1
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
2
|
Zhao Q, Liu L, Huang T, Tian Y, Guo X, Liu C, Huang B, Chen Q. Complete genomic analysis of rabbit rotavirus G3P[22] in China. Arch Virol 2023; 168:129. [PMID: 37004683 DOI: 10.1007/s00705-023-05740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/20/2023] [Indexed: 04/04/2023]
Abstract
A rabbit rotavirus Z3171 isolate from diarrheic rabbits was identified and sequenced. The genotype constellation of Z3171 is G3-P[22]-I2-R3-C3-M3-A9-N2-T1-E3-H3, which is different from the constellation observed in previously characterized LRV strains. However, the genome of Z3171 differed substantially from those of the rabbit rotavirus strains N5 and Rab1404 in terms of both gene content and gene sequence. Our study suggests that either a reassortment event occurred between human and rabbit rotavirus strains or there are undetected genotypes circulating in the rabbit population. This is the first report of detection of a G3P[22] RVA strain in rabbits in China.
Collapse
Affiliation(s)
- Qiaoya Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, Jiangsu Province, China
- Institute of Poultry Sciences, Shandong Academy of Agricultural Sciences, 250023, Jinan, Shandong Province, China
| | - Liping Liu
- Institute of Poultry Sciences, Shandong Academy of Agricultural Sciences, 250023, Jinan, Shandong Province, China
| | - Tao Huang
- College of Veterinary Medicine, Southwest University, 402460, Chongqing, China
| | - Ye Tian
- Institute of Poultry Sciences, Shandong Academy of Agricultural Sciences, 250023, Jinan, Shandong Province, China
| | - Xiaozhen Guo
- Institute of Poultry Sciences, Shandong Academy of Agricultural Sciences, 250023, Jinan, Shandong Province, China
| | - Cunxia Liu
- Institute of Poultry Sciences, Shandong Academy of Agricultural Sciences, 250023, Jinan, Shandong Province, China
| | - Bing Huang
- Institute of Poultry Sciences, Shandong Academy of Agricultural Sciences, 250023, Jinan, Shandong Province, China.
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, Jiangsu Province, China.
| |
Collapse
|
3
|
Whole genome sequencing and evolutionary analysis of G8P [8] rotaviruses emerging in Japan. Virusdisease 2022; 33:215-218. [DOI: 10.1007/s13337-022-00765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/03/2022] [Indexed: 10/18/2022] Open
|
4
|
Oem JK, Lee SY, Kim YS, Na EJ, Choi KS. Genetic characteristics and analysis of a novel rotavirus G3P[22] identified in diarrheic feces of Korean rabbit. INFECTION GENETICS AND EVOLUTION 2019; 73:368-377. [PMID: 31173932 PMCID: PMC7106088 DOI: 10.1016/j.meegid.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 01/22/2023]
Abstract
Group A rotaviruses (RVAs) are important gastroenteric pathogens that infect humans and animals. This study aimed to analyze the complete genome sequence, i.e., 11 genome segments of the lapine rotavirus (LRV) identified in the intestine of a dead rabbit in the Republic of Korea (ROK) and to describe the genetic relationships between this lapine isolate [RVA/Rabbit-wt/KOR/Rab1404/2014/G3P[22] (Rab1404)] and other lapine isolates/strains. Rab1404 possessed the following genotype constellation: G3-P[22]-I2-R3-C3-M3-A9-N2-T3-E3-H3. The P[22] genotype was found to originate from rabbits and was for the first time identified in the ROK. Phylogenetic analysis showed that Rab1404 possessed VP1-3 and VP7 genes, which were closely related to those of the bat strain LZHP2; NSP1-4 genes, which were closely related to those of the simian strain RRV; and VP4, VP6, and NSP5 genes, which were closely related to the genes obtained from other rabbits. Interestingly, a close relationship between Rab1404 and simian RVA strain RVA/Simian-tc/USA/RRV/1975/G3P[3] for 8 gene segments was observed. RRV is believed to be a reassortant between bovine-like RVA strain and canine/feline RVA strains. Rab1404 and canine/feline RVAs shared the genes encoding VP1, VP3, VP7, NSP3, and NSP4. Additionally, the genome segments VP6 (I2), NSP1 (N2), and NSP5 (H3) of Rab1404 were closely related to those of bovine RVAs. This is the first report describing the complete genome sequence of an LRV detected in the ROK. These results indicate that Rab1404 could be a result of interspecies transmission, possibly through multiple reassortment events in the strains of various animal species and the subsequent transmission of the virus to a rabbit. Additional studies are required to determine the evolutionary source and to identify possible reservoirs of RVAs in nature. This is the first report to describe the complete genome sequence of a rabbit rotavirus (Rab1404) detected in the ROK. The 11 genome segments of Rab1404 were determined; G3-P[22]-I2-R3-C3-M3-A9-N2-T3-E3-H3. G3P[22] identified in this study is found to originate from rabbit and may have more species specificity. Rab1404 could be a result of multiple reassortment events from strains originating from various animal species and transmitted to the rabbit.
