1
|
Ichikawa T, Hiono T, Okamatsu M, Maruyama J, Kobayashi D, Matsuno K, Kida H, Sakoda Y. Hemagglutinin and neuraminidase of a non-pathogenic H7N7 avian influenza virus coevolved during the acquisition of intranasal pathogenicity in chickens. Arch Virol 2024; 169:207. [PMID: 39307848 DOI: 10.1007/s00705-024-06118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024]
Abstract
Polybasic amino acid residues at the hemagglutinin (HA) cleavage site are insufficient to induce the highly pathogenic phenotype of avian influenza viruses in chickens. In our previous study, an H7N7 avian influenza virus named "Vac2sub-P0", which is nonpathogenic despite carrying polybasic amino acids at the HA cleavage site, was passaged in chick air sacs, and a virus with high intravenous pathogenicity, Vac2sub-P3, was obtained. Intranasal infection with Vac2sub-P3 resulted in limited lethality in chickens; therefore, in this study, this virus was further passaged in chicken lungs, and the resultant virus, Vac2sub-P3L4, acquired high intranasal pathogenicity. Experimental infection of chickens with recombinant viruses demonstrated that mutations in HA and neuraminidase (NA) found in consecutive passages were responsible for the increased pathogenicity. The HA and NA functions of Vac2sub-P3L4 were compared with those of the parental virus in vitro; the virus growth at 40 °C was faster, the binding affinity to a sialic acid receptor was lower, and the rate of release by NA from the cell surface was lower, suggesting that these changes enabled the virus to replicate efficiently in chickens with high intranasal pathogenicity. This study demonstrates that viruses that are highly pathogenic when administered intranasally require additional adaptations for increased pathogenicity to be highly lethal to intranasally infected chickens.
Collapse
Affiliation(s)
- Takaya Ichikawa
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
- Faculty of Medicine, Department of Microbiology and Immunology, Hokkaido University, Sapporo, Japan
| | - Takahiro Hiono
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Masatoshi Okamatsu
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Junki Maruyama
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daiki Kobayashi
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Keita Matsuno
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Yoshihiro Sakoda
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.
- One Health Research Center, Hokkaido University, Sapporo, Japan.
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Petherbridge G, Gadzhiev AA, Shestopalov АМ, Alekseev AY, Sharshov KA, Daudova MG. An early warning system for highly pathogenic viruses borne by waterbird species and related dynamics of climate change in the Caspian Sea region: Outlines of a concept. SOUTH OF RUSSIA: ECOLOGY, DEVELOPMENT 2022. [DOI: 10.18470/1992-1098-2022-2-233-263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aim. Formulation of the outlines of the concept of ViEW (Viral Early Warning) which is intended as a long term system of multidisciplinary transboundary cooperation between specialist institutions of all five Caspian region states to research, regularly monitor and share data about the generation, transmission and epidemiology of avian‐borne pathogens and their vectors in the region, and the ways climate change may affect these processes.Material and Methods. The concept is based on the multidisciplinary experience of the authors in researching the processes incorporated in the ViEW concept and on an in‐depth survey of the literature involved.Results. The outlines of the ViEW concept are presented in this study for review and comment by interested parties and stakeholders.Conclusion. Review of activities and opinions of specialists and organizations with remits relating to the development, establishment and maintenance of ViEW, indicates that such a system is a necessity for global animal and human health because of the role that the Caspian region plays in the mass migration of species of waterbird known as vectors for avian influenza and the already evident impacts of climate change on their phenologies. Waterbirds frequenting the Caspian Sea littorals and their habitats together constitute a major potential global hotspot or High Risk region for the generation and transmission of highly pathogenic avian influenza viruses and other dangerous zoonotic diseases.
Collapse
Affiliation(s)
| | | | - А. М. Shestopalov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - A. Yu. Alekseev
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - K. A. Sharshov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | | |
Collapse
|
3
|
Evolution of the North American Lineage H7 Avian Influenza Viruses in Association with H7 Virus's Introduction to Poultry. J Virol 2022; 96:e0027822. [PMID: 35862690 PMCID: PMC9327676 DOI: 10.1128/jvi.00278-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The incursions of H7 subtype low-pathogenicity avian influenza virus (LPAIV) from wild birds into poultry and its mutations to highly pathogenic avian influenza virus (HPAIV) have been an ongoing concern in North America. Since 2000, 10 phylogenetically distinct H7 virus outbreaks from wild birds have been detected in poultry, six of which mutated to HPAIV. To study the molecular evolution of the H7 viruses that occurs when changing hosts from wild birds to poultry, we performed analyses of the North American H7 hemagglutinin (HA) genes to identify amino acid changes as the virus circulated in wild birds from 2000 to 2019. Then, we analyzed recurring HA amino acid changes and gene constellations of the viruses that spread from wild birds to poultry. We found six HA amino acid changes occurring during wild bird circulation and 10 recurring changes after the spread to poultry. Eight of the changes were in and around the HA antigenic sites, three of which were supported by positive selection. Viruses from each H7 outbreak had a unique genotype, with no specific genetic group associated with poultry outbreaks or mutation to HPAIV. However, the genotypes of the H7 viruses in poultry outbreaks tended to contain minor genetic groups less observed in wild bird H7 viruses, suggesting either a biased sampling of wild bird AIVs or a tendency of having reassortment with minor genetic groups prior to the virus's introduction to poultry. IMPORTANCE Wild bird-origin H7 subtype avian influenza viruses are a constant threat to commercial poultry, both directly by the disease they cause and indirectly through trade restrictions that can be imposed when the virus is detected in poultry. It is important to understand the genetic basis of why the North American lineage H7 viruses have repeatedly crossed the species barrier from wild birds to poultry. We examined the amino acid changes in the H7 viruses associated with poultry outbreaks and tried to determine gene reassortment related to poultry adaptation and mutations to HPAIV. The findings in this study increase the understanding of the evolutionary pathways of wild bird AIV before infecting poultry and the HA changes associated with adaptation of the virus in poultry.
Collapse
|
4
|
Turkeys possess div6erse Siaα2-3Gal glycans that facilitate their dual susceptibility to avian influenza viruses isolated from ducks and chickens. Virus Res 2022; 315:198771. [DOI: 10.1016/j.virusres.2022.198771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022]
|
5
|
Low Pathogenicity H7N3 Avian Influenza Viruses Have Higher Within-Host Genetic Diversity Than a Closely Related High Pathogenicity H7N3 Virus in Infected Turkeys and Chickens. Viruses 2022; 14:v14030554. [PMID: 35336961 PMCID: PMC8951284 DOI: 10.3390/v14030554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Within-host viral diversity offers a view into the early stages of viral evolution occurring after a virus infects a host. In recent years, advances in deep sequencing have allowed for routine identification of low-frequency variants, which are important sources of viral genetic diversity and can potentially emerge as a major virus population under certain conditions. We examined within-host viral diversity in turkeys and chickens experimentally infected with closely related H7N3 avian influenza viruses (AIVs), specifically one high pathogenicity AIV (HPAIV) and two low pathogenicity AIV (LPAIVs) with different neuraminidase protein stalk lengths. Consistent with the high mutation rates of AIVs, an abundance of intra-host single nucleotide variants (iSNVs) at low frequencies of 2–10% was observed in all samples collected. Furthermore, a small number of common iSNVs were observed between turkeys and chickens, and between directly inoculated and contact-exposed birds. Notably, the LPAIVs have significantly higher iSNV diversities and frequencies of nonsynonymous changes than the HPAIV in both turkeys and chickens. These findings highlight the dynamics of AIV populations within hosts and the potential impact of genetic changes, including mutations in the hemagglutinin gene that confers the high pathogenicity pathotype, on AIV virus populations and evolution.
Collapse
|
6
|
Zamperin G, Bianco A, Smith J, Bortolami A, Vervelde L, Schivo A, Fortin A, Marciano S, Panzarin V, Mazzetto E, Milani A, Berhane Y, Digard P, Bonfante F, Monne I. Heterogeneity of Early Host Response to Infection with Four Low-Pathogenic H7 Viruses with a Different Evolutionary History in the Field. Viruses 2021; 13:2323. [PMID: 34835129 PMCID: PMC8620788 DOI: 10.3390/v13112323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Once low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes from wild birds enter into poultry species, there is the possibility of them mutating into highly pathogenic avian influenza viruses (HPAIVs), resulting in severe epizootics with up to 100% mortality. This mutation from a LPAIV to HPAIV strain is the main cause of an AIV's major economic impact on poultry production. Although AIVs are inextricably linked to their hosts in their evolutionary history, the contribution of host-related factors in the emergence of HPAI viruses has only been marginally explored so far. In this study, transcriptomic sequencing of tracheal tissue from chickens infected with four distinct LP H7 viruses, characterized by a different history of pathogenicity evolution in the field, was implemented. Despite the inoculation of a normalized infectious dose of viruses belonging to the same subtype (H7) and pathotype (LPAI), the use of animals of the same age, sex and species as well as the identification of a comparable viral load in the target samples, the analyses revealed a heterogeneity in the gene expression profile in response to infection with each of the H7 viruses administered.
Collapse
Affiliation(s)
- Gianpiero Zamperin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Alice Bianco
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Jacqueline Smith
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Lonneke Vervelde
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Alessia Schivo
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Andrea Fortin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Sabrina Marciano
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Valentina Panzarin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Eva Mazzetto
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Adelaide Milani
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington, Winnipeg, MB R3E 3M4, Canada;
| | - Paul Digard
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Francesco Bonfante
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| |
Collapse
|
7
|
The Pathobiology of H7N3 Low and High Pathogenicity Avian Influenza Viruses from the United States Outbreak in 2020 Differs between Turkeys and Chickens. Viruses 2021; 13:v13091851. [PMID: 34578433 PMCID: PMC8472980 DOI: 10.3390/v13091851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022] Open
Abstract
An outbreak caused by H7N3 low pathogenicity avian influenza virus (LPAIV) occurred in commercial turkey farms in the states of North Carolina (NC) and South Carolina (SC), United States in March of 2020. Subsequently, H7N3 high pathogenicity avian influenza virus (HPAIV) was detected on a turkey farm in SC. The infectivity, transmissibility, and pathogenicity of the H7N3 HPAIV and two LPAIV isolates, including one with a deletion in the neuraminidase (NA) protein stalk, were studied in turkeys and chickens. High infectivity [<2 log10 50% bird infectious dose (BID50)] and transmission to birds exposed by direct contact were observed with the HPAIV in turkeys. In contrast, the HPAIV dose to infect chickens was higher than for turkeys (3.7 log10 BID50), and no transmission was observed. Similarly, higher infectivity (<2–2.5 log10 BID50) and transmissibility were observed with the H7N3 LPAIVs in turkeys compared to chickens, which required higher virus doses to become infected (5.4–5.7 log10 BID50). The LPAIV with the NA stalk deletion was more infectious in turkeys but did not have enhanced infectivity in chickens. These results show clear differences in the pathobiology of AIVs in turkeys and chickens and corroborate the high susceptibility of turkeys to both LPAIV and HPAIV infections.
