1
|
High Risk-Human Papillomavirus in HNSCC: Present and Future Challenges for Epigenetic Therapies. Int J Mol Sci 2022; 23:ijms23073483. [PMID: 35408843 PMCID: PMC8998945 DOI: 10.3390/ijms23073483] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is a highly heterogeneous group of tumors characterized by an incidence of 650,000 new cases and 350,000 deaths per year worldwide and a male to female ratio of 3:1. The main risk factors are alcohol and tobacco consumption and Human Papillomavirus (HPV) infections. HNSCC cases are divided into two subgroups, the HPV-negative (HPV−) and the HPV-positive (HPV+) which have different clinicopathological and molecular profiles. However, patients are still treated with the same therapeutic regimens. It is thus of utmost importance to characterize the molecular mechanisms underlying these differences to find new biomarkers and novel therapeutic targets towards personalized therapies. Epigenetic alterations are a hallmark of cancer and can be exploited as both promising biomarkers and potential new targets. E6 and E7 HPV oncoviral proteins besides targeting p53 and pRb, impair the expression and the activity of several epigenetic regulators. While alterations in DNA methylation patterns have been well described in HPV+ and HPV− HNSCC, accurate histone post-translational modifications (hPTMs) characterization is still missing. Herein, we aim to provide an updated overview on the impact of HPV on the hPTMs landscape in HNSCC. Moreover, we will also discuss the sex and gender bias in HNSCC and how the epigenetic machinery could be involved in this process, and the importance of taking into account sex and/or gender also in this field.
Collapse
|
2
|
Gusho E, Laimins L. Human Papillomaviruses Target the DNA Damage Repair and Innate Immune Response Pathways to Allow for Persistent Infection. Viruses 2021; 13:1390. [PMID: 34372596 PMCID: PMC8310235 DOI: 10.3390/v13071390] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HPVs) is the major risk factor associated with development of anogenital and oropharyngeal cancers. Initial infection by HPVs occurs into basal epithelial cells where viral genomes are established as nuclear episomes and persist until cleared by the immune response. Productive replication or amplification occurs upon differentiation and is dependent upon activation of the ataxia-telangiectasia mutated (ATM), ataxia telangiectasia and RAD3-related (ATR) DNA damage repair (DDR) pathways. In addition to activating DDR pathways, HPVs must escape innate immune surveillance mechanisms by antagonizing sensors, adaptors, interferons and antiviral gene expression. Both DDR and innate immune pathways are key host mechanisms that crosstalk with each other to maintain homeostasis of cells persistently infected with HPVs. Interestingly, it is still not fully understood why some HPV infections get cleared while others do not. Targeting of these two processes with antiviral therapies may provide opportunities for treatment of cancers caused by high-risk HPVs.
Collapse
Affiliation(s)
| | - Laimonis Laimins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
3
|
Abstract
An unusual feature of papillomaviruses is that their genomes are packaged into virions along with host histones. Viral minichromosomes were visualized as “beads on a string” by electron microscopy in the 1970s but, to date, little is known about the posttranslational modifications of these histones. To investigate this, we analyzed the histone modifications in HPV16/18 quasivirions, wart-derived bovine papillomavirus (BPV1), and wart-derived human papillomavirus type 1 (HPV1) using quantitative mass spectrometry. The chromatin from all three virion samples had abundant posttranslational modifications (acetylation, methylation, and phosphorylation). These histone modifications were verified by acid urea polyacrylamide electrophoresis and immunoblot analysis. Compared to matched host cell controls, the virion minichromosome was enriched in histone modifications associated with active chromatin and depleted for those commonly found in repressed chromatin. We propose that the viral minichromosome acquires specific histone modifications late in infection that are coupled to the mechanisms of viral replication, late gene expression, and encapsidation. We predict that, in turn, these same modifications benefit early stages of infection by helping to evade detection, promoting localization of the viral chromosome to beneficial regions of the nucleus, and promoting early transcription and replication.
Collapse
|
4
|
Epigenetic Regulation of the Human Papillomavirus Life Cycle. Pathogens 2020; 9:pathogens9060483. [PMID: 32570816 PMCID: PMC7350343 DOI: 10.3390/pathogens9060483] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Persistent infection with certain types of human papillomaviruses (HPVs), termed high risk, presents a public health burden due to their association with multiple human cancers, including cervical cancer and an increasing number of head and neck cancers. Despite the development of prophylactic vaccines, the incidence of HPV-associated cancers remains high. In addition, no vaccine has yet been licensed for therapeutic use against pre-existing HPV infections and HPV-associated diseases. Although persistent HPV infection is the major risk factor for cancer development, additional genetic and epigenetic alterations are required for progression to the malignant phenotype. Unlike genetic mutations, the reversibility of epigenetic modifications makes epigenetic regulators ideal therapeutic targets for cancer therapy. This review article will highlight the recent advances in the understanding of epigenetic modifications associated with HPV infections, with a particular focus on the role of these epigenetic changes during different stages of the HPV life cycle that are closely associated with activation of DNA damage response pathways.