Collapse
Affiliation(s)
- Jae-Ku Oem
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Soo-Young Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Young-Sik Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Eun-Jee Na
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Kyoung-Seong Choi
- College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Republic of Korea.
| |
Collapse
|
5
|
Kozyra I, Kozyra J, Dors A, Rzeżutka A. Molecular chracterisation of porcine group A rotaviruses: Studies on the age-related occurrence and spatial distribution of circulating virus genotypes in Poland. Vet Microbiol 2019; 232:105-113. [PMID: 31030833 DOI: 10.1016/j.vetmic.2019.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/17/2023]
Abstract
Rotaviruses of group A (RVAs) commonly occur in farm animals. In pigs, they cause acute gastrointestinal disease which is considered as significant factor of economic losses in pig farming. The aim of the study was an assessment of the prevalence of rotavirus (RV) infections in farmed pigs in Poland, genotype identification of the virus strains in conjunction with their age-related occurrence and regional (province) distribution pattern in pig herds. In total, 920 pig faecal samples were collected from pigs between the ages of one week and two years old from 131 farms. RVAs were detected using ELISA and molecular methods followed by a sequence-based identification of G (VP7) and P (VP4) virus genotypes. RV antigen was found in 377 (41%) of pig faecal samples. The correlation between pig age and frequency of RV infections was shown. In the Polish pig population, 145 RVA strains representing 33 GP genotypes were identified. Subsequent molecular analysis revealed an age-dependent and regional diversity in distribution of genotypes and virus strains. Besides typical pig RVA strains, novel strains such as G5P [34], G9P[34], and human G1P[8] were identified in this animal host. Findings from this study showed a change over time in the genotype occurrence of circulating pig RVAs in Poland. The high genetic variability of RV strains and acquisition of new virus genotypes have led to the emergence of novel, genetically distinct RVAs. The changes in the genotype occurrence of RVA strains in pigs indicate the need for their continuous epidemiological surveillance.
Collapse
Affiliation(s)
- Iwona Kozyra
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - Jerzy Kozyra
- Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation, ul. Czartoryskich 8, 24-100, Puławy, Poland
| | - Arkadiusz Dors
- Department of Swine Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - Artur Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland.
| |
Collapse
|
6
|
Piekarska A, Kacerka A, Majda-Stanisławska E, Jóźwiak B, Sidorkiewicz M. Predominance of genotype P[9]G3 in rotavirus gastroenteritis in Polish children. Arch Med Sci 2015; 11:577-83. [PMID: 26170851 PMCID: PMC4495143 DOI: 10.5114/aoms.2015.50229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/15/2013] [Accepted: 06/21/2013] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Rotavirus (RV) infection is the most common cause of gastroenteritis in children. This paper identifies the most common genotypes of rotaviruses isolated from children hospitalized with gastroenteritis and attempts to determine any relationship between infection with a certain rotavirus genotype. MATERIAL AND METHODS The investigated group consisted of 68 consecutive children with rotavirus gastroenteritis (confirmed by an agglutination test). Rotavirus genotype was determined in stool samples obtained from each child. RESULTS The P[9]VP4 genotype was observed in 41/61 positive samples (over 67.2%) that were permanently associated with the G3 VP7 genotype. Moreover, G3 was determined as the most commonly isolated G type (77.94%). As well as the P[9]G3 type, G3 was also found in the P[4] type (5 cases). Twenty-six out of 61 (42.6%) children in whom rotavirus genotype was determined were co-infected with pathogenic bacteria. No statistical correlation was observed between rotavirus P[9]G3 gastroenteritis and digestive tract co-infection with pathogenic bacteria (p > 0.05). Elevated ALT activity was found in 34/59 (57.6%) cases of rotavirus gastroenteritis. Elevated ALT serum level was found to correlate with P[9]G3 rotavirus genotype but concomitant infections did not. CONCLUSIONS The most common genotype of rotaviruses observed in our group of children, P[9]G3, has rarely been described. Co-infection of the digestive tract with pathogenic bacteria and elevated serum ALT concentrations were found to be the most frequent phenomena. A correlation between P[9]G3 rotavirus genotype and elevated serum ALT level was found, but no significant relationship was identified between concomitant infections and P[9]G3 genotype.
