1
|
Pozhydaieva N, Wolfram-Schauerte M, Keuthen H, Höfer K. The enigmatic epitranscriptome of bacteriophages: putative RNA modifications in viral infections. Curr Opin Microbiol 2024; 77:102417. [PMID: 38217927 DOI: 10.1016/j.mib.2023.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
RNA modifications play essential roles in modulating RNA function, stability, and fate across all kingdoms of life. The entirety of the RNA modifications within a cell is defined as the epitranscriptome. While eukaryotic RNA modifications are intensively studied, understanding bacterial RNA modifications remains limited, and knowledge about bacteriophage RNA modifications is almost nonexistent. In this review, we shed light on known mechanisms of bacterial RNA modifications and propose how this knowledge might be extended to bacteriophages. We build hypotheses on enzymes potentially responsible for regulating the epitranscriptome of bacteriophages and their host. This review highlights the exciting prospects of uncovering the unexplored field of bacteriophage epitranscriptomics and its potential role to shape bacteriophage-host interactions.
Collapse
Affiliation(s)
| | | | - Helene Keuthen
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
2
|
Integrated Omics Reveal Time-Resolved Insights into T4 Phage Infection of E. coli on Proteome and Transcriptome Levels. Viruses 2022; 14:v14112502. [PMID: 36423111 PMCID: PMC9697503 DOI: 10.3390/v14112502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages are highly abundant viruses of bacteria. The major role of phages in shaping bacterial communities and their emerging medical potential as antibacterial agents has triggered a rebirth of phage research. To understand the molecular mechanisms by which phages hijack their host, omics technologies can provide novel insights into the organization of transcriptional and translational events occurring during the infection process. In this study, we apply transcriptomics and proteomics to characterize the temporal patterns of transcription and protein synthesis during the T4 phage infection of E. coli. We investigated the stability of E. coli-originated transcripts and proteins in the course of infection, identifying the degradation of E. coli transcripts and the preservation of the host proteome. Moreover, the correlation between the phage transcriptome and proteome reveals specific T4 phage mRNAs and proteins that are temporally decoupled, suggesting post-transcriptional and translational regulation mechanisms. This study provides the first comprehensive insights into the molecular takeover of E. coli by bacteriophage T4. This data set represents a valuable resource for future studies seeking to study molecular and regulatory events during infection. We created a user-friendly online tool, POTATO4, which is available to the scientific community and allows access to gene expression patterns for E. coli and T4 genes.
Collapse
|
3
|
Interactions between Jumbo Phage SA1 and Staphylococcus: A Global Transcriptomic Analysis. Microorganisms 2022; 10:microorganisms10081590. [PMID: 36014008 PMCID: PMC9414953 DOI: 10.3390/microorganisms10081590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important zoonotic pathogen that poses a serious health concern to humans and cattle worldwide. Although it has been proven that lytic phages may successfully kill S. aureus, the interaction between the host and the phage has yet to be thoroughly investigated, which will likely limit the clinical application of phage. Here, RNA sequencing (RNA-seq) was used to examine the transcriptomics of jumbo phage SA1 and Staphylococcus JTB1-3 during a high multiplicity of infection (MOI) and RT-qPCR was used to confirm the results. The RNA-seq analysis revealed that phage SA1 took over the transcriptional resources of the host cells and that the genes were categorized as early, middle, and late, based on the expression levels during infection. A minor portion of the resources of the host was employed to enable phage replication after infection because only 35.73% (997/2790) of the host genes were identified as differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the phage infection mainly affected the nucleotide metabolism, protein metabolism, and energy-related metabolism of the host. Moreover, the expression of the host genes involved in anti-phage systems, virulence, and drug resistance significantly changed during infection. This research gives a fresh understanding of the relationship between jumbo phages and their Gram-positive bacteria hosts and provides a reference for studying phage treatment and antibiotics.
Collapse
|
4
|
Lee J, Lee M, Lee K. Trans-acting regulators of ribonuclease activity. J Microbiol 2021; 59:341-359. [PMID: 33779951 DOI: 10.1007/s12275-021-0650-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.
Collapse
Affiliation(s)
- Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
5
|
Lee J, Lee M, Lee K. Trans-acting regulators of ribonuclease activity. J Microbiol 2021:10.1007/s12275-021-0650-3. [PMID: 33565052 DOI: 10.1007/s12275-021-0650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022]
Abstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.
Collapse
Affiliation(s)
- Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
6
|
Dendooven T, Lavigne R. Dip-a-Dee-Doo-Dah: Bacteriophage-Mediated Rescoring of a Harmoniously Orchestrated RNA Metabolism. Annu Rev Virol 2019; 6:199-213. [DOI: 10.1146/annurev-virology-092818-015644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA turnover and processing in bacteria are governed by the structurally divergent but functionally convergent RNA degradosome, and the mechanisms have been researched extensively in Gram-positive and Gram-negative bacteria. An emerging research field focuses on how bacterial viruses hijack all aspects of the bacterial metabolism, including the host machinery of RNA metabolism. This review addresses research on phage-based influence on RNA turnover, which can act either indirectly or via dedicated effector molecules that target degradosome assemblies. The structural divergence of host RNA turnover mechanisms likely explains the limited number of phage proteins directly targeting these specialized, host-specific complexes. The unique and nonconserved structure of DIP, a phage-encoded inhibitor of the Pseudomonas degradosome, illustrates this hypothesis. However, the natural occurrence of phage-encoded mechanisms regulating RNA turnover indicates a clear evolutionary benefit for this mode of host manipulation. Further exploration of the viral dark matter of unknown phage proteins may reveal more structurally novel interference strategies that, in turn, could be exploited for biotechnological applications.
