1
|
Khalfi P, Denis Z, McKellar J, Merolla G, Chavey C, Ursic-Bedoya J, Soppa L, Szirovicza L, Hetzel U, Dufourt J, Leyrat C, Goldmann N, Goto K, Verrier E, Baumert TF, Glebe D, Courgnaud V, Gregoire D, Hepojoki J, Majzoub K. Comparative analysis of human, rodent and snake deltavirus replication. PLoS Pathog 2024; 20:e1012060. [PMID: 38442126 PMCID: PMC10942263 DOI: 10.1371/journal.ppat.1012060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/15/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
The recent discovery of Hepatitis D (HDV)-like viruses across a wide range of taxa led to the establishment of the Kolmioviridae family. Recent studies suggest that kolmiovirids can be satellites of viruses other than Hepatitis B virus (HBV), challenging the strict HBV/HDV-association dogma. Studying whether kolmiovirids are able to replicate in any animal cell they enter is essential to assess their zoonotic potential. Here, we compared replication of three kolmiovirids: HDV, rodent (RDeV) and snake (SDeV) deltavirus in vitro and in vivo. We show that SDeV has the narrowest and RDeV the broadest host cell range. High resolution imaging of cells persistently replicating these viruses revealed nuclear viral hubs with a peculiar RNA-protein organization. Finally, in vivo hydrodynamic delivery of viral replicons showed that both HDV and RDeV, but not SDeV, efficiently replicate in mouse liver, forming massive nuclear viral hubs. Our comparative analysis lays the foundation for the discovery of specific host factors controlling Kolmioviridae host-shifting.
Collapse
Affiliation(s)
- Pierre Khalfi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Zoé Denis
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Joe McKellar
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Giovanni Merolla
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Carine Chavey
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - José Ursic-Bedoya
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Department of hepato-gastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi University Hospital, Montpellier, France
| | - Lena Soppa
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Leonora Szirovicza
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Jeremy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, Montpellier, France
| | - Cedric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Kaku Goto
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Eloi Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Valérie Courgnaud
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Damien Gregoire
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jussi Hepojoki
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
2
|
Thiyagarajah K, Basic M, Hildt E. Cellular Factors Involved in the Hepatitis D Virus Life Cycle. Viruses 2023; 15:1687. [PMID: 37632029 PMCID: PMC10459925 DOI: 10.3390/v15081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.
Collapse
Affiliation(s)
| | | | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225 Langen, Germany; (K.T.); (M.B.)
| |
Collapse
|
3
|
Bahrulolum H, Tarrahimofrad H, Rouzbahani FN, Nooraei S, Sameh MM, Hajizade A, Ahmadian G. Potential of CRISPR/Cas system as emerging tools in the detection of viral hepatitis infection. Virol J 2023; 20:91. [PMID: 37158910 PMCID: PMC10165583 DOI: 10.1186/s12985-023-02048-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023] Open
Abstract
Viral hepatitis, the most common cause of inflammatory liver disease, affects hundreds of millions of people worldwide. It is most commonly associated with one of the five nominal hepatitis viruses (hepatitis A-E viruses). HBV and HCV can cause acute infections and lifelong, persistent chronic infections, while HAV and HEV cause self-limiting acute infections. HAV and HEV are predominantly transmitted through the fecal-oral route, while diseases transmitted by the other forms are blood-borne diseases. Despite the success in the treatment of viral hepatitis and the development of HAV and HBV vaccines, there is still no accurate diagnosis at the genetic level for these diseases. Timely diagnosis of viral hepatitis is a prerequisite for efficient therapeutic intervention. Due to the specificity and sensitivity of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated sequences (Cas) technology, it has the potential to meet critical needs in the field of diagnosis of viral diseases and can be used in versatile point-of-care (POC) diagnostic applications to detect viruses with both DNA and RNA genomes. In this review, we discuss recent advances in CRISPR-Cas diagnostics tools and assess their potential and prospects in rapid and effective strategies for the diagnosis and control of viral hepatitis infection.
Collapse
Affiliation(s)
- Howra Bahrulolum
- Department of Industrial and Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 1497716316 Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 1497716316 Iran
| | - Fatemeh Nouri Rouzbahani
- Department of Industrial and Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 1497716316 Iran
| | - Saghi Nooraei
- Department of Industrial and Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 1497716316 Iran
| | - Mehdi Mousavi Sameh
- Department of Industrial and Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 1497716316 Iran
| | - Abbas Hajizade
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, 1435916471 Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 1497716316 Iran
| |
Collapse
|
4
|
Khalfi P, Kennedy PT, Majzoub K, Asselah T. Hepatitis D virus: Improving virological knowledge to develop new treatments. Antiviral Res 2023; 209:105461. [PMID: 36396025 DOI: 10.1016/j.antiviral.2022.105461] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Hepatitis delta virus (HDV), a satellite of hepatitis B virus (HBV), possesses the smallest viral genome known to infect animals. HDV needs HBV surface protein for secretion and entry into target liver cells. However, HBV is dispensable for HDV genome amplification, as it relies almost exclusively on cellular host factors for replication. HBV/HDV co-infections affect over 12 million people worldwide and constitute the most severe form of viral hepatitis. Co-infected individuals are at higher risk of developing liver cirrhosis and hepatocellular carcinoma compared to HBV mono-infected patients. Bulevirtide, an entry inhibitor, was conditionally approved in July 2020 in the European Union for adult patients with chronic hepatitis delta (CHD) and compensated liver disease. There are several drugs in development, including lonafarnib and interferon lambda, with different modes of action. In this review, we detail our current fundamental knowledge of HDV lifecycle and review antiviral treatments under development against this virus, outlining their respective mechanisms-of-action. Finally, we describe the antiviral effect these compounds are showing in ongoing clinical trials, discussing their promise and potential pitfalls for managing HDV infected patients.
Collapse
Affiliation(s)
- Pierre Khalfi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France
| | - Patrick T Kennedy
- The Blizard Institute, Queen Mary University of London, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France.
| | - Tarik Asselah
- Université de Paris, Cité CRI, INSERM UMR 1149, Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France.
| |
Collapse
|
5
|
Xue M, Feng T, Chen Z, Yan Y, Chen Z, Dai J. Protein Acetylation Going Viral: Implications in Antiviral Immunity and Viral Infection. Int J Mol Sci 2022; 23:ijms231911308. [PMID: 36232610 PMCID: PMC9570087 DOI: 10.3390/ijms231911308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
During viral infection, both host and viral proteins undergo post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, and acetylation, which play critical roles in viral replication, pathogenesis, and host antiviral responses. Protein acetylation is one of the most important PTMs and is catalyzed by a series of acetyltransferases that divert acetyl groups from acetylated molecules to specific amino acid residues of substrates, affecting chromatin structure, transcription, and signal transduction, thereby participating in the cell cycle as well as in metabolic and other cellular processes. Acetylation of host and viral proteins has emerging roles in the processes of virus adsorption, invasion, synthesis, assembly, and release as well as in host antiviral responses. Methods to study protein acetylation have been gradually optimized in recent decades, providing new opportunities to investigate acetylation during viral infection. This review summarizes the classification of protein acetylation and the standard methods used to map this modification, with an emphasis on viral and host protein acetylation during viral infection.
Collapse
Affiliation(s)
- Minfei Xue
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Soochow University, Suzhou 215025, China
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zhiqiang Chen
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yongdong Yan
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Soochow University, Suzhou 215025, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Soochow University, Suzhou 215025, China
- Correspondence: (Z.C.); (J.D.)
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
- Correspondence: (Z.C.); (J.D.)
| |
Collapse
|
6
|
Zi J, Gao X, Du J, Xu H, Niu J, Chi X. Multiple Regions Drive Hepatitis Delta Virus Proliferation and Are Therapeutic Targets. Front Microbiol 2022; 13:838382. [PMID: 35464929 PMCID: PMC9022428 DOI: 10.3389/fmicb.2022.838382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatitis Delta Virus (HDV) is the smallest mammalian single-stranded RNA virus. It requires host cells and hepatitis B virus (HBV) to complete its unique life cycle. The present review summarizes the specific regions on hepatitis D antigen (HDAg) and hepatitis B surface antigen (HBsAg) that drive HDV to utilize host cell machinery system to produce three types of RNA and two forms of HDAg, and hijack HBsAg for its secretion and de novo entry. Previously, interferon-α was the only recommended therapy for HDV infection. In recent years, some new therapies targeting these regions, such as Bulevirtide, Lonafarnib, Nucleic acid polymers have appeared, with better curative effects and fewer adverse reactions.
Collapse
Affiliation(s)
- Jun Zi
- Gene Therapy Laboratory, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Xiuzhu Gao
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Hongqin Xu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Xiumei Chi
- Gene Therapy Laboratory, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Sánchez-García FJ, Pérez-Hernández CA, Rodríguez-Murillo M, Moreno-Altamirano MMB. The Role of Tricarboxylic Acid Cycle Metabolites in Viral Infections. Front Cell Infect Microbiol 2021; 11:725043. [PMID: 34595133 PMCID: PMC8476952 DOI: 10.3389/fcimb.2021.725043] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Host cell metabolism is essential for the viral replication cycle and, therefore, for productive infection. Energy (ATP) is required for the receptor-mediated attachment of viral particles to susceptible cells and for their entry into the cytoplasm. Host cells must synthesize an array of biomolecules and engage in intracellular trafficking processes to enable viruses to complete their replication cycle. The tricarboxylic acid (TCA) cycle has a key role in ATP production as well as in the synthesis of the biomolecules needed for viral replication. The final assembly and budding process of enveloped viruses, for instance, require lipids, and the TCA cycle provides the precursor (citrate) for fatty acid synthesis (FAS). Viral infections may induce host inflammation and TCA cycle metabolic intermediates participate in this process, notably citrate and succinate. On the other hand, viral infections may promote the synthesis of itaconate from TCA cis-aconitate. Itaconate harbors anti-inflammatory, anti-oxidant, and anti-microbial properties. Fumarate is another TCA cycle intermediate with immunoregulatory properties, and its derivatives such as dimethyl fumarate (DMF) are therapeutic candidates for the contention of virus-induced hyper-inflammation and oxidative stress. The TCA cycle is at the core of viral infection and replication as well as viral pathogenesis and anti-viral immunity. This review highlights the role of the TCA cycle in viral infections and explores recent advances in the fast-moving field of virometabolism.