Collapse
Affiliation(s)
- Anna Piekarska
- Department of Infectious Diseases and Hepatology, Medical University of Lodz, Lodz, Poland
| | - Anna Kacerka
- Department of Infectious Diseases and Hepatology, Medical University of Lodz, Lodz, Poland
| | - Ewa Majda-Stanisławska
- Department of Infectious Diseases and Hepatology, Medical University of Lodz, Lodz, Poland
| | - Barbara Jóźwiak
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
7
|
Bonica MB, Zeller M, Van Ranst M, Matthijnssens J, Heylen E. Complete genome analysis of a rabbit rotavirus causing gastroenteritis in a human infant. Viruses 2015; 7:844-56. [PMID: 25690801 PMCID: PMC4353919 DOI: 10.3390/v7020844] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 12/22/2022] Open
Abstract
Group A rotaviruses (RVA) are responsible for causing infantile diarrhea both in humans and animals. The molecular characteristics of lapine RVA strains are only studied to a limited extent and so far G3P[14] and G3P[22] were found to be the most common G/P-genotypes. During the 2012-2013 rotavirus season in Belgium, a G3P[14] RVA strain was isolated from stool collected from a two-year-old boy. We investigated whether RVA/Human-wt/BEL/BE5028/2012/G3P[14] is completely of lapine origin or the result of reassortment event(s). Phylogenetic analyses of all gene segments revealed the following genotype constellation: G3-P[14]-I2-R2-C2-M3-A9-N2-T6-E5-H3 and indicated that BE5028 probably represents a rabbit to human interspecies transmission able to cause disease in a human child. Interestingly, BE5028 showed a close evolutionary relationship to RVA/Human-wt/BEL/B4106/2000/G3P[14], another lapine-like strain isolated in a Belgian child in 2000. The phylogenetic analysis of the NSP3 segment suggests the introduction of a bovine(-like) NSP3 into the lapine RVA population in the past 12 years. Sequence analysis of NSP5 revealed a head-to-tail partial duplication, combined with two short insertions and a deletion, indicative of the continuous circulation of this RVA lineage within the rabbit population.
Collapse
Affiliation(s)
- Melisa Berenice Bonica
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, B-3000 Leuven, Belgium.
| | - Mark Zeller
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, B-3000 Leuven, Belgium.
| | - Marc Van Ranst
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, B-3000 Leuven, Belgium.
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, B-3000 Leuven, Belgium.
| | - Elisabeth Heylen
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, B-3000 Leuven, Belgium.
| |
Collapse
|
8
|
Schoondermark-van de Ven E, Van Ranst M, de Bruin W, van den Hurk P, Zeller M, Matthijnssens J, Heylen E. Rabbit colony infected with a bovine-like G6P[11] rotavirus strain. Vet Microbiol 2013; 166:154-64. [PMID: 23830050 DOI: 10.1016/j.vetmic.2013.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 02/07/2023]
Abstract
Group A rotaviruses (RVAs) are the main etiological agent of infantile diarrhea in both humans and animals worldwide. A limited number of studies have investigated the molecular characteristics of RVA strains in stool specimens of rabbits, with only a few lapine RVA strains isolated and (partially) characterized to date. The most common G/P-genotype combinations found in rabbits are G3P[14] and G3P[22]. In this study a RVA strain was isolated from the small intestine of a 9-week-old rabbit from an infected laboratory rabbit colony. The RVA strain RVA/Rabbit-tc/NLD/K1130027/2011/G6P[11] was shown to possess the typical bovine G6 and P[11] genotypes. The complete genome of this unusual lapine strain was sequenced and characterized. Phylogenetic analyses of all 11 gene segments revealed the following genotype constellation: G6-P[11]-I2-R2-C2-M2-A13-N2-T6-E2-H3. The VP1, VP2, VP3, VP6, NSP2 and NSP4 genes all belonged to DS-1-like genotype 2, but clustered more closely to bovine RVA strains than to lapine RVA strains. The NSP1 genotype A13 is typically associated with bovine RVAs, while the NSP3 genotype T6 and the NSP5 genotype H3 have been found in a wide variety of species. However, the isolated strain clustered within bovine(-like) T6 and H3 subclusters. Overall, the data indicate that the RVA strain is most closely related to bovine-like RVA strains and most likely represents a direct interspecies transmission from a cow to a rabbit. Altogether, these findings indicate that a RVA strain with an entirely bovine genome constellation was able to infect and spread in a laboratory rabbit colony.
Collapse
|
9
|
Identification by full-genome analysis of a bovine rotavirus transmitted directly to and causing diarrhea in a human child. J Clin Microbiol 2012; 51:182-9. [PMID: 23115264 DOI: 10.1128/jcm.02062-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of rotaviruses consists of 11 segments of double-stranded RNA, and each genome segment has multiple genotypes. Thus, the genotype constellation of an isolate is often indicative of its host species. Albeit rarely, interspecies transmission occurs either by virions with nonreassorted or reassorted genomic segments. A rotavirus with the G6P[1] genotype, Ro8059, was isolated from the stool of a 1-year-old child during routine characterization of diarrheal specimens from a sentinel clinic in Israel in 1995. Since genotype G6P[1] is generally associated with bovine rotaviruses, and the child developed diarrhea within days of his first contact with calves at an urban farm, the aim of this study was to characterize the whole genomic constellation of Ro8059 and four G6P[1] bovine strains, BRV101, BRV105, BRV106, and CR231/39, by RNA-RNA hybridization and full genome sequencing to determine whether some or all of the segments were of bovine origin. The genome constellations of all four bovine G6P[1] strains were G6-P[1]-I2-R2-C2-M2-A3-N2-T6-E2-H3 for VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5, respectively. Ro8059 shared the same genotype constellation with these bovine strains, with high nucleotide sequence identities (95.84 to 100%) for each of the 11 segments indicating that Ro8059 represented a direct interspecies whole-genome transmission of a nonreassorted rotavirus from a calf to a human infant. We conclude that this was the earliest example with a complete epidemiological link in which an entirely bovine rotavirus directly infected a human child and caused a symptomatic diarrheal illness. Thus, not all bovine rotaviruses are always naturally attenuated to the human host.