Collapse
Affiliation(s)
- T. Dendooven
- Department of Biochemistry, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - R. Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
7
|
Qi D, Guan J, Wu E. Virus infection-induced host mRNA degradation and potential application of live cell imaging. ACTA ACUST UNITED AC 2018; 5:143-147. [PMID: 32289070 PMCID: PMC7104030 DOI: 10.1016/j.jrid.2018.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/19/2018] [Accepted: 12/05/2018] [Indexed: 12/01/2022]
Abstract
Viruses exist wherever there is life. They can cause allergy, immune response, inflammation, and even fatal diseases directly or indirectly. Accumulating evidence shows that host RNA undergoes rapid degradation during virus infection. Herein, we focus on several possible mechanisms of infection-induced host RNA turnover, which seems to be a common strategy for both prokaryotic and eukaryotic viruses during the very early stage of infection and a potential application of live cell imaging on its visualization.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 78508, USA
- Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
| | - Jitian Guan
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 78508, USA
- Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 78508, USA
- Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Surgery, Texas A & M University College of Medicine, Temple, TX 76504, USA
- Department of Pharmaceutical Sciences, Texas A & M University College of Pharmacy, College Station, TX 77843, USA
- LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases. mBio 2017; 8:mBio.02041-16. [PMID: 28196958 PMCID: PMC5312081 DOI: 10.1128/mbio.02041-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis. Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5′ ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. Phages regulate the timing of the expression of their own genes to coordinate processes in the infected cell and maximize the release of viral progeny. Phages also alter the levels of host transcripts. Here we present the results of a temporal analysis of the host and viral transcriptomes of Bacillus subtilis infected with a giant phage, AR9. We identify viral promoters recognized by two virus-encoded RNA polymerases that are a unique feature of the phiKZ-related group of phages to which AR9 belongs. Our results set the stage for future analyses of highly unusual RNA polymerases encoded by AR9 and other phiKZ-related phages.
Collapse
|
9
|
RnlB Antitoxin of the Escherichia coli RnlA-RnlB Toxin-Antitoxin Module Requires RNase HI for Inhibition of RnlA Toxin Activity. Toxins (Basel) 2017; 9:toxins9010029. [PMID: 28085056 PMCID: PMC5308261 DOI: 10.3390/toxins9010029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 12/03/2022] Open
Abstract
The Escherichia coli RnlA-RnlB toxin–antitoxin system is related to the anti-phage mechanism. Under normal growth conditions, an RnlA toxin with endoribonuclease activity is inhibited by binding of its cognate RnlB antitoxin. After bacteriophage T4 infection, RnlA is activated by the disappearance of RnlB, resulting in the rapid degradation of T4 mRNAs and consequently no T4 propagation when T4 dmd encoding a phage antitoxin against RnlA is defective. Intriguingly, E. coli RNase HI, which plays a key role in DNA replication, is required for the activation of RnlA and stimulates the RNA cleavage activity of RnlA. Here, we report an additional role of RNase HI in the regulation of RnlA-RnlB system. Both RNase HI and RnlB are associated with NRD (one of three domains of RnlA). The interaction between RnlB and NRD depends on RNase HI. Exogenous expression of RnlA in wild-type cells has no effect on cell growth because of endogenous RnlB and this inhibition of RnlA toxicity requires RNase HI and NRD. These results suggest that RNase HI recruits RnlB to RnlA through NRD for inhibiting RnlA toxicity and thus plays two contrary roles in the regulation of RnlA-RnlB system.
Collapse
|
10
|
Skliros D, Kalatzis PG, Katharios P, Flemetakis E. Comparative Functional Genomic Analysis of Two Vibrio Phages Reveals Complex Metabolic Interactions with the Host Cell. Front Microbiol 2016; 7:1807. [PMID: 27895630 PMCID: PMC5107563 DOI: 10.3389/fmicb.2016.01807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/27/2016] [Indexed: 01/21/2023] Open
Abstract
Sequencing and annotation was performed for two large double stranded DNA bacteriophages, φGrn1 and φSt2 of the Myoviridae family, considered to be of great interest for phage therapy against Vibrios in aquaculture live feeds. In addition, phage–host metabolic interactions and exploitation was studied by transcript profiling of selected viral and host genes. Comparative genomic analysis with other large Vibrio phages was also performed to establish the presence and location of homing endonucleases highlighting distinct features for both phages. Phylogenetic analysis revealed that they belong to the “schizoT4like” clade. Although many reports of newly sequenced viruses have provided a large set of information, basic research related to the shift of the bacterial metabolism during infection remains stagnant. The function of many viral protein products in the process of infection is still unknown. Genome annotation identified the presence of several viral open reading frames (ORFs) participating in metabolism, including a Sir2/cobB (sirtuin) protein and a number of genes involved in auxiliary NAD+ and nucleotide biosynthesis, necessary for phage DNA replication. Key genes were subsequently selected for detail study of their expression levels during infection. This work suggests a complex metabolic interaction and exploitation of the host metabolic pathways and biochemical processes, including a possible post-translational protein modification, by the virus during infection.
