1
|
Yan W, Zhu Y, Zou C, Liu W, Jia B, Niu J, Zhou Y, Chen B, Li R, Ding SW, Wu Q, Guo Z. Virome Characterization of Native Wild-Rice Plants Discovers a Novel Pathogenic Rice Polerovirus With World-Wide Circulation. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39390751 DOI: 10.1111/pce.15204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Pandemics originating from zoonotic viruses have posed significant threats to human health and agriculture. Recent discoveries have revealed that wild-rice plants also harbour viral pathogens capable of severely impacting rice production, a cornerstone food crop. In this study, we conducted virome analysis on ~1000 wild-rice individual colonies and discovered a novel single-strand positive-sense RNA virus prevalent in these plants. Through comprehensive genomic characterization and comparative sequence analysis, this virus was classified as a new species in the genus Polerovirus, designated Rice less tiller virus (RLTV). Our investigations elucidated that RLTV could be transmitted from wild rice to cultivated rice via a specific insect vector, the aphid Rhopalosiphum padi, causing less tiller disease symptoms in rice plants. We generated an infectious cDNA clone for RLTV and demonstrated systemic infection of rice cultivars and induction of severe disease symptoms following mechanical inoculation or stable genetic transformation. We further illustrated transmission of RLTV from stable transgenic lines to healthy rice plants by the aphid vector, leading to the development of disease symptoms. Notably, our database searches showed that RLTV and another polerovirus isolated from a wild plant species are widely circulating not only in wild rice but also cultivated rice around the world. Our findings provide strong evidence for a wild plant origin for rice viruses and underscore the imminent threat posed by aphid-transmitted rice Polerovirus to rice cultivar.
Collapse
Affiliation(s)
- Wenkai Yan
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wencheng Liu
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bei Jia
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiangshuai Niu
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yaogui Zhou
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Qingfa Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhongxin Guo
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
2
|
Zhu L, Zhu Y, Zou C, Su L, Zhang C, Wang C, Bai Y, Chen B, Li R, Wu Q, Ding S, Wu J, Han Y. New persistent plant RNA virus carries mutations to weaken viral suppression of antiviral RNA interference. MOLECULAR PLANT PATHOLOGY 2024; 25:e70020. [PMID: 39462907 PMCID: PMC11513406 DOI: 10.1111/mpp.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Persistent plant viruses are widespread in natural ecosystems. However, little is known about why persistent infection with these viruses may cause little or no harm to their host. Here, we discovered a new polerovirus that persistently infected wild rice plants by deep sequencing and assembly of virus-derived small-interfering RNAs (siRNAs). The new virus was named Rice tiller inhibition virus 2 (RTIV2) based on the symptoms developed in cultivated rice varieties following Agrobacterium-mediated inoculation with an infectious RTIV2 clone. We showed that RTIV2 infection induced antiviral RNA interference (RNAi) in both the wild and cultivated rice plants as well as Nicotiana benthamiana. It is known that virulent virus infection in plants depends on effective suppression of antiviral RNAi by viral suppressors of RNAi (VSRs). Notably, the P0 protein of RTIV2 exhibited weak VSR activity and carries alanine substitutions of two amino acids broadly conserved among diverse poleroviruses. Mixed infection with umbraviruses enhanced RTIV2 accumulation and/or enabled its mechanical transmission in N. benthamiana. Moreover, replacing the alanine at either one or both positions of RTIV2 P0 enhanced the VSR activity in a co-infiltration assay, and RTIV2 mutants carrying the corresponding substitutions replicated to significantly higher levels in both rice and N. benthamiana plants. Together, our findings show that as a persistent plant virus, RTIV2 carries specific mutations in its VSR gene to weaken viral suppression of antiviral RNAi. Our work reveals a new strategy for persistent viruses to maintain long-term infection by weak suppression of the host defence response.
Collapse
Affiliation(s)
- Li‐Juan Zhu
- Vector‐Borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yu Zhu
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of AgricultureGuangxi UniversityNanningChina
| | - Lan‐Yi Su
- Vector‐Borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chong‐Tao Zhang
- Vector‐Borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chi Wang
- Vector‐Borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ya‐Ni Bai
- Vector‐Borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of AgricultureGuangxi UniversityNanningChina
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of AgricultureGuangxi UniversityNanningChina
| | - Qingfa Wu
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Shou‐Wei Ding
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Jian‐Guo Wu
- Vector‐Borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yan‐Hong Han
- Vector‐Borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
3
|
OuYang X, Wang L, Luo X, Li C, An X, Yao L, Huang W, Zhang Z, Zhang S, Liu Y, Wu S. Pepper vein yellow virus P0 protein triggers NbHERC3, NbBax, and NbCRR mediated hypersensitive response. J Basic Microbiol 2024; 64:e2400023. [PMID: 38558182 DOI: 10.1002/jobm.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
P0 proteins encoded by the pepper vein yellow virus (PeVYV) are pathogenic factors that cause hypersensitive response (HR). However, the host gene expression related to PeVYV P0-induced HR has not been thoroughly studied. Transcriptomic technology was used to investigate the host pathways mediated by the PeVYV P0 protein to explore the molecular mechanisms underlying its function. We found 12,638 differentially expressed genes (DEGs); 6784 and 5854 genes were significantly upregulated and downregulated, respectively. Transcriptomic and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analyses revealed that salicylic acid (SA) and jasmonic acid (JA) synthesis-related gene expression was upregulated, and ethylene synthesis-related gene expression was downregulated. Ultrahigh performance liquid chromatography-tandem mass spectrometry was used to quantify SA and JA concentrations in Nicotiana benthamiana, and the P0 protein induced SA and JA biosynthesis. We then hypothesized that the pathogenic activity of the P0 protein might be owing to proteins related to host hormones in the SA and JA pathways, modulating host resistance at different times. Viral gene silencing suppression technology was used in N. benthamiana to characterize candidate proteins, and downregulating NbHERC3 (Homologous to E6-AP carboxy-terminus domain and regulator of choromosome condensation-1 dmain protein 3) accelerated cell necrosis in the host. The downregulation of NbCRR reduced cell death, while that of NbBax induced necrosis and curled heart leaves. Our findings indicate that NbHERC3, NbBax, and NbCRR are involved in P0 protein-driven cell necrosis.
Collapse
Affiliation(s)
- Xian OuYang
- Plant Protection College of Hunan Agricultural University, Changsha, China
| | - Lishuang Wang
- Institute of Plant Protection of Guizhou Academy of Agricultural Science, Guiyang, China
| | - Xiangwen Luo
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Chun Li
- Institute of Plant Protection of Guizhou Academy of Agricultural Science, Guiyang, China
| | - Xingyu An
- Institute of Plant Protection of Guizhou Academy of Agricultural Science, Guiyang, China
| | - Ling Yao
- Institute of Plant Protection of Guizhou Academy of Agricultural Science, Guiyang, China
| | - Wei Huang
- Institute of Plant Protection of Guizhou Academy of Agricultural Science, Guiyang, China
| | - Zhanhong Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Songbai Zhang
- Plant Protection College of Hunan Agricultural University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Yong Liu
- Plant Protection College of Hunan Agricultural University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Shiping Wu
- Institute of Plant Protection of Guizhou Academy of Agricultural Science, Guiyang, China
| |
Collapse
|
4
|
Igori D, Kim SE, Kwon JA, Park YC, Moon JS. Complete nucleotide sequence of chrysanthemum virus D, a polero-like virus. Arch Virol 2024; 169:28. [PMID: 38214788 DOI: 10.1007/s00705-023-05924-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 01/13/2024]
Abstract
A putative new polerovirus, named "chrysanthemum virus D" (ChVD), was detected in a Chrysanthemum morifolium plant in South Korea. The virus was identified by high-throughput sequencing and confirmed by reverse transcription polymerase chain reaction. The entire ChVD genome is composed of 5,963 nucleotides and contains seven open reading frames (ORF0-5 and ORF3a), which are arranged similarly to those of other poleroviruses. These ORFs encode the putative proteins P0-5 and P3a, respectively. Pairwise amino acid sequence comparisons showed that the ChVD P0-5 and P3a proteins have 30.45-75% sequence identity to the corresponding proteins of other members of the genus Polerovirus. Since one of the species demarcation criteria for the genus Polerovirus is > 10% difference in the amino acid sequence of any gene product, the sequence comparisons indicate that ChVD represents a new species in this genus. Phylogenetic analysis of the P1-P2 and P3 amino acid sequences further indicate that ChVD is a novel polerovirus.
Collapse
Affiliation(s)
- Davaajargal Igori
- Department of Biology, School of Mathematics and Natural Sciences, Mongolian National University of Education, Ulaanbaatar, Mongolia
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Se Eun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jeong A Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Yang Chan Park
- NEXBIO Co., Ltd., Daejeon, 34520, Republic of Korea.
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Jae Sun Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
5
|
Rott P, Grinstead S, Dallot S, Foster ZSL, Daugrois JH, Fernandez E, Kaye CJ, Hendrickson L, Hu X, Adhikari B, Malapi M, Grünwald NJ, Roumagnac P, Mollov D. Genetic Diversity, Evolution, and Diagnosis of Sugarcane Yellow Leaf Virus from 19 Sugarcane-Producing Locations Worldwide. PLANT DISEASE 2023; 107:3437-3447. [PMID: 37079008 DOI: 10.1094/pdis-10-22-2405-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sugarcane yellow leaf virus (SCYLV), the causal agent of yellow leaf, has been reported in an increasing number of sugarcane-growing locations since its first report in the 1990s in Brazil, Florida, and Hawaii. In this study, the genetic diversity of SCYLV was investigated using the genome coding sequence (5,561 to 5,612 nt) of 109 virus isolates from 19 geographical locations, including 65 new isolates from 16 geographical regions worldwide. These isolates were distributed in three major phylogenetic lineages (BRA, CUB, and REU), except for one isolate from Guatemala. Twenty-two recombination events were identified among the 109 isolates of SCYLV, thus confirming that recombination was a significant driving force in the genetic diversity and evolution of this virus. No temporal signal was found in the genomic sequence dataset, most likely because of the short temporal window of the 109 SCYLV isolates (1998 to 2020). Among 27 primers reported in the literature for the detection of the virus by RT-PCR, none matched 100% with all 109 SCYLV sequences, suggesting that the use of some primer pairs may not result in the detection of all virus isolates. Primers YLS111/YLS462, which were the first primer pair used by numerous research organizations to detect the virus by RT-PCR, failed to detect isolates belonging to the CUB lineage. In contrast, primer pair ScYLVf1/ScYLVr1 efficiently detected isolates of all three lineages. Continuous pursuit of knowledge of SCYLV genetic variability is therefore critical for effective diagnosis of yellow leaf, especially in virus-infected and mainly asymptomatic sugarcane plants.