Collapse
|
8
|
Biological Properties and Genetic Characterization of Novel Low Pathogenic H7N3 Avian Influenza Viruses Isolated from Mallard Ducks in the Caspian Region, Dagestan, Russia. Microorganisms 2021; 9:microorganisms9040864. [PMID: 33920551 PMCID: PMC8072542 DOI: 10.3390/microorganisms9040864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
Avian influenza viruses (AIVs) are maintained in wild bird reservoirs, particularly in mallard ducks and other waterfowl. Novel evolutionary lineages of AIV that arise through genetic drift or reassortment can spread with wild bird migrations to new regions, infect a wide variety of resident bird species, and spillover to domestic poultry. The vast continental reservoir of AIVs in Eurasia harbors a wide diversity of influenza subtypes, including both highly pathogenic (HP) and low pathogenic (LP) H7 AIV. The Caspian Sea region is positioned at the intersection of major migratory flyways connecting Central Asia, Europe, the Black and Mediterranean Sea regions and Africa and holds a rich wetland and avian ecology. To understand genetic reservoirs present in the Caspian Sea region, we collected 559 cloacal swabs from Anseriformes and other species during the annual autumn migration periods in 2017 and 2018. We isolated two novel H7N3 LPAIV from mallard ducks whose H7 hemagglutinin (HA) gene was phylogenetically related to contemporaneous strains from distant Mongolia, and more closely Georgia and Ukraine, and predated the spread of this H7 LPAIV sublineage into East Asia in 2019. The N3 neuraminidase gene and internal genes were prototypical of AIV widely dispersed in wild bird reservoirs sampled along flyways connected to the Caspian region. The polymerase and nucleoprotein segments clustered with contemporaneous H5 HPAI (clade 2.3.4.4b) isolates, suggesting the wide dispersal of H7 LPAIV and the potential of this subtype for reassortment. These findings highlight the need for deeper surveillance of AIV in wild birds to better understand the extent of infection spread and evolution along spatial and temporal flyways in Eurasia.
Collapse
|
9
|
Chen S, Quan K, Wang D, Du Y, Qin T, Peng D, Liu X. Truncation or Deglycosylation of the Neuraminidase Stalk Enhances the Pathogenicity of the H5N1 Subtype Avian Influenza Virus in Mallard Ducks. Front Microbiol 2020; 11:583588. [PMID: 33193225 PMCID: PMC7641914 DOI: 10.3389/fmicb.2020.583588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/16/2020] [Indexed: 12/02/2022] Open
Abstract
H5N1 subtype avian influenza virus (AIV) with a deletion of 20 amino acids at residues 49–68 in the stalk region of neuraminidase (NA) became a major epidemic virus. To determine the effect of truncation or deglycosylation of the NA stalk on virulence, we used site-directed mutagenesis to insert 20 amino acids in the short-stalk virus A/mallard/Huadong/S/2005 (SY) to recover the long-stalk virus (rSNA+). A series of short-stalk or deglycosylated-stalk viruses were also constructed basing on the long-stalk virus, and then the characteristics and pathogenicity of the resulting viruses were evaluated. The results showed that most of the short-stalk or deglycosylated-stalk viruses had smaller plaques, and increased thermal and low-pH stability, and a decreased neuraminidase activity when compared with the virus rSNA+. In a mallard ducks challenge study, most of the short-stalk or deglycosylated-stalk viruses showed increased pathological lesions and virus titers in the organ tissues and increased virus shedding in the oropharynx and cloaca when compared with the rSNA+ virus, while most of the short-stalk viruses, especially rSNA-20, showed higher pathogenicity than the deglycosylated-stalk virus. In addition, the short-stalk viruses showed a significantly upregulated expression of the immune-related factors in the lungs of the infected mallard ducks, including IFN-α, Mx1, and IL-8. The results suggested that NA stalk truncation or deglycosylation increases the pathogenicity of H5N1 subtype AIV in mallard ducks, which will provide a pre-warning for prevention and control of H5N1 subtype avian influenza in the waterfowl.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Keji Quan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dandan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yinping Du
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
H9N2 Influenza Virus Infections in Human Cells Require a Balance between Neuraminidase Sialidase Activity and Hemagglutinin Receptor Affinity. J Virol 2020; 94:JVI.01210-20. [PMID: 32641475 PMCID: PMC7459563 DOI: 10.1128/jvi.01210-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
H9N2 avian influenza (AI) virus, one of the most prevalent AI viruses, has caused repeated poultry and human infections, posing a huge public health risk. The H9N2 virus has diversified into multiple lineages, with the G1 lineage being the most prevalent worldwide. In this study, we isolated G1 variants carrying an 8-amino-acid deletion in their NA stalk, which is, to our knowledge, the longest deletion found in H9N2 viruses in the field. The NA stalk length was found to modulate G1 virus entry into host cells, with the effects being species specific and dependent on the corresponding HA binding affinity. Our results suggest that, in nature, H9N2 G1 viruses balance their HA and NA functions by the NA stalk length, leading to the possible association of host range and virulence in poultry and mammals during the evolution of G1 lineage viruses. Some avian influenza (AI) viruses have a deletion of up to 20 to 30 amino acids in their neuraminidase (NA) stalk. This has been associated with changes in virus replication and host range. Currently prevalent H9N2 AI viruses have only a 2- or 3-amino-acid deletion, and such deletions were detected in G1 and Y280 lineage viruses, respectively. The effect of an NA deletion on the H9N2 phenotype has not been fully elucidated. In this study, we isolated G1 mutants that carried an 8-amino-acid deletion in their NA stalk. To systematically analyze the effect of NA stalk length and concomitant (de)glycosylation on G1 replication and host range, we generated G1 viruses that had various NA stalk lengths and that were either glycosylated or not glycosylated. The stalk length was correlated with NA sialidase activity, using low-molecular-weight substrates, and with virus elution efficacy from erythrocytes. G1 virus replication in avian cells and eggs was positively correlated with the NA stalk length but was negatively correlated in human cells and mice. NA stalk length modulated G1 virus entry into host cells, with shorter stalks enabling more efficient G1 entry into human cells. However, with a hemagglutinin (HA) with a higher α2,6-linked sialylglycan affinity, the effect of NA stalk length on G1 virus infection was reversed, with shorter NA stalks reducing virus entry into human cells. These results indicate that a balance between HA binding affinity and NA sialidase activity, modulated by NA stalk length, is required for optimal G1 virus entry into human airway cells. IMPORTANCE H9N2 avian influenza (AI) virus, one of the most prevalent AI viruses, has caused repeated poultry and human infections, posing a huge public health risk. The H9N2 virus has diversified into multiple lineages, with the G1 lineage being the most prevalent worldwide. In this study, we isolated G1 variants carrying an 8-amino-acid deletion in their NA stalk, which is, to our knowledge, the longest deletion found in H9N2 viruses in the field. The NA stalk length was found to modulate G1 virus entry into host cells, with the effects being species specific and dependent on the corresponding HA binding affinity. Our results suggest that, in nature, H9N2 G1 viruses balance their HA and NA functions by the NA stalk length, leading to the possible association of host range and virulence in poultry and mammals during the evolution of G1 lineage viruses.
Collapse
|
11
|
Elbers ARW, Gonzales JL. Quantification of visits of wild fauna to a commercial free-range layer farm in the Netherlands located in an avian influenza hot-spot area assessed by video-camera monitoring. Transbound Emerg Dis 2020; 67:661-677. [PMID: 31587498 PMCID: PMC7079184 DOI: 10.1111/tbed.13382] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 01/19/2023]
Abstract
Free-range poultry farms have a high risk of introduction of avian influenza viruses (AIV), and it is presumed that wild (water) birds are the source of introduction. There is very scarce quantitative data on wild fauna visiting free-range poultry farms. We quantified visits of wild fauna to a free-range area of a layer farm, situated in an AIV hot-spot area, assessed by video-camera monitoring. A total of 5,016 hr (209 days) of video recordings, covering all 12 months of a year, were analysed. A total of 16 families of wild birds and five families of mammals visited the free-range area of the layer farm. Wild birds, except for the dabbling ducks, visited the free-range area almost exclusively in the period between sunrise and the moment the chickens entered the free-range area. Known carriers of AIV visited the outdoor facility regularly: species of gulls almost daily in the period January-August; dabbling ducks only in the night in the period November-May, with a distinct peak in the period December-February. Only a small fraction of visits of wild fauna had overlap with the presence of chickens at the same time in the free-range area. No direct contact between chickens and wild birds was observed. It is hypothesized that AIV transmission to poultry on free-range poultry farms will predominantly take place via indirect contact: taking up AIV by chickens via wild-bird-faeces-contaminated water or soil in the free-range area. The free-range poultry farmer has several possibilities to potentially lower the attractiveness of the free-range area for wild (bird) fauna: daily inspection of the free-range area and removal of carcasses and eggs; prevention of forming of water pools in the free-range facility. Furthermore, there are ways to scare-off wild birds, for example use of laser equipment or trained dogs.
Collapse
Affiliation(s)
- Armin R. W. Elbers
- Department of Bacteriology and EpidemiologyWageningen Bioveterinary ResearchLelystadThe Netherlands
| | - José L. Gonzales
- Department of Bacteriology and EpidemiologyWageningen Bioveterinary ResearchLelystadThe Netherlands
| |
Collapse
|
12
|
Outbreak of highly pathogenic avian influenza in Ghana, 2015: degree of losses and outcomes of time-course outbreak management. Epidemiol Infect 2020; 148:e45. [PMID: 32063239 PMCID: PMC7058832 DOI: 10.1017/s095026882000045x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This retrospective study highlights the degree of losses and time-course through which the 2015 highly pathogenic avian influenza (HPAI) outbreaks in Ghana were managed. A total of 102 760 birds from 35 farms across five regions in Ghana included in this study were affected. Out of this, 89.3% was from the Greater Accra region. Majority of the birds were culled (94.2%). Adult layers were most affected and destroyed (64.0%), followed by broilers (13.7%). Event initiation to reporting averaged 7.7 ± 1.3 days (range: 1-30 days). Laboratory confirmation to depopulation of birds averaged 2.2 ± 0.5 (0-15) days while depopulation to disinfection took 2.2 ± 0.7 (0-20) days. Overall, some farms took as long as 30 days to report the outbreak to the authorities, 15 days from confirmation to depopulation and 20 days from depopulation to disinfection. On average, outbreak management lasted 12.3 (2-43) days from event initiation to depopulation. The study reveals a significant number of avian losses and delays in HPAI reporting and management by the authorities in Ghana during the 2015 outbreak. This poses a high risk of spread to other farms and a threat to public health. Awareness creation for poultry farmers is necessary for early reporting, while further study is required to set thresholds for the management of such outbreaks by veterinary departments.
