, Dorey AL. The use of cathepsin L1 (FhCL1) serological ELISA in sentinel screening for liver fluke on sheep farms. Vet Parasitol Reg Stud Reports 2023; 45:100924. [PMID: 37783527 DOI: 10.1016/j.vprsr.2023.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 10/04/2023]
Abstract
Fasciola hepatica is a parasitic helminth (worm) that poses a significant economic threat to the ruminant livestock industry worldwide. The disease, fasciolosis, can result in a range of clinical signs including anaemia, weight loss and death, with the most severe symptoms attributed to early acute infection when the parasite is migrating through the liver. Early diagnosis and intervention are essential for the control and management of the disease to prevent productivity losses. The traditional gold standard method of diagnosis uses faecal egg counts (FEC) that is limited to detecting patent infections from 10 to 12 weeks post infection (WPI). In contrast, serological assays can detect pre-patent infections as we have shown that enzyme-linked immunosorbent assays (ELISA) using the F. hepatica cysteine peptidase cathepsin L1 (FhCL1) can detect liver fluke infections from 3 to 4 WPI. Here, we used FEC and ELISA to monitor liver fluke infections in sentinel lambs from three commercial farms in Ireland from September 2021 to March 2022. All three farms showed a significant increase in FhCL1 antibody levels and FEC over this time, with a substantial rise in positive infection detection between late November and January. However, ELISA screening detected infection at least two months prior to FEC (September). This suggests that the regular screening of sentinel lambs for F. hepatica seroconversion in a "test and treat" approach could mitigate the negative damaging impact of early fasciolosis on flock health, welfare and productivity and inform management strategies. In addition, we show that whole blood samples taken on Whatman® protein saver cards could replace conventional serum blood tubes for blood collection. Cards can be stored at room temperature for long periods of time and samples revisited at any time for re-analysis. The adoption of these cards on farm together with the FhCL1 ELISA would provide a simpler, cost-effective, and eco-friendly method for testing sentinel lambs for liver fluke disease.
Collapse
Affiliation(s)
- Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amanda McEvoy
- Animal & Bioscience Department, Teagasc Mellows Campus, Athenry, Co., Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Ireland
| | | | - Orla M Keane
- Animal & Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amber Louise Dorey
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
10
|
Alvi MA, Khalid A, Ali RMA, Saqib M, Qamar W, Li L, Ahmad B, Fu BQ, Yan HB, Jia WZ. Genetic variation and population structure of Fasciola hepatica: an in silico analysis. Parasitol Res 2023; 122:2155-2173. [PMID: 37458821 DOI: 10.1007/s00436-023-07917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
Fasciola hepatica is a trematode leading to heavy economic setbacks to the livestock sector globally. The population's genetic information and intimate kinship level are frequently assessed using analysis of mitochondrial DNA. In this analysis, we retrieved cox1 (n = 247) and nad1 (n = 357) sequences of F. hepatica from the NCBI GenBank database and aligned the sequences with the respective reference sequences using MEGA software. The median joining network was drawn using PopArt software while neutrality and diversity indices were estimated with the help of DnaSp software. Neighbor-joining phylogenetic tree was constructed using the MEGA software package. A total of 46 and 98 distinctive haplotypes were observed for cox1 and nad1 genes, respectively. Diversity indices indicated high haplotype and nucleotide diversities in both genes. Positive Tajima's D and Fu's Fs values were found for the entire population of both the genes under study. The cox1 and nad1 gene segments in this study showed high Tajima's D values, suggesting a low likelihood of future population growth. The Tajima's D value of the nad1 gene sequence is lower (2.14910) than that of the cox1 gene sequence (3.40314), which suggests that the former is growing at a slower rate. However, the region-wise analysis revealed that both the cox1 and nad1 genes showed deviation from neutrality suggesting a recent population expansion as a result of an excess of low-frequency polymorphism. Furthermore, the overall host-wise analysis showed positive and significant Tajima's D values for the cox1 and nad1 gene sequences. To the best of our knowledge, this is the first attempt to provide insights into genetic variations and population structure of F. hepatica at a global scale using cox1 and nad1 genes. Our findings suggest the existence of specific variants of F. hepatica in different parts of the world and provide information on the molecular ecology of F. hepatica. The results of this study also mark a critical development in upcoming epidemiological investigations on F. hepatica and will also contribute to understanding the global molecular epidemiology and population structure of F. hepatica.