Collapse
|
10
|
|
11
|
Silva LC, Sanches AA, Gregori F, Brandão PE, Alfieri AA, Headley SA, Jerez JA. First description of group A rotavirus from fecal samples of ostriches (Struthio camelus). Res Vet Sci 2011; 93:1066-9. [PMID: 22209018 DOI: 10.1016/j.rvsc.2011.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/19/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
This study investigated the occurrence of rotavirus infections in ostriches (Struthio camelus) reared in Northern Paraná, Brazil. Fecal (n=66) and serum (n=182) samples from nine farms located in four different cities were analyzed by silver stained-polyacrylamide gel electrophoresis (ss-PAGE), RT-PCR assay, virus isolation, and counterimmunoelectroosmophoresis (CIE). Rotavirus group A seropositivity occurred in 5.49% (10/182) of serum samples of ostriches originated from two farms. Only 9.09% (6/66) of fecal samples from ostriches with diarrhea maintained in one farm were positive by ss-PAGE, RT-PCR, and virus isolation. The G (VP7) and P (VP4) genotypes of rotavirus wild strains isolated in cell culture were determined by multiplex-nested PCR. The genotyping identified two rotavirus strains: G6P[1] and G10P[1]. In three rotavirus strains it was only possible to identify the P type; one strain being P[1] and two strains that presented the combination of P[1]+P[7]. These findings might represent the first characterization of rotavirus in ostriches, and the finding of porcine and bovine-like rotavirus genotypes in ostriches might suggest virus reassortment and possible interspecies transmission.
Collapse
Affiliation(s)
- L C Silva
- Faculty of Veterinary Medicine, Universidade Norte do Paraná, Arapongas, PR, Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
Multiple reassortment and interspecies transmission events contribute to the diversity of feline, canine and feline/canine-like human group A rotavirus strains. INFECTION GENETICS AND EVOLUTION 2011; 11:1396-406. [DOI: 10.1016/j.meegid.2011.05.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 11/15/2022]
|
13
|
Bányai K, Matthijnssens J, Szücs G, Forgách P, Erdélyi K, van Ranst M, Lorusso E, Decaro N, Elia G, Martella V. Frequent rearrangement may explain the structural heterogeneity in the 11th genome segment of lapine rotaviruses - short communication. Acta Vet Hung 2009; 57:453-61. [PMID: 19635717 DOI: 10.1556/avet.57.2009.3.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In rotaviruses, intragenic recombination or gene rearrangement occurs almost exclusively in the genome segments encoding for non-structural proteins. Rearranged RNA originates by mechanisms of partial sequence duplications and deletions or insertions of non-templated nucleotides. Of interest, epidemiological investigations have pointed out an unusual bias to rearrangements in genome segment 11, notably in rotavirus strains of lapine origin, as evidenced by the detection of numerous lapine strains with super-short genomic electropherotype. The sequence of the full-length genome segment 11 of two lapine strains with super-short electropherotype, LRV-4 and 3489/3, was determined and compared with rearranged and normal cognate genome segments of lapine rotaviruses. The rearranged genome segments contained head-to-tail partial duplications at the 3' end of the main ORF encoding NSP5. Unlike the strains Alabama and B4106, intermingled stretches of non-templated sequences were not present in the accessory RNA of LRV-4 and 3489/3, while multiple deletions were mapped, suggesting the lack of functional constraints. Altogether, these findings suggest that independent rearrangement events have given origin to the various lapine strains that have super-short genome pattern.