Collapse
|
13
|
Humphreys JM, Ramey AM, Douglas DC, Mullinax JM, Soos C, Link P, Walther P, Prosser DJ. Waterfowl occurrence and residence time as indicators of H5 and H7 avian influenza in North American Poultry. Sci Rep 2020; 10:2592. [PMID: 32054908 PMCID: PMC7018751 DOI: 10.1038/s41598-020-59077-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/15/2020] [Indexed: 01/25/2023] Open
Abstract
Avian influenza (AI) affects wild aquatic birds and poses hazards to human health, food security, and wildlife conservation globally. Accordingly, there is a recognized need for new methods and tools to help quantify the dynamic interaction between wild bird hosts and commercial poultry. Using satellite-marked waterfowl, we applied Bayesian joint hierarchical modeling to concurrently model species distributions, residency times, migration timing, and disease occurrence probability under an integrated animal movement and disease distribution modeling framework. Our results indicate that migratory waterfowl are positively related to AI occurrence over North America such that as waterfowl occurrence probability or residence time increase at a given location, so too does the chance of a commercial poultry AI outbreak. Analyses also suggest that AI occurrence probability is greatest during our observed waterfowl northward migration, and less during the southward migration. Methodologically, we found that when modeling disparate facets of disease systems at the wildlife-agriculture interface, it is essential that multiscale spatial patterns be addressed to avoid mistakenly inferring a disease process or disease-environment relationship from a pattern evaluated at the improper spatial scale. The study offers important insights into migratory waterfowl ecology and AI disease dynamics that aid in better preparing for future outbreaks.
Collapse
Affiliation(s)
- John M Humphreys
- Michigan State University, East Lansing, Michigan, USA.
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland, USA.
| | - Andrew M Ramey
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - David C Douglas
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | | | - Catherine Soos
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Saskatchewan, Canada
| | - Paul Link
- Louisiana Department of Wildlife and Fisheries, Baton Rouge, Louisiana, USA
| | - Patrick Walther
- U.S. Fish and Wildlife Service, Texas Chenier Plain Refuge Complex, Anahuac, Texas, USA
| | - Diann J Prosser
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland, USA
| |
Collapse
|
14
|
RETRACTED ARTICLE: Insights into the role of turkeys as potential intermediate host for influenza viruses. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Jankowski MD, Glaberman SR, Kimball DB, Taylor-McCabe KJ, Fair JM. Sialic acid on avian erythrocytes. Comp Biochem Physiol B Biochem Mol Biol 2019; 238:110336. [PMID: 31476363 DOI: 10.1016/j.cbpb.2019.110336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 01/21/2023]
Abstract
Understanding variation in physiological traits across taxa is a central question in evolutionary biology that has wide-ranging implications in biomedicine, disease ecology, and environmental protection. Sialic acid (Sia), and in particular, 5-N-acetylneuraminic acid (Neu5Ac), is chemically bound to galactose and the underlying glycan via α2-3 or α2-6 glycosidic linkage (i.e., Siaα2-3Galactose or Siaα2-6Galactose), conferring two different cell surface structures that affects cell to cell communication and interactions with foreign agents including microparasites and toxins. As an initial step towards understanding variation of Sia across the class Aves, we collected red blood cells (RBCs or erythrocytes) and measured Sia quantity in 76 species and 340 individuals using HPLC-MS/MS and glycosidic linkage type in 24 species and 105 individuals using hemagglutination assay. Although Sia quantity did not, α2-6 glycosidic linkage did exhibit a discernable phylogenetic pattern as evaluated by a phylogenetic signal (λ) value of 0.7. Sia quantity appeared to be higher in after hatch year birds than hatch year birds (P < 0.05); moreover, ~80% of the measured Sia across all individuals or species was expressed by ~20% of the individuals or species. Lastly, as expected, we detected a minimal presence of 5-N-glycolylneuraminic acid in the avian RBCs tested. These data provide novel insights and a large baseline dataset for further study on the variability of Sia in the class Aves which might be useful for understanding Sia dependent processes in birds.
Collapse
Affiliation(s)
- Mark D Jankowski
- Los Alamos National Laboratory, Biosecurity and Public Health, Mailstop M888, Los Alamos, NM 87545, United States of America.
| | - Scott R Glaberman
- University of South Alabama, Department of Biology, Mobile, AL 36688; George Mason University, Department of Environmental Science & Policy, Fairfax, VA 22030.
| | - David B Kimball
- Los Alamos National Laboratory, Materials Recovery and Recycling, Mailstop E511, Los Alamos, NM 87545, United States of America.
| | - Kirsten J Taylor-McCabe
- Los Alamos National Laboratory, National Security and Defense, Mailstop B224, Los Alamos, NM 87545, United States of America.
| | - Jeanne M Fair
- Los Alamos National Laboratory, Biosecurity and Public Health, Mailstop M888, Los Alamos, NM 87545, United States of America.
| |
Collapse
|
16
|
Loss of Fitness of Mexican H7N3 Highly Pathogenic Avian Influenza Virus in Mallards after Circulating in Chickens. J Virol 2019; 93:JVI.00543-19. [PMID: 31068421 DOI: 10.1128/jvi.00543-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/30/2019] [Indexed: 11/20/2022] Open
Abstract
Outbreaks of highly pathogenic avian influenza (HPAI) virus subtype H7N3 have been occurring in commercial chickens in Mexico since its first introduction in 2012. In order to determine changes in virus pathogenicity and adaptation in avian species, three H7N3 HPAI viruses from 2012, 2015, and 2016 were evaluated in chickens and mallards. All three viruses caused high mortality in chickens when given at medium to high doses and replicated similarly. No mortality or clinical signs and similar infectivity were observed in mallards inoculated with the 2012 and 2016 viruses. However, the 2012 H7N3 HPAI virus replicated well in mallards and transmitted to contacts, whereas the 2016 virus replicated poorly and did not transmit to contacts, which indicates that the 2016 virus is less adapted to mallards. In vitro, the 2016 virus grew slower and to lower titers than did the 2012 virus in duck fibroblast cells. Full-genome sequencing showed 115 amino acid differences between the 2012 and the 2016 viruses, with some of these changes previously associated with changes in replication in avian species, including hemagglutinin (HA) A125T, nucleoprotein (NP) M105V, and NP S377N. In conclusion, as the Mexican H7N3 HPAI virus has passaged through large populations of chickens in a span of several years and has retained its high pathogenicity for chickens, it has decreased in fitness in mallards, which could limit the potential spread of this HPAI virus by waterfowl.IMPORTANCE Not much is known about changes in host adaptation of avian influenza (AI) viruses in birds after long-term circulation in chickens or other terrestrial poultry. Although the origin of AI viruses affecting poultry is wild aquatic birds, the role of these birds in further dispersal of poultry-adapted AI viruses is not clear. Previously, we showed that HPAI viruses isolated early from poultry outbreaks could still infect and transmit well in mallards. In this study, we demonstrate that the Mexican H7N3 HPAI virus after four years of circulation in chickens replicates poorly and does not transmit in mallards but remains highly pathogenic in chickens. This information on changes in host adaptation is important for understanding the epidemiology of AI viruses and the role that wild waterfowl may play in disseminating viruses adapted to terrestrial poultry.
Collapse
|
17
|
Mathieu C, Gonzalez A, Garcia A, Johow M, Badia C, Jara C, Nuñez P, Neira V, Montiel NA, Killian ML, Brito BP. H7N6 low pathogenic avian influenza outbreak in commercial turkey farms in Chile caused by a native South American Lineage. Transbound Emerg Dis 2019; 68:2-12. [PMID: 30945819 DOI: 10.1111/tbed.13166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 11/30/2022]
Abstract
In December 2016, low pathogenic avian influenza (LPAI) caused by an H7N6 subtype was confirmed in a grow-out turkey farm located in Valparaiso Region, Chile. Depopulation of exposed animals, zoning, animal movement control and active surveillance were implemented to contain the outbreak. Two weeks later, a second grow-out turkey farm located 70 km north of the first site was also infected by H7N6 LPAI, which subsequently spilled over to one backyard poultry flock. The virus involved in the outbreak shared a close genetic relationship with Chilean aquatic birds' viruses collected in previous years. The A/turkey/Chile/2017(H7N6) LPAI virus belonged to a native South American lineage. Based on the H7 and most of the internal genes' phylogenies, these viruses were also closely related to the ones that caused a highly pathogenic avian influenza outbreak in Chile in 2002. Results from this study help to understand the regional dynamics of influenza outbreaks, highlighting the importance of local native viruses circulating in the natural reservoir hosts.
Collapse
Affiliation(s)
- Christian Mathieu
- Servicio Agrícola y Ganadero (SAG), Laboratorio y Estación Cuarentenaria de Lo Aguirre, Santiago, Chile
| | - Alvaro Gonzalez
- Servicio Agrícola y Ganadero (SAG), Laboratorio y Estación Cuarentenaria de Lo Aguirre, Santiago, Chile
| | - Alfonso Garcia
- Servicio Agrícola y Ganadero (SAG), Laboratorio y Estación Cuarentenaria de Lo Aguirre, Santiago, Chile
| | - Magdalena Johow
- Servicio Agrícola y Ganadero (SAG), Laboratorio y Estación Cuarentenaria de Lo Aguirre, Santiago, Chile
| | - Catalina Badia
- Servicio Agrícola y Ganadero (SAG), Laboratorio y Estación Cuarentenaria de Lo Aguirre, Santiago, Chile
| | - Cecilia Jara
- Servicio Agrícola y Ganadero (SAG), Laboratorio y Estación Cuarentenaria de Lo Aguirre, Santiago, Chile
| | - Paula Nuñez
- Servicio Agrícola y Ganadero (SAG), Laboratorio y Estación Cuarentenaria de Lo Aguirre, Santiago, Chile
| | - Victor Neira
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago, Chile
| | - Nestor A Montiel
- National Veterinary Services Laboratories, Science, Veterinary Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, Iowa
| | - Mary Lea Killian
- National Veterinary Services Laboratories, Science, Veterinary Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, Iowa
| | - Barbara P Brito
- The ithree Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Lee YN, Cheon SH, Lee EK, Heo GB, Bae YC, Joh SJ, Lee MH, Lee YJ. Pathogenesis and genetic characteristics of novel reassortant low-pathogenic avian influenza H7 viruses isolated from migratory birds in the Republic of Korea in the winter of 2016-2017. Emerg Microbes Infect 2018; 7:182. [PMID: 30442892 PMCID: PMC6237977 DOI: 10.1038/s41426-018-0181-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 01/22/2023]
Abstract
In this study, we characterized H7 subtype low-pathogenicity (LP) influenza A viruses (IAVs) isolated from wild bird habitats in the Republic of Korea from 2010 to early 2017. Through national surveillance, 104 H7 IAVs were isolated, accounting for an average of 14.9% of annual IAV isolations. In early 2017, H7 subtypes accounted for an unusually high prevalence (43.6%) of IAV detections in wild birds. Phylogenetic analysis revealed that all the viruses isolated in the winter of 2016–2017 fell within cluster II of group C, belonging to the Eurasian lineage of H7 IAVs. Notably, cluster II of group C included the H7 gene from the highly pathogenic H7N7 IAV that was detected in northeastern Italy in April of 2016. Through a gene-constellation analysis, the H7 LPIAVs that we isolated constituted ≥11 distinct genotypes. Because the viruses belonging to the genotypes G2.1 and G1 were observed most frequently, we compared the replication and transmission of representative viruses to these genotypes in specific-pathogen-free chickens. Notably, the representative G2.1 strain was capable of systemic replication and efficient transmission in chickens (as evidenced by virus isolation and histopathological examination) without any clinical signs except mortality (in one infected chicken). The efficient subclinical viral replication and shedding of the G2.1 virus in chickens may facilitate its silent spread among poultry after introduction. Given that wild birds harbor novel strains that could affect poultry, our results highlight the need for enhanced IAV surveillance in both wild birds and poultry in Eurasia.