Collapse
Affiliation(s)
- Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens Athens, Greece
| | - Panos G Kalatzis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HeraklionCrete, Greece; Marine Biological Section, University of CopenhagenHelsingør, Denmark
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion Crete, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens Athens, Greece
| |
Collapse
|
11
|
Van den Bossche A, Hardwick SW, Ceyssens PJ, Hendrix H, Voet M, Dendooven T, Bandyra KJ, De Maeyer M, Aertsen A, Noben JP, Luisi BF, Lavigne R. Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome. eLife 2016; 5:e16413. [PMID: 27447594 PMCID: PMC4980113 DOI: 10.7554/elife.16413] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023] Open
Abstract
In all domains of life, the catalysed degradation of RNA facilitates rapid adaptation to changing environmental conditions, while destruction of foreign RNA is an important mechanism to prevent host infection. We have identified a virus-encoded protein termed gp37/Dip, which directly binds and inhibits the RNA degradation machinery of its bacterial host. Encoded by giant phage фKZ, this protein associates with two RNA binding sites of the RNase E component of the Pseudomonas aeruginosa RNA degradosome, occluding them from substrates and resulting in effective inhibition of RNA degradation and processing. The 2.2 Å crystal structure reveals that this novel homo-dimeric protein has no identifiable structural homologues. Our biochemical data indicate that acidic patches on the convex outer surface bind RNase E. Through the activity of Dip, фKZ has evolved a unique mechanism to down regulate a key metabolic process of its host to allow accumulation of viral RNA in infected cells.
Collapse
Affiliation(s)
- An Van den Bossche
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
- Division of Bacterial diseases, Scientific Institute of Public Health, Brussels, Belgium
| | - Steven W Hardwick
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Pieter-Jan Ceyssens
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
- Division of Bacterial diseases, Scientific Institute of Public Health, Brussels, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Marleen Voet
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Tom Dendooven
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Katarzyna J Bandyra
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Marc De Maeyer
- Biochemistry, Molecular and Structural Biology Scetion, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, KU Leuven, Leuven, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute, University of Hasselt, Diepenbeek, Belgium
- Transnational University Limburg, University of Hasselt, Diepenbeek, Belgium
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Stazic D, Pekarski I, Kopf M, Lindell D, Steglich C. A Novel Strategy for Exploitation of Host RNase E Activity by a Marine Cyanophage. Genetics 2016; 203:1149-59. [PMID: 27182944 PMCID: PMC4937493 DOI: 10.1534/genetics.115.183475] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/04/2016] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that infection of Prochlorococcus MED4 by the cyanophage P-SSP7 leads to increased transcript levels of host endoribonuclease (RNase) E. However, it has remained enigmatic whether this is part of a host defense mechanism to degrade phage messenger RNA (mRNA) or whether this single-strand RNA-specific RNase is utilized by the phage. Here we describe a hitherto unknown means through which this cyanophage increases expression of RNase E during phage infection and concomitantly protects its own RNA from degradation. We identified two functionally different RNase E mRNA variants, one of which is significantly induced during phage infection. This transcript lacks the 5' UTR, is considerably more stable than the other transcript, and is likely responsible for increased RNase E protein levels during infection. Furthermore, selective enrichment and in vivo analysis of double-stranded RNA (dsRNA) during infection revealed that phage antisense RNAs (asRNAs) sequester complementary mRNAs to form dsRNAs, such that the phage protein-coding transcriptome is nearly completely covered by asRNAs. In contrast, the host protein-coding transcriptome is only partially covered by asRNAs. These data suggest that P-SSP7 orchestrates degradation of host RNA by increasing RNase E expression while masking its own transcriptome from RNase E degradation in dsRNA complexes. We propose that this combination of strategies contributes significantly to phage progeny production.
Collapse
Affiliation(s)
- Damir Stazic
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Irena Pekarski
- Department of Biology, Technion Institute of Technology, Haifa 32000, Israel
| | - Matthias Kopf
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Debbie Lindell
- Department of Biology, Technion Institute of Technology, Haifa 32000, Israel
| | - Claudia Steglich
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
13
|
Chevallereau A, Blasdel BG, De Smet J, Monot M, Zimmermann M, Kogadeeva M, Sauer U, Jorth P, Whiteley M, Debarbieux L, Lavigne R. Next-Generation "-omics" Approaches Reveal a Massive Alteration of Host RNA Metabolism during Bacteriophage Infection of Pseudomonas aeruginosa. PLoS Genet 2016; 12:e1006134. [PMID: 27380413 PMCID: PMC4933390 DOI: 10.1371/journal.pgen.1006134] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/31/2016] [Indexed: 01/08/2023] Open
Abstract
As interest in the therapeutic and biotechnological potentials of bacteriophages has grown, so has value in understanding their basic biology. However, detailed knowledge of infection cycles has been limited to a small number of model bacteriophages, mostly infecting Escherichia coli. We present here the first analysis coupling data obtained from global next-generation approaches, RNA-Sequencing and metabolomics, to characterize interactions between the virulent bacteriophage PAK_P3 and its host Pseudomonas aeruginosa. We detected a dramatic global depletion of bacterial transcripts coupled with their replacement by viral RNAs over the course of infection, eventually leading to drastic changes in pyrimidine metabolism. This process relies on host machinery hijacking as suggested by the strong up-regulation of one bacterial operon involved in RNA processing. Moreover, we found that RNA-based regulation plays a central role in PAK_P3 lifecycle as antisense transcripts are produced mainly during the early stage of infection and viral small non coding RNAs are massively expressed at the end of infection. This work highlights the prominent role of RNA metabolism in the infection strategy of a bacteriophage belonging to a new characterized sub-family of viruses with promising therapeutic potential.