Collapse
Affiliation(s)
| | - Jelle Matthijnssens
- 3 University of Leuven Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research Leuven Belgium
| | - György Szücs
- 2 University of Pécs Department of Medical Microbiology and Immunology, Faculty of Medicine Pécs Hungary
| | - Petra Forgách
- 4 Szent István University Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science Budapest Hungary
| | - Károly Erdélyi
- 5 Central Veterinary Institute Department of Wildlife Diseases and Parasitology Budapest Hungary
| | - Marc van Ranst
- 3 University of Leuven Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research Leuven Belgium
| | - Eleonora Lorusso
- 6 University of Bari Department of Animal Health and Well-Being Bari Italy
| | - Nicola Decaro
- 6 University of Bari Department of Animal Health and Well-Being Bari Italy
| | - Gabriella Elia
- 6 University of Bari Department of Animal Health and Well-Being Bari Italy
| | - Vito Martella
- 6 University of Bari Department of Animal Health and Well-Being Bari Italy
| |
Collapse
|
14
|
Martínez-Laso J, Román A, Rodriguez M, Cervera I, Head J, Rodríguez-Avial I, Picazo JJ. Diversity of the G3 genes of human rotaviruses in isolates from Spain from 2004 to 2006: cross-species transmission and inter-genotype recombination generates alleles. J Gen Virol 2009; 90:935-943. [PMID: 19264637 DOI: 10.1099/vir.0.007807-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rotavirus evolves by using multiple genetic mechanisms which are an accumulation of spontaneous point mutations and reassortment events. Other mechanisms, such as cross-species transmission and inter-genotype recombination, may be also involved. One of the most interesting genotypes in the accumulation of these events is the G3 genotype. In this work, six new Spanish G3 sequences belonging to 0-2-year-old patients from Madrid were analysed and compared with 160 others of the same genotype obtained from humans and other host species to establish the evolutionary pathways of the G3 genotype. The following results were obtained: (i) there are four different lineages of the G3 genotype which have evolved in different species; (ii) Spanish G3 rotavirus sequences are most similar to the described sequences that belong to lineage I; (iii) several G3 genotype alleles were reassigned as other G genotypes; and (iv) inter-genotype recombination events in G3 viruses involving G1 and G2 were described. These findings strongly suggest multiple inter-species transmission events between different non-human mammalian species and humans.
Collapse
Affiliation(s)
- Jorge Martínez-Laso
- Unidad de Inmunoterapia Celular, Centro Nacional de Microbiología. Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Angela Román
- Unidad de Inmunoterapia Celular, Centro Nacional de Microbiología. Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Miriam Rodriguez
- Unidad de Inmunoterapia Celular, Centro Nacional de Microbiología. Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Isabel Cervera
- Unidad de Inmunoterapia Celular, Centro Nacional de Microbiología. Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Jacqueline Head
- Servicio de Microbiología Clínica, Hospital Clínico de San Carlos, 28040 Madrid, Spain
| | - Iciar Rodríguez-Avial
- Servicio de Microbiología Clínica, Hospital Clínico de San Carlos, 28040 Madrid, Spain
| | - Juan J Picazo
- Servicio de Microbiología Clínica, Hospital Clínico de San Carlos, 28040 Madrid, Spain
| |
Collapse
|
15
|
Molecular characterization of VP4, VP6 and VP7 genes of a rare G8P[14] rotavirus strain detected in an infant with gastroenteritis in Italy. Virus Res 2008; 137:163-7. [DOI: 10.1016/j.virusres.2008.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/01/2008] [Accepted: 07/03/2008] [Indexed: 11/22/2022]
|
16
|
Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM, Palombo EA, Iturriza-Gómara M, Maes P, Patton JT, Rahman M, Van Ranst M. Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 2008; 82:3204-19. [PMID: 18216098 PMCID: PMC2268446 DOI: 10.1128/jvi.02257-07] [Citation(s) in RCA: 715] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 01/08/2008] [Indexed: 01/10/2023] Open
Abstract
Group A rotavirus classification is currently based on the molecular properties of the two outer layer proteins, VP7 and VP4, and the middle layer protein, VP6. As reassortment of all the 11 rotavirus gene segments plays a key role in generating rotavirus diversity in nature, a classification system that is based on all the rotavirus gene segments is desirable for determining which genes influence rotavirus host range restriction, replication, and virulence, as well as for studying rotavirus epidemiology and evolution. Toward establishing such a classification system, gene sequences encoding VP1 to VP3, VP6, and NSP1 to NSP5 were determined for human and animal rotavirus strains belonging to different G and P genotypes in addition to those available in databases, and they were used to define phylogenetic relationships among all rotavirus genes. Based on these phylogenetic analyses, appropriate identity cutoff values were determined for each gene. For the VP4 gene, a nucleotide identity cutoff value of 80% completely correlated with the 27 established P genotypes. For the VP7 gene, a nucleotide identity cutoff value of 80% largely coincided with the established G genotypes but identified four additional distinct genotypes comprised of murine or avian rotavirus strains. Phylogenetic analyses of the VP1 to VP3, VP6, and NSP1 to NSP5 genes showed the existence of 4, 5, 6, 11, 14, 5, 7, 11, and 6 genotypes, respectively, based on nucleotide identity cutoff values of 83%, 84%, 81%, 85%, 79%, 85%, 85%, 85%, and 91%, respectively. In accordance with these data, a revised nomenclature of rotavirus strains is proposed. The novel classification system allows the identification of (i) distinct genotypes, which probably followed separate evolutionary paths; (ii) interspecies transmissions and a plethora of reassortment events; and (iii) certain gene constellations that revealed (a) a common origin between human Wa-like rotavirus strains and porcine rotavirus strains and (b) a common origin between human DS-1-like rotavirus strains and bovine rotaviruses. These close evolutionary links between human and animal rotaviruses emphasize the need for close simultaneous monitoring of rotaviruses in animals and humans.