Collapse
Affiliation(s)
- Yu-Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Sun-Ha Cheon
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Eun-Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Gyeong-Beom Heo
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - You-Chan Bae
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Seong-Joon Joh
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Myoung-Heon Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea.
| |
Collapse
|
19
|
Abstract
The rise of populist movements worldwide is challenging science and motivating scientists to join the debate and enter politics. Based on my experience, taking a public stand will not come without slanderous personal and institutional attacks as an attempt to shake scientific credibility. The virology community is at risk of similar misrepresentation; reflection on this topic, particularly on how to address such challenges, should be a priority, given we are in the "post-truth" era.
Collapse
|
20
|
Świętoń E, Śmietanka K. Phylogenetic Study of H5 Low Pathogenic Avian Influenza Viruses Detected in Wild Birds in Poland in 2010-2015. J Vet Res 2018; 61:381-389. [PMID: 29978099 PMCID: PMC5937334 DOI: 10.1515/jvetres-2017-0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/02/2017] [Indexed: 11/21/2022] Open
Abstract
Introduction The genomes of nine H5 subtypes of low pathogenic avian influenza virus (LPAIV) strains identified in wild birds in Poland between 2010 and 2015 were sequenced, and their phylogenetic relationship was determined. Material and Methods AIV genome segments were amplified by RT-PCR and the PCR products were sequenced using Sanger method. Phylogenetic trees were generated in MEGA6 software and digital genotyping approach was used to visualise the relationship between analysed strains and other AIVs. Results High genetic diversity was found in the analysed strains as multiple subgroups were identified in phylogenetic trees. In the HA tree, Polish strains clustered in two distinct subclades. High diversity was found for PB2, PB1, PA and NP, since 5-8 sublineages could be distinguished. Each strain had a different gene constellation, although relationship of as much as six out of eight gene segments was observed between two isolates. A relationship with poultry isolates was found for at least one segment of each Polish strain. Conclusion The genome configuration of tested strains indicates extensive reassortment, although the preference for specific gene constellation could be noticed. A significant relationship with isolates of poultry origin underlines the need for constant monitoring of the AIV gene pool circulating in the natural reservoir.
Collapse
Affiliation(s)
- Edyta Świętoń
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
21
|
Dietze K, Graaf A, Homeier-Bachmann T, Grund C, Forth L, Pohlmann A, Jeske C, Wintermann M, Beer M, Conraths FJ, Harder T. From low to high pathogenicity-Characterization of H7N7 avian influenza viruses in two epidemiologically linked outbreaks. Transbound Emerg Dis 2018; 65:1576-1587. [PMID: 29790657 DOI: 10.1111/tbed.12906] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023]
Abstract
The ability of low pathogenic (LP) avian influenza viruses (AIV) of the subtypes H5 and H7 to mutate spontaneously to highly pathogenic (HP) variants is the main reason for their stringent control. On-the-spot evidence from the field of mutations in LPAIV to render the virus into nascent HP variants is scarce. Epidemiological investigations and molecular characterization of two spatiotemporally linked outbreaks caused by LP, and subsequently, HPAIV H7N7 in two-layer farms in Germany yielded such evidence. The outbreaks occurred within 45 days on farms 400 m apart. The LP progenitor virus was identified on both farms, with its putative HP inheritor cocirculating and then dominating on the second farm. As postulated before, mutations in the hemagglutinin cleavage site (HACS) proved to be the most decisive change in the genome of HPAIV, in this case, it was mutated from monobasic (LP) PEIPKGR*GLF into polybasic (HP) PEIPKRKRR*GLF. The full-length genome sequences of both viruses were nearly identical with only ten coding mutations outside the HACS scattered along six genome segments in the HPAIV. Five of these were already present as minor variants in the LPAIV quasispecies of the LPAI-only affected farm. H7-specific seroconversion of part of the chicken population together with the codetection of LPAIV HACS sequences in swab samples of the HPAI outbreak farm suggested an initial introduction of the LP progenitor and a subsequent switch to HPAIV H7N7 after the incursion. The findings provide rare field evidence for a shift in pathogenicity of a notifiable AIV infection and re-inforce the validity of current approaches of control measures to curtail low pathogenic H5 and H7 virus circulation in poultry.
Collapse
Affiliation(s)
- Klaas Dietze
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Annika Graaf
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | | | - Leonie Forth
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | - Christa Jeske
- Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES), Wardenburg, Germany
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | - Timm Harder
- Friedrich-Loeffler-Institut, Greifswald, Germany
| |
Collapse
|
22
|
Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts. Int J Mol Sci 2017; 18:ijms18122706. [PMID: 29236050 PMCID: PMC5751307 DOI: 10.3390/ijms18122706] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 11/23/2022] Open
Abstract
In the last decade, a wide range of avian influenza viruses (AIVs) have infected various mammalian hosts and continuously threaten both human and animal health. It is a result of overcoming the inter-species barrier which is mostly associated with gene reassortment and accumulation of mutations in their gene segments. Several recent studies have shed insights into the phenotypic and genetic changes that are involved in the interspecies transmission of AIVs. These studies have a major focus on transmission from avian to mammalian species due to the high zoonotic potential of the viruses. As more mammalian species have been infected with these viruses, there is higher risk of genetic evolution of these viruses that may lead to the next human pandemic which represents and raises public health concern. Thus, understanding the mechanism of interspecies transmission and molecular determinants through which the emerging AIVs can acquire the ability to transmit to humans and other mammals is an important key in evaluating the potential risk caused by AIVs among humans. Here, we summarize previous and recent studies on molecular markers that are specifically involved in the transmission of avian-derived influenza viruses to various mammalian hosts including humans, pigs, horses, dogs, and marine mammals.
Collapse
|
23
|
Park S, Il Kim J, Lee I, Bae JY, Yoo K, Nam M, Kim J, Sook Park M, Song KJ, Song JW, Kee SH, Park MS. Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses. Sci Rep 2017; 7:10928. [PMID: 28883554 PMCID: PMC5589767 DOI: 10.1038/s41598-017-11348-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/23/2017] [Indexed: 01/30/2023] Open
Abstract
It has been noticed that neuraminidase (NA) stalk truncation has arisen from evolutionary adaptation of avian influenza A viruses (IAVs) from wild aquatic birds to domestic poultry. We identified this molecular alteration after the adaptation of a 2009 pandemic H1N1 virus (pH1N1) in BALB/c mice. The mouse-adapted pH1N1 lost its eight consecutive amino acids including one potential N-linked glycosite from the NA stalk region. To explore the relationship of NA stalk truncation or deglycosylation with viral pathogenicity changes, we generated NA stalk mutant viruses on the pH1N1 backbone by reverse genetics. Intriguingly, either NA stalk truncation or deglycosylation changed pH1N1 into a lethal virus to mice by resulting in extensive pathologic transformation in the mouse lungs and systemic infection affecting beyond the respiratory organs in mice. The increased pathogenicity of these NA stalk mutants was also reproduced in ferrets. In further investigation using a human-infecting H7N9 avian IAV strain, NA stalk truncation or deglycosylation enhanced the replication property and pathogenicity of H7N9 NA stalk mutant viruses in the same mouse model. Taken together, our results suggest that NA stalk truncation or deglycosylation can be the pathogenic determinants of seasonal influenza viruses associated with the evolutionary adaptation of IAVs.
Collapse
Affiliation(s)
- Sehee Park
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ilseob Lee
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Kirim Yoo
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Misun Nam
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Juwon Kim
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Mee Sook Park
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ki-Joon Song
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Sun-Ho Kee
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
24
|
Identification of a novel reassortant A (H9N6) virus in live poultry markets in Poyang Lake region, China. Arch Virol 2017; 162:3681-3690. [PMID: 28840439 DOI: 10.1007/s00705-017-3507-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Live poultry markets (LPM) are one of the most important sources of human infection with avian influenza virus (AIV). During our routine surveillance of AIV, we identified an H9N6 virus (JX-H9N6) in a LPM in Nanchang city, Jiangxi Province, China. Using Bayesian coalescent analysis, it was predicted that JX-H9N6 had originated from a reassortment event between H9N2 and H6N6 AIVs in early 2014, instead of being derived from an H9N6 virus reported previously. Mutations in HA, PB1, PA, M, and NS protein, which could increase mammalian transmission and virulence, were also detected. Currently, both H9N2 and H6N6 AIVs are widely distributed in poultry and contribute to the generation of novel reassortant viruses causing human infection. Our findings highlight the importance of enhanced surveillance in birds for early prediction of human infections.
Collapse
|
25
|
Li Y, Huang XM, Zhao DM, Liu YZ, He KW, Liu YX, Chen CH, Long LP, Xu Y, Xie XX, Han KK, Liu XY, Yang J, Zhang YF, Fan F, Webby R, Wan XF. Detection of Avian H7N9 Influenza A Viruses in the Yangtze Delta Region of China During Early H7N9 Outbreaks. Avian Dis 2017; 60:118-25. [PMID: 27309047 DOI: 10.1637/11098-042015-reg] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Since the first H7N9 human case in Shanghai, February 19, 2013, the emerging avian-origin H7N9 influenza A virus has become an epizootic virus in China, posing a potential pandemic threat to public health. From April 2 to April 28, 2013, some 422 oral-pharyngeal and cloacal swabs were collected from birds and environmental surfaces at five live poultry markets (LPMs) and 13 backyard poultry farms (BPFs) across three cities, Wuxi, Suzhou, and Nanjing, in the Yangtze Delta region. In total 22 isolates were recovered, and six were subtyped as H7N9, nine as H9N2, four as H7N9/H9N2, and three unsubtyped influenza A viruses. Genomic sequences showed that the HA and NA genes of the H7N9 viruses were similar to those of the H7N9 human isolates, as well as other avian-origin H7N9 isolates in the region, but the PB1, PA, NP, and MP genes of the sequenced viruses were more diverse. Among the four H7N9/H9N2 mixed infections, three were from LPM, whereas the other one was from the ducks at one BPF, which were H7N9 negative in serologic analyses. A survey of the bird trading records of the LPMs and BPFs indicates that trading was a likely route for virus transmission across these regions. Our results suggested that better biosecurity and more effective vaccination should be implemented in backyard farms, in addition to biosecurity management in LPMs.