Collapse
Affiliation(s)
- Philippe Rott
- CIRAD, UMR PHIM, 34398 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Sam Grinstead
- National Germplasm Resources Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A
| | - Sylvie Dallot
- CIRAD, UMR PHIM, 34398 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Zachary S L Foster
- Horticultural Crops Disease and Pest Management Research Unit, USDA-ARS, Corvallis, OR 97330, U.S.A
| | - Jean H Daugrois
- CIRAD, UMR PHIM, 34398 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Emmanuel Fernandez
- CIRAD, UMR PHIM, 34398 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | | | | - Xiaojun Hu
- Plant Germplasm Quarantine Program, USDA-APHIS, Beltsville, MD 20705, U.S.A
| | - Bishwo Adhikari
- Plant Germplasm Quarantine Program, USDA-APHIS, Beltsville, MD 20705, U.S.A
| | - Martha Malapi
- Plant Germplasm Quarantine Program, USDA-APHIS, Beltsville, MD 20705, U.S.A
| | - Niklaus J Grünwald
- Horticultural Crops Disease and Pest Management Research Unit, USDA-ARS, Corvallis, OR 97330, U.S.A
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34398 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Dimitre Mollov
- Horticultural Crops Disease and Pest Management Research Unit, USDA-ARS, Corvallis, OR 97330, U.S.A
| |
Collapse
|
6
|
Liang KL, Liu JY, Bao YY, Wang ZY, Xu XB. Screening and Identification of Host Factors Interacting with the Virulence Factor P0 Encoded by Sugarcane Yellow Leaf Virus by Yeast Two-Hybrid Assay. Genes (Basel) 2023; 14:1397. [PMID: 37510302 PMCID: PMC10379860 DOI: 10.3390/genes14071397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Sugarcane yellow leaf virus (SCYLV), a member of the genus Polerovirus in the family Luteoviridae, causes severe damage and represents a great threat to sugarcane cultivation and sugar industry development. In this study, inoculation of Nicotiana benthamiana plants with a potato virus X (PVX)-based vector carrying the SCYLV P0 gene induced typical mosaic, leaf rolling symptoms and was associated with a hypersensitive-like response (HLR) necrosis symptom, which is accompanied with a systemic burst of H2O2 and also leads to higher PVX viral genome accumulation levels. Our results demonstrate that SCYLV P0 is a pathogenicity determinant and plays important roles in disease development. To further explore its function in pathogenic processes, a yeast two-hybrid assay was performed to screen the putative P0-interacting host factors. The recombinant plasmid pGBKT7-P0 was constructed as a bait and transformed into the yeast strain Y2HGold. The ROC22 cultivar (an important parental resource of the main cultivar in China) cDNA prey library was constructed and screened by co-transformation with the P0 bait. We identified 28 potential interacting partners including those involved in the optical signal path, plant growth and development, transcriptional regulation, host defense response, and viral replication. To our knowledge, this is the first time we have reported the host proteins interacting with the P0 virulence factor encoded by sugarcane yellow leaf virus. This study not only provides valuable insights into elucidating the molecular mechanism of the pathogenicity of SCYLV, but also sheds light on revealing the probable new pathogenesis of Polerovirus in the future.
Collapse
Affiliation(s)
- Kai-Li Liang
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Jing-Ying Liu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Ying-Ying Bao
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhi-Yuan Wang
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Xiong-Biao Xu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Complete genome sequence of a novel polerovirus infecting Cynanchum rostellatum. Arch Virol 2023; 168:57. [PMID: 36617596 DOI: 10.1007/s00705-022-05625-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/12/2022] [Indexed: 01/10/2023]
Abstract
We detected a virus-like sequence in Cynanchum rostellatum leaves showing yellow mottle symptoms, found in Tokyo, Japan. RNA-Seq analysis revealed that the complete nucleotide sequence of the virus genome was 5,878 nucleotides in length and that it contained seven open reading frames (ORFs) specific to members of the genus Polerovirus. Accordingly, phylogenetic analysis revealed that the virus clustered with poleroviruses in the family Solemoviridae. The amino acid sequence identity values obtained by comparison of the deduced proteins of this virus and those of known members of the genus Polerovirus were lower than 90%, which is the species demarcation criterion of the taxon. The results indicate that this virus is a novel member of the genus Polerovirus, for which the name "cynanchum yellow mottle-associated virus" is proposed.
Collapse
|
8
|
Systematic mutagenesis of Polerovirus protein P0 reveals distinct and overlapping amino acid functions in Nicotiana glutinosa. Virology 2023; 578:24-34. [PMID: 36462495 DOI: 10.1016/j.virol.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
The protein P0 serves as the viral suppressor of RNA silencing (VSR) for poleroviruses, but elicits the hypersensitive response (HR) in specific Nicotiana species. We subjected P0 proteins from turnip yellows virus (P0Tu) and potato leafroll virus (P0PL) to serial deletion and performed extensive site-directed mutagenesis of P0Tu. Most deletions of the N-terminus and many substitution mutations disrupted both HR elicitation and VSR activity. Two conserved blocks of amino acid residues were found to be associated with HR. A double lysine to arginine substitution in HR-specific block 1 caused P0Tu to elicit a more robust HR. Conversely, deletion or mutation of block 2 in the C-terminus preserved VSR activity, but impaired HR elicitation, allowing virus escape from Nicotiana glutinosa resistance when expressed in the heterologous potato virus X vector. Our observations suggest that P0 residues responsible for suppressing RNA silencing and eliciting HR have overlapping, but distinct functions.
Collapse
|
9
|
Dominguez MM, Padilla CS, Mandadi KK. A versatile Agrobacterium-based plant transformation system for genetic engineering of diverse citrus cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:878335. [PMID: 36311111 PMCID: PMC9597469 DOI: 10.3389/fpls.2022.878335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Developing an efficient transformation system is vital in genetically engineering recalcitrant crops, particularly trees. Here, we outline an Agrobacterium tumefaciens-based stable plant transformation methodology for citrus genetic engineering. The process was optimized to suit the requirements of fourteen citrus varieties by establishing appropriate infection, co-cultivation, selection, and culture media conditions. The procedure includes transforming seedling-derived epicotyl segments with an A. tumefaciens strain, then selecting and regenerating transformed tissues. Transgenic shoots were further identified by a visual reporter (e.g., β-glucuronidase) and confirmed by Northern and Southern blot analysis. Transgene integrations among the transgenic lines ranged between one to four. The methodology can yield transformation efficiencies of up to 11%, and transgenic plants can be recovered as early as six months, depending on the variety. In addition, we show that incorporating A. tumefaciens helper virulence genes (virG and virE), spermidine, and lipoic acid in the resuspension buffer before transformation improved the transformation efficiency of specific recalcitrant cultivars, presumably by enhancing T-DNA integration and alleviating oxidative stress on the explant tissues. In conclusion, the optimized methodology can be utilized to engineer diverse recalcitrant citrus varieties towards trait improvement or functional genetics applications.
Collapse
Affiliation(s)
| | - Carmen S. Padilla
- Texas A&M AgriLife Research & Extension Center, Weslaco, TX, United States
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research & Extension Center, Weslaco, TX, United States
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, United States
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, United States
| |
Collapse
|
10
|
Jin L, Chen M, Xiang M, Guo Z. RNAi-Based Antiviral Innate Immunity in Plants. Viruses 2022; 14:v14020432. [PMID: 35216025 PMCID: PMC8875485 DOI: 10.3390/v14020432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple antiviral immunities were developed to defend against viral infection in hosts. RNA interference (RNAi)-based antiviral innate immunity is evolutionarily conserved in eukaryotes and plays a vital role against all types of viruses. During the arms race between the host and virus, many viruses evolve viral suppressors of RNA silencing (VSRs) to inhibit antiviral innate immunity. Here, we reviewed the mechanism at different stages in RNAi-based antiviral innate immunity in plants and the counteractions of various VSRs, mainly upon infection of RNA viruses in model plant Arabidopsis. Some critical challenges in the field were also proposed, and we think that further elucidating conserved antiviral innate immunity may convey a broad spectrum of antiviral strategies to prevent viral diseases in the future.
Collapse
|
11
|
Zhang X, Rashid MO, Zhao TY, Li YY, He MJ, Wang Y, Li DW, Yu JL, Han CG. The Carboxyl Terminal Regions of P0 Protein Are Required for Systemic Infections of Poleroviruses. Int J Mol Sci 2022; 23:1945. [PMID: 35216065 PMCID: PMC8875975 DOI: 10.3390/ijms23041945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
P0 proteins encoded by poleroviruses Brassica yellows virus (BrYV) and Potato leafroll virus (PLRV) are viral suppressors of RNA silencing (VSR) involved in abolishing host RNA silencing to assist viral infection. However, other roles that P0 proteins play in virus infection remain unclear. Here, we found that C-terminal truncation of P0 resulted in compromised systemic infection of BrYV and PLRV. C-terminal truncation affected systemic but not local VSR activities of P0 proteins, but neither transient nor ectopic stably expressed VSR proteins could rescue the systemic infection of BrYV and PLRV mutants. Moreover, BrYV mutant failed to establish systemic infection in DCL2/4 RNAi or RDR6 RNAi plants, indicating that systemic infection might be independent of the VSR activity of P0. Partially rescued infection of BrYV mutant by the co-infected PLRV implied the functional conservation of P0 proteins within genus. However, although C-terminal truncation mutant of BrYV P0 showed weaker interaction with its movement protein (MP) when compared to wild-type P0, wild-type and mutant PLRV P0 showed similar interaction with its MP. In sum, our findings revealed the role of P0 in virus systemic infection and the requirement of P0 carboxyl terminal region for the infection.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Mamun-Or Rashid
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Tian-Yu Zhao
- China National Center for Biotechnology Development, Beijing 100039, China;
| | - Yuan-Yuan Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Meng-Jun He
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Ying Wang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Da-Wei Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Jia-Lin Yu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Cheng-Gui Han
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| |
Collapse
|
12
|
Ramasamy M, Damaj MB, Vargas-Bautista C, Mora V, Liu J, Padilla CS, Irigoyen S, Saini T, Sahoo N, DaSilva JA, Mandadi KK. A Sugarcane G-Protein-Coupled Receptor, ShGPCR1, Confers Tolerance to Multiple Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:745891. [PMID: 35295863 PMCID: PMC8919185 DOI: 10.3389/fpls.2021.745891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Sugarcane (Saccharum spp.) is a prominent source of sugar and serves as bioenergy/biomass feedstock globally. Multiple biotic and abiotic stresses, including drought, salinity, and cold, adversely affect sugarcane yield. G-protein-coupled receptors (GPCRs) are components of G-protein-mediated signaling affecting plant growth, development, and stress responses. Here, we identified a GPCR-like protein (ShGPCR1) from sugarcane and energy cane (Saccharum spp. hybrids) and characterized its function in conferring tolerance to multiple abiotic stresses. ShGPCR1 protein sequence contained nine predicted transmembrane (TM) domains connected by four extracellular and four intracellular loops, which could interact with various ligands and heterotrimeric G proteins in the cells. ShGPCR1 sequence displayed other signature features of a GPCR, such as a putative guanidine triphosphate (GTP)-binding domain, as well as multiple myristoylation and protein phosphorylation sites, presumably important for its biochemical function. Expression of ShGPCR1 was upregulated by drought, salinity, and cold stresses. Subcellular imaging and calcium (Ca2+) measurements revealed that ShGPCR1 predominantly localized to the plasma membrane and enhanced intracellular Ca2+ levels in response to GTP, respectively. Furthermore, constitutive overexpression of ShGPCR1 in sugarcane conferred tolerance to the three stressors. The stress-tolerance phenotype of the transgenic lines corresponded with activation of multiple drought-, salinity-, and cold-stress marker genes, such as Saccharum spp. LATE EMBRYOGENESIS ABUNDANT, DEHYDRIN, DROUGHT RESPONSIVE 4, GALACTINOL SYNTHASE, ETHYLENE RESPONSIVE FACTOR 3, SALT OVERLY SENSITIVE 1, VACUOLAR Na+/H+ ANTIPORTER 1, NAM/ATAF1/2/CUC2, COLD RESPONSIVE FACTOR 2, and ALCOHOL DEHYDROGENASE 3. We suggest that ShGPCR1 plays a key role in conferring tolerance to multiple abiotic stresses, and the engineered lines may be useful to enhance sugarcane production in marginal environments with fewer resources.