Collapse
Affiliation(s)
- Mughees Aizaz Alvi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Para-Reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Adeel Khalid
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Athar Ali
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saqib
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Warda Qamar
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Li Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Para-Reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Bilal Ahmad
- Faculty of Veterinary and Animal Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Para-Reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Hong-Bin Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Para-Reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Wan-Zhong Jia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Para-Reference Laboratory for Animal Echinococcosis, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
11
|
Bulla-Castañeda DM, Lancheros-Buitrago DJ, García-Corredor DJ, C-Giraldo-Forero J, Pulido-Medellin MO. Seroprevalence and risk factors of bovine fasciolosis in the municipalities of Colombia. Vet World 2023; 16:1293-1300. [PMID: 37577203 PMCID: PMC10421548 DOI: 10.14202/vetworld.2023.1293-1300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Bovine fasciolosis is a reemerging neglected disease with a worldwide distribution caused by the trematode Fasciola spp., which parasitize various hosts. Bovine fasciolosis is responsible for large economic losses in the bovine livestock sector. This study aimed to estimate the seroprevalence and risk factors of bovine fasciolosis in the municipalities of Colombia. Materials and Methods This was a descriptive cross-sectional study with simple random sampling conducted on 1140 cattle from the municipalities of Chiquinquirá, San Miguel de Sema, and Ubaté for a duration of 3 months. Serum samples were processed using the commercial Fasciola hepatica Antibody Test Kit IDEXX® Fasciolosis Verification (IDEXX, United States), which identified immunoglobulin G antibodies for gf2 antigen purified from Fasciola extracts. The f2 antigen is extremely immunogenic and highly specific for F. hepatica. An epidemiological survey was performed to record variables related to the sampled animals and herd management practices. Data were processed using the statistical program Epi Info® (Centers for Disease Control and Prevention; Atlanta, Georgia). The prevalence ratio was estimated to evaluate the association between fasciolosis and the hypothesized causal factors and the significance of this association using Pearson's Chi-square test. Finally, a logistic regression model was developed. Results The overall seroprevalence was 72.3%. The seroprevalence was 83.9% (323/385) in Chiquinquirá, 68.17% (257/377) in Ubaté, and 64.55% (244/378) in San Miguel de Sema. The seroprevalence was higher in male animals in Chiquinquirá and in female animals in San Miguel de Sema and Ubaté. Similarly, sex showed a statistically significant association with disease prevalence in Ubaté. The highest prevalence was found in cattle aged >2 years. The Holstein breed showed maximum seroprevalence in Chiquinquirá (p ≤ 0.05) and San Miguel de Sema, whereas crossbreed showed higher seroprevalence in Ubaté. Similarly, in Chiquinquirá, the association between the seroprevalence of fasciolosis and the presence of other species was statistically significant (95% confidence interval [CI]: 0.9601-3.4944; p = 0.0448). In Ubaté, the disease presentation was also associated with pasture rental (95% CI: 0.4047-1.0023; p = 0.003) and attendance to livestock expositions (95% CI: 0.2313-1.0636; p = 0.044). However, in San Miguel de Sema, water from the stream showed a statistically significant association with disease presentation (95% CI: 0.5209-1.0985; p = 0.00649785). Female sex and diarrhea occurrence were considered risk factors for fasciolosis. Conclusion A high seroprevalence of antibodies to Fasciola spp. was detected in cattle in the study municipalities, indicating a high parasite distribution in these areas. Female sex and diarrhea were established as risk factors associated with fasciolosis in Ubaté and San Miguel de Sema, respectively. Further, research is necessary to establish prevention and control programs against parasitosis.