Collapse
Affiliation(s)
- Anne Chevallereau
- Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Department of Microbiology, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Bob G. Blasdel
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Jeroen De Smet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Marc Monot
- Institut Pasteur, Laboratoire Pathogenèse des bactéries anaérobies, Département de Microbiologie, Paris, France
| | - Michael Zimmermann
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Maria Kogadeeva
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Peter Jorth
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Infectious Disease, University of Texas, Austin, Texas, United States of America
| | - Marvin Whiteley
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Infectious Disease, University of Texas, Austin, Texas, United States of America
| | - Laurent Debarbieux
- Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Department of Microbiology, Paris, France
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Leskinen K, Blasdel BG, Lavigne R, Skurnik M. RNA-Sequencing Reveals the Progression of Phage-Host Interactions between φR1-37 and Yersinia enterocolitica. Viruses 2016; 8:111. [PMID: 27110815 PMCID: PMC4848604 DOI: 10.3390/v8040111] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 01/05/2023] Open
Abstract
Despite the expanding interest in bacterial viruses (bacteriophages), insights into the intracellular development of bacteriophage and its impact on bacterial physiology are still scarce. Here we investigate during lytic infection the whole-genome transcription of the giant phage vB_YecM_φR1-37 (φR1-37) and its host, the gastroenteritis causing bacterium Yersinia enterocolitica. RNA sequencing reveals that the gene expression of φR1-37 does not follow a pattern typical observed in other lytic bacteriophages, as only selected genes could be classified as typically early, middle or late genes. The majority of the genes appear to be expressed constitutively throughout infection. Additionally, our study demonstrates that transcription occurs mainly from the positive strand, while the negative strand encodes only genes with low to medium expression levels. Interestingly, we also detected the presence of antisense RNA species, as well as one non-coding intragenic RNA species. Gene expression in the phage-infected cell is characterized by the broad replacement of host transcripts with phage transcripts. However, the host response in the late phase of infection was also characterized by up-regulation of several specific bacterial gene products known to be involved in stress response and membrane stability, including the Cpx pathway regulators, ATP-binding cassette (ABC) transporters, phage- and cold-shock proteins.
Collapse
Affiliation(s)
- Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, P.O.Box 21 (Haartmaninkatu 3), FIN-00014 HY Helsinki, Finland.
| | - Bob G Blasdel
- Laboratory of Gene Technology, KU Leuven, BE-3001 Leuven, Belgium.
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, BE-3001 Leuven, Belgium.
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, P.O.Box 21 (Haartmaninkatu 3), FIN-00014 HY Helsinki, Finland.
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, FIN-00270 Helsinki, Finland.
| |
Collapse
|
15
|
De Smet J, Zimmermann M, Kogadeeva M, Ceyssens PJ, Vermaelen W, Blasdel B, Bin Jang H, Sauer U, Lavigne R. High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection. ISME JOURNAL 2016; 10:1823-35. [PMID: 26882266 DOI: 10.1038/ismej.2016.3] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/26/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022]
Abstract
Phage-mediated metabolic changes in bacteria are hypothesized to markedly alter global nutrient and biogeochemical cycles. Despite their theoretic importance, experimental data on the net metabolic impact of phage infection on the bacterial metabolism remains scarce. In this study, we tracked the dynamics of intracellular metabolites using untargeted high coverage metabolomics in Pseudomonas aeruginosa cells infected with lytic bacteriophages from six distinct phage genera. Analysis of the metabolomics data indicates an active interference in the host metabolism. In general, phages elicit an increase in pyrimidine and nucleotide sugar metabolism. Furthermore, clear phage-specific and infection stage-specific responses are observed, ranging from extreme metabolite depletion (for example, phage YuA) to complete reorganization of the metabolism (for example, phage phiKZ). As expected, pathways targeted by the phage-encoded auxiliary metabolic genes (AMGs) were enriched among the metabolites changing during infection. The effect on pyrimidine metabolism of phages encoding AMGs capable of host genome degradation (for example, YuA and LUZ19) was distinct from those lacking nuclease-encoding genes (for example, phiKZ), which demonstrates the link between the encoded set of AMGs of a phage and its impact on host physiology. However, a large fraction of the profound effect on host metabolism could not be attributed to the phage-encoded AMGs. We suggest a potentially crucial role for small, 'non-enzymatic' peptides in metabolism take-over and hypothesize on potential biotechnical applications for such peptides. The highly phage-specific nature of the metabolic impact emphasizes the potential importance of the 'phage diversity' parameter when studying metabolic interactions in complex communities.