Collapse
Affiliation(s)
- Yin Li
- A Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, China.,B Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu Province, China.,H These authors contributed equally to this work
| | - Xin-Mei Huang
- A Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, China.,B Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu Province, China.,H These authors contributed equally to this work
| | - Dong-Min Zhao
- A Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, China.,B Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu Province, China.,H These authors contributed equally to this work
| | - Yu-Zhuo Liu
- A Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, China.,B Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu Province, China.,H These authors contributed equally to this work
| | - Kong-Wang He
- A Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, China.,B Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu Province, China
| | - Yao-Xing Liu
- C Jiangsu Animal Disease Control Center, Nanjing, Jiangsu Province, China
| | - Chang-Hai Chen
- C Jiangsu Animal Disease Control Center, Nanjing, Jiangsu Province, China
| | - Li-Ping Long
- D Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Yifei Xu
- D Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Xing-Xing Xie
- A Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, China.,B Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu Province, China
| | - Kai-Kai Han
- A Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, China.,B Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu Province, China
| | - Xiao-Yan Liu
- A Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, China.,B Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu Province, China
| | - Jing Yang
- A Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, China.,B Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu Province, China
| | - You-Fa Zhang
- E Animal Husbandry and Veterinary Medicine Station of Suzhou, Suzhou, Jiangsu Province, China
| | - Feng Fan
- F Wuxi Animal Disease Control Center, Wuxi, Jiangsu Province, China
| | - Richard Webby
- G Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Xiu-Feng Wan
- D Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
26
|
Bao DT, Kim DTH, Park H, Cuc BT, Ngoc NM, Linh NTP, Huu NC, Tien TTT, Anh NTV, Duy TD, Chong CK, Yu ST, Choi DY, Yeo SJ. Rapid Detection of Avian Influenza Virus by Fluorescent Diagnostic Assay using an Epitope-Derived Peptide. Theranostics 2017. [PMID: 28638471 PMCID: PMC5479272 DOI: 10.7150/thno.18857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Currently, the point of care testing (POCT) is not fully developed for subtype-specific avian influenza virus detection. In this study, an H5N1 hemaglutinin 1 (HA1) epitope (P0: KPNDAINF) and three modified peptides (P1: KPNTAINF, P2: KPNGAINF, P3: KPNDAINDAINF) were evaluated as POCT elements for rapid detection of avian influenza virus. Based on modeling predictions by Autodock Vina, binding affinity varied depending on alteration of one amino acid in these peptides. The binding energy of P2 indicated its potential for a strong interaction with HA. Fluorescence-linked immunosorbent assay experimentally demonstrated the interaction between these peptides and virus. The four peptides interacted with HA1 of H5N3 with different binding affinities with P2 showing the strongest binding affinity. When P0 and P2 peptides were used in rapid fluorescent immunochromatographic test (FICT) as detection elements, the inter-assay coefficients of variation (CV) indicated that P2-linked FICT was more acceptable than the P0-linked FICT in the presence of human specimens. Antibody pair-linked FICT was influenced by clinical samples more than the P2-linked FICT assay, which showed a 4-fold improvement in the detection limit of H5N3 and maintained H5 subtype-specificity. Compared to the rapid diagnostic test (RDT) which is not specific for influenza subtypes, P2-linked FICT could increase virus detection. In conclusion, results of this study suggest that HA epitope-derived peptides can be used as alternatives to antibodies for a rapid fluorescent diagnostic assay to detect avian influenza virus.
Collapse
|
27
|
Mishra A, Vijayakumar P, Raut AA. Emerging avian influenza infections: Current understanding of innate immune response and molecular pathogenesis. Int Rev Immunol 2017; 36:89-107. [PMID: 28272907 DOI: 10.1080/08830185.2017.1291640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in gallinaceous poultry species, domestic ducks, various aquatic and terrestrial wild bird species as well as humans. The outcome of the disease is determined by complex interactions of multiple components of the host, the virus, and the environment. While the host-innate immune response plays an important role for clearance of infection, excessive inflammatory immune response (cytokine storm) may contribute to morbidity and mortality of the host. Therefore, innate immunity response in avian influenza infection has two distinct roles. However, the viral pathogenic mechanism varies widely in different avian species, which are not completely understood. In this review, we summarized the current understanding and gaps in host-pathogen interaction of avian influenza infection in birds. In first part of this article, we summarized influenza viral pathogenesis of gallinaceous and non-gallinaceous avian species. Then we discussed innate immune response against influenza infection, cytokine storm, differential host immune responses against different pathotypes, and response in different avian species. Finally, we reviewed the systems biology approach to study host-pathogen interaction in avian species for better characterization of molecular pathogenesis of the disease. Wild aquatic birds act as natural reservoir of AIVs. Better understanding of host-pathogen interaction in natural reservoir is fundamental to understand the properties of AIV infection and development of improved vaccine and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Anamika Mishra
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Periyasamy Vijayakumar
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Ashwin Ashok Raut
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| |
Collapse
|
28
|
Alessandra De Marco M, Campitelli L, Delogu M, Raffini E, Foni E, di Trani L, Scaffidi M, Donatelli I. Serological evidences showing the involvement of free-living pheasants in the influenza ecology. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2005.287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Laura Campitelli
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate. Istituto Superiore di Sanità, Roma, Italy
| | - Mauro Delogu
- Dipartimento di Sanità Pubblica Veterinaria e Patologia Animale. Università di Bologna, Italy
| | - Elisabetta Raffini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’ Emilia Romagna. Lugo (RA), Italy
| | - Emanuela Foni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’ Emilia Romagna. Parma, Italy
| | - Livia di Trani
- Dipartimento di Sanità Animale e Alimentare. Istituto Superiore di Sanità, Roma, Italy
| | - Michele Scaffidi
- Dipartimento di Sanità Pubblica Veterinaria e Patologia Animale. Università di Bologna, Italy
| | - Isabella Donatelli
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate. Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
29
|
Limited Antigenic Diversity in Contemporary H7 Avian-Origin Influenza A Viruses from North America. Sci Rep 2016; 6:20688. [PMID: 26858078 PMCID: PMC4746648 DOI: 10.1038/srep20688] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/11/2016] [Indexed: 01/11/2023] Open
Abstract
Subtype H7 avian–origin influenza A viruses (AIVs) have caused at least 500 confirmed human infections since 2003 and culling of >75 million birds in recent years. Here we antigenically and genetically characterized 93 AIV isolates from North America (85 from migratory waterfowl [1976–2010], 7 from domestic poultry [1971–2012], and 1 from a seal [1980]). The hemagglutinin gene of these H7 viruses are separated from those from Eurasia. Gradual accumulation of nucleotide and amino acid substitutions was observed in the hemagglutinin of H7 AIVs from waterfowl and domestic poultry. Genotype characterization suggested that H7 AIVs in wild birds form diverse and transient internal gene constellations. Serologic analyses showed that the 93 isolates cross-reacted with each other to different extents. Antigenic cartography showed that the average antigenic distance among them was 1.14 units (standard deviation [SD], 0.57 unit) and that antigenic diversity among the H7 isolates we tested was limited. Our results suggest that the continuous genetic evolution has not led to significant antigenic diversity for H7 AIVs from North America. These findings add to our understanding of the natural history of IAVs and will inform public health decision-making regarding the threat these viruses pose to humans and poultry.
Collapse
|
30
|
Changes in the Length of the Neuraminidase Stalk Region Impact H7N9 Virulence in Mice. J Virol 2015; 90:2142-9. [PMID: 26656694 DOI: 10.1128/jvi.02553-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/30/2015] [Indexed: 11/20/2022] Open
Abstract
The neuraminidase stalk of the newly emerged H7N9 influenza virus possesses a 5-amino-acid deletion. This study focuses on characterizing the biological functions of H7N9 with varied neuraminidase stalk lengths. Results indicate that the 5-amino-acid deletion had no impact on virus infectivity or replication in vitro or in vivo compared to that of a virus with a full-length stalk, but enhanced virulence in mice was observed for H7N9 encoding a 19- to 20-amino-acid deletion, suggesting that N9 stalk length impacts virulence in mammals, as N1 stalk length does.
Collapse
|
31
|
Serial passage in ducks of a low-pathogenic avian influenza virus isolated from a chicken reveals a high mutation rate in the hemagglutinin that is likely due to selection in the host. Arch Virol 2015; 160:2455-70. [PMID: 26179620 DOI: 10.1007/s00705-015-2504-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
A comparative study of the ability of three low-pathogenic avian influenza virus (LPAIV) isolates to be transmitted from duck to duck was performed. Pekin ducks were inoculated with two LPAIV isolates from chickens (A/Ck/PA/13609/93 [H5N2], H5N2-Ck; A/Ck/TX/167280-4/02 [H5N3], H5N3-Ck) and one isolate from a wild bird (A/Mute Swan/ MI/451072/06 [H5N1], H5N1-WB). During the establishment of the passage model, only two viruses (H5N1, H5N2) were able to be transmitted from duck to duck. Transmission of these isolates was dependent on the inoculation dose and route of infection. Analysis of swab samples taken from ducks revealed that the wild-bird isolate, H5N1-WB, was primarily shed via the cloacal route. The chicken isolate, H5N2-Ck, was isolated from cloacal as well as oro-pharyngeal swabs. Analysis of the amino acid sequences of the viral surface glycoproteins showed that the hemagglutinin (HA) of the H5N2-Ck isolate was under a stronger evolutionary pressure than the HA of the H5N1-WB isolate, as indicated by the presence of a larger number of amino acid changes observed during passage. The neuraminidase (NA) of both viruses showed either no (in the case of H5N1-WB) or very few amino acid changes.
Collapse
|
32
|
Puzelli S, Rossini G, Facchini M, Vaccari G, Di Trani L, Di Martino A, Gaibani P, Vocale C, Cattoli G, Bennett M, McCauley JW, Rezza G, Moro ML, Rangoni R, Finarelli AC, Landini MP, Castrucci MR, Donatelli I. Human infection with highly pathogenic A(H7N7) avian influenza virus, Italy, 2013. Emerg Infect Dis 2015; 20:1745-9. [PMID: 25271444 PMCID: PMC4193179 DOI: 10.3201/eid2010.140512] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
During an influenza A(H7N7) virus outbreak among poultry in Italy during August–September 2013, infection with a highly pathogenic A(H7N7) avian influenza virus was diagnosed for 3 poultry workers with conjunctivitis. Genetic analyses revealed that the viruses from the humans were closely related to those from chickens on affected farms.