Collapse
Affiliation(s)
- Diana María Bulla-Castañeda
- Research Group in Veterinary Medicine and Zootechnics, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | | | - Diego Jose García-Corredor
- Research Group in Veterinary Medicine and Zootechnics, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Julio C-Giraldo-Forero
- Research Group in Parasitology and Tropical Microbiology, Biology Program, Universidad INCCA de Colombia, Bogotá, Colombia
- Research Group in Ecoepidemiology and Collective Health, Faculty of Medicine and Health Sciences, Universidad Militar Nueva Granada Bogotá, Colombia
| | - Martin Orlando Pulido-Medellin
- Research Group in Veterinary Medicine and Zootechnics, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
12
|
Ashoor SJ, Wakid MH. Prevalence and hepatic histopathological findings of fascioliasis in sheep slaughtered in Jeddah, Saudi Arabia. Sci Rep 2023; 13:6609. [PMID: 37095133 PMCID: PMC10126202 DOI: 10.1038/s41598-023-33927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
Hepatic fascioliasis is an important parasitic disease responsible for morbidity and mortality in many domestic ruminants, especially sheep, goats, and cattle, due to Fasciola (F.) hepatica and F. gigantica. This study aimed to determine the prevalence of fascioliasis in sheep slaughtered in Jeddah, Saudi Arabia, and to describe the morphological and histopathological changes in the liver. A total of 109,253 sheep slaughtered between July 2017 and July 2018 were screened to assess the prevalence of fascioliasis. The livers were grossly investigated for Fasciola infection and morphological changes. Tissue samples were collected for proper histopathological examinations. Livers of local and imported sheep represented infection rates of 0.67% and 2.12%, respectively, and the highest infection rate was in the spring season. Macroscopically, the affected liver showed hepatomegaly, thickened capsule and discoloration with necrosis, fibrosis, dilation of the bile duct, engorgement of the gallbladder and enlargement of the portal lymph nodes. Microscopic examination showed fibrotic thickening, calcification and hyperplasia of the bile ducts filled with debris, as well as massive hemorrhagic foci. Histopathological examinations of the infected liver showed a central vein region with disturbed parenchyma cells, focal lymphocytic infiltration, elongated endothelial cells, blood sinusoids that showed enlarged Kupffer cells, patches of lysed or necrotic hepatocytes, eosinophil infiltration, lymphocytes and proliferating fibroblast, thickening of hepatic artery and arteriolar walls. We concluded that fascioliasis among sheep slaughtered in Jeddah is not uncommon. The identified histopathological changes in the liver of infected sheep reflect tissue damage, which can lead to significant economic losses for the animals.
Collapse
Affiliation(s)
- Safinaz J Ashoor
- Department of Diagnostic Laboratory, Fakieh Poultry Farm, Jeddah, Saudi Arabia
| | - Majed H Wakid
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P. O. Box 80324, Jeddah, 21589, Saudi Arabia.
- Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia.
| |
Collapse
|
13
|
Two Distinct Superoxidase Dismutases (SOD) Secreted by the Helminth Parasite Fasciola hepatica Play Roles in Defence against Metabolic and Host Immune Cell-Derived Reactive Oxygen Species (ROS) during Growth and Development. Antioxidants (Basel) 2022; 11:antiox11101968. [PMID: 36290692 PMCID: PMC9598480 DOI: 10.3390/antiox11101968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
The antioxidant superoxide dismutase (SOD) catalyses the dismutation of superoxide, a dangerous oxygen free radical, into hydrogen peroxide and molecular oxygen. Superoxide generation during the oxidative burst of the innate immune system is considered a key component of the host defence against invading pathogens. We demonstrate the presence and differential expression of two SODs in Fasciola hepatica, a leaderless cytosolic (FhSOD1) and an extracellular (FhSOD3) form containing a secretory signal peptide, suggesting that the parasites exploit these enzymes in distinct ways to counteract reactive oxygen species (ROS) produced by cellular metabolism and immune defences. Both enzymes are highly expressed by the infective newly excysted juvenile (NEJ) stages and are found in abundance in their excretory–secretory products (ES), but only FhSOD1 is present in adult ES, suggesting that the antioxidants have different functions and pathways of secretion, and are under separate temporal expression control during the migration, growth, and development of the parasite. Functionally, the recombinant FhSOD1 and FhSOD3 exhibit similar activity against superoxide to their mammalian counterparts. Confocal immuno-localisation studies demonstrated the presence of FhSOD1 and FhSOD3 on the NEJ tegument and parenchyma, supporting our suggestion that these enzymes are secreted during host invasion to protect the parasites from the harmful oxidative bursts produced by the activated innate immune response. By producing superoxide enzymatically in vitro, we were able to demonstrate robust killing of F. hepatica NEJ within 24 h post-excystment, and that the lethal effect of ROS was nullified with the addition of SOD and catalase (the antioxidant enzyme responsible for the dismutation of hydrogen peroxide, a by-product of the SOD reaction). This study further elucidates the mechanism by which F. hepatica protects against ROS derived from cellular metabolism and how the parasite could mitigate damage caused by the host’s immune response to benefit its survival.