Collapse
Affiliation(s)
- Jeroen De Smet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Michael Zimmermann
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Maria Kogadeeva
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Pieter-Jan Ceyssens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium.,Unit Bacterial Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Wesley Vermaelen
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Bob Blasdel
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Ho Bin Jang
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Uwe Sauer
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| |
Collapse
|
16
|
Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME JOURNAL 2015; 10:1437-55. [PMID: 26623542 DOI: 10.1038/ismej.2015.210] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/17/2015] [Accepted: 10/07/2015] [Indexed: 01/21/2023]
Abstract
Cyanobacteria are highly abundant in the oceans and are constantly exposed to lytic viruses. The T4-like cyanomyoviruses are abundant in the marine environment and have broad host-ranges relative to other cyanophages. It is currently unknown whether broad host-range phages specifically tailor their infection program for each host, or employ the same program irrespective of the host infected. Also unknown is how different hosts respond to infection by the same phage. Here we used microarray and RNA-seq analyses to investigate the interaction between the Syn9 T4-like cyanophage and three phylogenetically, ecologically and genomically distinct marine Synechococcus strains: WH7803, WH8102 and WH8109. Strikingly, Syn9 led a nearly identical infection and transcriptional program in all three hosts. Different to previous assumptions for T4-like cyanophages, three temporally regulated gene expression classes were observed. Furthermore, a novel regulatory element controlled early-gene transcription, and host-like promoters drove middle gene transcription, different to the regulatory paradigm for T4. Similar results were found for the P-TIM40 phage during infection of Prochlorococcus NATL2A. Moreover, genomic and metagenomic analyses indicate that these regulatory elements are abundant and conserved among T4-like cyanophages. In contrast to the near-identical transcriptional program employed by Syn9, host responses to infection involved host-specific genes primarily located in hypervariable genomic islands, substantiating islands as a major axis of phage-cyanobacteria interactions. Our findings suggest that the ability of broad host-range phages to infect multiple hosts is more likely dependent on the effectiveness of host defense strategies than on differential tailoring of the infection process by the phage.
Collapse
|
17
|
Rapid Degradation of Host mRNAs by Stimulation of RNase E Activity by Srd of Bacteriophage T4. Genetics 2015; 201:977-87. [PMID: 26323881 DOI: 10.1534/genetics.115.180364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/26/2015] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli messenger RNAs (mRNAs) are rapidly degraded immediately after bacteriophage T4 infection, and the host RNase E contributes to this process. Here, we found that a previously uncharacterized factor of T4 phage, Srd ( S: imilarity with R: po D: ), was involved in T4-induced host mRNA degradation. The rapid decay of ompA and lpp mRNAs was partially alleviated and a decay intermediate of lpp mRNA rapidly accumulated in cells infected with T4 phage lacking srd. Exogenous expression of Srd in uninfected cells significantly accelerated the decay of these mRNAs. In addition, lpp(T) RNA, with a sequence identical to the decay intermediate of lpp mRNA and a triphosphate at 5'-end, was also destabilized by Srd. The destabilization of these RNAs by Srd was not observed in RNase E-defective cells. The initial cleavage of a primary transcript by RNase E can be either direct or dependent on the 5'-end of transcript. In the latter case, host RppH is required to convert the triphosphate at 5'-end to a monophosphate. lpp(T) RNA, but not lpp and ompA mRNAs, required RppH for Srd-stimulated degradation, indicating that Srd stimulates both 5'-end-dependent and -independent cleavage activities of RNase E. Furthermore, pull-down and immunoprecipitation analyses strongly suggested that Srd physically associates with the N-terminal half of RNase E containing the catalytic moiety and the membrane target sequence. Finally, the growth of T4 phage was significantly decreased by the disruption of srd. These results strongly suggest that the stimulation of RNase E activity by T4 Srd is required for efficient phage growth.
Collapse
|
18
|
Otsuka Y, Yonesaki T. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol Microbiol 2012; 83:669-81. [PMID: 22403819 DOI: 10.1111/j.1365-2958.2012.07975.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enterohaemorrhagic Escherichia coli O157:H7 harbours a cryptic plasmid, pOSAK1, that carries only three ORFs: mobA (involved in plasmid mobilization), ORF1 and ORF2. Predicted proteins encoded by these two ORFs were found to share a weak homology with RnlA and RnlB, respectively, a toxin–antitoxin system encoded on the E. coli K-12 chromosome. Here, we report that lsoA (ORF1) encodes a toxin and lsoB (ORF2) an antitoxin. In spite of the homologies, RnlB and LsoB functioned as antitoxins against only their cognate toxins and not interchangeably with each other. Interestingly, T4 phage Dmd suppressed the toxicities of both RnlA and LsoA by direct interaction, the first example of a phage with an antitoxin against multiple toxins.
Collapse
Affiliation(s)
- Yuichi Otsuka
- Department of Biological sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho,Toyonaka-shi, Osaka 560-0043, Japan
| | | |
Collapse
|
19
|
Stazic D, Lindell D, Steglich C. Antisense RNA protects mRNA from RNase E degradation by RNA-RNA duplex formation during phage infection. Nucleic Acids Res 2011; 39:4890-9. [PMID: 21325266 PMCID: PMC3113571 DOI: 10.1093/nar/gkr037] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ecologically important cyanobacterium Prochlorococcus possesses the smallest genome among oxyphototrophs, with a reduced suite of protein regulators and a disproportionately high number of regulatory RNAs. Many of these are asRNAs, raising the question whether they modulate gene expression through the protection of mRNA from RNase E degradation. To address this question, we produced recombinant RNase E from Prochlorococcus sp. MED4, which functions optimally at 12 mM Mg2+, pH 9 and 35°C. RNase E cleavage assays were performed with this recombinant protein to assess enzyme activity in the presence of single- or double-stranded RNA substrates. We found that extraordinarily long asRNAs of 3.5 and 7 kb protect a set of mRNAs from RNase E degradation that accumulate during phage infection. These asRNA–mRNA duplex formations mask single-stranded recognition sites of RNase E, leading to increased stability of the mRNAs. Such interactions directly modulate RNA stability and provide an explanation for enhanced transcript abundance of certain mRNAs during phage infection. Protection from RNase E-triggered RNA decay may constitute a hitherto unknown regulatory function of bacterial cis-asRNAs, impacting gene expression.