Collapse
Affiliation(s)
- Jelle Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Henzell RP, Cooke BD, Mutze GJ. The future biological control of pest populations of European rabbits, Oryctolagus cuniculus. WILDLIFE RESEARCH 2008. [DOI: 10.1071/wr06164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
European rabbits are exotic pests in Australia, New Zealand, parts of South America and Europe, and on many islands. Their abundance, and the damage they cause, might be reduced by the release of naturally occurring or genetically modified organisms (GMOs) that act as biological control agents (BCAs). Some promising pathogens and parasites of European rabbits and other lagomorphs are discussed, with special reference to those absent from Australia as an example of the range of necessary considerations in any given case. The possibility of introducing these already-known BCAs into areas where rabbits are pests warrants further investigation. The most cost-effective method for finding potentially useful but as-yet undiscovered BCAs would be to maintain a global watch on new diseases and pathologies in domestic rabbits. The absence of wild European rabbits from climatically suitable parts of North and South America and southern Africa may indicate the presence there of useful BCAs, although other explanations for their absence are possible. Until the non-target risks of deploying disseminating GMOs to control rabbits have been satisfactorily minimised, efforts to introduce BCAs into exotic rabbit populations should focus on naturally occurring organisms. The development of safe disseminating GMOs remains an important long-term goal, with the possible use of homing endonuclease genes warranting further investigation.
Collapse
|
18
|
Khamrin P, Maneekarn N, Peerakome S, Chan-it W, Yagyu F, Okitsu S, Ushijima H. Novel porcine rotavirus of genotype P[27] shares new phylogenetic lineage with G2 porcine rotavirus strain. Virology 2007; 361:243-52. [PMID: 17215015 DOI: 10.1016/j.virol.2006.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 11/29/2006] [Accepted: 12/01/2006] [Indexed: 11/17/2022]
Abstract
A novel and unusual strain of porcine rotavirus (PoRV) CMP034 was isolated from a 7-week-old piglet during the epidemiological survey of porcine rotavirus infection in Chiang Mai province, Thailand from June 2000 to July 2001. Molecular characterization of gene VP4 by sequence analysis showed a low level of amino acid sequence identity, ranging from 56.7% to 76.6%, while comparison of VP8* portion showed 41.8% to 69.9% identity, with the 26 P genotypes recognized to date. Phylogenetic analysis of the VP4 sequence revealed that CMP034 was only distantly related to the other 26 P genotypes and was located in a separate branch. Sequence analysis of gene VP7 showed the highest level of amino acid identity (94.7%) with the PoRV G2-like reference strain 34461-4 but a lower level of identity with those of human G2 rotaviruses, ranging from 87.7% to 88.0%. Phylogenetic analysis of gene VP7 revealed two major lineages among G2 rotavirus strains based on the host origin. PoRV strain CMP034 clustered exclusively with G2-like PoRV strain 34461-4 in a novel lineage that is distinct from the major G2 human lineage. Moreover, strain CMP034 displayed a porcine-like VP6 and NSP5/6 with subgroup I specificity, while bearing an NSP4 with some genetic group B human-like characteristics. These findings provide evidence that CMP034 should be considered as a novel VP4 genotype P[27].
Collapse
Affiliation(s)
- Pattara Khamrin
- Department of Developmental Medical Sciences, Institute of International Health, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyu-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
van Zyl WB, Page NA, Grabow WOK, Steele AD, Taylor MB. Molecular epidemiology of group A rotaviruses in water sources and selected raw vegetables in southern Africa. Appl Environ Microbiol 2006; 72:4554-60. [PMID: 16820443 PMCID: PMC1489384 DOI: 10.1128/aem.02119-05] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Group A rotaviruses (RVs) are the most important cause of acute viral gastroenteritis in infants and young children. In this study raw and treated drinking water supplies at plants in two geographic areas, as well as selected irrigation water and corresponding raw vegetables in three regions of southern Africa, were screened for the presence of RVs using molecular techniques. Group A RVs were detected in 11.8% of partially treated and 1.7% of finally treated drinking water samples and in 14% of irrigation water samples and 1.7% of corresponding raw vegetable samples. Type-specific reverse transcriptase-PCR and sequence analysis revealed the presence of multiple types (G1, G2, G8, and G9) in irrigation water and single types (G1 or G3) in raw and treated drinking water. Group A RVs detected in all samples consisted of mixed P types (P[4], P[6], P[8], and P[9]), with P[6] predominating. The detection of types G8, G9, and P[6] reflects the emergence of these types in clinical infections. The similarity of environmental types to those in patients with clinical RV infections confirms the value of wastewater screening as a tool for assessing RVs circulating in communities, with the benefit of detecting types that cause both clinical and subclinical infections. The results provide new information on RV types in water and related environments and identify the potential risk of waterborne transmission. In addition, the presence of RVs in drinking water underlines shortcomings in quality specifications. These data provide valuable information regarding the prevalence of RVs in environmental sources, with important implications for vaccine development.