Collapse
Affiliation(s)
- Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Celia Angélica Pérez-Hernández
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Miguel Rodríguez-Murillo
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | |
Collapse
|
8
|
Lucifora J, Delphin M. Current knowledge on Hepatitis Delta Virus replication. Antiviral Res 2020; 179:104812. [PMID: 32360949 DOI: 10.1016/j.antiviral.2020.104812] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
Hepatitis B Virus (HBV) that infects liver parenchymal cells is responsible for severe liver diseases and co-infection with Hepatitis Delta Virus (HDV) leads to the most aggressive form of viral hepatitis. Even tough being different for their viral genome (relaxed circular partially double stranded DNA for HBV and circular RNA for HDV), HBV and HDV are both maintained as episomes in the nucleus of infected cells and use the cellular machinery for the transcription of their viral RNAs. We propose here an update on the current knowledge on HDV replication cycle that may eventually help to identify new antiviral targets.
Collapse
Affiliation(s)
- Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France.
| | - Marion Delphin
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France
| |
Collapse
|
9
|
Abeywickrama-Samarakoon N, Cortay JC, Sureau C, Müller S, Alfaiate D, Guerrieri F, Chaikuad A, Schröder M, Merle P, Levrero M, Dény P. Hepatitis Delta Virus histone mimicry drives the recruitment of chromatin remodelers for viral RNA replication. Nat Commun 2020; 11:419. [PMID: 31964889 PMCID: PMC6972770 DOI: 10.1038/s41467-020-14299-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/21/2019] [Indexed: 12/26/2022] Open
Abstract
Hepatitis Delta virus (HDV) is a satellite of Hepatitis B virus with a single-stranded circular RNA genome. HDV RNA genome synthesis is carried out in infected cells by cellular RNA polymerases with the assistance of the small hepatitis delta antigen (S-HDAg). Here we show that S-HDAg binds the bromodomain (BRD) adjacent to zinc finger domain 2B (BAZ2B) protein, a regulatory subunit of BAZ2B-associated remodeling factor (BRF) ISWI chromatin remodeling complexes. shRNA-mediated silencing of BAZ2B or its inactivation with the BAZ2B BRD inhibitor GSK2801 impairs HDV replication in HDV-infected human hepatocytes. S-HDAg contains a short linear interacting motif (SLiM) KacXXR, similar to the one recognized by BAZ2B BRD in histone H3. We found that the integrity of the S-HDAg SLiM sequence is required for S-HDAg interaction with BAZ2B BRD and for HDV RNA replication. Our results suggest that S-HDAg uses a histone mimicry strategy to co-activate the RNA polymerase II-dependent synthesis of HDV RNA and sustain HDV replication. Histone mimicry of viral components is a strategy to subvert host factors for virus replication. Here, the authors show that an acetylated histone-like motif of the small Hepatitis Delta Antigen (S-HDAg) interacts with the chromatin remodeler BAZ2B to recruit the DNA-dependent RNA polymerase II for HDV RNA replication.
Collapse
Affiliation(s)
| | - Jean-Claude Cortay
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, INSERM U1134, Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, 75739, Paris, France
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany
| | - Dulce Alfaiate
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France.,Département de Pathologie et Immunologie, Université de Genève, avenue de Champel 41, 1206, Genève, Switzerland.,Department of Infectious and Tropical Diseases, Hôpital de la Croix Rousse, Hospices Civils de Lyon and Université Lyon I, 103 Grande Rue de la Croix-Rousse, 69004, Lyon, France
| | - Francesca Guerrieri
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France.,Italian Institute of Technology (IIT) - Center for Life Nanoscience (CLNS), Sapienza University, Viale Regina Elena, 291, 00161, Rome, Italy
| | - Apirat Chaikuad
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany
| | - Martin Schröder
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany
| | - Philippe Merle
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France.,Department of Hepatology, Hôpital de la Croix Rousse, Hospices Civils de Lyon and Université Lyon I, 103 Grande Rue de la Croix-Rousse, 69004, Lyon, France
| | - Massimo Levrero
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France. .,Italian Institute of Technology (IIT) - Center for Life Nanoscience (CLNS), Sapienza University, Viale Regina Elena, 291, 00161, Rome, Italy. .,Department of Hepatology, Hôpital de la Croix Rousse, Hospices Civils de Lyon and Université Lyon I, 103 Grande Rue de la Croix-Rousse, 69004, Lyon, France.
| | - Paul Dény
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France. .,Laboratoire de Microbiologie Clinique, Groupe des Hôpitaux Universitaires de Paris - Seine Saint Denis, UFR Santé Médecine, Biologie Humaine, Université Paris 13, 125 Rue de Stalingrad, 93009, Bobigny, France.
| |
Collapse
|
10
|
Gilman C, Heller T, Koh C. Chronic hepatitis delta: A state-of-the-art review and new therapies. World J Gastroenterol 2019; 25:4580-4597. [PMID: 31528088 PMCID: PMC6718034 DOI: 10.3748/wjg.v25.i32.4580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic delta hepatitis is the most severe form of viral hepatitis affecting nearly 65 million people worldwide. Individuals with this devastating illness are at higher risk for developing cirrhosis and hepatocellular carcinoma. Delta virus is a defective RNA virus that requires hepatitis B surface antigen for propagation in humans. Infection can occur in the form of a co-infection with hepatitis B, which can be self-limiting, vs superinfection in a patient with established hepatitis B infection, which often leads to chronicity in majority of cases. Current noninvasive tools to assess for advanced liver disease have limited utility in delta hepatitis. Guidelines recommend treatment with pegylated interferon, but this is limited to patients with compensated disease and is efficacious in about 30% of those treated. Due to limited treatment options, novel agents are being investigated and include entry, assembly and export inhibitors of viral particles in addition to stimulators of the host immune response. Future clinical trials should take into consideration the interaction of hepatitis B and hepatitis D as suppression of one virus can lead to the activation of the other. Also, surrogate markers of treatment efficacy have been proposed.
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Coinfection/drug therapy
- Coinfection/epidemiology
- Coinfection/virology
- Drug Therapy, Combination/methods
- Global Burden of Disease
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Surface Antigens/metabolism
- Hepatitis B virus/immunology
- Hepatitis B virus/pathogenicity
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/epidemiology
- Hepatitis B, Chronic/virology
- Hepatitis D, Chronic/drug therapy
- Hepatitis D, Chronic/epidemiology
- Hepatitis D, Chronic/virology
- Hepatitis Delta Virus/immunology
- Hepatitis Delta Virus/pathogenicity
- Humans
- Interferon-alpha/pharmacology
- Interferon-alpha/therapeutic use
- Lipopeptides/pharmacology
- Lipopeptides/therapeutic use
- Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors
- Organic Anion Transporters, Sodium-Dependent/metabolism
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Randomized Controlled Trials as Topic
- Review Literature as Topic
- Superinfection/drug therapy
- Superinfection/epidemiology
- Superinfection/virology
- Symporters/antagonists & inhibitors
- Symporters/metabolism
- Therapies, Investigational/methods
- Treatment Outcome
- Virus Assembly/drug effects
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Christy Gilman
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
11
|
Chang WS, Pettersson JHO, Le Lay C, Shi M, Lo N, Wille M, Eden JS, Holmes EC. Novel hepatitis D-like agents in vertebrates and invertebrates. Virus Evol 2019; 5:vez021. [PMID: 31321078 PMCID: PMC6628682 DOI: 10.1093/ve/vez021] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis delta virus (HDV) is the smallest known RNA virus, encoding a single protein. Until recently, HDV had only been identified in humans, where it is strongly associated with co-infection with hepatitis B virus (HBV). However, the recent discovery of HDV-like viruses in metagenomic samples from birds and snakes suggests that this virus has a far longer evolutionary history. Herein, using additional meta-transcriptomic data, we show that highly divergent HDV-like viruses are also present in fish, amphibians, and invertebrates, with PCR and Sanger sequencing confirming the presence of the invertebrate HDV-like viruses. Notably, the novel viruses identified here share genomic features characteristic of HDV, such as a circular genome of only approximately 1.7 kb in length, and self-complementary, unbranched rod-like structures. Coiled-coil domains, leucine zippers, conserved residues with essential biological functions, and isoelectronic points similar to those in the human hepatitis delta virus antigens (HDAgs) were also identified in the putative non-human viruses. Importantly, none of these novel HDV-like viruses were associated with hepadnavirus infection, supporting the idea that the HDV–HBV association may be specific to humans. Collectively, these data not only broaden our understanding of the diversity and host range of HDV, but also shed light on its origin and evolutionary history.