Collapse
Affiliation(s)
- Manikandan Ramasamy
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Mona B. Damaj
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | | | - Victoria Mora
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Jiaxing Liu
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Carmen S. Padilla
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Tripti Saini
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Nirakar Sahoo
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Jorge A. DaSilva
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Clavel M, Lechner E, Incarbone M, Vincent T, Cognat V, Smirnova E, Lecorbeiller M, Brault V, Ziegler-Graff V, Genschik P. Atypical molecular features of RNA silencing against the phloem-restricted polerovirus TuYV. Nucleic Acids Res 2021; 49:11274-11293. [PMID: 34614168 PMCID: PMC8565345 DOI: 10.1093/nar/gkab802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022] Open
Abstract
In plants and some animal lineages, RNA silencing is an efficient and adaptable defense mechanism against viruses. To counter it, viruses encode suppressor proteins that interfere with RNA silencing. Phloem-restricted viruses are spreading at an alarming rate and cause substantial reduction of crop yield, but how they interact with their hosts at the molecular level is still insufficiently understood. Here, we investigate the antiviral response against phloem-restricted turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana. Using a combination of genetics, deep sequencing, and mechanical vasculature enrichment, we show that the main axis of silencing active against TuYV involves 22-nt vsiRNA production by DCL2, and their preferential loading into AGO1. Moreover, we identify vascular secondary siRNA produced from plant transcripts and initiated by DCL2-processed AGO1-loaded vsiRNA. Unexpectedly, and despite the viral encoded VSR P0 previously shown to mediate degradation of AGO proteins, vascular AGO1 undergoes specific post-translational stabilization during TuYV infection. Collectively, our work uncovers the complexity of antiviral RNA silencing against phloem-restricted TuYV and prompts a re-assessment of the role of its suppressor of silencing P0 during genuine infection.
Collapse
Affiliation(s)
- Marion Clavel
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Esther Lechner
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Marco Incarbone
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Timothée Vincent
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Valerie Cognat
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Ekaterina Smirnova
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Maxime Lecorbeiller
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
14
|
Sahu AK, Sanan-Mishra N. Interaction between βC1 of satellite and coat protein of Chili leaf curl virus plays a crucial role in suppression of host RNA silencing. Appl Microbiol Biotechnol 2021; 105:8329-8342. [PMID: 34651252 DOI: 10.1007/s00253-021-11624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
The monopartite Chili leaf curl virus (ChiLCV) and its β-satellite (ChiLCB) have been found to co-exist in infected plants. The ability of βC1 protein to suppress RNA silencing was investigated using an in-house developed in-planta reversal of silencing assay, using Nicotiana tabacum lines harboring green fluorescent protein (GFP) silenced by short hairpin GFP (ShGFP). Transient expression of recombinant βC1 complemented and increased the suppressor activity of ChiLCV coat protein (CP), and this was confirmed by molecular analysis. In silico analysis followed by a yeast two-hybrid screen-identified ChiLCV-CP as the interacting partner of the ChiLCB-βC1 protein. Subcellular localization through confocal analysis revealed that when βC1 and ChiLCV-CP were co-present, the fluorescence was localized in the cytoplasm indicating that nuclear localization of both proteins was obstructed. The cytoplasmic compartmentalization of the two viral suppressors of RNA silencing may be responsible for the enhanced suppression of the host gene silencing. This study presents evidence on the interaction of ChiLCV-CP and βC1 proteins and indicates that ChiLCB may support the ChiLCV in overcoming host gene silencing to cause Chili leaf curl disease. KEY POINTS: • CP of ChiLCV and βC1 of ChiLCB contain RNA silencing suppression activity • The RNA silencing suppression activity of ChiLCB-βC1 complements that of ChiLCV-CP • There is a direct interaction between ChiLCB-βC1 and ChiLCV-CP.
Collapse
Affiliation(s)
- Anurag Kumar Sahu
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
15
|
Comparative Analysis of Biological Characteristics among P0 Proteins from Different Brassica Yellows Virus Genotypes. BIOLOGY 2021; 10:biology10111076. [PMID: 34827069 PMCID: PMC8614689 DOI: 10.3390/biology10111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Polerovirus P0 proteins are multifunctional proteins. Besides their viral suppressor of RNA silencing (VSR) functions, several P0 proteins can induce a cell death phenotype within the infiltrated region of Nicotiana benthamiana or Nicotiana glutinosa. Recently, the Brassica yellows virus (BrYV) genotype A P0 protein (P0BrA) was identified as a strong viral suppressor of RNAi. In this study, we compared the features of the P0 proteins encoded by different genotypes of BrYV and revealed their difference in inducing cell death in N. benthamiana. Key residues in P0BrA for inducing cell death were also identified. We also showed that all three BrYV genotypes had synergistic interaction with PEMV 2 in N. benthamiana. This study provides theoretical guidance for controlling the viral disease caused by poleroviruses in the future. Abstract Brassica yellows virus (BrYV) is a tentative species of the genus Polerovirus, which has at least three genotypes (A, B, and C) in China. The P0 protein of BrYV-A (P0BrA) has been identified as a viral suppressor of RNA silencing (VSR), which can also induce cell death in infiltrated Nicotiana benthamiana leaves. In this study, we demonstrated that the cell death induced by P0BrA was accompanied by the accumulation of reactive oxygen species (ROS) and increased Pathogenesis-related protein genes-1 (PR1) expression. Meanwhile, this cell death phenotype was delayed by salicylic acid (SA) pretreatment. Biological function comparison of the three P0 proteins showed that transiently expressed P0BrB or P0BrC induced a significantly delayed and milder cell death response compared with P0BrA. However, like P0BrA, they also suppressed local and systemic RNA silencing. Six residues of P0BrA essential for inducing cell death were identified by comparative analysis and amino acid substitution assay. We also show that all three BrYV genotypes have synergistic interactions with pea enation mosaic virus 2 (PEMV 2) in N. benthamiana. This study provides theoretical guidance for controlling the viral disease caused by poleroviruses in the future.
Collapse
|
16
|
Genome-wide approaches for the identification of markers and genes associated with sugarcane yellow leaf virus resistance. Sci Rep 2021; 11:15730. [PMID: 34344928 PMCID: PMC8333424 DOI: 10.1038/s41598-021-95116-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
Sugarcane yellow leaf (SCYL), caused by the sugarcane yellow leaf virus (SCYLV) is a major disease affecting sugarcane, a leading sugar and energy crop. Despite damages caused by SCYLV, the genetic base of resistance to this virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with SCYLV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this virus. We investigated the genetic base of SCYLV resistance using dominant and codominant markers and genotypes of interest for sugarcane breeding. A sugarcane panel inoculated with SCYLV was analyzed for SCYL symptoms, and viral titer was estimated by RT-qPCR. This panel was genotyped with 662 dominant markers and 70,888 SNPs and indels with allele proportion information. We used polyploid-adapted genome-wide association analyses and machine-learning algorithms coupled with feature selection methods to establish marker-trait associations. While each approach identified unique marker sets associated with phenotypes, convergences were observed between them and demonstrated their complementarity. Lastly, we annotated these markers, identifying genes encoding emblematic participants in virus resistance mechanisms and previously unreported candidates involved in viral responses. Our approach could accelerate sugarcane breeding targeting SCYLV resistance and facilitate studies on biological processes leading to this trait.
Collapse
|
17
|
Viswanathan R. Impact of yellow leaf disease in sugarcane and its successful disease management to sustain crop production. INDIAN PHYTOPATHOLOGY 2021. [DOI: 10.1007/s42360-021-00391-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Comparative genomics reveals insights into genetic variability and molecular evolution among sugarcane yellow leaf virus populations. Sci Rep 2021; 11:7149. [PMID: 33785787 PMCID: PMC8009895 DOI: 10.1038/s41598-021-86472-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 11/08/2022] Open
Abstract
Yellow leaf disease caused by sugarcane yellow leaf virus (SCYLV) is one of the most prevalent diseases worldwide. In this study, six near-complete genome sequences of SCYLV were determined to be 5775-5881 bp in length. Phylogenetic analysis revealed that the two SCYLV isolates from Réunion Island, France, and four from China were clustered into REU and CUB genotypes, respectively, based on 50 genomic sequences (this study = 6, GenBank = 44). Meanwhile, all 50 isolates were clustered into three phylogroups (G1-G3). Twelve significant recombinant events occurred in intra- and inter-phylogroups between geographical origins and host crops. Most recombinant hotspots were distributed in coat protein read-through protein (RTD), followed by ORF0 (P0) and ORF1 (P1). High genetic divergences of 12.4% for genomic sequences and 6.0-24.9% for individual genes were determined at nucleotide levels. The highest nucleotide diversity (π) was found in P0, followed by P1 and RdRP. In addition, purifying selection was a main factor restricting variability in SCYLV populations. Infrequent gene flow between Africa and the two subpopulations (Asia and America) were found, whereas frequent gene flow between Asia and America subpopulations was observed. Taken together, our findings facilitate understanding of genetic diversity and evolutionary dynamics of SCYLV.