Collapse
Affiliation(s)
- Damir Stazic
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany and Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Debbie Lindell
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany and Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Claudia Steglich
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany and Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
- *To whom correspondence should be addressed. Tel: +49 761 203 6986; Fax: +49 761 203 6996;
| |
Collapse
|
20
|
Uzan M, Miller ES. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation. Virol J 2010; 7:360. [PMID: 21129205 PMCID: PMC3014915 DOI: 10.1186/1743-422x-7-360] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/03/2010] [Indexed: 01/02/2023] Open
Abstract
Over 50 years of biological research with bacteriophage T4 includes notable discoveries in post-transcriptional control, including the genetic code, mRNA, and tRNA; the very foundations of molecular biology. In this review we compile the past 10 - 15 year literature on RNA-protein interactions with T4 and some of its related phages, with particular focus on advances in mRNA decay and processing, and on translational repression. Binding of T4 proteins RegB, RegA, gp32 and gp43 to their cognate target RNAs has been characterized. For several of these, further study is needed for an atomic-level perspective, where resolved structures of RNA-protein complexes are awaiting investigation. Other features of post-transcriptional control are also summarized. These include: RNA structure at translation initiation regions that either inhibit or promote translation initiation; programmed translational bypassing, where T4 orchestrates ribosome bypass of a 50 nucleotide mRNA sequence; phage exclusion systems that involve T4-mediated activation of a latent endoribonuclease (PrrC) and cofactor-assisted activation of EF-Tu proteolysis (Gol-Lit); and potentially important findings on ADP-ribosylation (by Alt and Mod enzymes) of ribosome-associated proteins that might broadly impact protein synthesis in the infected cell. Many of these problems can continue to be addressed with T4, whereas the growing database of T4-related phage genome sequences provides new resources and potentially new phage-host systems to extend the work into a broader biological, evolutionary context.
Collapse
Affiliation(s)
- Marc Uzan
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7615, USA
| | | |
Collapse
|
21
|
Abstract
RNase LS was originally identified as a potential antagonist of bacteriophage T4 infection. When T4 dmd is defective, RNase LS activity rapidly increases after T4 infection and cleaves T4 mRNAs to antagonize T4 reproduction. Here we show that rnlA, a structural gene of RNase LS, encodes a novel toxin, and that rnlB (formally yfjO), located immediately downstream of rnlA, encodes an antitoxin against RnlA. Ectopic expression of RnlA caused inhibition of cell growth and rapid degradation of mRNAs in ΔrnlAB cells. On the other hand, RnlB neutralized these RnlA effects. Furthermore, overexpression of RnlB in wild-type cells could completely suppress the growth defect of a T4 dmd mutant, that is, excess RnlB inhibited RNase LS activity. Pull-down analysis showed a specific interaction between RnlA and RnlB. Compared to RnlA, RnlB was extremely unstable, being degraded by ClpXP and Lon proteases, and this instability may increase RNase LS activity after T4 infection. All of these results suggested that rnlA-rnlB define a new toxin-antitoxin (TA) system.
Collapse
|
22
|
Régnier P, Hajnsdorf E. Poly(A)-assisted RNA decay and modulators of RNA stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:137-85. [PMID: 19215772 DOI: 10.1016/s0079-6603(08)00804-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Escherichia coli, RNA degradation is orchestrated by the degradosome with the assistance of complementary pathways and regulatory cofactors described in this chapter. They control the stability of each transcript and regulate the expression of many genes involved in environmental adaptation. The poly(A)-dependent degradation machinery has diverse functions such as the degradation of decay intermediates generated by endoribonucleases, the control of the stability of regulatory non coding RNAs (ncRNAs) and the quality control of stable RNA. The metabolism of poly(A) and mechanism of poly(A)-assisted degradation are beginning to be understood. Regulatory factors, exemplified by RraA and RraB, control the decay rates of subsets of transcripts by binding to RNase E, in contrast to regulatory ncRNAs which, assisted by Hfq, target RNase E to specific transcripts. Destabilization is often consecutive to the translational inactivation of mRNA. However, there are examples where RNA degradation is the primary regulatory step.