Collapse
|
14
|
Fasciolosis—An Increasing Challenge in the Sheep Industry. Animals (Basel) 2022; 12:ani12121491. [PMID: 35739828 PMCID: PMC9219500 DOI: 10.3390/ani12121491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Fasciolosis caused by Fasciola hepatica is a serious disease and a huge challenge in the sheep industry. The disease has several clinical manifestations including acute death, anemia, ill-thrift and loss of body condition. Climate change with milder temperatures and heavier rainfall will increase the risk of fasciolosis. Grazing management and treatment with flukicide are at present the only options to restrain F. hepatica infection. However, control possibilities are challenging, and resistance to flukicide drugs is increasing. Diagnostic improvements, targeted treatment and vaccines will hopefully increase animal health and welfare on fluke infested pastures in the future. Abstract The liver fluke Fasciola hepatica may cause severe infection in several mammalian species, including sheep and humans. Fasciolosis is a parasitic disease occurring worldwide in temperate climates and involves intermediate lymnaeid snails as vectors, in Europe the pond snail Galba truncatula in particular. In the sheep industry, the disease is a serious welfare and health problem. Fasciolosis is usually classified as acute, subacute or chronic according to the number and stage of flukes present in the liver, but with a considerable overlap. Acute disease, associated with a large number of migrating larvae, often results in sudden death due to acute and massive hemorrhage, while chronic fasciolosis is characterized by anemia, hypoalbuminaemia and weight loss. The management of fasciolosis is an increasing challenge in the sheep industry. Early diagnostic tests are limited. Protective immunity against liver flukes in sheep is low or lacking, and vaccines are not yet available. Treatment and control possibilities are challenging, and resistance to flukicide drugs is increasing. In addition, climate change with warmer and more humid weather will have a substantial effect on the establishment of both flukes and snails and will most likely increase the future distribution of F. hepatica.
Collapse
|
15
|
Ricafrente A, Cwiklinski K, Nguyen H, Dalton JP, Tran N, Donnelly S. Stage-specific miRNAs regulate gene expression associated with growth, development and parasite-host interaction during the intra-mammalian migration of the zoonotic helminth parasite Fasciola hepatica. BMC Genomics 2022; 23:419. [PMID: 35659245 PMCID: PMC9167548 DOI: 10.1186/s12864-022-08644-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/18/2022] [Indexed: 12/16/2022] Open
Abstract
Background MiRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression in organisms ranging from viruses to mammals. There is great relevance in understanding how miRNAs regulate genes involved in the growth, development, and maturation of the many parasitic worms (helminths) that together afflict more than 2 billion people. Results Here, we describe the miRNAs expressed by each of the predominant intra-mammalian development stages of Fasciola hepatica, a foodborne flatworm that infects a wide range of mammals worldwide, most importantly humans and their livestock. A total of 124 miRNAs were profiled, 72 of which had been previously reported and three of which were conserved miRNA sequences described here for the first time. The remaining 49 miRNAs were novel sequences of which, 31 were conserved with F. gigantica and the remaining 18 were specific to F. hepatica. The newly excysted juveniles express 22 unique miRNAs while the immature liver and mature bile duct stages each express 16 unique miRNAs. We discovered several sequence variant miRNAs (IsomiRs) as well as miRNA clusters that exhibit strict temporal expression paralleling parasite development. Target analysis revealed the close association between miRNA expression and stage-specific changes in the transcriptome; for example, we identified specific miRNAs that target parasite proteases known to be essential for intestinal wall penetration (cathepsin L3). Moreover, we demonstrate that miRNAs fine-tune the expression of genes involved in the metabolic pathways that allow the parasites to move from an aerobic external environment to the anerobic environment of the host. Conclusions These results provide novel insight into the regulation of helminth parasite development and identifies new genes and miRNAs for therapeutic development to limit the virulence and pathogenesis caused by F. hepatica. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08644-z.