Collapse
|
19
|
Ashraf MA, Ashraf F, Feng X, Hu X, Shen L, Khan J, Zhang S. Potential targets for evaluation of sugarcane yellow leaf virus resistance in sugarcane cultivars: in silico sugarcane miRNA and target network prediction. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2022.2041483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Muhammad Aleem Ashraf
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
- Department of Bioscience and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Fakiha Ashraf
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Xiaoyan Feng
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
- Hainan Academy of Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Xiaowen Hu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, PR China
| | - Linbo Shen
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Jallat Khan
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Shuzhen Zhang
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
- Hainan Academy of Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| |
Collapse
|
20
|
Holkar SK, Balasubramaniam P, Kumar A, Kadirvel N, Shingote PR, Chhabra ML, Kumar S, Kumar P, Viswanathan R, Jain RK, Pathak AD. Present Status and Future Management Strategies for Sugarcane Yellow Leaf Virus: A Major Constraint to the Global Sugarcane Production. THE PLANT PATHOLOGY JOURNAL 2020; 36:536-557. [PMID: 33312090 PMCID: PMC7721539 DOI: 10.5423/ppj.rw.09.2020.0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/23/2020] [Accepted: 11/07/2020] [Indexed: 02/08/2023]
Abstract
Sugarcane yellow leaf virus (SCYLV) is a distinct member of the Polerovirus genus of the Luteoviridae family. SCYLV is the major limitation to sugarcane production worldwide and presently occurring in most of the sugarcane growing countries. SCYLV having high genetic diversity within the species and presently ten genotypes are known to occur based on the complete genome sequence information. SCYLV is present in almost all the states of India where sugarcane is grown. Virion comprises of 180 coat protein units and are 24-29 nm in diameter. The genome of SCYLV is a monopartite and comprised of single-stranded (ss) positive-sense (+) linear RNA of about 6 kb in size. Virus genome consists of six open reading frames (ORFs) that are expressed by sub-genomic RNAs. The SCYLV is phloem-limited and transmitted by sugarcane aphid Melanaphis sacchari in a circulative and non-propagative manner. The other aphid species namely, Ceratovacuna lanigera, Rhopalosiphum rufiabdominalis, and R. maidis also been reported to transmit the virus. The virus is not transmitted mechanically, therefore, its transmission by M. sacchari has been studied in different countries. SCYLV has a limited natural host range and mainly infect sugarcane (Sachharum hybrid), grain sorghum (Sorghum bicolor), and Columbus grass (Sorghum almum). Recent insights in the protein-protein interactions of Polerovirus through protein interaction reporter (PIR) technology enable us to understand viral encoded proteins during virus replication, assembly, plant defence mechanism, short and long-distance travel of the virus. This review presents the recent understandings on virus biology, diagnosis, genetic diversity, virus-vector and host-virus interactions and conventional and next generation management approaches.
Collapse
Affiliation(s)
- Somnath Kadappa Holkar
- ICAR-Indian Institute of Sugarcane Research, Biological Control Centre, Pravaranagar, Maharashtra 43 72, India
| | | | - Atul Kumar
- ICAR-Indian Institute of Sugarcane Research, Biological Control Centre, Pravaranagar, Maharashtra 43 72, India.,Amity Institute of Biotechnology, Amity University, Lucknow Campus, Lucknow 226 010, Uttar Pradesh, India
| | - Nithya Kadirvel
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore 61 007, Tamil Nadu, India
| | | | - Manohar Lal Chhabra
- ICAR-Sugarcane Breeding Institute, Regional Centre, Karnal, Haryana 13 001, India
| | - Shubham Kumar
- ICAR-Sugarcane Breeding Institute, Regional Centre, Karnal, Haryana 13 001, India
| | - Praveen Kumar
- ICAR-Sugarcane Breeding Institute, Regional Centre, Karnal, Haryana 13 001, India
| | - Rasappa Viswanathan
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore 61 007, Tamil Nadu, India
| | - Rakesh Kumar Jain
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India
| | - Ashwini Dutt Pathak
- ICAR-Indian Institute of Sugarcane Research, Lucknow 226 002, Uttar Pradesh, India
| |
Collapse
|
21
|
Sun Q, Zhuo T, Zhao T, Zhou C, Li Y, Wang Y, Li D, Yu J, Han C. Functional Characterization of RNA Silencing Suppressor P0 from Pea Mild Chlorosis Virus. Int J Mol Sci 2020; 21:E7136. [PMID: 32992609 PMCID: PMC7582759 DOI: 10.3390/ijms21197136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 01/22/2023] Open
Abstract
To counteract host antiviral RNA silencing, plant viruses encode numerous viral suppressors of RNA silencing (VSRs). P0 proteins have been identified as VSRs in many poleroviruses. However, their suppressor function has not been fully characterized. Here, we investigated the function of P0 from pea mild chlorosis virus (PMCV) in the suppression of local and systemic RNA silencing via green fluorescent protein (GFP) co-infiltration assays in wild-type and GFP-transgenic Nicotiana benthamiana (line 16c). Amino acid deletion analysis showed that N-terminal residues Asn 2 and Val 3, but not the C-terminus residues from 230-270 aa, were necessary for PMCV P0 (P0PM) VSR activity. P0PM acted as an F-box protein, and triple LPP mutation (62LPxx79P) at the F-box-like motif abolished its VSR activity. In addition, P0PM failed to interact with S-phase kinase-associated protein 1 (SKP1), which was consistent with previous findings of P0 from potato leafroll virus. These data further support the notion that VSR activity of P0 is independent of P0-SKP1 interaction. Furthermore, we examined the effect of P0PM on ARGONAUTE1 (AGO1) protein stability, and co-expression analysis showed that P0PM triggered AGO1 degradation. Taken together, our findings suggest that P0PM promotes degradation of AGO1 to suppress RNA silencing independent of SKP1 interaction.
Collapse
Affiliation(s)
- Qian Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Tao Zhuo
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Tianyu Zhao
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Cuiji Zhou
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Yuanyuan Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Ying Wang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Dawei Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Jialin Yu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Chenggui Han
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| |
Collapse
|
22
|
Padilla CS, Damaj MB, Yang ZN, Molina J, Berquist BR, White EL, Solís-Gracia N, Da Silva J, Mandadi KK. High-Level Production of Recombinant Snowdrop Lectin in Sugarcane and Energy Cane. Front Bioeng Biotechnol 2020; 8:977. [PMID: 33015000 PMCID: PMC7461980 DOI: 10.3389/fbioe.2020.00977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 01/11/2023] Open
Abstract
Sugarcane and energy cane (Saccharum spp. hybrids) are ideal for plant-based production of recombinant proteins because their high resource-use efficiency, rapid growth and efficient photosynthesis enable extensive biomass production and protein accumulation at a cost-effective scale. Here, we aimed to develop these species as efficient platforms to produce recombinant Galanthus nivalis L. (snowdrop) agglutinin (GNA), a monocot-bulb mannose-specific lectin with potent antiviral, antifungal and antitumor activities. Initially, GNA levels of 0.04% and 0.3% total soluble protein (TSP) (0.3 and 3.8 mg kg–1 tissue) were recovered from the culms and leaves, respectively, of sugarcane lines expressing recombinant GNA under the control of the constitutive maize ubiquitin 1 (Ubi) promoter. Co-expression of recombinant GNA from stacked multiple promoters (pUbi and culm-regulated promoters from sugarcane dirigent5-1 and Sugarcane bacilliform virus) on separate expression vectors increased GNA yields up to 42.3-fold (1.8% TSP or 12.7 mg kg–1 tissue) and 7.7-fold (2.3% TSP or 29.3 mg kg–1 tissue) in sugarcane and energy cane lines, respectively. Moreover, inducing promoter activity in the leaves of GNA transgenic lines with stress-regulated hormones increased GNA accumulation to 2.7% TSP (37.2 mg kg–1 tissue). Purification by mannose-agarose affinity chromatography yielded a functional sugarcane recombinant GNA with binding substrate specificity similar to that of native snowdrop-bulb GNA, as shown by enzyme-linked lectin and mannose-binding inhibition assays. The size and molecular weight of recombinant GNA were identical to those of native GNA, as determined by size-exclusion chromatography and MALDI-TOF mass spectrometry. This work demonstrates the feasibility of producing recombinant GNA at high levels in Saccharum species, with the long-term goal of using it as a broad-spectrum antiviral carrier molecule for hemopurifiers and in related therapeutic applications.
Collapse
Affiliation(s)
- Carmen S Padilla
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Mona B Damaj
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Zhong-Nan Yang
- Institute for Plant Gene Function, Department of Biology, Shanghai Normal University, Shanghai, China
| | - Joe Molina
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | | | - Earl L White
- MDx BioAnalytical Laboratory, Inc., College Station, TX, United States
| | - Nora Solís-Gracia
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Jorge Da Silva
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States.,Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States.,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
23
|
Damaj MB, Jifon JL, Woodard SL, Vargas-Bautista C, Barros GOF, Molina J, White SG, Damaj BB, Nikolov ZL, Mandadi KK. Unprecedented enhancement of recombinant protein production in sugarcane culms using a combinatorial promoter stacking system. Sci Rep 2020; 10:13713. [PMID: 32792533 PMCID: PMC7426418 DOI: 10.1038/s41598-020-70530-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
Plants represent a safe and cost-effective platform for producing high-value proteins with pharmaceutical properties; however, the ability to accumulate these in commercially viable quantities is challenging. Ideal crops to serve as biofactories would include low-input, fast-growing, high-biomass species such as sugarcane. The objective of this study was to develop an efficient expression system to enable large-scale production of high-value recombinant proteins in sugarcane culms. Bovine lysozyme (BvLz) is a potent broad-spectrum antimicrobial enzyme used in the food, cosmetics and agricultural industries. Here, we report a novel strategy to achieve high-level expression of recombinant proteins using a combinatorial stacked promoter system. We demonstrate this by co-expressing BvLz under the control of multiple constitutive and culm-regulated promoters on separate expression vectors and combinatorial plant transformation. BvLz accumulation reached 1.4% of total soluble protein (TSP) (10.0 mg BvLz/kg culm mass) in stacked multiple promoter:BvLz lines, compared to 0.07% of TSP (0.56 mg/kg) in single promoter:BvLz lines. BvLz accumulation was further boosted to 11.5% of TSP (82.5 mg/kg) through event stacking by re-transforming the stacked promoter:BvLz lines with additional BvLz expression vectors. The protein accumulation achieved with the combinatorial promoter stacking expression system was stable in multiple vegetative propagations, demonstrating the feasibility of using sugarcane as a biofactory for producing high-value proteins and bioproducts.
Collapse
Affiliation(s)
- Mona B Damaj
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA.
| | - John L Jifon
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843-2133, USA
| | - Susan L Woodard
- National Center for Therapeutics Manufacturing, Texas A&M University, 100 Discovery Drive, College Station, TX, 77843-4482, USA
| | - Carol Vargas-Bautista
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- College of Medicine, Texas A&M University, 8447 Riverside Parkway, Bryan, TX, 77807, USA
| | - Georgia O F Barros
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Joe Molina
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
| | - Steven G White
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Bassam B Damaj
- Innovus Pharmaceuticals, Inc., 8845 Rehco Road, San Diego, CA, 92121, USA
| | - Zivko L Nikolov
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA.
| |
Collapse
|
24
|
Mostert I, Visser M, Gazendam I, Cloete M, Burger JT, Maree HJ. Complete genome sequence of a novel polerovirus in Ornithogalum thyrsoides from South Africa. Arch Virol 2019; 165:483-486. [PMID: 31781858 DOI: 10.1007/s00705-019-04472-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/16/2019] [Indexed: 11/26/2022]
Abstract
Ornithogalum thyrsoides, commonly known as chincherinchee, is an indigenous ornamental plant widely cultivated in South Africa. It is commercially valued as a flowering pot plant and for the production of cut flowers. Virus infections resulting in the development of severe necrotic mosaic symptoms threaten the success of commercial cultivation. The virome of an O. thyrsoides plant displaying necrotic mosaic symptoms was determined using high-throughput sequencing (HTS). In this plant, ornithogalum mosaic virus and ornithogalum virus 3 were identified, as well as a previously unknown virus. The full genome sequence of this virus was confirmed by Sanger sequencing using overlapping amplicons combined with rapid amplification of cDNA ends (RACE). Based on genome organisation and phylogenetic analysis, this novel virus can be classified as a polerovirus.