Collapse
|
5
|
Inhibition of Epstein-Barr Virus Replication in Human Papillomavirus-Immortalized Keratinocytes. J Virol 2019; 93:JVI.01216-18. [PMID: 30381489 DOI: 10.1128/jvi.01216-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is implicated in the pathogenesis of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OSCC). EBV-associated cancers harbor a latent EBV infection characterized by a lack of viral replication and the expression of viral oncogenes. Cellular changes promoted by HPV are comparable to those shown to facilitate EBV latency, though whether HPV-positive cells support a latent EBV infection has not been demonstrated. Using a model of direct EBV infection into HPV16-immortalized tonsillar cells grown in organotypic raft culture, we showed robust EBV replication in HPV-negative rafts but little to no replication in HPV-immortalized rafts. The reduced EBV replication was independent of immortalization, as human telomerase-immortalized normal oral keratinocytes supported robust EBV replication. Furthermore, we observed reduced EBV lytic gene expression and increased expression of EBER1, a noncoding RNA highly expressed in latently infected cells, in the presence of HPV. The use of human foreskin keratinocyte rafts expressing the HPV16 E6 and/or E7 oncogene(s) (HPV E6 and E7 rafts) showed that E7 was sufficient to reduce EBV replication. EBV replication is dependent upon epithelial differentiation and the differentiation-dependent expression of the transcription factors KLF4 and PRDM1. While KLF4 and PRDM1 levels were unaltered, the expression levels of KLF4 transcriptional targets, including late differentiation markers, were reduced in HPV E6 and E7 rafts compared to their levels in parental rafts. However, the HPV E7-mediated block in EBV replication correlated with delayed expression of early differentiation markers. Overall, this study reveals an HPV16-mediated block in EBV replication, through E7, that may facilitate EBV latency and long-term persistence in the tumor context.IMPORTANCE Using a model examining the establishment of EBV infection in HPV-immortalized tissues, we showed an HPV-induced interruption of the normal EBV life cycle reminiscent of a latent EBV infection. Our data support the notion that a persistent EBV epithelial infection depends upon preexisting cellular alterations and suggest the ability of HPV to promote such changes. More importantly, these findings introduce a model for how EBV coinfection may influence HPV-positive (HPV-pos) OSCC pathogenesis. Latently EBV-infected epithelial cells, as well as other EBV-associated head-and-neck carcinomas, exhibit oncogenic phenotypes commonly seen in HPV-pos OSCC. Therefore, an HPV-induced shift in the EBV life cycle toward latency would not only facilitate EBV persistence but also provide additional viral oncogene expression, which can contribute to the rapid progression of HPV-pos OSCC. These findings provide a step toward defining a role for EBV as a cofactor in HPV-positive oropharyngeal tumors.
Collapse
|
6
|
High-Risk Human Papillomaviral Oncogenes E6 and E7 Target Key Cellular Pathways to Achieve Oncogenesis. Int J Mol Sci 2018; 19:ijms19061706. [PMID: 29890655 PMCID: PMC6032416 DOI: 10.3390/ijms19061706] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
Infection with high-risk human papillomavirus (HPV) has been linked to several human cancers, the most prominent of which is cervical cancer. The integration of the viral genome into the host genome is one of the manners in which the viral oncogenes E6 and E7 achieve persistent expression. The most well-studied cellular targets of the viral oncogenes E6 and E7 are p53 and pRb, respectively. However, recent research has demonstrated the ability of these two viral factors to target many more cellular factors, including proteins which regulate epigenetic marks and splicing changes in the cell. These have the ability to exert a global change, which eventually culminates to uncontrolled proliferation and carcinogenesis.