Collapse
Affiliation(s)
- Wei-Shan Chang
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - John H-O Pettersson
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Callum Le Lay
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Mang Shi
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Michelle Wille
- The Peter Doherty Institute for Infection and Immunity, WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, VIC, Australia
| | - John-Sebastian Eden
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW, Australia
| | - Edward C Holmes
- School of Life and Environmental Sciences and Sydney Medical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Goodrum G, Pelchat M. Insight into the Contribution and Disruption of Host Processes during HDV Replication. Viruses 2018; 11:v11010021. [PMID: 30602655 PMCID: PMC6356607 DOI: 10.3390/v11010021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/18/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis delta virus (HDV) is unique among animal viruses. HDV is a satellite virus of the hepatitis B virus (HBV), however it shares no sequence similarity with its helper virus and replicates independently in infected cells. HDV is the smallest human pathogenic RNA virus and shares numerous characteristics with viroids. Like viroids, HDV has a circular RNA genome which adopts a rod-like secondary structure, possesses ribozyme domains, replicates in the nucleus of infected cells by redirecting host DNA-dependent RNA polymerases (RNAP), and relies heavily on host proteins for its replication due to its small size and limited protein coding capacity. These similarities suggest an evolutionary relationship between HDV and viroids, and information on HDV could allow a better understanding of viroids and might globally help understanding the pathogenesis and molecular biology of these subviral RNAs. In this review, we discuss the host involvement in HDV replication and its implication for HDV pathogenesis.
Collapse
Affiliation(s)
- Gabrielle Goodrum
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
13
|
Abeywickrama-Samarakoon N, Cortay JC, Sureau C, Alfaiate D, Levrero M, Dény P. [Hepatitis delta virus replication and the role of the small hepatitis delta protein S-HDAg]. Med Sci (Paris) 2018; 34:833-841. [PMID: 30451678 DOI: 10.1051/medsci/2018209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is a mammalian defective virus. Its genome is a small single-stranded circular RNA of approximately 1,680 nucleotides. To spread, HDV relies on hepatitis B virus envelope proteins that are needed for viral particle assembly and egress. Severe clinical features of HBV-HDV infection include acute fulminant hepatitis and chronic liver fibrosis leading to cirrhosis and hepatocellular carcinoma. One uniqueness of HDV relies on its genome similarity to viroids, small plant infectious uncoated RNAs. Devoid of viral replicase activity, HDV has to use host DNA-dependant RNA Pol II to replicate its genomic RNA. Thus, one can ask how does this replication occur? We describe first here the major steps of the viral RNA transcription and replication and then we detail the role of the Small HD protein in these processes, especially with regard to the Pol II recruitment.
Collapse
Affiliation(s)
| | - Jean-Claude Cortay
- Inserm, U1052 - UMR CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Camille Sureau
- Laboratoire de virologie moléculaire, Inserm UMR S_1134, Institut National de Transfusion Sanguine, Paris, France
| | - Dulce Alfaiate
- Département de pathologie et immunologie, université de Genève, Suisse
| | - Massimo Levrero
- Inserm, U1052 - UMR CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon, France - Service d'hépato-gastroentérologie, Hôpital de la Croix Rousse, université Lyon-I, France
| | - Paul Dény
- Inserm, U1052 - UMR CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon, France - Laboratoire de microbiologie clinique, groupe des Hôpitaux universitaires de Paris-Seine Saint Denis, UFR santé médecine, biologie humaine, université Paris 13, Bobigny, France
| |
Collapse
|
14
|
Hatakeyama D, Shoji M, Yamayoshi S, Yoh R, Ohmi N, Takenaka S, Saitoh A, Arakaki Y, Masuda A, Komatsu T, Nagano R, Nakano M, Noda T, Kawaoka Y, Kuzuhara T. Influenza A virus nucleoprotein is acetylated by histone acetyltransferases PCAF and GCN5. J Biol Chem 2018; 293:7126-7138. [PMID: 29555684 PMCID: PMC5950015 DOI: 10.1074/jbc.ra117.001683] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/09/2018] [Indexed: 12/22/2022] Open
Abstract
Histone acetylation plays crucial roles in transcriptional regulation and chromatin organization. Viral RNA of the influenza virus interacts with its nucleoprotein (NP), whose function corresponds to that of eukaryotic histones. NP regulates viral replication and has been shown to undergo acetylation by the cAMP-response element (CRE)–binding protein (CBP) from the host. However, whether NP is the target of other host acetyltransferases is unknown. Here, we show that influenza virus NP undergoes acetylation by the two host acetyltransferases GCN5 and P300/CBP-associated factor (PCAF) and that this modification affects viral polymerase activities. Western blot analysis with anti–acetyl-lysine antibody on cultured A549 human lung adenocarcinoma epithelial cells infected with different influenza virus strains indicated acetylation of the viral NP. A series of biochemical analyses disclosed that the host lysine acetyltransferases GCN5 and PCAF acetylate NP in vitro. MS experiments identified three lysine residues as acetylation targets in the host cells and suggested that Lys-31 and Lys-90 are acetylated by PCAF and GCN5, respectively. RNAi-mediated silencing of GCN5 and PCAF did not change acetylation levels of NP. However, interestingly, viral polymerase activities were increased by the PCAF silencing and were decreased by the GCN5 silencing, suggesting that acetylation of the Lys-31 and Lys-90 residues has opposing effects on viral replication. Our findings suggest that epigenetic control of NP via acetylation by host acetyltransferases contributes to regulation of polymerase activity in the influenza A virus.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Rina Yoh
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Naho Ohmi
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Shiori Takenaka
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Ayaka Saitoh
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Yumie Arakaki
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Aki Masuda
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Tsugunori Komatsu
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Rina Nagano
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Masahiro Nakano
- Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Takeshi Noda
- Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan; PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53711
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| |
Collapse
|
15
|
Botelho-Souza LF, Vasconcelos MPA, Dos Santos ADO, Salcedo JMV, Vieira DS. Hepatitis delta: virological and clinical aspects. Virol J 2017; 14:177. [PMID: 28903779 PMCID: PMC5597996 DOI: 10.1186/s12985-017-0845-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
There are an estimated 400 million chronic carriers of HBV worldwide; between 15 and 20 million have serological evidence of exposure to HDV. Traditionally, regions with high rates of endemicity are central and northern Africa, the Amazon Basin, eastern Europe and the Mediterranean, the Middle East and parts of Asia. There are two types of HDV/HBV infection which are differentiated by the previous status infection by HBV for the individual. Individuals with acute HBV infection contaminated by HDV is an HDV/HBV co-infection, while individuals with chronic HBV infection contaminated by HDV represent an HDV/HBV super-infection. The appropriate treatment for chronic hepatitis delta is still widely discussed since it does not have an effective drug. Alpha interferon is currently the only licensed therapy for the treatment of chronic hepatitis D. The most widely used drug is pegylated interferon but only approximately 25% of patients maintain a sustained viral response after 1 year of treatment. The best marker of therapeutic success would be the clearance of HBsAg, but this data is rare in clinical practice. Therefore, the best way to predict a sustained virologic response is the maintenance of undetectable HDV RNA levels.
Collapse
Affiliation(s)
- Luan Felipo Botelho-Souza
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil.
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil.
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil.
| | | | - Alcione de Oliveira Dos Santos
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| | - Juan Miguel Villalobos Salcedo
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| | - Deusilene Souza Vieira
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| |
Collapse
|
16
|
Belyhun Y, Liebert UG, Maier M. Clade homogeneity and low rate of delta virus despite hyperendemicity of hepatitis B virus in Ethiopia. Virol J 2017; 14:176. [PMID: 28899424 PMCID: PMC5596854 DOI: 10.1186/s12985-017-0844-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
Background Although hepatitis B virus (HBV) is hyperendemic and heterogeneous in its genetic diversity in Ethiopia, little is known about hepatitis D virus (HDV) circulating genotypes and molecular diversity. Methods A total of 321 hepatitis B surface antigen (HBsAg) positives (125 HIV co-infected, 102 liver disease patients and 94 blood donors) were screened for anti-HDV antibody. The anti-HDV positive sera were subjected to Real time PCR for HDV-RNA confirmation. The non coding genome region (spanning from 467 to 834 nucleotides) commonly used for HDV genotyping as well as complete HDV genome were sequenced for genotyping and molecular analysis. Results The anti-HDV antibody was found to be 3.2% (3) in blood donors, 8.0% (10) in HIV co-infected individuals and 12.7% (13) in liver disease patients. None of the HIV co-infected patients who revealed HBV lamivudine (3TC) resistance at tyrosine-methionine/isoleucine-aspartate-aspartate (YM(I)DD) reverse transcriptase (RT) motif with concomitant vaccine escape gene mutants was positive for anti-HDV antibody. The HDV viremia rate was 33.3%, 30.0% and 23.1% in respect to the above study groups. All the six isolates sequenced were phylogenetically classified as HDV genotype 1 (HDV-1) and grouped into two monophyletic clusters. Amino acid (aa) residues analysis of clathrin heavy chain (CHC) domain and the isoprenylation signal site (Py) at 19 carboxyl (C)-terminal amino acids (aa 196–214) and the HDV RNA binding domain (aa 79–107) were highly conserved and showed a very little nucleotide variations. All the sequenced isolates showed serine at amino acid position 202. The RNA editing targets of the anti-genomic HDV RNA (nt1012) and its corresponding genomic RNA (nt 580) showed nucleotides A and C, respectively. Conclusions The low seroprevalence and viraemic rates of HDV in particular during HIV-confection might be highly affected by HBV drug resistance selected HBsAg mutant variants in this setting, although HDV-1 sequences analysis revealed clade homogeneity and highly conserved structural and functional domains. Thus, the potential role of HBV drug resistance associated polymerase mutations and concomitant HBsAg protein variability on HDV viral assembly, secretion and infectivity needs further investigation.