Collapse
|
16
|
Cwiklinski K, Drysdale O, López Corrales J, Corripio-Miyar Y, De Marco Verissimo C, Jewhurst H, Smith D, Lalor R, McNeilly TN, Dalton JP. Targeting Secreted Protease/Anti-Protease Balance as a Vaccine Strategy against the Helminth Fasciola hepatica. Vaccines (Basel) 2022; 10:155. [PMID: 35214614 PMCID: PMC8878381 DOI: 10.3390/vaccines10020155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
The liver fluke Fasciola hepatica is an economically important global pathogen of humans and their livestock. To facilitate host invasion and migration, F. hepatica secretes an abundance of cathepsin peptidases but prevents excessive damage to both parasite and host tissues by co-secreting regulatory peptidase inhibitors, cystatins/stefins and Kunitz-type inhibitors. Here, we report a vaccine strategy aimed at disrupting the parasite's protease/anti-protease balance by targeting these key inhibitors. Our vaccine cocktail containing three recombinant stefins (rFhStf-1, rFhStf-2, rFhStf-3) and a Kunitz-type inhibitor (rFhKT1) formulated in adjuvant Montanide 61VG was assessed in two independent sheep trials. While fluke burden was not reduced in either trial, in Trial 1 the vaccinated animals showed significantly greater weight gain (p < 0.05) relative to the non-vaccinated control group. In both trials we observed a significant reduction in egg viability (36-42%). Multivariate regression analyses showed vaccination and increased levels of IgG2 antibodies specific for the F. hepatica peptidase inhibitors were positive indicators for increased weight gain and levels of haemoglobin within the normal range at 16 weeks post-infection (wpi; p < 0.05). These studies point to the potential of targeting peptidase inhibitors as vaccine cocktails for fasciolosis control in sheep.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - Orla Drysdale
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
| | - Yolanda Corripio-Miyar
- Moredun Research Institute, Pentland Science Park, Penicuik, Midlothian EH26 0PZ, UK; (Y.C.-M.); (T.N.M.)
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| | - David Smith
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
- Moredun Research Institute, Pentland Science Park, Penicuik, Midlothian EH26 0PZ, UK; (Y.C.-M.); (T.N.M.)
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
| | - Tom N. McNeilly
- Moredun Research Institute, Pentland Science Park, Penicuik, Midlothian EH26 0PZ, UK; (Y.C.-M.); (T.N.M.)
| | - John P. Dalton
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 DK59 Galway, Ireland; (J.L.C.); (C.D.M.V.); (H.J.); (R.L.); (J.P.D.)
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 5DL, UK; (O.D.); (D.S.)
| |
Collapse
|
17
|
Lalor R, Cwiklinski K, Calvani NED, Dorey A, Hamon S, Corrales JL, Dalton JP, De Marco Verissimo C. Pathogenicity and virulence of the liver flukes Fasciola hepatica and Fasciola Gigantica that cause the zoonosis Fasciolosis. Virulence 2021; 12:2839-2867. [PMID: 34696693 PMCID: PMC8632118 DOI: 10.1080/21505594.2021.1996520] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fasciolosis caused by the liver flukes Fasciola hepatica and Fasciola gigantica is one of the most important neglected parasitic diseases of humans and animals. The ability of the parasites to infect and multiply in their intermediate snail hosts, and their adaptation to a wide variety of mammalian definitive hosts contribute to their high transmissibility and distribution. Within the mammalian host, the trauma caused by the immature flukes burrowing through the liver parenchyma is associated with most of the pathogenesis. Similarly, the feeding activity and the physical presence of large flukes in the bile ducts can lead to anemia, inflammation, obstruction and cholangitis. The high frequency of non-synonymous polymorphisms found in Fasciola spp. genes allows for adaptation and invasion of a broad range of hosts. This is also facilitated by parasite’s excretory-secretory (ES) molecules that mediate physiological changes that allows their establishment within the host. ES contains cathepsin peptidases that aid parasite invasion by degrading collagen and fibronectin. In the bile ducts, cathepsin-L is critical to hemoglobin digestion during feeding activities. Other molecules (peroxiredoxin, cathepsin-L and Kunitz-type inhibitor) stimulate a strong immune response polarized toward a Treg/Th2 phenotype that favors fluke’s survival. Helminth defense molecule, fatty acid binding proteins, Fasciola-specific glycans and miRNAs modulate host pro-inflammatory responses, while antioxidant scavenger enzymes work in an orchestrated way to deter host oxidant-mediated damage. Combining these strategies Fasciola spp. survive for decades within their mammalian host, where they reproduce and spread to become one of the most widespread zoonotic worm parasites in the world.
Collapse
Affiliation(s)
- Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Nichola Eliza Davies Calvani
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amber Dorey
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Siobhán Hamon
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|