Collapse
|
7
|
Rajagopalan D, Jha S. An epi(c)genetic war: Pathogens, cancer and human genome. Biochim Biophys Acta Rev Cancer 2018; 1869:333-345. [DOI: 10.1016/j.bbcan.2018.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/22/2018] [Accepted: 04/09/2018] [Indexed: 02/08/2023]
|
8
|
Boscolo-Rizzo P, Furlan C, Lupato V, Polesel J, Fratta E. Novel insights into epigenetic drivers of oropharyngeal squamous cell carcinoma: role of HPV and lifestyle factors. Clin Epigenetics 2017; 9:124. [PMID: 29209433 PMCID: PMC5704592 DOI: 10.1186/s13148-017-0424-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/18/2017] [Indexed: 12/22/2022] Open
Abstract
In the last years, the explosion of high throughput sequencing technologies has enabled epigenome-wide analyses, allowing a more comprehensive overview of the oropharyngeal squamous cell carcinoma (OPSCC) epigenetic landscape. In this setting, the cellular pathways contributing to the neoplastic phenotype, including cell cycle regulation, cell signaling, DNA repair, and apoptosis have been demonstrated to be potential targets of epigenetic alterations in OPSCC. Of note, it has becoming increasingly clear that HPV infection and OPSCC lifestyle risk factors differently drive the epigenetic machinery in cancer cells. Epigenetic changes, including DNA methylation, histone modifications, and non-coding RNA expression, can be used as powerful and reliable tools for early diagnosis of OPSCC patients and improve prognostication. Since epigenetic changes are dynamic and reversible, epigenetic enzymes may also represent suitable targets for the development of more effective OPSCC therapeutic strategies. Thus, this review will focus on the main known epigenetic modifications that can occur in OPSCC and their exploitation as potential biomarkers and therapeutic targets. Furthermore, we will address epigenetic alterations to OPSCC risk factors, with a particular focus on HPV infection, tobacco exposure, and heavy alcohol consumption.
Collapse
Affiliation(s)
- Paolo Boscolo-Rizzo
- Department of Neurosciences, ENT Clinic and Regional Center for Head and Neck Cancer, Treviso Regional Hospital, University of Padova, Treviso, Italy
| | - Carlo Furlan
- Division of Radiotherapy, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano, PN Italy
| | - Valentina Lupato
- Unit of Otolaryngology, General Hospital “S. Maria degli Angeli”, Pordenone, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano, PN Italy
| | - Elisabetta Fratta
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano, PN Italy
| |
Collapse
|
9
|
Liu Y, Wang Y, Chen C, Zhang J, Qian W, Dong Y, Liu Z, Zhang X, Wang X, Zhang Z, Shi X, Wu S. LSD1 binds to HPV16 E7 and promotes the epithelial-mesenchymal transition in cervical cancer by demethylating histones at the Vimentin promoter. Oncotarget 2017; 8:11329-11342. [PMID: 27894088 PMCID: PMC5355268 DOI: 10.18632/oncotarget.13516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/17/2016] [Indexed: 12/27/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1), which specifically demethylates histone H3 lysine 4 (H3K4) and lysine 9 (H3K9), is dysregulated in several cancers. We found that ectopic expression of LSD1 in cervical cancer cells promoted invasion and metastasis in vitro and in vivo, reduced the expression of the epithelial marker E-cadherin, and induced the expression of the mesenchymal marker, Vimentin. By contrast, LSD1 knockdown had the opposite effect and attenuated the HPV16 E7-induced epithelial-mesenchymal transition (EMT). We proposed a novel mechanism, whereby LSD1 is recruited to the Vimentin promoter and demethylates H3K4me1 and H3K4me2. Notably, HPV16 E7 enhanced the expression of LSD1, formed a complex with LSD1, and suppressed LSD1 demethylase activity by hindering the recruitment of LSD1 to the Vimentin promoter. Thus, LSD1 is a primary and positive regulator of the HPV16 E7-induced EMT and an attractive therapeutic target for alleviating HPV16 E7-induced EMT and tumor metastasis.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yanan Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Chunqin Chen
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Shanghai Tongji University, Shanghai, China
| | - Wenyan Qian
- Department of Gynecology and Obstetrics, Kunshan Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Yu Dong
- Department of Obstetrics and Gynecology, Shanghai Xinhua hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhiqiang Liu
- Division of Cancer Medicine, Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Xi Zhang
- Department of Physiology and Neurobiology, University of Connecticut, CT, USA
| | - Xiaoyun Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhenbo Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaobing Shi
- Department of Molecular Carcinogenesis and Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genes and Development and Molecular Carcinogenesis Graduate Program, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
10
|
Molecular mechanisms of human papillomavirus-related carcinogenesis in head and neck cancer. Microbes Infect 2017; 19:464-475. [PMID: 28619685 DOI: 10.1016/j.micinf.2017.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/04/2023]
Abstract
This review examines the general cellular and molecular underpinnings of human papillomavirus (HPV)-related carcinogenesis in the context of head and neck squamous cell carcinoma (HNSCC) and focuses on HPV-positive oropharyngeal squamous cell carcinoma in areas for which specific data is available. It covers the major pathways dysregulated in HPV-positive HNSCC and the genome-wide changes associated with this disease.