Collapse
Affiliation(s)
- I Mostert
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - M Visser
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - I Gazendam
- Agricultural Research Council-Roodeplaat Vegetable and Ornamental Plants, Pretoria, South Africa
| | - M Cloete
- Agricultural Research Council-Roodeplaat Vegetable and Ornamental Plants, Pretoria, South Africa
| | - J T Burger
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - H J Maree
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa.
- Citrus Research International, Stellenbosch, South Africa.
| |
Collapse
|
25
|
Cucurbit Chlorotic Yellows Virus p22 Protein Interacts with Cucumber SKP1LB1 and Its F-Box-Like Motif Is Crucial for Silencing Suppressor Activity. Viruses 2019; 11:v11090818. [PMID: 31487883 PMCID: PMC6784205 DOI: 10.3390/v11090818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 11/17/2022] Open
Abstract
Plants use RNA silencing as a defense against viruses. In response, viruses encode various RNA silencing suppressors to counteract the antiviral silencing. Here, we identified p22 as a silencing suppressor of cucurbit chlorotic yellows crinivirus and showed that p22 interacts with CsSKP1LB1, a Cucumis sativus ortholog of S-phase kinase-associated protein 1 (SKP1). The F-box-like motif of p22 was identified through sequence analysis and found to be necessary for the interaction using a yeast two-hybrid assay. The involvement of the F-box-like motif in p22 silencing suppressor activity was determined. Proteomics analysis of Nicotiana benthamiana leaves expressing p22, and its F-box-like motif deletion mutant showed 228 differentially expressed proteins and five enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways: ABC transporters, sesquiterpenoid and triterpenoid biosynthesis, ubiquitin-mediated proteolysis, riboflavin metabolism, and cysteine and methionine metabolism. Collectively, our results demonstrate the interaction between p22 and CsSKP1LB1 and show that the deletion of F-box-like motif inhibits p22 silencing suppressor activity. The possible pathways regulated by the p22 through the F-box-like motif were identified using proteomics analysis.
Collapse
|
26
|
Li Y, Sun Q, Zhao T, Xiang H, Zhang X, Wu Z, Zhou C, Zhang X, Wang Y, Zhang Y, Wang X, Li D, Yu J, Dinesh‐Kumar SP, Han C. Interaction between Brassica yellows virus silencing suppressor P0 and plant SKP1 facilitates stability of P0 in vivo against degradation by proteasome and autophagy pathways. THE NEW PHYTOLOGIST 2019; 222:1458-1473. [PMID: 30664234 PMCID: PMC6593998 DOI: 10.1111/nph.15702] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 01/08/2019] [Indexed: 05/21/2023]
Abstract
P0 protein of some polerovirus members can target ARGONAUTE1 (AGO1) to suppress RNA silencing. Although P0 harbors an F-box-like motif reported to be essential for interaction with S phase kinase-associated protein 1 (SKP1) and RNA silencing suppression, it is the autophagy pathway that was shown to contribute to AGO1 degradation. Therefore, the role of P0-SKP1 interaction in silencing suppression remains unclear. We conducted global mutagenesis and comparative functional analysis of P0 encoded by Brassica yellows virus (BrYV) (P0Br ). We found that several residues within P0Br are required for local and systemic silencing suppression activities. Remarkably, the F-box-like motif mutant of P0Br , which failed to interact with SKP1, is destabilized in vivo. Both the 26S proteasome system and autophagy pathway play a role in destabilization of the mutant protein. Furthermore, silencing of a Nicotiana benthamiana SKP1 ortholog leads to the destabilization of P0Br . Genetic analyses indicated that the P0Br -SKP1 interaction is not directly required for silencing suppression activity of P0Br , but it facilitates stability of P0Br to ensure efficient RNA silencing suppression. Consistent with these findings, efficient systemic infection of BrYV requires P0Br . Our results reveal a novel strategy used by BrYV for facilitating viral suppressors of RNA silencing stability against degradation by plant cells.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Qian Sun
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Tianyu Zhao
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Haiying Xiang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Xiaoyan Zhang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Zhanyu Wu
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Cuiji Zhou
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Xin Zhang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Ying Wang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Yongliang Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Xianbing Wang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Dawei Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Jialin Yu
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Savithramma P. Dinesh‐Kumar
- Department of Plant Biology and The Genome CenterCollege of Biological SciencesUniversity of California, DavisDavisCA95616USA
| | - Chenggui Han
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| |
Collapse
|
27
|
Rashid MO, Zhang XY, Wang Y, Li DW, Yu JL, Han CG. The Three Essential Motifs in P0 for Suppression of RNA Silencing Activity of Potato leafroll virus Are Required for Virus Systemic Infection. Viruses 2019; 11:E170. [PMID: 30791535 PMCID: PMC6410027 DOI: 10.3390/v11020170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 12/19/2022] Open
Abstract
Higher plants exploit posttranscriptional gene silencing as a defense mechanism against virus infection by the RNA degradation system. Plant RNA viruses suppress posttranscriptional gene silencing using their encoded proteins. Three important motifs (F-box-like motif, G139/W140/G141-like motif, and C-terminal conserved region) in P0 of Potato leafroll virus (PLRV) were reported to be essential for suppression of RNA silencing activity. In this study, Agrobacterium-mediated transient experiments were carried out to screen the available amino acid substitutions in the F-box-like motif and G139/W140/G141-like motif that abolished the RNA silencing suppression activity of P0, without disturbing the P1 amino acid sequence. Subsequently, four P0 defective mutants derived from a full-length cDNA clone of PLRV (L76F and W87R substitutions in the F-box-like motif, G139RRR substitution in the G139/W140/G141-like motif, and F220R substitution in the C-terminal conserved region) were successfully generated by reverse PCR and used to investigate the impact of these substitutions on PLRV infectivity. The RT-PCR and western blot analysis revealed that these defective mutants affected virus accumulation in inoculated leaves and systemic movement in Nicotiana benthamiana as well as in its natural hosts, potato and black nightshade. These results further demonstrate that the RNA silencing suppressor of PLRV is required for PLRV accumulation and systemic infection.
Collapse
Affiliation(s)
- Mamun-Or Rashid
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing 100193, China.
| | - Xiao-Yan Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing 100193, China.
| | - Ying Wang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing 100193, China.
| | - Da-Wei Li
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing 100193, China.
| | - Jia-Lin Yu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing 100193, China.
| | - Cheng-Gui Han
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management, MOA, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Ramasamy M, Mora V, Damaj MB, Padilla CS, Ramos N, Rossi D, Solís-Gracia N, Vargas-Bautista C, Irigoyen S, DaSilva JA, Mirkov TE, Mandadi KK. A biolistic-based genetic transformation system applicable to a broad-range of sugarcane and energycane varieties. GM CROPS & FOOD 2018; 9:211-227. [PMID: 30558472 DOI: 10.1080/21645698.2018.1553836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sugarcane and energycane (Saccharum spp. hybrids) are prominent sources of sugar, ethanol, as well as high-value bioproducts globally. Genetic analysis for trait improvement of sugarcane is greatly hindered by its complex genome, limited germplasm resources, long breeding cycle, as well as recalcitrance to genetic transformation. Here, we present a biolistic-based transformation and bioreactor-based micro-propagation system that has been utilized successfully to transform twelve elite cane genotypes, yielding transformation efficiencies of up to 39%. The system relies on the generation of embryogenic callus from sugarcane and energycane apical shoot tissue, followed by DNA bombardment of embryogenic leaf roll discs (approximately one week) or calli (approximately 4 weeks). We present optimal criteria and practices for selection and regeneration of independent transgenic lines, molecular characterization, as well as a bioreactor-based micro-propagation technique, which can aid in rapid multiplication and analysis of transgenic lines. The cane transformation and micro-propagation system described here, although built on our previous protocols, has significantly accelerated the process of producing and multiplying transgenic material, and it is applicable to other varieties. The system is highly reproducible and has been successfully used to engineer multiple commercial sugarcane and energycane varieties. It will benefit worldwide researchers interested in genomics and genetics of sugarcane photosynthesis, cell wall, and bioenergy related traits.
Collapse
Affiliation(s)
| | - Victoria Mora
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA
| | - Mona B Damaj
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA
| | - Carmen S Padilla
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA
| | - Ninfa Ramos
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA
| | - Denise Rossi
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA
| | - Nora Solís-Gracia
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA
| | | | - Sonia Irigoyen
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA
| | - Jorge A DaSilva
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA.,b Department of Soil & Crop Sciences , Texas A&M University , TX , USA
| | - T Erik Mirkov
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA.,c Department of Plant Pathology & Microbiology , Texas A&M University , TX , USA
| | - Kranthi K Mandadi
- a Texas A&M AgriLife Research & Extension Center , Weslaco , TX , USA.,c Department of Plant Pathology & Microbiology , Texas A&M University , TX , USA
| |
Collapse
|
29
|
Wang F, Zhao X, Dong Q, Zhou B, Gao Z. Characterization of an RNA silencing suppressor encoded by maize yellow dwarf virus-RMV2. Virus Genes 2018; 54:570-577. [PMID: 29752617 DOI: 10.1007/s11262-018-1565-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/27/2018] [Indexed: 12/19/2022]
Abstract
Maize yellow dwarf virus-RMV2 (MYDV-RMV2) causes dwarfing and yellowing symptoms on leaves in field-grown maize plants in Anhui province in China. Herein, we evaluated the RNA silencing suppressor (RSS) activity of the P0 protein from MYDV-RMV2 by co-infiltration assays using wild-type and GFP-transgenic Nicotiana benthamiana (line 16C). The P0 of MYDV-RMV2 exhibited RSS activity and inhibited RNA silencing both locally and systemically. MYDV-RMV2 P0 acts as an F-box-like motif, and mutations to Ala at positions 67, 68, and 81 in the F-box-like motif (67LPxx81P) abolished the RSS activity of P0. However, MYDV-RMV2 P0 failed to interact with AGO1 from Arabidopsis thaliana. Expressing P0 induced developmental defects. P0 was targeted to both the nuclei and cytoplasm of plant cells. These findings expand our knowledge of the role of polerovirus P0 proteins in RNA silencing.