Collapse
Affiliation(s)
- Yeshambel Belyhun
- Institute of Virology, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany. .,School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Uwe Gerd Liebert
- Institute of Virology, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Melanie Maier
- Institute of Virology, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| |
Collapse
|
17
|
Alves C, Cheng H, Tavanez JP, Casaca A, Gudima S, Roder H, Cunha C. Structural and nucleic acid binding properties of hepatitis delta virus small antigen. World J Virol 2017; 6:26-35. [PMID: 28573087 PMCID: PMC5437381 DOI: 10.5501/wjv.v6.i2.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/30/2017] [Accepted: 03/02/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To further characterize the structure and nucleic acid binding properties of the 195 amino acid small delta antigen, S-HDAg, a study was made of a truncated form of S-HDAg, comprising amino acids 61-195 (∆60HDAg), thus lacking the domain considered necessary for dimerization and higher order multimerization.
METHODS Circular dichroism, and nuclear magnetic resonance experiments were used to assess the structure of ∆60HDAg. Nucleic acid binding properties were investigated by gel retardation assays.
RESULTS Results showed that the truncated ∆60HDAg protein is intrinsically disordered but compact, whereas the RNA binding domain, comprising residues 94-146, adopts a dynamic helical conformation. We also found that ∆60HDAg fails to multimerize but still contains nucleic acid binding activity, indicating that multimerization is not essential for nucleic acid binding. Moreover, in agreement with what has been previously reported for full-length protein, no apparent specificity was found for the truncated protein regarding nucleic acid binding.
CONCLUSION Taken together these results allowed concluding that ∆60HDAg is intrinsically disordered but compact; ∆60HDAg is not a multimer but is still capable of nucleic acid binding albeit without apparent specificity.
Collapse
|
18
|
|
19
|
Sureau C, Negro F. The hepatitis delta virus: Replication and pathogenesis. J Hepatol 2016; 64:S102-S116. [PMID: 27084031 DOI: 10.1016/j.jhep.2016.02.013] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis delta virus (HDV) is a defective virus and a satellite of the hepatitis B virus (HBV). Its RNA genome is unique among animal viruses, but it shares common features with some plant viroids, including a replication mechanism that uses a host RNA polymerase. In infected cells, HDV genome replication and formation of a nucleocapsid-like ribonucleoprotein (RNP) are independent of HBV. But the RNP cannot exit, and therefore propagate, in the absence of HBV, as the latter supplies the propagation mechanism, from coating the HDV RNP with the HBV envelope proteins for cell egress to delivery of the HDV virions to the human hepatocyte target. HDV is therefore an obligate satellite of HBV; it infects humans either concomitantly with HBV or after HBV infection. HDV affects an estimated 15 to 20 million individuals worldwide, and the clinical significance of HDV infection is more severe forms of viral hepatitis--acute or chronic--, and a higher risk of developing cirrhosis and hepatocellular carcinoma in comparison to HBV monoinfection. This review covers molecular aspects of HDV replication cycle, including its interaction with the helper HBV and the pathogenesis of infection in humans.
Collapse
Affiliation(s)
- Camille Sureau
- Molecular Virology laboratory, Institut National de la Transfusion Sanguine (INTS), CNRS INSERM U1134, Paris, France.
| | - Francesco Negro
- Division of Gastroenterology and Hepatology, University Hospitals, Geneva, Switzerland; Division of Clinical Pathology, University Hospitals, Geneva, Switzerland.
| |
Collapse
|
20
|
Cunha C, Tavanez JP, Gudima S. Hepatitis delta virus: A fascinating and neglected pathogen. World J Virol 2015; 4:313-322. [PMID: 26568914 PMCID: PMC4641224 DOI: 10.5501/wjv.v4.i4.313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/21/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023] Open
Abstract
Hepatitis delta virus (HDV) is the etiologic agent of the most severe form of virus hepatitis in humans. Sharing some structural and functional properties with plant viroids, the HDV RNA contains a single open reading frame coding for the only virus protein, the Delta antigen. A number of unique features, including ribozyme activity, RNA editing, rolling-circle RNA replication, and redirection for a RNA template of host DNA-dependent RNA polymerase II, make this small pathogen an excellent model to study virus-cell interactions and RNA biology. Treatment options for chronic hepatitis Delta are scarce and ineffective. The disease burden is perhaps largely underestimated making the search for new, specific drugs, targets, and treatment strategies an important public health challenge. In this review we address the main features of virus structure, replication, and interaction with the host. Virus pathogenicity and current treatment options are discussed in the light of recent developments.
Collapse
|
21
|
Abstract
This work reviews specific related aspects of hepatitis delta virus (HDV) reproduction, including virion structure, the RNA genome, the mode of genome replication, the delta antigens, and the assembly of HDV using the envelope proteins of its helper virus, hepatitis B virus (HBV). These topics are considered with perspectives ranging from a history of discovery through to still-unsolved problems. HDV evolution, virus entry, and associated pathogenic potential and treatment of infections are considered in other articles in this collection.
Collapse
Affiliation(s)
- John M Taylor
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| |
Collapse
|
22
|
Liu NY, Lee HH, Chang ZF, Tsay YG. Examination of segmental average mass spectra from liquid chromatography-tandem mass spectrometric (LC-MS/MS) data enables screening of multiple types of protein modifications. Anal Chim Acta 2015; 892:115-22. [PMID: 26388481 DOI: 10.1016/j.aca.2015.07.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 01/05/2023]
Abstract
It has been observed that a modified peptide and its non-modified counterpart, when analyzed with reverse phase liquid chromatography, usually share a very similar elution property [1-3]. Inasmuch as this property is common to many different types of protein modifications, we propose an informatics-based approach, featuring the generation of segmental average mass spectra ((sa)MS), that is capable of locating different types of modified peptides in two-dimensional liquid chromatography-mass spectrometric (LC-MS) data collected for regular protease digests from proteins in gels or solutions. To enable the localization of these peptides in the LC-MS map, we have implemented a set of computer programs, or the (sa)MS package, that perform the needed functions, including generating a complete set of segmental average mass spectra, compiling the peptide inventory from the Sequest/TurboSequest results, searching modified peptide candidates and annotating a tandem mass spectrum for final verification. Using ROCK2 as an example, our programs were applied to identify multiple types of modified peptides, such as phosphorylated and hexosylated ones, which particularly include those peptides that could have been ignored due to their peculiar fragmentation patterns and consequent low search scores. Hence, we demonstrate that, when complemented with peptide search algorithms, our approach and the entailed computer programs can add the sequence information needed for bolstering the confidence of data interpretation by the present analytical platforms and facilitate the mining of protein modification information out of complicated LC-MS/MS data.
Collapse
Affiliation(s)
- Nai-Yu Liu
- Institute of Biochemistry & Molecular Biology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsiao-Hui Lee
- Department of Life Science & Institute of Genome Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Zee-Fen Chang
- Institute of Biochemistry & Molecular Biology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yeou-Guang Tsay
- Institute of Biochemistry & Molecular Biology, National Yang-Ming University, Taipei, 112, Taiwan; Proteomics Research Center, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
23
|
Huang CR, Lo SJ. Hepatitis D virus infection, replication and cross-talk with the hepatitis B virus. World J Gastroenterol 2014; 20:14589-14597. [PMID: 25356023 PMCID: PMC4209526 DOI: 10.3748/wjg.v20.i40.14589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 05/12/2014] [Accepted: 06/23/2014] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis remains a worldwide public health problem. The hepatitis D virus (HDV) must either coinfect or superinfect with the hepatitis B virus (HBV). HDV contains a small RNA genome (approximately 1.7 kb) with a single open reading frame (ORF) and requires HBV supplying surface antigens (HBsAgs) to assemble a new HDV virion. During HDV replication, two isoforms of a delta antigen, a small delta antigen (SDAg) and a large delta antigen (LDAg), are produced from the same ORF of the HDV genome. The SDAg is required for HDV replication, whereas the interaction of LDAg with HBsAgs is crucial for packaging of HDV RNA. Various clinical outcomes of HBV/HDV dual infection have been reported, but the molecular interaction between HBV and HDV is poorly understood, especially regarding how HBV and HDV compete with HBsAgs for assembling virions. In this paper, we review the role of endoplasmic reticulum stress induced by HBsAgs and the molecular pathway involved in their promotion of LDAg nuclear export. Because the nuclear sublocalization and export of LDAg is regulated by posttranslational modifications (PTMs), including acetylation, phosphorylation, and isoprenylation, we also summarize the relationship among HBsAg-induced endoplasmic reticulum stress signaling, LDAg PTMs, and nuclear export mechanisms in this review.
Collapse
|
24
|
Cilia M, Johnson R, Sweeney M, DeBlasio SL, Bruce JE, MacCoss MJ, Gray SM. Evidence for lysine acetylation in the coat protein of a polerovirus. J Gen Virol 2014; 95:2321-2327. [PMID: 24939649 PMCID: PMC4165934 DOI: 10.1099/vir.0.066514-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/13/2014] [Indexed: 12/17/2022] Open
Abstract
Virions of the RPV strain of Cereal yellow dwarf virus-RPV were purified from infected oat tissue and analysed by MS. Two conserved residues, K147 and K181, in the virus coat protein, were confidently identified to contain epsilon-N-acetyl groups. While no functional data are available for K147, K181 lies within an interfacial region critical for virion assembly and stability. The signature immonium ion at m/z 126.0919 demonstrated the presence of N-acetyllysine, and the sequence fragment ions enabled an unambiguous assignment of the epsilon-N-acetyl modification on K181. We hypothesize that selection favours acetylation of K181 in a fraction of coat protein monomers to stabilize the capsid by promoting intermonomer salt bridge formation.