Collapse
|
11
|
Tomaić V. Functional Roles of E6 and E7 Oncoproteins in HPV-Induced Malignancies at Diverse Anatomical Sites. Cancers (Basel) 2016; 8:cancers8100095. [PMID: 27775564 PMCID: PMC5082385 DOI: 10.3390/cancers8100095] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/15/2016] [Accepted: 10/08/2016] [Indexed: 01/13/2023] Open
Abstract
Approximately 200 human papillomaviruses (HPVs) infect human epithelial cells, of which the alpha and beta types have been the most extensively studied. Alpha HPV types mainly infect mucosal epithelia and a small group of these causes over 600,000 cancers per year worldwide at various anatomical sites, especially anogenital and head-and-neck cancers. Of these the most important is cervical cancer, which is the leading cause of cancer-related death in women in many parts of the world. Beta HPV types infect cutaneous epithelia and may contribute towards the initiation of non-melanoma skin cancers. HPVs encode two oncoproteins, E6 and E7, which are directly responsible for the development of HPV-induced carcinogenesis. They do this cooperatively by targeting diverse cellular pathways involved in the regulation of cell cycle control, of apoptosis and of cell polarity control networks. In this review, the biological consequences of papillomavirus targeting of various cellular substrates at diverse anatomical sites in the development of HPV-induced malignancies are highlighted.
Collapse
Affiliation(s)
- Vjekoslav Tomaić
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy.
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia.
| |
Collapse
|
12
|
Durzynska J, Lesniewicz K, Poreba E. Human papillomaviruses in epigenetic regulations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:36-50. [PMID: 28528689 DOI: 10.1016/j.mrrev.2016.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/01/2016] [Accepted: 09/17/2016] [Indexed: 12/12/2022]
Abstract
Human Papillomaviruses (HPVs) are double-stranded DNA viruses, that infect epithelial cells and are etiologically involved in the development of human cancer. Today, over 200 types of human papillomaviruses are known. They are divided into low-risk and high-risk HPVs depending on their potential to induce carcinogenesis, driven by two major viral oncoproteins, E6 and E7. By interacting with cellular partners, these proteins are involved in interdependent viral and cell cycles in stratified differentiating epithelium, and concomitantly induce epigenetic changes in infected cells and those undergoing malignant transformation. E6 and E7 oncoproteins interact with and/or modulate expression of many proteins involved in epigenetic regulation, including DNA methyltransferases, histone-modifying enzymes and subunits of chromatin remodeling complexes, thereby influencing host cell transcription program. Furthermore, HPV oncoproteins modulate expression of cellular micro RNAs. Most of these epigenetic actions in a complex dynamic interplay participate in the maintenance of persistent infection, cell transformation, and development of invasive cancer by a considerable deregulation of tumor suppressor and oncogenes. In this study, we have undertaken to discuss a number of studies concerning epigenetic regulations in HPV-dependent cells and to focus on those that have biological relevance to cancer progression.
Collapse
Affiliation(s)
- Julia Durzynska
- Department of Molecular Virology, Institute of Experimental Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Elzbieta Poreba
- Department of Molecular Virology, Institute of Experimental Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
13
|
Minarovits J, Demcsák A, Banati F, Niller HH. Epigenetic Dysregulation in Virus-Associated Neoplasms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 879:71-90. [DOI: 10.1007/978-3-319-24738-0_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Gutiérrez J, García-Villa E, Ocadiz-Delgado R, Cortés-Malagón EM, Vázquez J, Roman-Rosales A, Alvarez-Rios E, Celik H, Romano MC, Üren A, Lambert PF, Gariglio P. Human papillomavirus type 16 E7 oncoprotein upregulates the retinoic acid receptor-beta expression in cervical cancer cell lines and K14E7 transgenic mice. Mol Cell Biochem 2015; 408:261-272. [PMID: 26173416 DOI: 10.1007/s11010-015-2504-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/04/2015] [Indexed: 12/22/2022]
Abstract
Persistent infection with high-risk human papillomaviruses is the main etiological factor in cervical cancer (CC). The human papillomavirus type 16 (HPV16) E7 oncoprotein alters several cellular processes, regulating the expression of many genes in order to avoid cell cycle control. Retinoic acid receptor beta (RARB) blocks cell growth, inducing differentiation and apoptosis. This tumor suppressor gene is gradually silenced in late passages of foreskin keratinocytes immortalized with HPV16 and in various tumors, including CC, mainly by epigenetic modifications. We investigated the effect of E7 oncoprotein on RARB gene expression. We found that HPV16 E7 increases RARB mRNA and RAR-beta protein expression both in vitro and in the cervix of young K14E7 transgenic mice. In E7-expressing cells, RARB overexpression is further increased in the presence of the tumor suppressor p53 (TP53) R273C mutant. This effect does not change when either C33-A or E7-expressing C33-A cell line is treated with Trichostatin A, suggesting that E7 enhances RARB expression independently of histone deacetylases inhibition. These findings indicate that RARB overexpression is part of the early molecular events induced by the E7 oncoprotein.