Collapse
Affiliation(s)
- Fang Wang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Xia Zhao
- Cereal Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory of Maize Biology, Zhengzhou, 450002, Henan, China
| | - Qing Dong
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Benguo Zhou
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Zhengliang Gao
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| |
Collapse
|
30
|
Reis RS, Litholdo CG, Bally J, Roberts TH, Waterhouse PM. A conditional silencing suppression system for transient expression. Sci Rep 2018; 8:9426. [PMID: 29930292 PMCID: PMC6013485 DOI: 10.1038/s41598-018-27778-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/25/2018] [Indexed: 11/08/2022] Open
Abstract
RNA silencing is a powerful tool deployed by plants against viral infection and abnormal gene expression. Plant viruses have evolved a suite of silencing suppressors for counter-defense, which are also widely used to boost transcript and protein accumulation in transient assays. However, only wild type silencing suppressor proteins have been reported to date. Here we demonstrate that P0 of Potato leafroll virus (PLRV), PLP0, can be split into two proteins that only show silencing suppression activity upon co-expression. We cloned each of these proteins in two different constructs and transiently co-infiltrated them in N. benthamiana leaves. We expressed a fluorescent protein from one of the vectors and observed that cells expressing both halves of PLP0 suppressed gene silencing. Further, we showed that Q system of Neurospora crassa, based on co-expression of a transcription activator and inhibitor, is functional in agroinfiltrated leaves of N. benthamiana. Q system combined with the split PLP0 system showed very tight co-expression of Q system's transcriptional activator and inhibitor. Altogether, our experiments demonstrate a functioning conditional silencing suppressor system and its potential as a powerful tool for transient expression in N. benthamiana leaves, as well as the application of the Q system in plants.
Collapse
Affiliation(s)
- Rodrigo Siqueira Reis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, 1015, Switzerland.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Celso G Litholdo
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Citrus Biotechnology Lab, Centro de Citricultura, Instituto Agronômico de Campinas, Cordeirópolis, SP, 13490-000, Brazil
| | - Julia Bally
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Thomas H Roberts
- Plant Breeding Institute, Sydney Institute of Agriculture, University of Sydney, Sydney, NSW, 2006, Australia
| | - Peter M Waterhouse
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
31
|
Sun Q, Li YY, Wang Y, Zhao HH, Zhao TY, Zhang ZY, Li DW, Yu JL, Wang XB, Zhang YL, Han CG. Brassica yellows virus P0 protein impairs the antiviral activity of NbRAF2 in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3127-3139. [PMID: 29659986 PMCID: PMC5972614 DOI: 10.1093/jxb/ery131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/24/2018] [Indexed: 05/29/2023]
Abstract
In interactions between poleroviruses and their hosts, few cellular proteins have been identified that directly interact with the multifunctional virus P0 protein. To help explore the functions of P0, we identified a Brassica yellows virus genotype A (BrYV-A) P0BrA-interacting protein from Nicotiana benthamiana, Rubisco assembly factor 2 (NbRAF2), which localizes in the nucleus, cell periphery, chloroplasts, and stromules. We found that its C-terminal domain (amino acids 183-211) is required for self-interaction. A split ubiquitin membrane-bound yeast two-hybrid system and co-immunoprecipitation assays showed that NbRAF2 interacted with P0BrA, and co-localized in the nucleus and at the cell periphery. Interestingly, the nuclear pool of NbRAF2 decreased in the presence of P0BrA and during BrYV-A infection, and the P0BrA-mediated reduction of nuclear NbRAF2 required dual localization of NbRAF2 in the chloroplasts and nucleus. Tobacco rattle virus-based virus-induced gene silencing of NbRAF2 promoted BrYV-A infection in N. benthamiana, and the overexpression of nuclear NbRAF2 inhibited BrYV-A accumulation. Potato leafroll virus P0PL also interacted with NbRAF2 and decreased its nuclear accumulation, indicating that NbRAF2 may be a common target of poleroviruses. These results suggest that nuclear NbRAF2 possesses antiviral activity against BrYV-A infection, and that BrYV-A P0BrA interacts with NbRAF2 and alters its localization pattern to facilitate virus infection.
Collapse
Affiliation(s)
- Qian Sun
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Yuan-Yuan Li
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Ying Wang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Hang-Hai Zhao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Tian-Yu Zhao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Zong-Ying Zhang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Da-Wei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Jia-Lin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Yong-Liang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Cheng-Gui Han
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
32
|
Khalil F, Yueyu X, Naiyan X, Di L, Tayyab M, Hengbo W, Islam W, Rauf S, Pinghua C. Genome characterization of Sugarcane Yellow Leaf Virus with special reference to RNAi based molecular breeding. Microb Pathog 2018; 120:187-197. [PMID: 29730517 DOI: 10.1016/j.micpath.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/28/2022]
Abstract
Sugarcane is an essential crop for sugar and biofuel. Globally, its production is severely affected by sugarcane yellow leaf disease (SCYLD) caused by Sugarcane Yellow Leaf Virus (SCYLV). Many aphid vectors are involved in the spread of the disease which reduced the effectiveness of cultural and chemical management. Empirical methods of plant breeding such as introgression from wild and cultivated germplasm were not possible or at least challenging due to the absence of resistance in cultivated and wild germplasm of sugarcane. RNA interference (RNAi) transformation is an effective method to create virus-resistant varieties. Nevertheless, limited progress has been made due to lack of comprehensive research program on SCYLV based on RNAi technique. In order to show improvement and to propose future strategies for the feasibility of the RNAi technique to cope SCYLV, genome-wide consensus sequences of SCYLV were analyzed through GenBank. The coverage rates of every consensus sequence in SCYLV isolates were calculated to evaluate their practicability. Our analysis showed that single consensus sequence from SCYLV could not work well for RNAi based sugarcane breeding programs. This may be due to high mutation rate and continuous recombination within and between various viral strains. Alternative multi-target RNAi strategy is suggested to combat several strains of the viruses and to reduce the silencing escape. The multi-target small interfering RNA (siRNA) can be used together to construct RNAi plant expression plasmid, and to transform sugarcane tissues to develop new sugarcane varieties resistant to SCYLV.
Collapse
Affiliation(s)
- Farghama Khalil
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xu Yueyu
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao Naiyan
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liu Di
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Muhammad Tayyab
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wang Hengbo
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Waqar Islam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Govt. of Punjab, Agriculture Department, Lahore, Pakistan; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Saeed Rauf
- University College of Agriculture, University of Sargodha, Pakistan
| | - Chen Pinghua
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; GMOs LAB of Quality Supervision Inspection &Testing Center for Sugarcane and Derived Products, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
33
|
|
34
|
Chiong KT, Damaj MB, Padilla CS, Avila CA, Pant SR, Mandadi KK, Ramos NR, Carvalho DV, Mirkov TE. Reproducible genomic DNA preparation from diverse crop species for molecular genetic applications. PLANT METHODS 2017; 13:106. [PMID: 29213298 PMCID: PMC5712126 DOI: 10.1186/s13007-017-0255-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/20/2017] [Indexed: 06/02/2023]
Abstract
BACKGROUND Several high-throughput molecular genetic analyses rely on high-quality genomic DNA. Copurification of other molecules can negatively impact the functionality of plant DNA preparations employed in these procedures. Isolating DNA from agronomically important crops, such as sugarcane, rice, citrus, potato and tomato is a challenge due to the presence of high fiber, polysaccharides, or secondary metabolites. We present a simplified, rapid and reproducible SDS-based method that provides high-quality and -quantity of DNA from small amounts of leaf tissue, as required by the emerging biotechnology and molecular genetic applications. RESULTS We developed the TENS-CO method as a simplified SDS-based isolation procedure with sequential steps of purification to remove polysaccharides and polyphenols using 2-mercaptoethanol and potassium acetate, chloroform partitioning, and sodium acetate/ethanol precipitation to yield high-quantity and -quality DNA consistently from small amounts of tissue (0.15 g) for different plant species. The method is simplified and rapid in terms of requiring minimal manipulation, smaller extraction volume, reduced homogenization time (20 s) and DNA precipitation (one precipitation for 1 h). The method has been demonstrated to accelerate screening of large amounts of plant tissues from species that are rich in polysaccharides and secondary metabolites for Southern blot analysis of reporter gene overexpressing lines, pathogen detection by quantitative PCR, and genotyping of disease-resistant plants using marker-assisted selection. CONCLUSION To facilitate molecular genetic studies in major agronomical crops, we have developed the TENS-CO method as a simple, rapid, reproducible and scalable protocol enabling efficient and robust isolation of high-quality and -quantity DNA from small amounts of tissue from sugarcane, rice, citrus, potato, and tomato, thereby reducing significantly the time and resources used for DNA isolation.
Collapse
Affiliation(s)
- Kelvin T. Chiong
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX 78596 USA
- Present Address: Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843 USA
| | - Mona B. Damaj
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX 78596 USA
| | - Carmen S. Padilla
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX 78596 USA
| | - Carlos A. Avila
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX 78596 USA
- Department of Horticultural Sciences, Texas A&M University, 2133 TAMU, College Station, TX 77843 USA
| | - Shankar R. Pant
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX 78596 USA
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX 78596 USA
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843 USA
| | - Ninfa R. Ramos
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX 78596 USA
| | - Denise V. Carvalho
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX 78596 USA
- Present Address: FuturaGene Ltd, Av. Dr. José Lembo, #1010 Bairro, Jardim Bela Vista, Itapetininga, São Paulo Brazil
| | - T. Erik Mirkov
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX 78596 USA
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843 USA
| |
Collapse
|
35
|
Thekke-Veetil T, McCoppin NK, Domier LL. Strain-specific association of soybean dwarf virus small subgenomic RNA with virus particles. Virus Res 2017; 242:100-105. [PMID: 28893654 DOI: 10.1016/j.virusres.2017.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
Soybean dwarf virus (SbDV) produces a large subgenomic RNA (LsgRNA) for expression of structural and movement proteins and a small subgenomic RNA (SsgRNA) that does not contain an open reading frame. Sucrose gradient-purified SbDV virions from soybean plants systemically infected with SbDV by aphids and Nicotiana benthamiana leaves agroinfiltrated with infectious clones of two red clover SbDV isolates encapsidated genomic RNA and were associated with SsgRNA in a strain-specific manner. The LsgRNA was protected from RNase degradation, but not packaged into virions as indicated by its presence primarily in ELISA-negative fractions near the tops of sucrose gradients even in mutants that did not express coat protein. Nucleotide differences in the SsgRNA region between isolates conferred differential association of SsgRNA with virions.
Collapse
Affiliation(s)
| | - Nancy K McCoppin
- United State Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
| | - Leslie L Domier
- United State Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA.
| |
Collapse
|
36
|
Fusaro AF, Barton DA, Nakasugi K, Jackson C, Kalischuk ML, Kawchuk LM, Vaslin MFS, Correa RL, Waterhouse PM. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing. Viruses 2017; 9:v9100294. [PMID: 28994713 PMCID: PMC5691645 DOI: 10.3390/v9100294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/16/2022] Open
Abstract
The plant viral family Luteoviridae is divided into three genera: Luteovirus, Polerovirus and Enamovirus. Without assistance from another virus, members of the family are confined to the cells of the host plant's vascular system. The first open reading frame (ORF) of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs) against the plant's viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV), however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant's silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant's anti-viral defense.
Collapse
Affiliation(s)
- Adriana F Fusaro
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- Plant Industry Division, CSIRO, P.O. Box 1600, Canberra, ACT 2601, Australia.