Collapse
Affiliation(s)
- W B van Zyl
- Department of Medical Virology, Faculty of Health Sciences, NHLS/University of Pretoria, P.O. Box 2034, Pretoria 0001, South Africa
| | | | | | | | | |
Collapse
|
20
|
Khamrin P, Maneekarn N, Peerakome S, Yagyu F, Okitsu S, Ushijima H. Molecular characterization of a rare G3P[3] human rotavirus reassortant strain reveals evidence for multiple human-animal interspecies transmissions. J Med Virol 2006; 78:986-94. [PMID: 16721863 DOI: 10.1002/jmv.20651] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An unusual strain of human rotavirus G3P[3] (CMH222), bearing simian-like VP7 and caprine-like VP4 genes, was isolated from a 2-year-old child patient during the epidemiological survey of rotavirus in Chiang Mai, Thailand in 2000-2001. The rotavirus strain was characterized by molecular analysis of its VP4, VP6, VP7, and NSP4 gene segments. The VP4 sequence of CMH222 shared the greatest homology with those of caprine P[3] (GRV strain) at 90.6% nucleotide and 96.4% amino acid sequence identities. Interestingly, the VP7 sequence revealed highest identity with those of simian G3 rotavirus (RRV strain) at 88% nucleotide and 98.1% amino acid sequence identities. In contrast, percent sequence identities of both the VP4 and VP7 genes were lower when compared with those of human rotavirus G3P[3] reference strains (Ro1845 and HCR3). Analyses of VP6 and NSP4 sequences showed a close relationship with simian VP6 SG I and caprine NSP4 genotype C, respectively. Phylogenetic analysis of VP4, VP6, VP7, and NSP4 genes of CMH222 revealed a common evolutionary lineage with simian and caprine rotavirus strains. These findings strongly suggest multiple interspecies transmission events of rotavirus strains among caprine, simian, and human in nature and provide convincing evidence that evolution of human rotaviruses is tightly intermingled with the evolution of animal rotaviruses.
Collapse
Affiliation(s)
- Pattara Khamrin
- Department of Developmental Medical Sciences, Institute of International Health, Graduate School of Medicine, the University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Matthijnssens J, Rahman M, Martella V, Xuelei Y, De Vos S, De Leener K, Ciarlet M, Buonavoglia C, Van Ranst M. Full genomic analysis of human rotavirus strain B4106 and lapine rotavirus strain 30/96 provides evidence for interspecies transmission. J Virol 2006; 80:3801-10. [PMID: 16571797 PMCID: PMC1440464 DOI: 10.1128/jvi.80.8.3801-3810.2006] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Belgian rotavirus strain B4106, isolated from a child with gastroenteritis, was previously found to have VP7 (G3), VP4 (P[14]), and NSP4 (A genotype) genes closely related to those of lapine rotaviruses, suggesting a possible lapine origin or natural reassortment of strain B4106. To investigate the origin of this unusual strain, the gene sequences encoding VP1, VP2, VP3, VP6, NSP1, NSP2, NSP3, and NSP5/6 were also determined. To allow comparison to a lapine strain, the 11 double-stranded RNA segments of a European G3P[14] rabbit rotavirus strain 30/96 were also determined. The complete genome similarity between strains B4106 and 30/96 was 93.4% at the nucleotide level and 96.9% at the amino acid level. All 11 genome segments of strain B4106 were closely related to those of lapine rotaviruses and clustered with the lapine strains in phylogenetic analyses. In addition, sequence analyses of the NSP5 gene of strain B4106 revealed that the altered electrophoretic mobility of NSP5, resulting in a super-short pattern, was due to a gene rearrangement (head-to-tail partial duplication, combined with two short insertions and a deletion). Altogether, these findings confirm that a rotavirus strain with an entirely lapine genome complement was able to infect and cause severe disease in a human child.
Collapse
Affiliation(s)
- Jelle Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Desselberger U, Wolleswinkel-van den Bosch J, Mrukowicz J, Rodrigo C, Giaquinto C, Vesikari T. Rotavirus types in Europe and their significance for vaccination. Pediatr Infect Dis J 2006; 25:S30-41. [PMID: 16397427 DOI: 10.1097/01.inf.0000197707.70835.f3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The degree of diversity of cocirculating human rotavirus wild-type strains is high. This article reviews the occurrence and frequency of rotavirus types in European children younger than 5 years of age during the past 10-15 years. To enable greater understanding of the overall epidemiologic situation, rotavirus types found in animals in Europe are described. In addition, rotavirus types occurring in children outside Europe are considered. Taken together, these data provide an essential background to the development of rotavirus vaccines. The different concepts of immunization with the 2 main rotavirus candidate vaccines are briefly discussed, and their potential impact on the epidemiology of cocirculating rotavirus wild-type viruses is considered. A case is made for comprehensive surveillance of cocirculating human rotavirus types in Europe after the implementation of rotavirus vaccination.