Collapse
Affiliation(s)
- Michelle Cilia
- USDA-Agricultural Research Service, Ithaca, NY 14853, USA
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Michelle Sweeney
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Stacy L. DeBlasio
- USDA-Agricultural Research Service, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Stewart M. Gray
- USDA-Agricultural Research Service, Ithaca, NY 14853, USA
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
25
|
Abbas Z, Afzal R. Life cycle and pathogenesis of hepatitis D virus: A review. World J Hepatol 2013; 5:666-675. [PMID: 24409335 PMCID: PMC3879688 DOI: 10.4254/wjh.v5.i12.666] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/06/2013] [Accepted: 11/16/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus which requires the help of hepatitis B virus (HBV) virus for its replication and assembly of new virions. HDV genome contains only one actively transcribed open reading frame which encodes for two isoforms of hepatitis delta antigen. Post-translational modifications of small and large delta antigens (S-HDAg and L-HDAg) involving phosphorylation and isoprenylation respectively confer these antigens their specific properties. S-HDAg is required for the initiation of the viral genome replication, whereas L-HDAg serves as a principal inhibitor of replication and is essential for the assembly of new virion particles. Immune mediation has usually been implicated in HDV-associated liver damage. The pathogenesis of HDV mainly involves interferon-α signaling inhibition, HDV-specific T-lymphocyte activation and cytokine responses, and tumor necrosis factor-alpha and nuclear factor kappa B signaling. Due to limited protein coding capacity, HDV makes use of host cellular proteins to accomplish their life cycle processes, including transcription, replication, post-transcriptional and translational modifications. This intimate host-pathogen interaction significantly alters cell proteome and is associated with an augmented expression of pro-inflammatory, growth and anti-apoptotic factors which explains severe necroinflammation and increased cell survival and an early progression to hepatocellular carcinoma in HDV patients. The understanding of the process of viral replication, HBV-HDV interactions, and etio-pathogenesis of the severe course of HDV infection is helpful in identifying the potential therapeutic targets in the virus life cycle for the prophylaxis and treatment of HDV infection and complications.
Collapse
|
26
|
Hepatitis delta virus: a peculiar virus. Adv Virol 2013; 2013:560105. [PMID: 24198831 PMCID: PMC3807834 DOI: 10.1155/2013/560105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 02/07/2023] Open
Abstract
The hepatitis delta virus (HDV) is distributed worldwide and related to the most severe form of viral hepatitis. HDV is a satellite RNA virus dependent on hepatitis B surface antigens to assemble its envelope and thus form new virions and propagate infection. HDV has a small 1.7 Kb genome making it the smallest known human virus. This deceivingly simple virus has unique biological features and many aspects of its life cycle remain elusive. The present review endeavors to gather the available information on HDV epidemiology and clinical features as well as HDV biology.
Collapse
|
27
|
Huang CR, Wang RYL, Hsu SC, Lo SJ. Lysine-71 in the large delta antigen of hepatitis delta virus clade 3 modulates its localization and secretion. Virus Res 2012; 170:75-84. [PMID: 23022530 DOI: 10.1016/j.virusres.2012.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/30/2012] [Accepted: 08/30/2012] [Indexed: 12/18/2022]
Abstract
Hepatitis delta virus (HDV) is an RNA virus and eight clades of HDV have been identified. HDV clade 3 (HDV-3) is isolated only in the northern area of South America. The outcome of HDV-3 infection is associated with severe fulminant hepatitis. Variations in the large delta antigen (LDAg) between HDV clade 1 (HDV-1) and HDV-3 have been proposed to contribute to differences in viral secretion efficiency, but which changes might be relevant remains unclear. The control of subcellular localization of LDAg has been reported to be associated with post-translational modifications, such as phosphorylation and isoprenylation. We have observed evidence for acetylation on the LDAg of HDV-3 (LDAg-3) and LDAg of HDV-1 (LDAg-1). Green fluorescent protein-fused LDAg-3 (GFP-LD3) was used to investigate the cellular distribution and secretion of the protein. Sequence alignment of LDAg amino acids suggested that lysine-71 of LDAg-3 could be an acetylation site. Expression of a mutant form of LDAg-3 with an arginine-substitution at lysine-71 (GFP-LD3K71R) showed a distribution of the protein predominantly in the cytoplasm instead of the nucleus. Western blot analyses of secreted empty viral particles (EVPs) revealed a higher amount of secreted GFP-LD3K71R compared to GFP-LD3. Furthermore, the ectopic expression of p300, a histone acetyltransferase, led to a reduction of GFP-LD3 in EVPs. By contrast, expression of three histone deacetylases (HDAC-4, -5, and -6) facilitated the secretion of GFP-LD3. Combined, our observations support the hypothesis that the acetylation status of LDAg-3 plays a role in regulating LDAg-3's localization inside the nucleus or cytoplasm, and its secretion.
Collapse
Affiliation(s)
- Chi-Ruei Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | | | | | | |
Collapse
|
28
|
Dastgerdi ES, Herbers U, Tacke F. Molecular and clinical aspects of hepatitis D virus infections. World J Virol 2012; 1:71-8. [PMID: 24175212 PMCID: PMC3782269 DOI: 10.5501/wjv.v1.i3.71] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 05/12/2012] [Accepted: 05/20/2012] [Indexed: 02/05/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective virus with circular, single-stranded genomic RNA which needs hepatitis B virus (HBV) as a helper virus for virion assembly and infectivity. HDV virions are composed of a circular shape HDV RNA and two types of viral proteins, small and large HDAgs, surrounded by HBV surface antigen (HBsAg). The RNA polymerase II from infected hepatocytes is responsible for synthesizing RNAs with positive and negative polarities for HDV, as the virus does not code any enzyme to replicate its genome. HDV occurs as co-infection or super-infection in up to 5% of HBsAg carriers. A recent multi-center study highlighted that pegylated interferon α-2a (PEG-IFN) is currently the only treatment option for delta hepatitis. Nucleotide/nucleoside analogues, which are effective against HBV, have no relevant effects on HDV. However, additional clinical trials combining PEG-IFN and tenofovir are currently ongoing. The molecular interactions between HDV and HBV are incompletely understood. Despite fluctuating patterns of HBV viral load in the presence of HDV in patients, several observations indicate that HDV has suppressive effects on HBV replication, and even in triple infections with HDV, HBV and HCV, replication of both concomitant viruses can be reduced. Additional molecular virology studies are warranted to clarify how HDV interacts with the helper virus and which key cellular pathways are used by both viruses. Further clinical trials are underway to optimize treatment strategies for delta hepatitis.
Collapse
Affiliation(s)
- Elham Shirvani Dastgerdi
- Elham Shirvani Dastgerdi, Ulf Herbers, Frank Tacke, Department of Medicine III, RWTH-University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | |
Collapse
|
29
|
Abstract
Hepatitis D virus (HDV) infection involves a distinct subgroup of individuals simultaneously infected with the hepatitis B virus (HBV) and characterized by an often severe chronic liver disease. HDV is a defective RNA agent needing the presence of HBV for its life cycle. HDV is present worldwide, but the distribution pattern is not uniform. Different strains are classified into eight genotypes represented in specific regions and associated with peculiar disease outcome. Two major specific patterns of infection can occur, i.e. co-infection with HDV and HBV or HDV superinfection of a chronic HBV carrier. Co-infection often leads to eradication of both agents, whereas superinfection mostly evolves to HDV chronicity. HDV-associated chronic liver disease (chronic hepatitis D) is characterized by necro-inflammation and relentless deposition of fibrosis, which may, over decades, result in the development of cirrhosis. HDV has a single-stranded, circular RNA genome. The virion is composed of an envelope, provided by the helper HBV and surrounding the RNA genome and the HDV antigen (HDAg). Replication occurs in the hepatocyte nucleus using cellular polymerases and via a rolling circle process, during which the RNA genome is copied into a full-length, complementary RNA. HDV infection can be diagnosed by the presence of antibodies directed against HDAg (anti-HD) and HDV RNA in serum. Treatment involves the administration of pegylated interferon-α and is effective in only about 20% of patients. Liver transplantation is indicated in case of liver failure.
Collapse
Affiliation(s)
- Stéphanie Pascarella
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
30
|
GCN5-dependent acetylation of HIV-1 integrase enhances viral integration. Retrovirology 2010; 7:18. [PMID: 20226045 PMCID: PMC2848186 DOI: 10.1186/1742-4690-7-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 03/12/2010] [Indexed: 11/24/2022] Open
Abstract
Background An essential event during the replication cycle of HIV-1 is the integration of the reverse transcribed viral DNA into the host cellular genome. Our former report revealed that HIV-1 integrase (IN), the enzyme that catalyzes the integration reaction, is positively regulated by acetylation mediated by the histone acetyltransferase (HAT) p300. Results In this study we demonstrate that another cellular HAT, GCN5, acetylates IN leading to enhanced 3'-end processing and strand transfer activities. GCN5 participates in the integration step of HIV-1 replication cycle as demonstrated by the reduced infectivity, due to inefficient provirus formation, in GCN5 knockdown cells. Within the C-terminal domain of IN, four lysines (K258, K264, K266, and K273) are targeted by GCN5 acetylation, three of which (K264, K266, and K273) are also modified by p300. Replication analysis of HIV-1 clones carrying substitutions at the IN lysines acetylated by both GCN5 and p300, or exclusively by GCN5, demonstrated that these residues are required for efficient viral integration. In addition, a comparative analysis of the replication efficiencies of the IN triple- and quadruple-mutant viruses revealed that even though the lysines targeted by both GCN5 and p300 are required for efficient virus integration, the residue exclusively modified by GCN5 (K258) does not affect this process. Conclusions The results presented here further demonstrate the relevance of IN post-translational modification by acetylation, which results from the catalytic activities of multiple HATs during the viral replication cycle. Finally, this study contributes to clarifying the recent debate raised on the role of IN acetylated lysines during HIV-1 infection.