- Department of Virology (M.F.S.V.), Department of Genetics (R.L.C.) and Institute of Medical Biochemistry (A.F.F.), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil.
| | - Deborah A Barton
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Kenlee Nakasugi
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Craig Jackson
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Melanie L Kalischuk
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA.
| | - Lawrence M Kawchuk
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- Department of Agriculture and Agri-Food Canada, Lethbridge, AB T1J4B1, Canada.
| | - Maite F S Vaslin
- Department of Virology (M.F.S.V.), Department of Genetics (R.L.C.) and Institute of Medical Biochemistry (A.F.F.), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil.
| | - Regis L Correa
- Plant Industry Division, CSIRO, P.O. Box 1600, Canberra, ACT 2601, Australia.
- Department of Virology (M.F.S.V.), Department of Genetics (R.L.C.) and Institute of Medical Biochemistry (A.F.F.), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil.
| | - Peter M Waterhouse
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- Plant Industry Division, CSIRO, P.O. Box 1600, Canberra, ACT 2601, Australia.
- School of Earth, Environmental and Biological sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|
37
|
Gao SJ, Damaj MB, Park JW, Wu XB, Sun SR, Chen RK, Mirkov TE. A novel Sugarcane bacilliform virus promoter confers gene expression preferentially in the vascular bundle and storage parenchyma of the sugarcane culm. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:172. [PMID: 28680479 PMCID: PMC5496340 DOI: 10.1186/s13068-017-0850-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Saccharum species such as sugarcane and energy cane are key players in the expanding bioeconomy for sugars, bioenergy, and production of high-value proteins. Genomic tools such as culm-regulated promoters would be of great value in terms of improving biomass characteristics through enhanced carbon metabolism for sugar accumulation and/or fiber content for biofuel feedstock. Unlike the situation in dicots, monocot promoters currently used are limited and mostly derived from highly expressed constitutive plant genes and viruses. In this study, a novel promoter region of Sugarcane bacilliform virus (SCBV; genus Badnavirus, family Caulimoviridae), SCBV21 was cloned and mapped by deletion analysis and functionally characterized transiently in monocot and dicot species and stably in sugarcane. RESULTS In silico analysis of SCBV21 [1816 base pair (bp)] identified two putative promoter regions (PPR1 and PPR2) with transcription start sites (TSS1 and TSS2) and two TATA-boxes (TATAAAT and ATATAA), and several vascular-specific and regulatory elements. Deletion analysis revealed that the 710 bp region spanning PPR2 (with TSS2 and ATATAA) at the 3' end of SCBV21 retained the full promoter activity in both dicots and monocots, as shown by transient expression of the enhanced yellow fluorescent protein (EYFP) gene. In sugarcane young leaf segments, SCBV21 directed a 1.8- and 2.4-fold higher transient EYFP expression than the common maize ubiquitin 1 (Ubi1) and Cauliflower mosaic virus 35S promoters, respectively. In transgenic sugarcane, SCBV21 conferred a preferential expression of the β-glucuronidase (GUS) gene in leaves and culms and specifically in the culm storage parenchyma surrounding the vascular bundle and in vascular phloem cells. Among the transgenic events and tissues characterized in this study, the SCBV21 promoter frequently produced higher GUS activity than the Ubi1 or 35S promoters in a manner that was not obviously correlated with the transgene copy number. CONCLUSIONS The newly developed plant viral SCBV21 promoter is distinct from the few existing SCBV promoters in its sequence and expression pattern. The potential of SCBV21 as a tissue-regulated promoter with a strong activity in the culm vascular bundle and its storage parenchyma makes it useful in sugarcane engineering for improved carbon metabolism, increased bioenergy production, and enhanced stress tolerance.
Collapse
Affiliation(s)
- San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | | | | | - Xiao-Bin Wu
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316 Guangdong China
| | - Sheng-Ren Sun
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Ru-Kai Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | | |
Collapse
|
38
|
Hedil M, Kormelink R. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins. Viruses 2016; 8:v8070208. [PMID: 27455310 PMCID: PMC4974542 DOI: 10.3390/v8070208] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far.
Collapse
Affiliation(s)
- Marcio Hedil
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, 6708PB, The Netherlands.
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, 6708PB, The Netherlands.
| |
Collapse
|
39
|
Chen S, Jiang G, Wu J, Liu Y, Qian Y, Zhou X. Characterization of a Novel Polerovirus Infecting Maize in China. Viruses 2016; 8:E120. [PMID: 27136578 PMCID: PMC4885075 DOI: 10.3390/v8050120] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022] Open
Abstract
A novel virus, tentatively named Maize Yellow Mosaic Virus (MaYMV), was identified from the field-grown maize plants showing yellow mosaic symptoms on the leaves collected from the Yunnan Province of China by the deep sequencing of small RNAs. The complete 5642 nucleotide (nt)-long genome of the MaYMV shared the highest nucleotide sequence identity (73%) to Maize Yellow Dwarf Virus-RMV. Sequence comparisons and phylogenetic analyses suggested that MaYMV represents a new member of the genus Polerovirus in the family Luteoviridae. Furthermore, the P0 protein encoded by MaYMV was demonstrated to inhibit both local and systemic RNA silencing by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene, which further supported the identification of a new polerovirus. The biologically-active cDNA clone of MaYMV was generated by inserting the full-length cDNA of MaYMV into the binary vector pCB301. RT-PCR and Northern blot analyses showed that this clone was systemically infectious upon agro-inoculation into N. benthamiana. Subsequently, 13 different isolates of MaYMV from field-grown maize plants in different geographical locations of Yunnan and Guizhou provinces of China were sequenced. Analyses of their molecular variation indicate that the 3' half of P3-P5 read-through protein coding region was the most variable, whereas the coat protein- (CP-) and movement protein- (MP-)coding regions were the most conserved.
Collapse
Affiliation(s)
- Sha Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Guangzhuang Jiang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jianxiang Wu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yong Liu
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China.
| | - Yajuan Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xueping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
40
|
Choi SK, Yoon JY, Choi GS. Biological and Molecular Characterization of a Korean Isolate of Cucurbit aphid-borne yellows virus Infecting Cucumis Species in Korea. THE PLANT PATHOLOGY JOURNAL 2015; 31:371-8. [PMID: 26673519 PMCID: PMC4677746 DOI: 10.5423/ppj.oa.06.2015.0103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/16/2015] [Accepted: 08/04/2015] [Indexed: 06/05/2023]
Abstract
Surveys of yellowing viruses in plastic tunnels and in open field crops of melon (Cucumis melo cultivar catalupo), oriental melon (C. melo cultivar oriental melon), and cucumber (C. sativus) were carried out in two melon-growing areas in 2014, Korea. Severe yellowing symptoms on older leaves of melon and chlorotic spots on younger leaves of melon were observed in the plastic tunnels. The symptoms were widespread and included initial chlorotic lesions followed by yellowing of whole leaves and thickening of older leaves. RT-PCR analysis using total RNA extracted from diseased leaves did not show any synthesized products for four cucurbit-infecting viruses; Beet pseudo-yellows virus, Cucumber mosaic virus, Cucurbit yellows stunting disorder virus, and Melon necrotic spot virus. Virus identification using RT-PCR showed Cucurbit aphid-borne yellows Virus (CABYV) was largely distributed in melon, oriental melon and cucumber. This result was verified by aphid (Aphis gossypii) transmission of CABYV. The complete coat protein (CP) gene amplified from melon was cloned and sequenced. The CP gene nucleotide and the deduced amino acid sequence comparisons as well as phylogenetic tree analysis of CABYV CPs showed that the CABYV isolates were undivided into subgroups. Although the low incidence of CABYV in infections to cucurbit crops in this survey, CABYV may become an important treat for cucurbit crops in many different regions in Korea, suggesting that CABYV should be taken into account in disease control of cucurbit crops in Korea.
Collapse
Affiliation(s)
| | | | - Gug-Seoun Choi
- Virology Unit, Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju 565-852,
Korea
| |
Collapse
|
41
|
Cascardo RS, Arantes ILG, Silva TF, Sachetto-Martins G, Vaslin MFS, Corrêa RL. Function and diversity of P0 proteins among cotton leafroll dwarf virus isolates. Virol J 2015; 12:123. [PMID: 26260343 PMCID: PMC4531488 DOI: 10.1186/s12985-015-0356-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/04/2015] [Indexed: 11/23/2022] Open
Abstract
Background The RNA silencing pathway is an important anti-viral defense mechanism in plants. As a counter defense, some members of the viral family Luteoviridae are able to evade host immunity by encoding the P0 RNA silencing suppressor protein. Here we explored the functional diversity of P0 proteins among eight cotton leafroll dwarf virus (CLRDV) isolates, a virus associated with a worldwide cotton disease known as cotton blue disease (CBD). Methods CLRDV-infected cotton plants of different varieties were collected from five growing fields in Brazil and their P0 sequences compared to three previously obtained isolates. P0’s silencing suppression activities were scored based on transient expression experiments in Nicotiana benthamiana leaves. Results High sequence diversity was observed among CLRDV P0 proteins, indicating that some isolates found in cotton varieties formerly resistant to CLRDV should be regarded as new genotypes within the species. All tested proteins were able to suppress local and systemic silencing, but with significantly variable degrees. All P0 proteins were able to mediate the decay of ARGONAUTE proteins, a key component of the RNA silencing machinery. Conclusions The sequence diversity observed in CLRDV P0s is also reflected in their silencing suppression capabilities. However, the strength of local and systemic silencing suppression was not correlated for some proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0356-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Renan S Cascardo
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Ighor L G Arantes
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Tatiane F Silva
- Department of Virology, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil. .,Present address: Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, São Paulo, Brazil.
| | - Gilberto Sachetto-Martins
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Maité F S Vaslin
- Department of Virology, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Régis L Corrêa
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
42
|
Csorba T, Kontra L, Burgyán J. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015; 479-480:85-103. [DOI: 10.1016/j.virol.2015.02.028] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/31/2015] [Accepted: 02/16/2015] [Indexed: 12/27/2022]
|
43
|
da Silva AKF, Romanel E, Silva TDF, Castilhos Y, Schrago CG, Galbieri R, Bélot JL, Vaslin MFS. Complete genome sequences of two new virus isolates associated with cotton blue disease resistance breaking in Brazil. Arch Virol 2015; 160:1371-4. [PMID: 25772571 DOI: 10.1007/s00705-015-2380-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/21/2015] [Indexed: 11/26/2022]
Abstract
Since 2006, Brazilian cotton (Gossypium hirsutum) crops planted with cultivars that are resistant to cotton blue disease have developed a new disease termed "atypical" cotton blue disease or atypical vein mosaic disease. Here, we describe the complete genomes of two virus isolates associated with this disease. The new virus isolates, called CLRDV-Acr3 and CLRDV-IMA2, were found to have a high degree of nucleotide and amino acid sequence similarity to previously described isolates of cotton leafroll dwarf virus, the causal agent of cotton blue disease. However, their P0 proteins were 86.1 % identical. These results show that this new disease is caused by a new CLRDV genotype that seems to have acquired the ability to overcome cotton blue disease resistance.