Collapse
Affiliation(s)
- Jorge Gutiérrez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Ciudad de México, México
| | - Enrique García-Villa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Ciudad de México, México
| | - Rodolfo Ocadiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Ciudad de México, México
| | - Enoc M Cortés-Malagón
- Laboratorio de Biología Molecular del Cáncer, Unidad de Investigación, Hospital Juárez de México, Av. IPN 5160, Magdalena de Las Salinas, Gustavo A. Madero, 07760, Ciudad de México, México
| | - Juan Vázquez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Ciudad de México, México
| | - Alejandra Roman-Rosales
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Ciudad de México, México
| | - Elizabeth Alvarez-Rios
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Ciudad de México, México
| | - Haydar Celik
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057-1469, USA
| | - Marta C Romano
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Ciudad de México, México
| | - Aykut Üren
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057-1469, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Ciudad de México, México.
| |
Collapse
|
15
|
Hasan UA, Zannetti C, Parroche P, Goutagny N, Malfroy M, Roblot G, Carreira C, Hussain I, Müller M, Taylor-Papadimitriou J, Picard D, Sylla BS, Trinchieri G, Medzhitov R, Tommasino M. The human papillomavirus type 16 E7 oncoprotein induces a transcriptional repressor complex on the Toll-like receptor 9 promoter. ACTA ACUST UNITED AC 2013; 210:1369-87. [PMID: 23752229 PMCID: PMC3698525 DOI: 10.1084/jem.20122394] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HPV16-positive cervical cancer lesions contain NFκB–ERα nuclear complexes to repress the TLR9 promoter. Human papillomavirus type 16 (HPV16) and other oncogenic viruses have been reported to deregulate immunity by suppressing the function of the double-stranded DNA innate sensor TLR9. However, the mechanisms leading to these events remain to be elucidated. We show that infection of human epithelial cells with HPV16 promotes the formation of an inhibitory transcriptional complex containing NF-κBp50–p65 and ERα induced by the E7 oncoprotein. The E7-mediated transcriptional complex also recruited the histone demethylase JARID1B and histone deacetylase HDAC1. The entire complex bound to a specific region on the TLR9 promoter, which resulted in decreased methylation and acetylation of histones upstream of the TLR9 transcriptional start site. The involvement of NF-κB and ERα in the TLR9 down-regulation by HPV16 E7 was fully confirmed in cervical tissues from human patients. Importantly, we present evidence that the HPV16-induced TLR9 down-regulation affects the interferon response which negatively regulates viral infection. Our studies highlight a novel HPV16-mediated mechanism that combines epigenetic and transcriptional events to suppress a key innate immune sensor.
Collapse
Affiliation(s)
- Uzma A Hasan
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon 69008, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
E7 is an accessory protein that is not encoded by all papillomaviruses. The E7 amino terminus contains two regions of similarity to conserved regions 1 and 2 of the adenovirus E1A protein, which are also conserved in the simian vacuolating virus 40 large tumor antigen. The E7 carboxyl terminus consists of a zinc-binding motif, which is related to similar motifs in E6 proteins. E7 proteins play a central role in the human papillomavirus life cycle, reprogramming the cellular environment to be conducive to viral replication. E7 proteins encoded by the cancer-associated alpha human papillomaviruses have potent transforming activities, which together with E6, are necessary but not sufficient to render their host squamous epithelial cell tumorigenic. This article strives to provide a comprehensive summary of the published research studies on human papillomavirus E7 proteins.
Collapse
|
17
|
Jiang M, Imperiale MJ. Design stars: how small DNA viruses remodel the host nucleus. Future Virol 2012; 7:445-459. [PMID: 22754587 DOI: 10.2217/fvl.12.38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Numerous host components are encountered by viruses during the infection process. While some of these host structures are left unchanged, others may go through dramatic remodeling processes. In this review, we summarize these host changes that occur during small DNA virus infections, with a focus on host nuclear components and pathways. Although these viruses differ significantly in their genome structures and infectious pathways, there are common nuclear targets that are altered by various viral factors. Accumulating evidence suggests that these nuclear remodeling processes are often essential for productive viral infections and/or viral-induced transformation. Understanding the complex interactions between viruses and these host structures and pathways will help to build a more integrated network of how the virus completes its life cycle and point toward the design of novel therapeutic regimens that either prevent harmful viral infections or employ viruses as nontraditional treatment options or molecular tools.
Collapse
Affiliation(s)
- Mengxi Jiang
- Department of Microbiology & Immunology, & Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
18
|
Klingelhutz AJ, Roman A. Cellular transformation by human papillomaviruses: lessons learned by comparing high- and low-risk viruses. Virology 2012; 424:77-98. [PMID: 22284986 DOI: 10.1016/j.virol.2011.12.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/17/2011] [Accepted: 12/27/2011] [Indexed: 12/19/2022]
Abstract
The oncogenic potential of papillomaviruses (PVs) has been appreciated since the 1930s yet the mechanisms of virally-mediated cellular transformation are still being revealed. Reasons for this include: a) the oncoproteins are multifunctional, b) there is an ever-growing list of cellular interacting proteins, c) more than one cellular protein may bind to a given region of the oncoprotein, and d) there is only limited information on the proteins encoded by the corresponding non-oncogenic PVs. The perspective of this review will be to contrast the activities of the viral E6 and E7 proteins encoded by the oncogenic human PVs (termed high-risk HPVs) to those encoded by their non-oncogenic counterparts (termed low-risk HPVs) in an attempt to sort out viral life cycle-related functions from oncogenic functions. The review will emphasize lessons learned from the cell culture studies of the HPVs causing mucosal/genital tract cancers.