Collapse
|
23
|
Bányai K, Forgách P, Erdélyi K, Martella V, Bogdán A, Hocsák E, Havasi V, Melegh B, Szucs G. Identification of the novel lapine rotavirus genotype P[22] from an outbreak of enteritis in a Hungarian rabbitry. Virus Res 2005; 113:73-80. [PMID: 15936106 DOI: 10.1016/j.virusres.2005.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 03/29/2005] [Accepted: 03/29/2005] [Indexed: 11/26/2022]
Abstract
Application of improved molecular techniques in the detection and characterization of rotavirus strains has led to the recent description of several new combinations, specificities, and genetic variants of the outer capsid genes, VP7 and VP4. In spite of the enormous diversity of mammalian rotavirus strains, the few lapine rotaviruses characterized to date, appear to carry a narrow range of such antigen combinations; only P[14], G3 and, based on a more recent study, P[22], G3 rotaviruses have proved to be epidemiologically important in rabbits. In the present study, we characterized a lapine group A rotavirus with a super-short electropherotype detected in an outbreak of fatal enteritis in a Hungarian commercial rabbitry. Based on sequence and phylogenetic analysis of the VP7, VP4, and NSP4 genes, our lapine strain is a P[22], G3 rotavirus that carries the NSP4 genotype shared by most lapine rotaviruses. Although the P[22] VP4 specificity has been newly identified, the relatively high sequence variation between our strain and those identified in Italy (89.1-90.4% nucleotide identity; region VP8*) implies that these strains diversified far before they were described for the first time, strongly suggesting that this genotype may have circulated in rabbitries or in nature without prior detection. We conclude that genotype P[22] lapine rotaviruses show a wider geographical dispersal than previously thought, although understanding their true epidemiological significance needs further investigation.
Collapse
Affiliation(s)
- Krisztián Bányai
- Regional Laboratory of Virology, Baranya County Institute of State Public Health Service, Szabadság út 7, H-7623 Pécs, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Martella V, Ciarlet M, Lavazza A, Camarda A, Lorusso E, Terio V, Ricci D, Cariola F, Gentile M, Cavalli A, Camero M, Decaro N, Buonavoglia C. Lapine rotaviruses of the genotype P[22] are widespread in Italian rabbitries. Vet Microbiol 2005; 111:117-24. [PMID: 16257498 DOI: 10.1016/j.vetmic.2005.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 09/13/2005] [Accepted: 10/03/2005] [Indexed: 11/20/2022]
Abstract
An epidemiological survey was carried out to investigate the distribution of the VP7 and VP4 specificities of lapine rotaviruses (LRVs) in rabbitries from different geographical regions of Italy. Almost all the strains were characterized as P[22],G3, confirming the presence of the newly-recognized rotavirus P[22] VP4 allele in Italian rabbits. Only one P[14],G3 LRV strain was identified and two samples contained a mixed (P[14] + [22],G3) rotavirus infection. All the LRV strains analyzed exhibited a genogroup I VP6 specificity and a long dsRNA electropherotype. However, one of the P[14],G3 strains possessed a super-short pattern. Altogether, these data highlight the epidemiological relevance of the P[22] LRVs in Italian rabbitries.
Collapse
Affiliation(s)
- V Martella
- Department of Animal Health and Well-Being, University of Bari, Valenzano, Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Santos N, Hoshino Y. Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev Med Virol 2005; 15:29-56. [PMID: 15484186 DOI: 10.1002/rmv.448] [Citation(s) in RCA: 910] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A safe and effective rotavirus vaccine is urgently needed, particularly in developing countries. Critical to vaccine development and implementation is a knowledge base concerning the epidemiology of rotavirus G and P serotypes/genotypes throughout the world. The temporal and geographical distribution of human rotavirus G and P types was reviewed by analysing a total of 45571 strains collected globally from 124 studies reported from 52 countries on five continents published between 1989 and 2004. Four common G types (G1, G2, G3 and G4) in conjunction with P[8] or P[4] represented over 88% of the strains analysed worldwide. In addition, serotype G9 viruses associated with P[8] or P[6] were shown to have emerged as the fourth globally important G type with the relative frequency of 4.1%. When the global G and/or P type distributions were divided into five continents/subcontinents, several characteristic features emerged. For example, the P[8]G1 represented over 70% of rotavirus infections in North America, Europe and Australia, but only about 30% of the infections in South America and Asia, and 23% in Africa. In addition, in Africa (i) the relative frequency of G8 was as high as that of the globally common G3 or G4, (ii) P[6] represented almost one-third of all P types identified and (iii) 27% of the infections were associated with rotavirus strains bearing unusual combinations such as P[6]G8 or P[4]G8. Furthermore, in South America, uncommon G5 virus appeared to increase its epidemiological importance among children with diarrhea. Such findings have (i) confirmed the importance of continued active rotavirus strain surveillance in a variety of geographical settings and (ii) provided important considerations for the development and implementation of an effective rotavirus vaccine (e.g. a geographical P-G type adjustment in the formulation of next generation multivalent vaccines).
Collapse
Affiliation(s)
- Norma Santos
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21.941-590, Brazil.
| | | |
Collapse
|