Collapse
Affiliation(s)
- Anna Karoline Fausto da Silva
- Depto. Virologia, Lab. Virologia Molecular Vegetal, IMPPG, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Pérez-Cañamás M, Hernández C. Key importance of small RNA binding for the activity of a glycine-tryptophan (GW) motif-containing viral suppressor of RNA silencing. J Biol Chem 2014; 290:3106-20. [PMID: 25505185 DOI: 10.1074/jbc.m114.593707] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses express viral suppressors of RNA silencing (VSRs) to counteract RNA silencing-based host defenses. Although virtually all stages of the antiviral silencing pathway can be inhibited by VSRs, small RNAs (sRNAs) and Argonaute (AGO) proteins seem to be the most frequent targets. Recently, GW/WG motifs of some VSRs have been proposed to dictate their suppressor function by mediating interaction with AGO(s). Here we have studied the VSR encoded by Pelargonium line pattern virus (family Tombusviridae). The results show that p37, the viral coat protein, blocks RNA silencing. Site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed generation of suppressor-competent and -incompetent molecules and uncoupling of the VSR and particle assembly capacities. The engineered mutants were used to assess the importance of p37 functions for viral infection and the relative contribution of diverse molecular interactions to suppressor activity. Two main conclusions can be drawn: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic Pelargonium line pattern virus infection, and (ii) the suppressor activity of p37 relies on the ability to bind sRNAs rather than on interaction with AGOs. The data also caution against potential misinterpretations of results due to overlap of sequence signals related to distinct protein properties. This is well illustrated by mutation of the GW motif in p37 that concurrently affects nucleolar localization, efficient interaction with AGO1, and sRNA binding capability. These concomitant effects could have been overlooked in other GW motif-containing suppressors, as we exemplify with the orthologous p38 of turnip crinkle virus.
Collapse
Affiliation(s)
- Miryam Pérez-Cañamás
- From the Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Carmen Hernández
- From the Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
45
|
Zhuo T, Li YY, Xiang HY, Wu ZY, Wang XB, Wang Y, Zhang YL, Li DW, Yu JL, Han CG. Amino acid sequence motifs essential for P0-mediated suppression of RNA silencing in an isolate of potato leafroll virus from Inner Mongolia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:515-27. [PMID: 24450775 DOI: 10.1094/mpmi-08-13-0231-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Polerovirus P0 suppressors of host gene silencing contain a consensus F-box-like motif with Leu/Pro (L/P) requirements for suppressor activity. The Inner Mongolian Potato leafroll virus (PLRV) P0 protein (P0(PL-IM)) has an unusual F-box-like motif that contains a Trp/Gly (W/G) sequence and an additional GW/WG-like motif (G139/W140/G141) that is lacking in other P0 proteins. We used Agrobacterium infiltration-mediated RNA silencing assays to establish that P0(PL-IM) has a strong suppressor activity. Mutagenesis experiments demonstrated that the P0(PL-IM) F-box-like motif encompasses amino acids 76-LPRHLHYECLEWGLLCG THP-95, and that the suppressor activity is abolished by L76A, W87A, or G88A substitution. The suppressor activity is also weakened substantially by mutations within the G139/W140/G141 region and is eliminated by a mutation (F220R) in a C-terminal conserved sequence of P0(PL-IM). As has been observed with other P0 proteins, P0(PL-IM) suppression is correlated with reduced accumulation of the host AGO1-silencing complex protein. However, P0(PL-IM) fails to bind SKP1, which functions in a proteasome pathway that may be involved in AGO1 degradation. These results suggest that P0(PL-IM) may suppress RNA silencing by using an alternative pathway to target AGO1 for degradation. Our results help improve our understanding of the molecular mechanisms involved in PLRV infection.
Collapse
|
46
|
Delfosse VC, Agrofoglio YC, Casse MF, Kresic IB, Hopp HE, Ziegler-Graff V, Distéfano AJ. The P0 protein encoded by cotton leafroll dwarf virus (CLRDV) inhibits local but not systemic RNA silencing. Virus Res 2014; 180:70-5. [PMID: 24370867 DOI: 10.1016/j.virusres.2013.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/08/2013] [Accepted: 12/13/2013] [Indexed: 11/28/2022]
Abstract
Plants employ RNA silencing as a natural defense mechanism against viruses. As a counter-defense, viruses encode silencing suppressor proteins (SSPs) that suppress RNA silencing. Most, but not all, the P0 proteins encoded by poleroviruses have been identified as SSP. In this study, we demonstrated that cotton leafroll dwarf virus (CLRDV, genus Polerovirus) P0 protein suppressed local silencing that was induced by sense or inverted repeat transgenes in Agrobacterium co-infiltration assay in Nicotiana benthamiana plants. A CLRDV full-length infectious cDNA clone that is able to infect N. benthamiana through Agrobacterium-mediated inoculation also inhibited local silencing in co-infiltration assays, suggesting that the P0 protein exhibits similar RNA silencing suppression activity when expressed from the full-length viral genome. On the other hand, the P0 protein did not efficiently inhibit the spread of systemic silencing signals. Moreover, Northern blotting indicated that the P0 protein inhibits the generation of secondary but not primary small interfering RNAs. The study of CLRDV P0 suppression activity may contribute to understanding the molecular mechanisms involved in the induction of cotton blue disease by CLRDV infection.
Collapse
Affiliation(s)
| | | | | | | | - H Esteban Hopp
- Instituto de Biotecnología, CICVyA, CNIA, INTA, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina.
| | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS conventionné avec l'Université de Strasbourg, Strasbourg, France.
| | - Ana J Distéfano
- Instituto de Biotecnología, CICVyA, CNIA, INTA, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina.
| |
Collapse
|
47
|
Lin YH, Gao SJ, Damaj MB, Fu HY, Chen RK, Mirkov TE. Genome characterization of sugarcane yellow leaf virus from China reveals a novel recombinant genotype. Arch Virol 2014; 159:1421-9. [DOI: 10.1007/s00705-013-1957-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/18/2013] [Indexed: 10/25/2022]
|
48
|
Dombrovsky A, Glanz E, Lachman O, Sela N, Doron-Faigenboim A, Antignus Y. The complete genomic sequence of pepper yellow leaf curl virus (PYLCV) and its implications for our understanding of evolution dynamics in the genus polerovirus. PLoS One 2013; 8:e70722. [PMID: 23936244 PMCID: PMC3728342 DOI: 10.1371/journal.pone.0070722] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 06/23/2013] [Indexed: 11/18/2022] Open
Abstract
We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range.
Collapse
Affiliation(s)
- Aviv Dombrovsky
- Department of Plant Pathology, ARO, the Volcani Center, Bet Dagan, Israel.
| | | | | | | | | | | |
Collapse
|
49
|
Krueger EN, Beckett RJ, Gray SM, Miller WA. The complete nucleotide sequence of the genome of Barley yellow dwarf virus-RMV reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses. Front Microbiol 2013; 4:205. [PMID: 23888156 PMCID: PMC3719023 DOI: 10.3389/fmicb.2013.00205] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/01/2013] [Indexed: 11/13/2022] Open
Abstract
The yellow dwarf viruses (YDVs) of the Luteoviridae family represent the most widespread group of cereal viruses worldwide. They include the Barley yellow dwarf viruses (BYDVs) of genus Luteovirus, the Cereal yellow dwarf viruses (CYDVs) and Wheat yellow dwarf virus (WYDV) of genus Polerovirus. All of these viruses are obligately aphid transmitted and phloem-limited. The first described YDVs (initially all called BYDV) were classified by their most efficient vector. One of these viruses, BYDV-RMV, is transmitted most efficiently by the corn leaf aphid, Rhopalosiphum maidis. Here we report the complete 5612 nucleotide sequence of the genomic RNA of a Montana isolate of BYDV-RMV (isolate RMV MTFE87, Genbank accession no. KC921392). The sequence revealed that BYDV-RMV is a polerovirus, but it is quite distantly related to the CYDVs or WYDV, which are very closely related to each other. Nor is BYDV-RMV closely related to any other particular polerovirus. Depending on the gene that is compared, different poleroviruses (none of them a YDV) share the most sequence similarity to BYDV-RMV. Because of its distant relationship to other YDVs, and because it commonly infects maize via its vector, R. maidis, we propose that BYDV-RMV be renamed Maize yellow dwarf virus-RMV (MYDV-RMV).
Collapse
Affiliation(s)
| | - Randy J. Beckett
- Plant Pathology and Microbiology Department, Iowa State UniversityAmes, IA, USA
| | - Stewart M. Gray
- USDA/ARS and Plant Pathology Department, Cornell UniversityIthaca, NY, USA
| | - W. Allen Miller
- Plant Pathology and Microbiology Department, Iowa State UniversityAmes, IA, USA
| |
Collapse
|
50
|
Delfosse VC, Casse MF, Agrofoglio YC, Kresic IB, Hopp HE, Ziegler-Graff V, Distéfano AJ. Agroinoculation of a full-length cDNA clone of cotton leafroll dwarf virus (CLRDV) results in systemic infection in cotton and the model plant Nicotiana benthamiana. Virus Res 2013; 175:64-70. [PMID: 23623981 DOI: 10.1016/j.virusres.2013.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/11/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
Abstract
Cotton blue disease is the most important viral disease of cotton in the southern part of South America. Its etiological agent, cotton leafroll dwarf virus (CLRDV), is specifically transmitted to host plants by the aphid vector (Aphis gossypii) and any attempt to perform mechanical inoculations of this virus into its host has failed. This limitation has held back the study of this virus and the disease it causes. In this study, a full-length cDNA of CLRDV was constructed and expressed in vivo under the control of cauliflower mosaic virus 35S promoter. An agrobacterium-mediated inoculation system for the cloned cDNA construct of CLRDV was developed. Northern and immunoblot analyses showed that after several weeks the replicon of CLRDV delivered by Agrobacterium tumefaciens in Gossypium hirsutum plants gave rise to a systemic infection and typical blue disease symptoms correlated to the presence of viral RNA and P3 capsid protein. We also demonstrated that the virus that accumulated in the agroinfected plants was transmissible by the vector A. gossypii. This result confirms the production of biologically active transmissible virions. In addition, the clone was infectious in Nicotiana benthamiana plants which developed interveinal chlorosis three weeks postinoculation and CLRDV was detected both in the inoculated and systemic leaves. Attempts to agroinfect Arabidopsis thaliana plants were irregularly successful. Although no symptoms were observed, the P3 capsid protein as well as the genomic and subgenomic RNAs were irregularly detected in systemic leaves of some agroinfiltrated plants. The inefficient infection rate infers that A. thaliana is a poor host for CLRDV. This is the first report on the construction of a biologically-active infectious full-length clone of a cotton RNA virus showing successful agroinfection of host and non-host plants. The system herein developed will be useful to study CLRDV viral functions and plant-virus interactions using a reverse genetic approach.
Collapse
|