Collapse
|
33
|
Fusaro A, Tassoni L, Hughes J, Milani A, Salviato A, Schivo A, Murcia PR, Bonfanti L, Cattoli G, Monne I. Evolutionary trajectories of two distinct avian influenza epidemics: Parallelisms and divergences. INFECTION GENETICS AND EVOLUTION 2015; 34:457-66. [PMID: 26003682 DOI: 10.1016/j.meegid.2015.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/05/2015] [Accepted: 05/19/2015] [Indexed: 11/27/2022]
Abstract
Influenza A virus can quickly acquire genetic mutations that may be associated with increased virulence, host switching or antigenic changes. To provide new insights into the evolutionary dynamics and the adaptive strategies of distinct avian influenza lineages in response to environmental and host factors, we compared two distinct avian influenza epidemics caused by the H7N1 and H7N3 subtypes that circulated under similar epidemiological conditions, including the same domestic species reared in the same densely populated poultry area for similar periods of time. The two strains appear to have experienced largely divergent evolution: the H7N1 viruses evolved into a highly pathogenic form, while the H7N3 did not. However, a more detailed molecular and evolutionary analysis revealed several common features: (i) the independent acquisition of 32 identical mutations throughout the entire genome; (ii) the evolution and persistence of two sole genetic groups with similar genetic characteristics; (iii) a comparable pattern of amino acid variability of the HA proteins during the low pathogenic epidemics; and (iv) similar rates of nucleotide substitutions. These findings suggest that the evolutionary trajectories of viruses with the same virulence level circulating in analogous epidemiological conditions may be similar. In addition, our deep sequencing analysis of 15 samples revealed that 17 of the 32 parallel mutations were already present at the beginning of the two epidemics, suggesting that fixation of these mutations may occur with different mechanisms, which may depend on the fitness gain provided by each mutation. This highlighted the difficulties in predicting the acquisition of mutations that can be correlated to viral adaptation to specific epidemiological conditions or to changes in virus virulence.
Collapse
Affiliation(s)
- Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy.
| | - Luca Tassoni
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Joseph Hughes
- MRC-University of Glasgow Center for Virus Research, 464 Bearsden Road, Glasgow, United Kingdom
| | - Adelaide Milani
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Annalisa Salviato
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Alessia Schivo
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Pablo R Murcia
- MRC-University of Glasgow Center for Virus Research, 464 Bearsden Road, Glasgow, United Kingdom
| | - Lebana Bonfanti
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Giovanni Cattoli
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| |
Collapse
|
34
|
Neumann G, Kawaoka Y. Transmission of influenza A viruses. Virology 2015; 479-480:234-46. [PMID: 25812763 PMCID: PMC4424116 DOI: 10.1016/j.virol.2015.03.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 12/25/2022]
Abstract
Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to 'novel' viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages.
Collapse
Affiliation(s)
- Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
35
|
Ma C, Lam TTY, Chai Y, Wang J, Fan X, Hong W, Zhang Y, Li L, Liu Y, Smith DK, Webby RJ, Peiris JSM, Zhu H, Guan Y. Emergence and evolution of H10 subtype influenza viruses in poultry in China. J Virol 2015; 89:3534-41. [PMID: 25589662 PMCID: PMC4403437 DOI: 10.1128/jvi.03167-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/31/2014] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The cases of human infections with H10N8 viruses identified in late 2013 and early 2014 in Jiangxi, China, have raised concerns over the origin, prevalence, and development of these viruses in this region. Our long-term influenza surveillance of poultry and migratory birds in southern China in the past 12 years showed that H10 influenza viruses have been introduced from migratory to domestic ducks over several winter seasons at sentinel duck farms at Poyang Lake, where domestic ducks share their water body with overwintering migratory birds. H10 viruses were never detected in terrestrial poultry in our survey areas until August 2013, when they were identified at live-poultry markets in Jiangxi. Since then, we have isolated 124 H10N8 or H10N6 viruses from chickens at local markets, revealing an ongoing outbreak. Phylogenetic analysis of H10 and related viruses showed that the chicken H10N8 viruses were generated through multiple reassortments between H10 and N8 viruses from domestic ducks and the enzootic chicken H9N2 viruses. These chicken reassortant viruses were highly similar to the human isolate, indicating that market chickens were the source of human infection. Recently, the H10 viruses further reassorted, apparently with H5N6 viruses, and generated an H10N6 variant. The emergence and prevalence of H10 viruses in chickens and the occurrence of human infections provide direct evidence of the threat from the current influenza ecosystem in China. IMPORTANCE After the outbreak of avian-origin H7N9 influenza viruses in China, fatal human infections with a novel H10N8 virus were reported. Utilizing data from 12 years of influenza surveillance in southern China, we showed that H10 viruses were regularly introduced by migratory ducks to domestic ducks on Poyang Lake, a major aggregative site of migratory birds in Asia. The H10 viruses were maintained and amplified in domestic ducks and then transmitted to chickens and reassorted with enzootic H9N2 viruses, leading to an outbreak and human infections at live-poultry markets. The emergence of the H10N8 virus, following a pathway similar to that of the recent H7N9 virus, highlights the role of domestic ducks and the current influenza ecosystem in China that facilitates influenza viruses moving from their reservoir hosts through the live-poultry system to cause severe consequences for public health.
Collapse
Affiliation(s)
- Chi Ma
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China State Key Laboratory of Emerging Infectious Diseases (Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen, China
| | - Tommy Tsan-Yuk Lam
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Yujuan Chai
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Jia Wang
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaohui Fan
- Department of Microbiology, Guangxi Medical University, Nanning, China
| | - Wenshan Hong
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China
| | - Yu Zhang
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Lifeng Li
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Yongmei Liu
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - David K Smith
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Richard J Webby
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Joseph S M Peiris
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China State Key Laboratory of Emerging Infectious Diseases (Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen, China
| | - Huachen Zhu
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China State Key Laboratory of Emerging Infectious Diseases (Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen, China
| | - Yi Guan
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China State Key Laboratory of Emerging Infectious Diseases (Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen, China
| |
Collapse
|
36
|
Zhang X, Kong W, Wanda SY, Xin W, Alamuri P, Curtiss R. Generation of influenza virus from avian cells infected by Salmonella carrying the viral genome. PLoS One 2015; 10:e0119041. [PMID: 25742162 PMCID: PMC4351096 DOI: 10.1371/journal.pone.0119041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/09/2015] [Indexed: 12/14/2022] Open
Abstract
Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 10⁷ 50% tissue culture infective doses (TCID50)/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF) and Madin-Darby canine kidney (MDCK) cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo.
Collapse
Affiliation(s)
- Xiangmin Zhang
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| | - Wei Kong
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Soo-Young Wanda
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Wei Xin
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Praveen Alamuri
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Roy Curtiss
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Life Science, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
37
|
Alterations in hemagglutinin receptor-binding specificity accompany the emergence of highly pathogenic avian influenza viruses. J Virol 2015; 89:5395-405. [PMID: 25741006 DOI: 10.1128/jvi.03304-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Highly pathogenic avian influenza viruses (HPAIVs) of hemagglutinin H5 and H7 subtypes emerge after introduction of low-pathogenic avian influenza viruses (LPAIVs) from wild birds into poultry flocks, followed by subsequent circulation and evolution. The acquisition of multiple basic amino acids at the endoproteolytical cleavage site of the hemagglutinin (HA) is a molecular indicator for high pathogenicity, at least for infections of gallinaceous poultry. Apart from the well-studied significance of the multibasic HA cleavage site, there is only limited knowledge on other alterations in the HA and neuraminidase (NA) molecules associated with changes in tropism during the emergence of HPAIVs from LPAIVs. We hypothesized that changes in tropism may require alterations of the sialyloligosaccharide specificities of HA and NA. To test this hypothesis, we compared a number of LPAIVs and HPAIVs for their HA-mediated binding and NA-mediated desialylation of a set of synthetic receptor analogs, namely, α2-3-sialylated oligosaccharides. NA substrate specificity correlated with structural groups of NAs and did not correlate with pathogenic potential of the virus. In contrast, all HPAIVs differed from LPAIVs by a higher HA receptor-binding affinity toward the trisaccharides Neu5Acα2-3Galβ1-4GlcNAcβ (3'SLN) and Neu5Acα2-3Galβ1-3GlcNAcβ (SiaLe(c)) and by the ability to discriminate between the nonfucosylated and fucosylated sialyloligosaccharides 3'SLN and Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ (SiaLe(x)), respectively. These results suggest that alteration of the receptor-binding specificity accompanies emergence of the HPAIVs from their low-pathogenic precursors. IMPORTANCE Here, we have found for the first time correlations of receptor-binding properties of the HA with a highly pathogenic phenotype of poultry viruses. Our study suggests that enhanced receptor-binding affinity of HPAIVs for a typical "poultry-like" receptor, 3'SLN, is provided by substitutions in the receptor-binding site of HA which appeared in HA of LPAIVs in the course of transmission of LPAIVs from wild waterfowl into poultry flocks, with subsequent adaptation in poultry. The identification of LPAIVs with receptor characteristics of HPAIVs argues that the sialic acid-binding specificity of the HA may be used as a novel phenotypic marker of HPAIVs.
Collapse
|
38
|
Hoque MA, Burgess GW, Cheam AL, Skerratt LF. Epidemiology of avian influenza in wild aquatic birds in a biosecurity hotspot, North Queensland, Australia. Prev Vet Med 2015; 118:169-81. [DOI: 10.1016/j.prevetmed.2014.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 11/29/2022]
|
39
|
Hu W. The Impact of NA Stalk Deletion on HA Receptor Binding Specificity of Avian H7N9 in China in 2013-14 and Avian H7N7 in Netherlands in 2003. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/cmb.2015.51001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Corrand L, Delverdier M, Lucas MN, Croville G, Facon C, Balloy D, Ducatez M, Guérin JL. A low-pathogenic avian influenza H6N1 outbreak in a turkey flock in France: a comprehensive case report. Avian Pathol 2014; 41:569-77. [PMID: 23237370 DOI: 10.1080/03079457.2012.733931] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Based on a case observed and investigated on a commercial turkey farm in western France in 81-day-old birds, we report the pattern of H6N1 low-pathogenic avian influenza in this species. Diseased birds displayed an acute severe dyspnoea, leading to death by asphyxia of more than 5% of the flock. The most specific pathological feature was a constant diffuse infraorbital sinusitis, along with a focal necrotic exudate inside the lumen of the upper respiratory tract, characterized microscopically as a mixed fibrinous and leucocytic material. Influenza A immunohistochemistry revealed an intense staining of epithelial cells in tracheas, bronchi, air sacs and their luminal necrotic material. While no primary bacterial infection could be detected from diseased turkeys, influenza H6 reverse transcription-polymerase chain reaction analysis performed on tracheal swabs tested positive. Direct sequencing and phylogenetic analysis of the eight segments showed that this H6N1 virus clustered closely within West European mallards' (group 3) H6 genotypes. A thorough analysis of genetic databases suggests that a regional waterfowl reservoir is likely to play a central role in H6 introductions in poultry farms, whose pathways remain to be elucidated.