Collapse
|
31
|
Interaction of host cellular proteins with components of the hepatitis delta virus. Viruses 2010; 2:189-212. [PMID: 21994607 PMCID: PMC3185554 DOI: 10.3390/v2010189] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 12/18/2022] Open
Abstract
The hepatitis delta virus (HDV) is the smallest known RNA pathogen capable of propagation in the human host and causes substantial global morbidity and mortality. Due to its small size and limited protein coding capacity, HDV is exquisitely reliant upon host cellular proteins to facilitate its transcription and replication. Remarkably, HDV does not encode an RNA-dependent RNA polymerase which is traditionally required to catalyze RNA-templated RNA synthesis. Furthermore, HDV lacks enzymes responsible for post-transcriptional and -translational modification, processes which are integral to the HDV life cycle. This review summarizes the known HDV-interacting proteins and discusses their significance in HDV biology.
Collapse
|
32
|
Phosphorylation of serine 177 of the small hepatitis delta antigen regulates viral antigenomic RNA replication by interacting with the processive RNA polymerase II. J Virol 2009; 84:1430-8. [PMID: 19923176 DOI: 10.1128/jvi.02083-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent studies revealed that posttranslational modifications (e.g., phosphorylation and methylation) of the small hepatitis delta antigen (SHDAg) are required for hepatitis delta virus (HDV) replication from antigenomic to genomic RNA. The phosphorylation of SHDAg at serine 177 (Ser(177)) is involved in this step, and this residue is crucial for interaction with RNA polymerase II (RNAP II), the enzyme assumed to be responsible for antigenomic RNA replication. This study demonstrated that SHDAg dephosphorylated at Ser(177) interacted preferentially with hypophosphorylated RNAP II (RNAP IIA), which generally binds at the transcription initiation sites. In contrast, the Ser(177)-phosphorylated counterpart (pSer(177)-SHDAg) exhibited preferential binding to hyperphosphorylated RNAP II (RNAP IIO). In addition, RNAP IIO associated with pSer(177)-SHDAg was hyperphosphorylated at both the Ser(2) and Ser(5) residues of its carboxyl-terminal domain (CTD), which is a hallmark of the transcription elongation isoform. Moreover, the RNAP II CTD kinase inhibitor 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB) not only blocked the interaction between pSer(177)-SHDAg and RNAP IIO but also inhibited HDV antigenomic RNA replication. Our results suggest that the phosphorylation of SHDAg at Ser177 shifted its affinitytoward the RNAP IIO isoform [corrected] and thus is a switch for HDV antigenomic RNA replication from the initiation to the elongation stage.
Collapse
|
33
|
Hepatitis delta virus RNA replication. Viruses 2009; 1:818-31. [PMID: 21994571 PMCID: PMC3185533 DOI: 10.3390/v1030818] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 12/12/2022] Open
Abstract
Hepatitis delta virus (HDV) is a distant relative of plant viroids in the animal world. Similar to plant viroids, HDV replicates its circular RNA genome using a double rolling-circle mechanism. Nevertheless, the production of hepatitis delta antigen (HDAg), which is indispensible for HDV replication, is a unique feature distinct from plant viroids, which do not encode any protein. Here the HDV RNA replication cycle is reviewed, with emphasis on the function of HDAg in modulating RNA replication and the nature of the enzyme involved.
Collapse
|
34
|
Abstract
Hepatitis delta antigen (HDAg) is a nuclear protein that is intimately involved in hepatitis delta virus (HDV) RNA replication. HDAg consists of two protein species, the small form (S-HDAg) and the large form (L-HDAg). Previous studies have shown that posttranslational modifications of S-HDAg, such as phosphorylation, acetylation, and methylation, can modulate HDV RNA replication. In this study, we show that S-HDAg is a small ubiquitin-like modifier 1 (SUMO1) target protein. Mapping data showed that multiple lysine residues are SUMO1 acceptors within S-HDAg. Using a genetic fusion strategy, we found that conjugation of SUMO1 to S-HDAg selectively enhanced HDV genomic RNA and mRNA synthesis but not antigenomic RNA synthesis. This result supports our previous proposition that the cellular machinery involved in the synthesis of HDV antigenomic RNA is different from that for genomic RNA synthesis and mRNA transcription, requiring different modified forms of S-HDAg. Sumoylation represents a new type of modification for HDAg.
Collapse
|
35
|
Wang YC, Huang CR, Chao M, Lo SJ. The C-terminal sequence of the large hepatitis delta antigen is variable but retains the ability to bind clathrin. Virol J 2009; 6:31. [PMID: 19284884 PMCID: PMC2661055 DOI: 10.1186/1743-422x-6-31] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 03/16/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis delta virus (HDV) is a defected RNA virus and requires its encoded large antigen (LDAg) to interact with helper viral proteins (HBsAgs) during assembly. Recently, a study demonstrated a direct binding of the LDAg C-terminus from genotype I HDV to the clathrin heavy chain (CHC), which suggests that this interaction might facilitate HDV assembly. If LDAg binding to clathrin is essential to HDV life cycle, a clathrin box sequence at the C-terminus of LDAg should be conserved across all HDV. However, the C-terminal sequence of LDAg is variable among 43 HDV isolates. RESULTS Based on the presence and location of clathrin box at the C-terminus of LDAg from 43 isolates of HDV, we classified them into three groups. Group 1 (13 isolates) and 2 (26 isolates) contain a clathrin box located at amino acids 199-203 and 206-210, respectively, as found in genotype I and genotype II. Group 3 (4 isolates) contains no clathrin box as found in genotype III. CHC binding by three different LDAg (genotype I to III) was then tested by in vivo and in vitro experiments. Transfection of plasmids which encode fusion proteins of EGFP and full-length of LDAg from three genotypes into HuH-7 cells, a human hepatoma cell line, was performed. GFP-pull down assays showed that a full-length of CHC was co-precipitated by EGFP-LDI, -LDII and -LDIII but not by EGFP. Further in vitro studies showed a full-length or fragment (amino acids 1 to 107) of CHC can be pull-down by 13-amino-acid peptides of LDAg from three genotypes of HDV. CONCLUSION Both in vivo and in vitro studies showed that CHC can bind to various sequences of LDAg from the three major genotypes of HDV. We therefore suggest that the clathrin-LDAg interaction is essential to the HDV life-cycle and that sequences binding to clathrin are evolutionarily selected, but nonetheless show the diversity across different HDV genotypes.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- Department of Microbiology, Graduate Institute of Biomedical Science, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | | | | | | |
Collapse
|
36
|
Transcription of subgenomic mRNA of hepatitis delta virus requires a modified hepatitis delta antigen that is distinct from antigenomic RNA synthesis. J Virol 2008; 82:9409-16. [PMID: 18653455 DOI: 10.1128/jvi.00428-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) contains a viroid-like, 1.7-kb circular RNA genome, which replicates via a double-rolling-circle model. However, the exact mechanism involved in HDV genome RNA replication and subgenomic mRNA transcription is still unclear. Our previous studies have shown that the replications of genomic and antigenomic HDV RNA strands have different sensitivities to alpha-amanitin and are associated with different nuclear bodies, suggesting that these two strands are synthesized in different transcription machineries in the cells. In this study, we developed a unique quantitative reverse transcription-PCR (qRT-PCR) procedure for detection of various HDV RNA species from an RNA transfection system. Using this qRT-PCR procedure and a series of HDV mutants, we demonstrated that Arg-13 methylation, Lys-72 acetylation, and Ser-177 phosphorylation of small hepatitis delta antigen (S-HDAg) are important for HDV mRNA transcription. In addition, these three S-HDAg modifications are dispensable for antigenomic RNA synthesis but are required for genomic RNA synthesis. Furthermore, the three RNA species had different sensitivities to acetylation and deacetylation inhibitors, showing that the metabolic requirements for the synthesis of HDV antigenomic RNA are different from those for the synthesis of genomic RNA and mRNA. In sum, our data support the hypothesis that the cellular machinery involved in the synthesis of HDV antigenomic RNA is different from that of genomic RNA synthesis and mRNA transcription, even though the antigenomic RNA and the mRNA are made from the same RNA template. We propose that acetylation and deacetylation of HDAg may provide a molecular switch for the synthesis of the different HDV RNA species.
Collapse
|
37
|
Wu HY, Huang FY, Chang YC, Hsieh MC, Liao PC. Strategy for determination of in vitro protein acetylation sites by using isotope-labeled acetyl coenzyme A and liquid chromatography-mass spectrometry. Anal Chem 2008; 80:6178-89. [PMID: 18616279 DOI: 10.1021/ac800440r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acetylation of proteins on specific lysine residues by acetyltransferase enzymes is a post-translational modification for biologically relevant regulation. In this study, we proposed a strategy to determine the in vitro acetylation sites of proteins by tracing isotope-labeled acetyl groups using mass spectrometry. Isotope-labeled and unlabeled acetyl groups transferred onto the substrates in vitro result in a specific "mass difference" that can be measured by MS analysis and utilized for localization of potential acetylated peptide signals. The identification of acetylation site is facilitated by conducting MS/MS experiments on those selected signals. Acetylation reactions of substrates were performed in the presence of acetyltransferase and equal molar of isotope-labeled acetyl coenzyme A ([(13)C2-2-D3]-acetyl-CoA) and unlabeled acetyl-CoA. After enzymatic digestion, the resulting peptide mixture was fractionated by off-line, reversed-phase high-pressure liquid chromatography and the accurate mass measurement of peptides was achieved by a quadrupole/time-of-flight mass spectrometer. Signals with 5-Da (or their multiples) mass differences and equal responses were selected out by program computation. Those potential acetylated peptide signals were subjected to MS/MS analyses for determination of acetylation sites. We have used histone H3 peptide (aa 1-20), histone H2B peptide (aa 1-21), histone H2A, and histone H2B proteins as the model compounds to demonstrate the applicability of this analytical scheme for the characterization of in vitro acetylation sites.