Collapse
Affiliation(s)
- Philippe Régnier
- CNRS UPR9073, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
23
|
Carpousis AJ, Luisi BF, McDowall KJ. Endonucleolytic initiation of mRNA decay in Escherichia coli. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:91-135. [PMID: 19215771 DOI: 10.1016/s0079-6603(08)00803-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Instability is a fundamental property of mRNA that is necessary for the regulation of gene expression. In E. coli, the turnover of mRNA involves multiple, redundant pathways involving 3'-exoribonucleases, endoribonucleases, and a variety of other enzymes that modify RNA covalently or affect its conformation. Endoribonucleases are thought to initiate or accelerate the process of mRNA degradation. A major endoribonuclease in this process is RNase E, which is a key component of the degradative machinery amongst the Proteobacteria. RNase E is the central element in a multienzyme complex known as the RNA degradosome. Structural and functional data are converging on models for the mechanism of activation and regulation of RNase E and its paralog, RNase G. Here, we discuss current models for mRNA degradation in E. coli and we present current thinking on the structure and function of RNase E based on recent crystal structures of its catalytic core.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS et Université Paul Sabatier, 31062 Toulouse, France
| | | | | |
Collapse
|
24
|
Uzan M. RNA processing and decay in bacteriophage T4. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:43-89. [PMID: 19215770 DOI: 10.1016/s0079-6603(08)00802-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteriophage T4 is the archetype of virulent phage. It has evolved very efficient strategies to subvert host functions to its benefit and to impose the expression of its genome. T4 utilizes a combination of host and phage-encoded RNases and factors to degrade its mRNAs in a stage-dependent manner. The host endonuclease RNase E is used throughout the phage development. The sequence-specific, T4-encoded RegB endoribonuclease functions in association with the ribosomal protein S1 to functionally inactivate early transcripts and expedite their degradation. T4 polynucleotide kinase plays a role in this process. Later, the viral factor Dmd protects middle and late mRNAs from degradation by the host RNase LS. T4 codes for a set of eight tRNAs and two small, stable RNA of unknown function that may contribute to phage virulence. Their maturation is assured by host enzymes, but one phage factor, Cef, is required for the biogenesis of some of them. The tRNA gene cluster also codes for a homing DNA endonuclease, SegB, responsible for spreading the tRNA genes to other T4-related phage.
Collapse
Affiliation(s)
- Marc Uzan
- Institut Jacques Monod, CNRS-Universites Paris, Paris, France
| |
Collapse
|
25
|
Zajančkauskaite A, Truncaite L, Strazdaite-Žieliene Ž, Nivinskas R. Involvement of the Escherichia coli endoribonucleases G and E in the secondary processing of RegB-cleaved transcripts of bacteriophage T4. Virology 2008; 375:342-53. [DOI: 10.1016/j.virol.2008.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 09/05/2007] [Accepted: 02/23/2008] [Indexed: 11/16/2022]
|
26
|
Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T, Kettler G, Sullivan MB, Steen R, Hess WR, Church GM, Chisholm SW. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 2007; 449:83-6. [PMID: 17805294 DOI: 10.1038/nature06130] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 07/26/2007] [Indexed: 02/02/2023]
Abstract
Interactions between bacterial hosts and their viruses (phages) lead to reciprocal genome evolution through a dynamic co-evolutionary process. Phage-mediated transfer of host genes--often located in genome islands--has had a major impact on microbial evolution. Furthermore, phage genomes have clearly been shaped by the acquisition of genes from their hosts. Here we investigate whole-genome expression of a host and phage, the marine cyanobacterium Prochlorococcus MED4 and the T7-like cyanophage P-SSP7, during lytic infection, to gain insight into these co-evolutionary processes. Although most of the phage genome was linearly transcribed over the course of infection, four phage-encoded bacterial metabolism genes formed part of the same expression cluster, even though they are physically separated on the genome. These genes--encoding photosystem II D1 (psbA), high-light inducible protein (hli), transaldolase (talC) and ribonucleotide reductase (nrd)--are transcribed together with phage DNA replication genes and seem to make up a functional unit involved in energy and deoxynucleotide production for phage replication in resource-poor oceans. Also unique to this system was the upregulation of numerous genes in the host during infection. These may be host stress response genes and/or genes induced by the phage. Many of these host genes are located in genome islands and have homologues in cyanophage genomes. We hypothesize that phage have evolved to use upregulated host genes, leading to their stable incorporation into phage genomes and their subsequent transfer back to hosts in genome islands. Thus activation of host genes during infection may be directing the co-evolution of gene content in both host and phage genomes.
Collapse
Affiliation(s)
- Debbie Lindell
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Matson EG, Zuerner RL, Stanton TB. Induction and transcription of VSH-1, a prophage-like gene transfer agent of Brachyspira hyodysenteriae. Anaerobe 2007; 13:89-97. [PMID: 17540587 DOI: 10.1016/j.anaerobe.2007.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 04/06/2007] [Accepted: 04/18/2007] [Indexed: 11/16/2022]
Abstract
The anaerobic spirochete Brachyspira hyodysenteriae is host to a bacteriophage-like agent known as VSH-1. VSH-1 is a novel gene transfer mechanism which does not self-propagate and transfers random 7.5kb fragments of host DNA between B. hyodysenteriae cells. In these investigations early events during VSH-1 induction by mitomycin C were examined. Quantitative PCR analysis revealed that VSH-1 hvp38 and hvp53 genes did not detectably increase in copy numbers during induction. Based on Northern blot hybridization assays, transcription of VSH-1 genes hvp38, hvp53, hvp45, hvp101, and lys increased fivefold to tenfold between 2 and 4h after induction whereas mRNA levels for B. hyodysenteriae flaA1 declined over the same time period. Chloramphenicol prevented the mitomycin C-induced increases in VSH-1 gene transcription. Hydrogen peroxide (300muM) substituted for mitomycin C as an inducer of VSH-1 gene transcription and is a possible 'natural' inducer of VSH-1 production in vivo. Northern blot hybridization, RT PCR, and primer extension analyses showed that VSH-1 genes are co-transcribed at an initiation site upstream of the VSH-1 gene operon. Two direct heptanucleotide repeats (ACTTATA) were identified between the putative -35 and -10 positions of the VSH-1 gene operon and are likely to represent a binding site for transcription proteins. These findings indicate VSH-1 virion production does not require genome replication, consistent with the inability of VSH-1 to self-propagate. Early events in VSH-1 induction include de novo synthesis of protein(s) essential for transcription of VSH-1 genes as polycistronic mRNA initiating upstream of the hvp45 gene.