Collapse
Affiliation(s)
- Léni Corrand
- Institut National de la Recherche Agronomique, UMR 1225 IHAP, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Determining the phylogenetic and phylogeographic origin of highly pathogenic avian influenza (H7N3) in Mexico. PLoS One 2014; 9:e107330. [PMID: 25226523 PMCID: PMC4165766 DOI: 10.1371/journal.pone.0107330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/16/2014] [Indexed: 01/03/2023] Open
Abstract
Highly pathogenic (HP) avian influenza virus (AIV) H7N3 outbreaks occurred 3 times in the Americas in the past 10 years and caused severe economic loss in the affected regions. In June/July 2012, new HP H7N3 outbreaks occurred at commercial farms in Jalisco, Mexico. Outbreaks continued to be identified in neighbouring states in Mexico till August 2013. To explore the origin of this outbreak, time resolved phylogenetic trees were generated from the eight segments of full-length AIV sequences in North America using BEAST. Location, subtype, avian host species and pathogenicity were modelled as discrete traits upon the trees using continuous time Markov chains. A further joint analysis among segments was performed using a hierarchical phylogenetic model (HPM) which allowed trait rates (location, subtype, host species) to be jointly inferred across different segments. The complete spatial diffusion process was visualised through virtual globe software. Our result indicated the Mexico HP H7N3 originated from the large North America low pathogenicity AIV pool through complicated reassortment events. Different segments were contributed by wild waterfowl from different N. American flyways. Five of the eight segments (HA, NA, NP, M, NS) were introduced from wild birds migrating along the central North American flyway, and PB2, PB1 and PA were introduced via the western North American flyway. These results highlight a potential role for Mexico as a hotspot of virus reassortment as it is where wild birds from different migration routes mix during the winter.
Collapse
|
42
|
Wang D, Yang L, Gao R, Zhang X, Tan Y, Wu A, Zhu W, Zhou J, Zou S, Li X, Sun Y, Zhang Y, Liu Y, Liu T, Xiong Y, Xu J, Chen L, Weng Y, Qi X, Guo J, Li X, Dong J, Huang W, Zhang Y, Dong L, Zhao X, Liu L, Lu J, Lan Y, Wei H, Xin L, Chen Y, Xu C, Chen T, Zhu Y, Jiang T, Feng Z, Yang W, Wang Y, Zhu H, Guan Y, Gao GF, Li D, Han J, Wang S, Wu G, Shu Y. Genetic tuning of the novel avian influenza A(H7N9) virus during interspecies transmission, China, 2013. ACTA ACUST UNITED AC 2014; 19. [PMID: 24993557 DOI: 10.2807/1560-7917.es2014.19.25.20836] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel avian influenza A(H7N9) virus causing human infection emerged in February 2013 in China. To elucidate the mechanism of interspecies transmission, we compared the signature amino acids of avian influenza A(H7N9) viruses from human and non-human hosts and analysed the reassortants of 146 influenza A(H7N9) viruses with full genome sequences. We propose a genetic tuning procedure with continuous amino acid substitutions and reassorting that mediates host adaptation and interspecies transmission. When the early influenza A(H7N9) virus, containing ancestor haemagglutinin (HA) and neuraminidase (NA) genes similar to A/Shanghai/05 virus, circulated in waterfowl and transmitted to terrestrial poultry, it acquired an NA stalk deletion at amino acid positions 69 to 73. Then, receptor binding preference was tuned to increase the affinity to human-like receptors through HA G186V and Q226L mutations in terrestrial poultry. Additional mammalian adaptations such as PB2 E627K were selected in humans. The continual reassortation between H7N9 and H9N2 viruses resulted in multiple genotypes for further host adaptation. When we analysed a potential association of mutations and reassortants with clinical outcome, only the PB2 E627K mutation slightly increased the case fatality rate. Genetic tuning may create opportunities for further adaptation of influenza A(H7N9) and its potential to cause a pandemic.
Collapse
Affiliation(s)
- D Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
De Marco MA, Valentini A, Foni E, Savarese MC, Cotti C, Chiapponi C, Raffini E, Donatelli I, Delogu M. Is there a relation between genetic or social groups of mallard ducks and the circulation of low pathogenic avian influenza viruses? Vet Microbiol 2014; 170:418-24. [PMID: 24690373 DOI: 10.1016/j.vetmic.2014.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 02/21/2014] [Accepted: 03/03/2014] [Indexed: 11/19/2022]
Abstract
We investigated the circulation dynamics of low pathogenic avian influenza viruses (LPAIVs) in the mallard (Anas platyrhynchos) reservoir in Italy. In particular, we evaluated the temporal distribution of virologic findings by combining virus isolation data with a new population genetic-based study approach. Thus, during 11 consecutive sampling periods (wintering periods between 1993/94 and 2003/04), categorised into 40 sampling sub-periods, cloacal swab samples were collected from 996 wild and 16 captive-reared mallards, to be screened by RT-PCR before attempting influenza A virus isolation in embryonated eggs. Forty-eight LPAIVs were isolated from wild mallards and antigenically characterised by haemagglutination-inhibition and neuraminidase-inhibition assays. When considering LPAIV antigenic subtypes in which more than one mallard tested virus isolation positive (H1N1, n. 22; H2N3, n. 2; H5N3, n. 2; H6N5, n. 3; H6N8, n. 2; H7N3, n. 3; H11N6, n. 5), at least two birds infected with a specific HN subtype clustered within one same sampling sub-period. In the context of the novel population genetic approach, total DNA was extracted from a subset of 16 captive-reared and 65 wild ducks (2000/01 and 2001/02 sampling periods) to assess genetic diversity by amplified fragment length polymorphisms (AFLP) markers. Analyses of AFLP results showed that captive-reared mallards clustered together, whereas two main independent clusters characterised the distribution pattern of most wild mallards. Within this subset of samples, nearly identical H7N3 LPAIV strains were isolated from two wild mallards belonging to the same genetic cluster. Blood sera were also collected from the above subset of mallards and examined for antibodies to the homologous H7N3 virus strain. Four out of six wild mallards testing H7N3-seropositive by haemagglutination-inhibition assay (2001/02 period) belonged to the genetic cluster including H7N3 virus shedding ducks. Overall, our data raise the possibility of an enhanced transmission and circulation of LPAIVs in genetic or social groups of wild mallards, gathered in flocks possibly related by parentage and/or geographic origin.
Collapse
Affiliation(s)
- Maria A De Marco
- Laboratory of Genetics, Institute for Environmental Protection and Research, Via Ca' Fornacetta, 40064 Ozzano Emilia, BO, Italy.
| | - Alessio Valentini
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Emanuela Foni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via dei Mercati, 43126 Parma, Italy
| | - Maria C Savarese
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Claudia Cotti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 40064 Ozzano Emilia, BO, Italy
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via dei Mercati, 43126 Parma, Italy
| | - Elisabetta Raffini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via del Limite, 48022 Lugo, RA, Italy
| | - Isabella Donatelli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 00161 Rome, Italy
| | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 40064 Ozzano Emilia, BO, Italy
| |
Collapse
|
44
|
Abdelwhab EM, Veits J, Mettenleiter TC. Prevalence and control of H7 avian influenza viruses in birds and humans. Epidemiol Infect 2014; 142:896-920. [PMID: 24423384 PMCID: PMC9151109 DOI: 10.1017/s0950268813003324] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/21/2013] [Accepted: 12/04/2013] [Indexed: 01/20/2023] Open
Abstract
The H7 subtype HA gene has been found in combination with all nine NA subtype genes. Most exhibit low pathogenicity and only rarely high pathogenicity in poultry (and humans). During the past few years infections of poultry and humans with H7 subtypes have increased markedly. This review summarizes the emergence of avian influenza virus H7 subtypes in birds and humans, and the possibilities of its control in poultry. All H7Nx combinations were reported from wild birds, the natural reservoir of the virus. Geographically, the most prevalent subtype is H7N7, which is endemic in wild birds in Europe and was frequently reported in domestic poultry, whereas subtype H7N3 is mostly isolated from the Americas. In humans, mild to fatal infections were caused by subtypes H7N2, H7N3, H7N7 and H7N9. While infections of humans have been associated mostly with exposure to domestic poultry, infections of poultry have been linked to wild birds or live-bird markets. Generally, depopulation of infected poultry was the main control tool; however, inactivated vaccines were also used. In contrast to recent cases caused by subtype H7N9, human infections were usually self-limiting and rarely required antiviral medication. Close genetic and antigenic relatedness of H7 viruses of different origins may be helpful in development of universal vaccines and diagnostics for both animals and humans. Due to the wide spread of H7 viruses and their zoonotic importance more research is required to better understand the epidemiology, pathobiology and virulence determinants of these viruses and to develop improved control tools.
Collapse
Affiliation(s)
- E M Abdelwhab
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald - Insel Riems, Germany
| | - J Veits
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald - Insel Riems, Germany
| | - T C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald - Insel Riems, Germany
| |
Collapse
|
45
|
Li Y, Chen S, Zhang X, Fu Q, Zhang Z, Shi S, Zhu Y, Gu M, Peng D, Liu X. A 20-amino-acid deletion in the neuraminidase stalk and a five-amino-acid deletion in the NS1 protein both contribute to the pathogenicity of H5N1 avian influenza viruses in mallard ducks. PLoS One 2014; 9:e95539. [PMID: 24743258 PMCID: PMC3990698 DOI: 10.1371/journal.pone.0095539] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 03/28/2014] [Indexed: 01/21/2023] Open
Abstract
Since 2003, H5N1-subtype avian influenza viruses (AIVs) with both a deletion of 20 amino acids in the stalk of the neuraminidase (NA) glycoprotein (A−) and a deletion of five amino acids at positions 80 to 84 in the non-structural protein NS1 (S−) have become predominant. To understand the influence of these double deletions in the NA and NS1 proteins on the pathogenicity of H5N1-subtype AIVs, we selected A/mallard/Huadong/S/2005 as a parental strain to generate rescued wild-type A−S− and three variants (A−S+ with a five-amino-acid insertion in the NS1 protein, A+S− with a 20-amino-acid insertion in the NA stalk, and A+S+ with insertions in both NA and NS1 proteins) and evaluated their biological characteristics and virulence. The titers of the AIVs with A− and/or S− replicated in DEF cells were higher than that of A+S+, and the A−S− virus exhibited a replication predominance when co-infected with the other variants in DEF cells. In addition, A−S− induced a more significant increase in the expression of immune-related genes in peripheral blood mononuclear cells of mallard ducks in vitro compared with the other variants. Furthermore, an insertion in the NA and/or NS1 proteins of AIVs resulted in a notable decrease in virulence in ducks, as determined by intravenous pathogenicity index, and the two insertions exerted a synergistic effect on the attenuation of pathogenicity in ducks. In addition, compared with A+S+ and A+S−, the A−S+ and A−S− viruses that were introduced via the intranasal inoculation route exhibited a faster replication ability in the lungs of ducks. These data indicate that both the deletions in the NA stalk and the NS1 protein contribute to the high pathogenicity of H5N1 AIVs in ducks.