Collapse
Affiliation(s)
- Hsin-Yi Wu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Transcription factor YY1 and its associated acetyltransferases CBP and p300 interact with hepatitis delta antigens and modulate hepatitis delta virus RNA replication. J Virol 2008; 82:7313-24. [PMID: 18480431 DOI: 10.1128/jvi.02581-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis delta virus (HDV) is a pathogenic RNA virus with a plant viroid-like genome structure. HDV encodes two isoforms of delta antigen (HDAg), the small and large forms of HDAg (SHDAg and LHDAg), which are essential for HDV RNA replication and virion assembly, respectively. Replication of HDV RNA depends on host cellular transcription machinery, and the exact molecular mechanism for HDV RNA replication is still unclear. In this study, we demonstrated that both isoforms of HDAg interact with transcription factor YY1 (Yin Yang 1) in vivo and in vitro. Their interaction domains were identified as the middle region encompassing the RNA binding domain of HDAg and the middle GA/GK-rich region and the C-terminal zinc-finger region of YY1. Results of sucrose gradient centrifugation analysis indicated the cosedimentation of the majority of SHDAg and a portion of the LHDAg with YY1 and its associated acetyltransferases CBP (CREB-binding protein) and p300 as a large nuclear complex in vivo. Furthermore, exogenous expression of YY1 or CBP/p300 in HDV RNA replication system showed an enhancement of HDV RNA replication. Interestingly, the acetyltransferase activity of p300 is important for this enhancement. Moreover, SHDAg could be acetylated in vivo, and treatment with cellular deacetylase inhibitor elevated the replication of HDV RNA and acetylation of SHDAg. All together, our results reveal that HDAg interacts with cellular transcription factor YY1 and its associated acetyltransferases CBP and p300 in a large nuclear complex, which in turn modulates the replication of HDV RNA.
Collapse
|
39
|
Nucleolar targeting of hepatitis delta antigen abolishes its ability to initiate viral antigenomic RNA replication. J Virol 2007; 82:692-9. [PMID: 17989182 DOI: 10.1128/jvi.01155-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatitis delta virus (HDV) is a small RNA virus that contains one 1.7-kb single-stranded circular RNA of negative polarity. The HDV particle also contains two isoforms of hepatitis delta antigen (HDAg), small (SHDAg) and large HDAg. SHDAg is required for the replication of HDV, which is presumably carried out by host RNA-dependent RNA polymerases. The localization and the HDAg and host RNA polymerase responsible for HDV replication remain important issues to be addressed. In this study, using recombinant SHDAg fused with a heterologous nucleolar localization sequence (NoLS) to confine its subcellular localization in nucleoli, we aimed to study the effect of SHDAg subcellular localization on HDV RNA replication. The initiation of genomic RNA synthesis from antigenomic template was hardly detectable when SHDAg was fused with the NoLS motif and localized mainly in nucleoli. In contrast, the initiation of antigenomic RNA synthesis was not affected. Drug treatment to release a SHDAg-NoLS mutant from nucleoli could partially restore the replication of HDV genomic RNA from antigenomic RNA. This also recovered the cointeraction between SHDAg and RNA polymerase II. These data strongly suggest that nuclear polymerase (RNA polymerase II) is involved in the synthesis of genomic RNA and that the synthesis of antigenomic RNA can occur in nucleoli. Our results support the idea that the replication of HDV genomic RNA or antigenomic RNA is likely to be carried out by different machineries in different subcellular localizations.
Collapse
|
40
|
Abstract
HDV replicates its circular RNA genome using a double rolling-circle mechanism and transcribes a hepatitis delta antigen-encodeing mRNA from the same RNA template during its life cycle. Both processes are carried out by RNA-dependent RNA synthesis despite the fact that HDV does not encode an RNA-dependent RNA polymerase (RdRP). Cellular RNA polymerase II has long been implicated in these processes. Recent findings, however, have shown that the syntheses of genomic and antigenomic RNA strands have different metabolic requirements, including sensitives to alpha-amanitin and the site of synthesis. Evidence is summarized here for the involvement of other cellular polymerases, probably pol I, in the synthesis of antigenomic RNA strand. The ability of mammalian cells to replicate HDV RNA implies that RNA-dependent RNA synthesis was preserved throughout evolution.
Collapse
Affiliation(s)
- T B Macnaughton
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | | |
Collapse
|
41
|
Huang WH, Chen CW, Wu HL, Chen PJ. Post-translational modification of delta antigen of hepatitis D virus. Curr Top Microbiol Immunol 2006; 307:91-112. [PMID: 16903222 DOI: 10.1007/3-540-29802-9_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis delta virus (HDV) genome has only one open reading frame, which encodes the viral small delta antigen. After RNA editing, the same open reading frame is extended 19 amino acids at the carboxyl terminus and encodes the large delta antigen. These two viral proteins escort the HDV genome through different cellular compartments for the complicated phases of replication, transcription and, eventually, the formation of progeny virions. To orchestrate these events, the delta antigens have to take distinct cues to traffic to the right compartments and make correct molecular contacts. In eukaryotes, post-translational modification (PTM) is a major mechanism of dictating the multiple functions of a single protein. Multiple PTMs, including phosphorylation, isoprenylation, acetylation, and methylation, have been identified on hepatitis delta antigens. In this chapter we review these PTMs and discuss their functions in regulating and coordinating the life cycle of HDV.
Collapse
Affiliation(s)
- W H Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, and Hepatitis Research Center, National Taiwan University Hospital, Taipei
| | | | | | | |
Collapse
|
42
|
Huang IC, Chien CY, Huang CR, Lo SJ. Induction of hepatitis D virus large antigen translocation to the cytoplasm by hepatitis B virus surface antigens correlates with endoplasmic reticulum stress and NF-kappaB activation. J Gen Virol 2006; 87:1715-1723. [PMID: 16690938 DOI: 10.1099/vir.0.81718-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is known that hepatitis D virus (HDV) requires hepatitis B virus (HBV) for supplying envelope proteins (HBsAgs) to produce mature virions, and the HDV large antigen (LDAg) is responsible for interacting with HBsAgs. However, the signal molecules involved in the cross-talk between HBsAgs and LDAg have never been reported. It has been previously demonstrated that the small form of HBsAg can facilitate the translocation of HDV large antigen green fluorescent protein (GFP) fusion protein (GFP-LD) from the nucleus to the cytoplasm. In this study, it was confirmed that the small form of HBsAg can facilitate both GFP-LD and authentic LDAg for nuclear export. It was also shown that the three forms of HBsAgs (large, middle and small) induced various rates (from 35.4 to 57.2%) of GFP-LD nuclear export. Since HBsAgs are localized inside the endoplasmic reticulum (ER), this suggests that ER stress possibly initiates the signal for inducing LDAg translocation. This supposition is supported by results that show that around 9% of cells appear with GFP-LD in the cytoplasm after treatment with the ER stress inducers, brefeldin A (BFA) and tunicamycin, in the absence of HBsAg. Western blot and immunofluorescence microscopy results further showed that the activation of NF-kappaB is linked to the ER stress that induces GFP-LD translocation. Combining this with results showing that tumour necrosis factor alpha (TNF-alpha) can also induce GFP-LD translocation, it was concluded that LDAg translocation correlates with ER stress and activation of NF-kappaB. Nevertheless, TNF-alpha-induced GFP-LD translocation was independent of new protein synthesis, suggesting that a post-translational event occurs to GFP-LD to allow translocation.
Collapse
Affiliation(s)
- I-Cheng Huang
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan, Taiwan 333, Republic of China
| | - Chia-Ying Chien
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan, Taiwan 333, Republic of China
| | - Chi-Ruei Huang
- Graduate Institute of Biomedical Sciences and Department of Life Science, Chang Gung University, Tao-Yuan, Taiwan 333, Republic of China
| | - Szecheng J Lo
- Graduate Institute of Biomedical Sciences and Department of Life Science, Chang Gung University, Tao-Yuan, Taiwan 333, Republic of China
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan, Taiwan 333, Republic of China
| |
Collapse
|
43
|
Li YJ, Macnaughton T, Gao L, Lai MMC. RNA-templated replication of hepatitis delta virus: genomic and antigenomic RNAs associate with different nuclear bodies. J Virol 2006; 80:6478-86. [PMID: 16775335 PMCID: PMC1488965 DOI: 10.1128/jvi.02650-05] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lacking an RNA-dependent RNA polymerase, hepatitis delta virus (HDV), which contains a circular RNA of 1.7 kilobases, is nonetheless able to replicate its RNA by use of cellular transcription machineries. Previously, we have shown that the replications of genomic- and antigenomic-strand HDV RNAs have different sensitivities to alpha-amanitin, suggesting that these two strands are synthesized in different transcription machineries in the cells, but the nature of these transcription machineries is not clear. In this study, we performed metabolic labeling and immunofluorescence staining of newly synthesized HDV RNA with bromouridine after HDV RNA transfection into hepatocytes and confirmed that HDV RNA synthesis had both alpha-amanitin-sensitive and -resistant components. The antigenomic RNA labeling was alpha-amanitin resistant and localized to the nucleolus. The genomic RNA labeling was alpha-amanitin sensitive and more diffusely localized in the nucleoplasm. Most of the genomic RNA labeling appeared to colocalize with the PML nuclear bodies. Furthermore, promyelocytic leukemia protein, RNA polymerase II (Pol II), and the Pol I-associated transcription factor SL1 could be precipitated together with hepatitis delta antigen, suggesting the association of HDV replication complex with the Pol I and Pol II transcription machineries. This conclusion was further confirmed by an in vitro replication assay. These findings provide additional evidence that HDV RNA synthesis occurs in the Pol I and Pol II transcription machineries, thus extending the capability of the cellular DNA-dependent RNA polymerases to utilizing RNA as templates.