Collapse
Affiliation(s)
- Eric G Matson
- Department of Microbiology, Iowa State University, Ames, IA 50010, USA
| | | | | |
Collapse
|
28
|
Djordjevic M, Semenova E, Shraiman B, Severinov K. Quantitative analysis of a virulent bacteriophage transcription strategy. Virology 2006; 354:240-51. [PMID: 16887164 DOI: 10.1016/j.virol.2006.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 03/08/2006] [Accepted: 05/29/2006] [Indexed: 11/28/2022]
Abstract
An increasingly large number of bacteriophage genomes are being sequenced each year. What is an efficient experimental and computational procedure to analyze transcription strategies of newly sequenced novel bacteriophages? We address this issue using an example of bacteriophage Xp10, which infects rice pathogen Xanthomonas oryzae. This phage is particularly challenging for analysis, since part of its genome is jointly transcribed by two (host and viral) RNA polymerases. To understand the roles played by the two RNA polymerases, we developed a novel method of data analysis which combines quantitative analysis of Xp10 global gene expression data and kinetic modeling of the infection process. To generalize our approach, we discuss how our method can be applied to other systems and argue that genomic array experiments combined with the methods of data analysis that we present provide an efficient way to analyze gene expression strategies of novel bacteriophages.
Collapse
Affiliation(s)
- Marko Djordjevic
- Department of Physics, Columbia University, New York, NY 10027, USA.
| | | | | | | |
Collapse
|
29
|
Truncaite L, Zajanckauskaite A, Arlauskas A, Nivinskas R. Transcription and RNA processing during expression of genes preceding DNA ligase gene 30 in T4-related bacteriophages. Virology 2006; 344:378-90. [PMID: 16225899 DOI: 10.1016/j.virol.2005.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/01/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
Early gene expression in bacteriophage T4 is controlled primarily by the unique early promoters, while T4-encoded RegB endoribonuclease promotes degradation of many early messages contributing to the rapid shift of gene expression from the early to middle stages. The regulatory region for the genes clustered upstream of DNA ligase gene 30 of T4 was known to carry two strong early promoters and two putative RegB sites. Here, we present the comparative analysis of the regulatory events in this region of 16 T4-type bacteriophages. The regulatory elements for control of this gene cluster, such as rho-independent terminator, at least one early promoter, the sequence for stem-loop structure, and the RegB cleavage sites have been found to be conserved in the phages studied. Also, we present experimental evidence that the initial cleavage by RegB of phages TuIa and RB69 enables degradation of early phage mRNAs by the major Escherichia coli endoribonuclease, RNase E.
Collapse
Affiliation(s)
- Lidija Truncaite
- Department of Gene Engineering, Institute of Biochemistry, Mokslininku 12, 08662 Vilnius, Lithuania
| | | | | | | |
Collapse
|
30
|
Abstract
Ribonuclease LS in Escherichia coli is a potential antagonist of bacteriophage T4. When T4 dmd is mutated, this RNase efficiently cleaves T4 mRNAs and leads to the silencing of late genes, thus blocking T4 growth. We previously found that, when two consecutive ochre codons were placed in the open reading frame of T4 soc, RNase LS cleaved soc mRNA at a specific site downstream of the ochre codons. Here, we demonstrate that RNase LS cleaves soc RNA at the same site even when only a single ochre codon is present or is replaced with either an amber or an opal codon. On the other hand, disruption of the Shine-Dalgarno sequence, a ribosome-binding site required for the initiation of translation, eliminates the cleavage. These results strongly suggest that RNase LS cleaves in a manner dependent on translation termination. Consistent with this suggestion, the cleavage dependency on an amber codon was considerably reduced in the presence of amber-codon-suppressing tRNA. Instead, two other cleavages that depend on translation of the region containing the target sites occurred farther downstream. Additional analysis suggests that an interaction of the ribosome with a stop codon might affect the site of cleavage by RNase LS in an mRNA molecule. This effect of the ribosome could reflect remodeling of the high-order structure of the mRNA molecule.
Collapse
Affiliation(s)
- Haruyo Yamanishi
- Department of Biology, Graduate School of Science, Osaka University, Japan
| | | |
Collapse
|
31
|
Kanesaki T, Hamada T, Yonesaki T. Opposite roles of the dmd gene in the control of RNase E and RNase LS activities. Genes Genet Syst 2005; 80:241-9. [PMID: 16284417 DOI: 10.1266/ggs.80.241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
When the dmd gene of bacteriophage T4 is defective, expression of middle genes starts normally but drops abruptly. However, the residual expression of middle genes at late stages continues at a higher rate in cells infected with a dmd mutant than with the wild type. In order to understand the complex effects of the dmd gene, we followed changes in the quantity of mRNA from a middle gene, uvsY. The uvsY mRNA was degraded rapidly by RNase LS at middle stages but stabilized at late stages, suggesting that RNase LS targets middle-gene mRNAs only at middle stages. Furthermore, another RNase targeting middle mRNAs at late stages is also suggested to be inactivated when dmd is mutated. We found that RNase E was involved in the degradation of uvsY mRNA. Judging from the processing of gene-32 mRNA, RNase E activity declines after the beginning of the middle stage when dmd is defective.
Collapse
Affiliation(s)
- Takuma Kanesaki
- Department of Biology, Graduate School of Science, Osaka University, Japan
| | | | | |
Collapse
|