Collapse
Affiliation(s)
- Yanfang Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Xiaojian Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Qiang Fu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Zhiye Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Shaohua Shi
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Yinbiao Zhu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- * E-mail: (DP); (XL)
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- * E-mail: (DP); (XL)
| |
Collapse
|
46
|
Abstract
UNLABELLED Sporadic activity by H5N2 influenza viruses has been observed in chickens in Taiwan from 2003 to 2012. The available information suggests that these viruses were generated by reassortment between a Mexican-like H5N2 virus and a local enzootic H6N1 virus. Yet the origin, prevalence, and pathogenicity of these H5N2 viruses have not been fully defined. Following the 2012 highly pathogenic avian influenza (HPAI) outbreaks, surveillance was conducted from December 2012 to July 2013 at a live-poultry wholesale market in Taipei. Our findings showed that H5N2 and H6N1 viruses cocirculated at low levels in chickens in Taiwan. Phylogenetic analyses revealed that all H5N2 viruses had hemagglutinin (HA) and neuraminidase (NA) genes derived from a 1994 Mexican-like virus, while their internal gene complexes were incorporated from the enzootic H6N1 virus lineage by multiple reassortment events. Pathogenicity studies demonstrated heterogeneous results even though all tested viruses had motifs (R-X-K/R-R) supportive of high pathogenicity. Serological surveys for common subtypes of avian viruses confirmed the prevalence of the H5N2 and H6N1 viruses in chickens and revealed an extraordinarily high seroconversion rate to an H9N2 virus, a subtype that is not found in Taiwan but is prevalent in mainland China. These findings suggest that reassortant H5N2 viruses, together with H6N1 viruses, have become established and enzootic in chickens throughout Taiwan and that a large-scale vaccination program might have been conducted locally that likely led to the introduction of the 1994 Mexican-like virus to Taiwan in 2003. IMPORTANCE H5N2 avian influenza viruses first appeared in chickens in Taiwan in 2003 and caused a series of outbreaks afterwards. Phylogenetic analyses show that the chicken H5N2 viruses have H5 and N2 genes that are closely related to those of a vaccine strain originating from Mexico in 1994, while the contemporary duck H5N2 viruses in Taiwan belong to the Eurasian gene pool. The unusually high similarity of the chicken H5N2 viruses to the Mexican vaccine strain suggests that these viruses might have been introduced to Taiwan by using inadequately inactivated or attenuated vaccines. These chicken H5N2 viruses are developing varying levels of pathogenicity that could lead to significant consequences for the local poultry industry. These findings emphasize the need for strict quality control and competent oversight in the manufacture and usage of avian influenza virus vaccines and indicate that alternatives to widespread vaccination may be desirable.
Collapse
|
47
|
Antigenic and genetic evolution of low-pathogenicity avian influenza viruses of subtype H7N3 following heterologous vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:603-12. [PMID: 24554694 DOI: 10.1128/cvi.00647-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Outbreaks of low-pathogenicity avian influenza (LPAI) viruses of the H7N3 subtype were first detected in Italy in October 2002, and the virus continued to circulate between 2002 and 2004 in a densely populated poultry area in the northeast portion of that country. This virus circulated in unvaccinated and vaccinated poultry farms, and the infection was controlled in August 2003 by culling, control of movements, improved biosecurity, and heterologous vaccination. In 2004, H7N3 reoccurred in vaccinated poultry farms in which infection had been successfully controlled by the vaccination program. To shed light on this occurrence and the temporal pattern and genetic basis of antigenic drift for avian influenza viruses (AIVs) in the absence and presence of heterologous vaccination, a collection of H7N3 viruses isolated in 2002 and 2004 were characterized genetically and antigenically. Molecular analysis showed that viruses isolated in the 2004 outbreaks after the implementation of vaccination had acquired specific amino acid signatures, most of which were located at reported antibody binding sites of the hemagglutinin (HA) protein. Antigenic characterization of these 2004 isolates showed that they were antigenically different from those isolated prior to the implementation of vaccination. This is the first report on antigenic and genetic evolution of H7 LPAI viruses following the application of heterologous vaccination in poultry. These findings may have an impact on control strategies to combat AI infections in poultry based on vaccination.
Collapse
|
48
|
Lu L, Lycett SJ, Leigh Brown AJ. Reassortment patterns of avian influenza virus internal segments among different subtypes. BMC Evol Biol 2014; 14:16. [PMID: 24456010 PMCID: PMC3905155 DOI: 10.1186/1471-2148-14-16] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/14/2014] [Indexed: 01/26/2023] Open
Abstract
Background The segmented RNA genome of avian Influenza viruses (AIV) allows genetic reassortment between co-infecting viruses, providing an evolutionary pathway to generate genetic innovation. The genetic diversity (16 haemagglutinin and 9 neuraminidase subtypes) of AIV indicates an extensive reservoir of influenza viruses exists in bird populations, but how frequently subtypes reassort with each other is still unknown. Here we quantify the reassortment patterns among subtypes in the Eurasian avian viral pool by reconstructing the ancestral states of the subtypes as discrete states on time-scaled phylogenies with respect to the internal protein coding segments. We further analyzed how host species, the inferred evolutionary rates and the dN/dS ratio varied among segments and between discrete subtypes, and whether these factors may be associated with inter-subtype reassortment rate. Results The general patterns of reassortment are similar among five internal segments with the exception of segment 8, encoding the Non-Structural genes, which has a more divergent phylogeny. However, significant variation in rates between subtypes was observed. In particular, hemagglutinin-encoding segments of subtypes H5 to H9 reassort at a lower rate compared to those of H1 to H4, and Neuraminidase-encoding segments of subtypes N1 and N2 reassort less frequently than N3 to N9. Both host species and dN/dS ratio were significantly associated with reassortment rate, while evolutionary rate was not associated. The dN/dS ratio was negatively correlated with reassortment rate, as was the number of negatively selected sites for all segments. Conclusions These results indicate that overall selective constraint and host species are both associated with reassortment rate. These results together identify the wild bird population as the major source of new reassortants, rather than domestic poultry. The lower reassortment rates observed for H5N1 and H9N2 may be explained by the large proportion of strains derived from domestic poultry populations. In contrast, the higher rates observed in the H1N1, H3N8 and H4N6 subtypes could be due to their primary origin as infections of wild birds with multiple low pathogenicity strains in the large avian reservoir.
Collapse
Affiliation(s)
| | | | - Andrew J Leigh Brown
- University of Edinburgh, Institute of Evolutionary Biology, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, UK.
| |
Collapse
|
49
|
Böttcher-Friebertshäuser E, Garten W, Matrosovich M, Klenk HD. The hemagglutinin: a determinant of pathogenicity. Curr Top Microbiol Immunol 2014; 385:3-34. [PMID: 25031010 DOI: 10.1007/82_2014_384] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The hemagglutinin (HA) is a prime determinant of the pathogenicity of influenza A viruses. It initiates infection by binding to cell surface receptors and by inducing membrane fusion. The fusion capacity of HA depends on cleavage activation by host proteases, and it has long been known that highly pathogenic avian influenza viruses displaying a multibasic cleavage site differ in protease sensitivity from low pathogenic avian and mammalian influenza viruses with a monobasic cleavage site. Evidence is increasing that there are also variations in proteolytic activation among the viruses with a monobasic cleavage site, and several proteases have been identified recently that activate these viruses in a natural setting. Differences in protease sensitivity of HA and in tissue specificity of the enzymes are important determinants for virus tropism in the respiratory tract and for systemic spread of infection. Protease inhibitors that interfere with cleavage activation have the potential to be used for antiviral therapy and attenuated viruses have been generated by mutation of the cleavage site that can be used for the development of inactivated and live vaccines. It has long been known that human and avian influenza viruses differ in their specificity for sialic acid-containing cell receptors, and it is now clear that human tissues contain also receptors for avian viruses. Differences in receptor-binding specificity of seasonal and zoonotic viruses and differential expression of receptors for these viruses in the human respiratory tract account, at least partially, for the severity of disease. Receptor binding and fusion activation are modulated by HA glycosylation, and interaction of the glycans of HA with cellular lectins also affects virus infectivity. Interestingly, some of the mechanisms underlying pathogenicity are determinants of host range and transmissibility, as well.
Collapse
|
50
|
Guan Y, Smith GJ. The emergence and diversification of panzootic H5N1 influenza viruses. Virus Res 2013; 178:35-43. [PMID: 23735533 PMCID: PMC4017639 DOI: 10.1016/j.virusres.2013.05.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/23/2013] [Accepted: 05/20/2013] [Indexed: 02/05/2023]
Abstract
The Asian highly pathogenic avian influenza H5N1 virus was first detected in the goose population of Guangdong, China in 1996. The viruses in this lineage are unique in their ecological success, demonstrating an extremely broad host range and becoming established in poultry over much of Asia and in Africa. H5N1 viruses have also diverged into multiple clades and subclades that generally do not cross neutralize, which has greatly confounded control measures in poultry and pre-pandemic vaccine strain selection. Although H5N1 viruses currently cannot transmit efficiently between mammals they exhibit high mortality in humans and recent experimental studies have shown that it is possible to generate an H5N1 virus that is transmissible in mammals. In addition to causing unprecedented economic losses, the long-term presence of the H5N1 virus in poultry and its frequent introductions to humans continue to pose a significant pandemic threat. Here we provide a summary of the genesis, molecular epidemiology and evolution of this H5N1 lineage, particularly the factors that have contributed to the continued diversification and ecological success of H5N1 viruses, with particular reference to the poultry production systems they have emerged from.
Collapse
Affiliation(s)
- Yi Guan
- State Key Laboratory of Emerging Infectious Diseases and Center of Influenza Research, The University of Hong Kong, Hong Kong SAR, China
- International Institution of Infection and Immunity, Shantou University Medical College, Shantou, China
| | - Gavin J.D. Smith
- Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857
- Duke Global Health Institute, Duke University, Box 90519, Durham, North Carolina 27708
| |
Collapse
|