Collapse
MESH Headings
- Amanitins/pharmacology
- Cell Line, Tumor
- Cell-Free System/metabolism
- Genome, Viral/physiology
- HeLa Cells
- Hepatitis Delta Virus/physiology
- Hepatitis delta Antigens/biosynthesis
- Hepatocytes/metabolism
- Hepatocytes/virology
- Humans
- Immunoprecipitation
- Intranuclear Space/metabolism
- Intranuclear Space/virology
- Microscopy, Fluorescence
- Neoplasm Proteins/metabolism
- Nuclear Proteins/metabolism
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Pol1 Transcription Initiation Complex Proteins/metabolism
- Promyelocytic Leukemia Protein
- RNA/biosynthesis
- RNA/genetics
- RNA Polymerase I/metabolism
- RNA Polymerase II/antagonists & inhibitors
- RNA Polymerase II/metabolism
- RNA, Antisense/biosynthesis
- RNA, Antisense/genetics
- RNA, Circular
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Tumor Suppressor Proteins/metabolism
- Virus Replication/drug effects
- Virus Replication/physiology
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., Los Angeles, CA 90033-1054, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Hepatitis delta virus (HDV) is a sub-viral agent that is dependent for its life cycle on hepatitis B virus (HBV). The help it obtains from HBV is limited to the sharing of envelope proteins. These proteins are needed to facilitate the assembly of the HDV genome into new virus particles, and in turn, to allow the attachment and entry of HDV into new host cells. In other respects, the replication of the small single-stranded circular RNA genome of HDV is independent of HBV. HDV genome replication produces two forms of a RNA-binding protein known as the long and small delta antigens (Ag). All other proteins needed for HDV genome replication, especially the RNA-directed RNA polymerase activity, are provided by the host cell. This mini-review article is a mixture of personal perspective and speculations about the future of HDV research. It starts with a brief overview of HDV and its replication, notes some of the major unresolved questions, and directs the interested reader to more detailed reviews.
Collapse
Affiliation(s)
- John M Taylor
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA.
| |
Collapse
|
45
|
Hsieh TH, Liu CJ, Chen DS, Chen PJ. Natural Course and Treatment of Hepatitis D Virus Infection. J Formos Med Assoc 2006; 105:869-81. [PMID: 17098688 DOI: 10.1016/s0929-6646(09)60172-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis D virus (HDV) is a subviral satellite with hepatitis B virus (HBV) as its natural helper virus. After entry into hepatocytes, it utilizes host cellular enzymes to replicate by a double-rolling-circle mechanism. HDV is most often transmitted by contact with contaminated blood and body fluid, similar to HBV infection. Approximately 5% of the global HBV carriers are coinfected with HDV, leading to a total of 10-15 million HDV carriers worldwide. HDV infection can occur concurrently with HBV infection (coinfection) or in a patient with established HBV infection (superinfection). The pathogenesis of HDV remains controversial. A decline in the prevalence of both acute and chronic hepatitis D (CHD) has been observed worldwide. At present, therapy for chronic HDV infection is by the use of interferon-alpha. Compared to chronic hepatitis B or C, CHD treatment requires a higher dosage and a longer duration of treatment, and post-treatment relapses are common. In order to prevent the progression of CHD and its related morbidity and mortality, more effective treatments are needed.
Collapse
Affiliation(s)
- Ting-Hui Hsieh
- Department of Medicine, Maimonides Medical Center, New York, USA
| | | | | | | |
Collapse
|
46
|
Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene 2005; 363:15-23. [PMID: 16289629 DOI: 10.1016/j.gene.2005.09.010] [Citation(s) in RCA: 1227] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 09/18/2005] [Indexed: 12/11/2022]
Abstract
Since the first report of p53 as a non-histone target of a histone acetyltransferase (HAT), there has been a rapid proliferation in the description of new non-histone targets of HATs. Of these, transcription factors comprise the largest class of new targets. The substrates for HATs extend to cytoskeletal proteins, molecular chaperones and nuclear import factors. Deacetylation of these non-histone proteins by histone deacetylases (HDACs) opens yet another exciting new field of discovery in the role of the dynamic acetylation and deacetylation on cellular function. This review will focus on these non-histone targets of HATs and HDACs and the consequences of their modification.
Collapse
Affiliation(s)
- Michele A Glozak
- H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, SRB 23011, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
47
|
Lai MMC. RNA replication without RNA-dependent RNA polymerase: surprises from hepatitis delta virus. J Virol 2005; 79:7951-8. [PMID: 15956541 PMCID: PMC1143735 DOI: 10.1128/jvi.79.13.7951-7958.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Michael M C Lai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, 2011 Zonal Ave., HMR503C, Los Angeles, California 90033, USA.
| |
Collapse
|
48
|
Li YJ, Stallcup MR, Lai MMC. Hepatitis delta virus antigen is methylated at arginine residues, and methylation regulates subcellular localization and RNA replication. J Virol 2004; 78:13325-34. [PMID: 15542683 PMCID: PMC524986 DOI: 10.1128/jvi.78.23.13325-13334.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis delta virus (HDV) contains a circular RNA which encodes a single protein, hepatitis delta antigen (HDAg). HDAg exists in two forms, a small form (S-HDAg) and a large form (L-HDAg). S-HDAg can transactivate HDV RNA replication. Recent studies have shown that posttranslational modifications, such as phosphorylation and acetylation, of S-HDAg can modulate HDV RNA replication. Here we show that S-HDAg can be methylated by protein arginine methyltransferase (PRMT1) in vitro and in vivo. The major methylation site is at arginine-13 (R13), which is in the RGGR motif of an RNA-binding domain. The methylation of S-HDAg is essential for HDV RNA replication, especially for replication of the antigenomic RNA strand to form the genomic RNA strand. An R13A mutation in S-HDAg inhibited HDV RNA replication. The presence of a methylation inhibitor, S-adenosyl-homocysteine, also inhibited HDV RNA replication. We further found that the methylation of S-HDAg affected its subcellular localization. Methylation-defective HDAg lost the ability to form a speckled structure in the nucleus and also permeated into the cytoplasm. These results thus revealed a novel posttranslational modification of HDAg and indicated its importance for HDV RNA replication. This and other results further showed that, unlike replication of the HDV genomic RNA strand, replication of the antigenomic RNA strand requires multiple types of posttranslational modification, including the phosphorylation and methylation of HDAg.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., Los Angeles, CA 90033-1054, USA
| | | | | |
Collapse
|
49
|
Abstract
Lysine acetylation has been shown to occur in many protein targets, including core histones, about 40 transcription factors and over 30 other proteins. This modification is reversible in vivo, with its specificity and level being largely controlled by signal-dependent association of substrates with acetyltransferases and deacetylases. Like other covalent modifications, lysine acetylation exerts its effects through "loss-of-function" and "gain-of-function" mechanisms. Among the latter, lysine acetylation generates specific docking sites for bromodomain proteins. For example, bromodomains of Gcn5, PCAF, TAF1 and CBP are able to recognize acetyllysine residues in histones, HIV Tat, p53, c-Myb or MyoD. In addition to the acetyllysine moiety, the flanking sequences also contribute to efficient recognition. The relationship between acetyllysine and bromodomains is reminiscent of the specific recognition of phosphorylated residues by phospho-specific binding modules such as SH2 domains and 14-3-3 proteins. Therefore, lysine acetylation forges a novel signaling partnership with bromodomains to govern the temporal and spatial regulation of protein functions in vivo.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- Molecular Oncology Group, Royal Victoria Hospital, Room H5.41, Department of Medicine, McGill University Health Center, 687 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada.
| |
Collapse
|
50
|
Tabler M, Tsagris M. Viroids: petite RNA pathogens with distinguished talents. TRENDS IN PLANT SCIENCE 2004; 9:339-348. [PMID: 15231279 DOI: 10.1016/j.tplants.2004.05.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Viroids are small, circular, single-stranded RNA molecules that cause several infectious plant diseases. Viroids do not encode any pathogen-specific peptides but nonetheless, the subviral pathogens replicate autonomously and spread in the plant by recruiting host proteins via functional motifs encoded in their RNA genome. During the past couple of years, considerable progress has been made towards comprehending how viroids interact with their hosts. Here, we summarize recent findings on the structure-function relationships of viroids, their strategies and mechanisms of replication and trafficking, and the identification and characterization of interacting host proteins. We also describe the impact of the RNA silencing machinery of plants on viroid RNAs and how this has started to influence our models of viroid replication and pathogenicity.
Collapse
Affiliation(s)
- Martin Tabler
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, PO Box 1527, GR-71110 Heraklion/Crete, Greece.
| | | |
Collapse
|