Collapse
|
19
|
Park IS, Chang X, Loyo M, Wu G, Chuang A, Kim MS, Chae YK, Lyford-Pike S, Westra WH, Saunders JR, Sidransky D, Pai SI. Characterization of the methylation patterns in human papillomavirus type 16 viral DNA in head and neck cancers. Cancer Prev Res (Phila) 2011; 4:207-17. [PMID: 21292634 DOI: 10.1158/1940-6207.capr-10-0147] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human papillomavirus (HPV) type 16 can integrate into the host genome, thereby rendering the viral coding genes susceptible to epigenetic modification. Using bisulfite genomic sequencing, we determined the methylation status of all 110 CpG sites within the viral epigenome in advanced stage III/IV HPV-16-associated head and neck cancers. We found that the viral genome was hypomethylated in the majority of head and neck cancers, in particular within the viral regulatory region, long control region (LCR), which controls transcription of the E6 and E7 oncogenes. The hypomethylation status of LCR correlated with detectable levels of E6 and E7 expression, which suggests that the tumors may still be dependent on these viral oncogenes to maintain the malignant phenotype. In addition to the methylation status of LCR, we report other potential factors which may influence intratumoral E6 and E7 expression including viral copy number and integration site. We were able to detect the viral epigenetic alterations in sampled body fluids, such as serum and saliva, which correlated with the changes observed in the primary tumors. Because viral epigenetic changes occur in the setting of viral integration into the human genome, the detection of methylated HPV genes in the serum and/or saliva may have diagnostic potential for early detection strategies of viral integration and assessment of risk for cancer development in high-risk individuals. Our findings also support continued targeting of the E6 and/or E7 antigens through various vaccine strategies against HPV-associated cancers.
Collapse
Affiliation(s)
- Il-Seok Park
- Departments of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Poreba E, Broniarczyk JK, Gozdzicka-Jozefiak A. Epigenetic mechanisms in virus-induced tumorigenesis. Clin Epigenetics 2011; 2:233-47. [PMID: 22704339 PMCID: PMC3365383 DOI: 10.1007/s13148-011-0026-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 02/28/2011] [Indexed: 12/14/2022] Open
Abstract
About 15–20% of human cancers worldwide have viral etiology. Emerging data clearly indicate that several human DNA and RNA viruses, such as human papillomavirus, Epstein–Barr virus, Kaposi’s sarcoma-associated herpesvirus, hepatitis B virus, hepatitis C virus, and human T-cell lymphotropic virus, contribute to cancer development. Human tumor-associated viruses have evolved multiple molecular mechanisms to disrupt specific cellular pathways to facilitate aberrant replication. Although oncogenic viruses belong to different families, their strategies in human cancer development show many similarities and involve viral-encoded oncoproteins targeting the key cellular proteins that regulate cell growth. Recent studies show that virus and host interactions also occur at the epigenetic level. In this review, we summarize the published information related to the interactions between viral proteins and epigenetic machinery which lead to alterations in the epigenetic landscape of the cell contributing to carcinogenesis.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Molecular Virology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | | | | |
Collapse
|
21
|
You J. Papillomavirus interaction with cellular chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:192-9. [PMID: 19786128 DOI: 10.1016/j.bbagrm.2009.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 11/26/2022]
Abstract
High-risk human papillomavirus (HPV) infection is the primary risk factor for cervical cancer. HPVs establish persistent infection by maintaining their genomes as extrachromosomal elements (episomes) that replicate along with host DNA in infected cells. The productive life cycle of HPV is intimately tied to the differentiation program of host squamous epithelium. This review examines the involvement of host chromatin in multiple aspects of the papillomavirus life cycle and the malignant progression of infected host cells. Papillomavirus utilizes host mitotic chromosomes as vehicles for transmitting its genetic materials across the cell cycle. By hitchhiking on host mitotic chromosomes, the virus ensures accurate segregation of the replicated viral episomes to the daughter cells during host cell division. This strategy allows persistent maintenance of the viral episome in the infected cells. In the meantime, the virus subverts the host chromatin-remodeling factors to promote viral transcription and efficient propagation of viral genomes. By associating with the host chromatin, papillomavirus redirects the normal cellular control of chromatin to create a cellular environment conducive to both its own survival and malignant progression of host cells. Comprehensive understanding of HPV-host chromatin interaction will offer new insights into the HPV life cycle as well as chromatin regulation. This virus-host interaction will also provide a paradigm for investigating other episomal DNA tumor viruses that share a similar mechanism for interacting with host chromatin.
Collapse
Affiliation(s)
- Jianxin You
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Minárovits J. Microbe-induced epigenetic alterations in host cells: the coming era of patho-epigenetics of microbial infections. A review. Acta Microbiol Immunol Hung 2009; 56:1-19. [PMID: 19388554 DOI: 10.1556/amicr.56.2009.1.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is well documented that the double-stranded DNA (dsDNA) genomes of certain viruses and the proviral genomes of retroviruses are regularly targeted by epigenetic regulatory mechanisms (DNA methylation, histone modifications, binding of regulatory proteins) in infected cells. In parallel, proteins encoded by viral genomes may affect the activity of a set of cellular promoters by interacting with the very same epigenetic regulatory machinery. This may result in epigenetic dysregulation and subsequent cellular dysfunctions that may manifest in or contribute to the development of pathological changes (e.g. initiation and progression of malignant neoplasms; immunodeficiency). Bacteria infecting mammals may cause diseases in a similar manner, by causing hypermethylation of key cellular promoters at CpG dinucleotides (promoter silencing, e.g. by Campylobacter rectus in the placenta or by Helicobacter pylori in gastric mucosa). I suggest that in addition to viruses and bacteria, other microparasites (protozoa) as well as macroparasites (helminths, arthropods, fungi) may induce pathological changes by epigenetic reprogramming of host cells they are interacting with. Elucidation of the epigenetic consequences of microbe-host interactions (the emerging new field of patho-epigenetics) may have important therapeutic implications because epigenetic processes can be reverted and elimination of microbes inducing patho-epigenetic changes may prevent disease development.
Collapse
Affiliation(s)
- J Minárovits
- Microbiological Research Group, National Center for Epidemiology, Piheno u. 1, H-1529 Budapest, Hungary.
| |
Collapse
|
23
|
Szalmás A, Kónya J. Epigenetic alterations in cervical carcinogenesis. Semin Cancer Biol 2009; 19:144-52. [PMID: 19429477 DOI: 10.1016/j.semcancer.2009.02.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/13/2009] [Indexed: 01/22/2023]
Abstract
During cervical carcinogenesis, the major etiologic factor, the persistent oncogenic HPV infection itself is not sufficient to immortalize and transform the epithelial host cells. Together with further genetic and epigenetic alterations disrupting the cell cycle control, the host cell acquires immortal phenotype and progresses further to an overt malignant and invasive phenotype. Here, we discuss how cancer-associated epigenetic alterations can affect the expression of papillomaviral as well as host genes in relation to stages representing the multistep process of carcinogenesis. Biomarker roles in clinical diagnosis and prognosis might be assigned to the epigenetic pattern of the involved genes.
Collapse
Affiliation(s)
- Anita Szalmás
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | | |
Collapse
|
24
|
Wooldridge TR, Laimins LA. Regulation of human papillomavirus type 31 gene expression during the differentiation-dependent life cycle through histone modifications and transcription factor binding. Virology 2008; 374:371-80. [PMID: 18237759 DOI: 10.1016/j.virol.2007.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 11/14/2007] [Accepted: 12/11/2007] [Indexed: 11/25/2022]
Abstract
The life cycle of high-risk human papillomaviruses is linked to epithelial differentiation with virion production restricted to highly differentiated suprabasal cells. Two major viral promoters direct high-risk HPV gene expression and their activities are dependent upon differentiation. The early promoter controls initiation of transcripts at sites upstream of the E6 open reading frame and is active in both undifferentiated as well as differentiated cells. The late viral promoter directs transcription from a series of heterogeneous start sites in E7 and is activated upon differentiation. In this study, the state of histones as well as the spectrum of transcription factors bound to the two major HPV 31 viral promoters in undifferentiated and differentiated cells were examined using chromatin immunoprecipitation assays. Our studies indicate that, in undifferentiated cells, the chromatin surrounding both promoter regions is in an open, transcriptionally active state as indicated by the presence of dimethylated forms of histone H3 K4 as well as acetylated H3 and acetylated H4. Upon differentiation, there was an increase of four to six fold in the levels of dimethylated H3K4 and acetylated H3 respectively around both promoter regions as well as an increase of approximately nine fold in acetylated H4 at the early promoter. This suggests that nucleosomes of both promoter regions are further activated through histone modifications during differentiation. Chromatin immunoprecipitation assays were also used to examine the binding of transcription factors to the keratinocyte enhancer (KE)/early promoter region in the upstream regulatory region (URR) and late promoter sequences throughout differentiation. Our results suggest that a dynamic change in transcription factor binding occurs in both regions upon differentiation; most notably a significant increase in C/EBP-beta binding to the KE/early promoter region as well as C/EBP-alpha binding to the late promoter region upon differentiation. These increases in binding cannot be solely explained by changes in the total cellular levels of these factors following differentiation, but instead reflect increased binding specific to HPV genomes. Finally, transient expression analyses confirmed that the KE/early promoter region of the URR contributes significantly to the activation of late gene expression and this is consistent with regulation through the combinatorial binding of multiple transcription factors.
Collapse
Affiliation(s)
- Tonia R Wooldridge
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 320 E. Superior St. Chicago, IL 60611, USA
| | | |
Collapse
|
25
|
Kisseljov F, Sakharova O, Kondratjeva T. Chapter 2 Cellular and Molecular Biological Aspects of Cervical Intraepithelial Neoplasia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:35-95. [DOI: 10.1016/s1937-6448(08)01202-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Zhang B, Chen W, Roman A. The E7 proteins of low- and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proc Natl Acad Sci U S A 2005; 103:437-42. [PMID: 16381817 PMCID: PMC1326189 DOI: 10.1073/pnas.0510012103] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
High-risk human papillomaviruses (HPVs) (e.g., HPV-16) cause anogenital and head and neck cancers, and low-risk HPVs (e.g., HPV-6) cause benign hyperproliferative disease. The E7 protein of HPV-16 binds all retinoblastoma tumor suppressor protein (pRB) family members with higher affinity than HPV-6E7. The HPV-16 E7 protein has been reported to target pRB family members for degradation and to immortalize cells. Here we tested the hypothesis that the low-risk E7 protein has an intrinsic ability to decrease expression of pRB family members. First, we introduced a high-affinity pRB-binding site into HPV-6 E7 (6E7G22D) and showed that, in human foreskin keratinocytes, HPV-6 E7G22D decreased the level of pRB protein but not pRB mRNA. Second, we analyzed the ability of wild-type HPV-6 E7 to destabilize the other pRB family members, p107 and p130. HPV-6 E7, like HPV-16 E7, decreased the level of p130 protein. This decrease was inhibited by MG132, a proteasome inhibitor. Binding of HPV-6 E7 to p130 was necessary but not sufficient to decrease the level of p130. Furthermore, the destabilization of p130 correlated with a decrease in the expression of involucrin, a differentiation marker. We suggest that the shared activity of HPV-16 E7 and HPV-6 E7 to destabilize p130 and decrease or delay differentiation may be related to the role of E7 in the HPV life cycle. The added ability of HPV-16 E7 to regulate pRB and p107 may be related to oncogenic activity.
Collapse
Affiliation(s)
- Benyue Zhang
- Department of Microbiology and Immunology and The Walther Oncology Center, Indiana University School of Medicine and The Walther Cancer Institute, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
27
|
Zhang J, Martins CR, Fansler ZB, Roemer KL, Kincaid EA, Gustafson KS, Heitjan DF, Clark DP. DNA methylation in anal intraepithelial lesions and anal squamous cell carcinoma. Clin Cancer Res 2005; 11:6544-9. [PMID: 16166431 DOI: 10.1158/1078-0432.ccr-05-0374] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Anal intraepithelial neoplasia is associated with human papillomavirus infection and may progress to invasive squamous cell carcinoma (SCC), which is increasing in immunocompromised patients. We hypothesize that anal intraepithelial neoplasia is associated with abnormal DNA methylation and that detection of these events may be used to improve screening programs. EXPERIMENTAL DESIGN Seventy-six patients were identified who underwent anal cytology screening and subsequent biopsy at our institution between 1999 and 2004. The specimens from these patients included 184 anal biopsies [normal, n = 57; low-grade squamous intraepithelial lesion (LSIL), n = 74; high-grade squamous intraepithelial lesion (HSIL), n = 41; and invasive SCC, n = 12] and 37 residual liquid-based anal cytology specimens (normal, n = 11; LSIL, n = 12; HSIL, n = 14). The methylation status of the following genes was determined for each biopsy and cytology sample using real-time methylation-specific PCR: HIC1, RASSF1, RARB, CDKN2A, p14, TP73, APC, MLH1, MGMT, DAPK1, and IGSF4. RESULTS Methylation-specific PCR analysis of biopsy samples revealed that DNA methylation was more common in SCC and HSIL than LSIL and normal mucosa. Specifically, methylation of IGSF4 and DAPK1 was prevalent in SCC (75% and 75% of cases, respectively) and HSIL (59% and 71%, respectively) but was absent in LSIL and normal biopsy samples. Methylation profiles of cytologic samples were similar to those found in the biopsy samples. CONCLUSIONS Aberrant DNA methylation is a frequent event in anal HSIL and SCC. Methylation of IGSF4 and DAPK1 is specific for HSIL and SCC, and may serve as a useful molecular biomarker.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Pathology and Laboratory Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|