1
|
Sureshan M, Prabhu D, Joshua SN, Sasikumar SV, Rajamanikandan S, Govindhapriya M, Umadevi V, Kadhirvel S. Discovery of plant-based phytochemical as effective antivirals that target the non-structural protein C of the Nipah virus through computational methods. J Biomol Struct Dyn 2024; 42:3568-3578. [PMID: 37222609 DOI: 10.1080/07391102.2023.2214236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
Nipah Virus (NiV) belongs to the Paramyxoviridae family and was first identified during an outbreak in Malaysia. Some initial symptoms include mild fever, headache and sore throat, which could escalate to respiratory illness and brain inflammation. The mortality rate of NiV infection can range from 40% to 75%, which is quite high. This is mainly due to the lack of efficient drugs and vaccines. In most instances, NiV is transmitted from animals to humans. Non-Structural Proteins (C, V and W) of the Nipah virus impede the host immune response by obstructive the JAK/STAT pathway. However, Non-Structural Proteins - C (NSP-C) plays a vital role in NiV pathogenesis, which includes IFN antagonist activity and viral RNA production. In the present study, the full-length structure of NiV-NSP-C was predicted using computational modelling, and the stability of the structure was analysed using 200 ns molecular dynamic (MD) simulation. Further, the structure-based virtual screening identified five potent phytochemicals (PubChem CID: 9896047, 5885, 117678, 14887603 and 5461026) with better binding affinity against NiV-NSP-C. DFT studies clearly showed that the phytochemicals had higher chemical reactivity, and the complex MD simulation depicted that the identified inhibitors exhibited stable binding with NiV-NSP-C. Furthermore, experimental validation of these identified phytochemicals would likely control the infection of NiV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muthusamy Sureshan
- Biomolecular Crystallography Lab, Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Dhamodharan Prabhu
- Centre for Drug Discovery; Department of Biotechnology; Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India
| | - Sharon Nissi Joshua
- Biomolecular Crystallography Lab, Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Shruti Vardhini Sasikumar
- Biomolecular Crystallography Lab, Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Sundarraj Rajamanikandan
- Centre for Drug Discovery; Department of Biotechnology; Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India
| | | | - Venkatachalam Umadevi
- Faculty of Physics, Dr. Mahalingam College of Engineering and Technology, Pollachi, India
| | - Saraboji Kadhirvel
- Department of Computational Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
2
|
Type I and Type II Interferon Antagonism Strategies Used by Paramyxoviridae: Previous and New Discoveries, in Comparison. Viruses 2022; 14:v14051107. [PMID: 35632848 PMCID: PMC9145045 DOI: 10.3390/v14051107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Paramyxoviridae is a viral family within the order of Mononegavirales; they are negative single-strand RNA viruses that can cause significant diseases in both humans and animals. In order to replicate, paramyxoviruses–as any other viruses–have to bypass an important protective mechanism developed by the host’s cells: the defensive line driven by interferon. Once the viruses are recognized, the cells start the production of type I and type III interferons, which leads to the activation of hundreds of genes, many of which encode proteins with the specific function to reduce viral replication. Type II interferon is produced by active immune cells through a different signaling pathway, and activates a diverse range of genes with the same objective to block viral replication. As a result of this selective pressure, viruses have evolved different strategies to avoid the defensive function of interferons. The strategies employed by the different viral species to fight the interferon system include a number of sophisticated mechanisms. Here we analyzed the current status of the various strategies used by paramyxoviruses to subvert type I, II, and III interferon responses.
Collapse
|
3
|
Siering O, Cattaneo R, Pfaller CK. C Proteins: Controllers of Orderly Paramyxovirus Replication and of the Innate Immune Response. Viruses 2022; 14:v14010137. [PMID: 35062341 PMCID: PMC8778822 DOI: 10.3390/v14010137] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 01/07/2023] Open
Abstract
Particles of many paramyxoviruses include small amounts of proteins with a molecular weight of about 20 kDa. These proteins, termed “C”, are basic, have low amino acid homology and some secondary structure conservation. C proteins are encoded in alternative reading frames of the phosphoprotein gene. Some viruses express nested sets of C proteins that exert their functions in different locations: In the nucleus, they interfere with cellular transcription factors that elicit innate immune responses; in the cytoplasm, they associate with viral ribonucleocapsids and control polymerase processivity and orderly replication, thereby minimizing the activation of innate immunity. In addition, certain C proteins can directly bind to, and interfere with the function of, several cytoplasmic proteins required for interferon induction, interferon signaling and inflammation. Some C proteins are also required for efficient virus particle assembly and budding. C-deficient viruses can be grown in certain transformed cell lines but are not pathogenic in natural hosts. C proteins affect the same host functions as other phosphoprotein gene-encoded proteins named V but use different strategies for this purpose. Multiple independent systems to counteract host defenses may ensure efficient immune evasion and facilitate virus adaptation to new hosts and tissue environments.
Collapse
Affiliation(s)
- Oliver Siering
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, 63225 Langen, Germany;
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55906, USA
- Correspondence: (R.C.); (C.K.P.)
| | - Christian K. Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, 63225 Langen, Germany;
- Correspondence: (R.C.); (C.K.P.)
| |
Collapse
|
4
|
Linjie L, Xiaoling S, Xiaoxia M, Xin C, Ali A, Jialin B. Peste des petits ruminants virus non-structural C protein inhibits the induction of interferon-β by potentially interacting with MAVS and RIG-I. Virus Genes 2021; 57:60-71. [PMID: 33389635 PMCID: PMC7870622 DOI: 10.1007/s11262-020-01811-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Peste des petits ruminants virus (PPRV) causes an acute and highly contagious disease in domestic and wild small ruminants throughout the world, mainly by invoking immunosuppression in its natural hosts. It has been suggested that the non-structural C protein of PPRV helps in evading host responses but the molecular mechanisms by which it antagonizes the host responses have not been fully characterized. Here, we report the antagonistic effect of PPRV C protein on the expression of interferon-β (IFN-β) through both MAVS and RIG-I mediated pathways in vitro. Dual luciferase reporter assay and direct expression of IFN-β mRNA analysis indicated that PPRV C significantly down regulates IFN-β via its potential interaction with MAVS and RIG-I signaling molecules. Results further indicated that PPRV C protein significantly suppresses endogenous and exogenous IFN-β-induced anti-viral effects in PPRV, EMCV and SVS infections in vitro. Moreover, PPRV C protein not only down regulates IFN-β but also the downstream cytokines of interferon stimulated genes 56 (ISG56), ISG15, C-X-C motif chemokine (CXCL10) and RIG-I mediated activation of IFN promoter elements of ISRE and NF-κB. Further, this study deciphers that PPRV C protein could significantly inhibit the phosphorylation of STAT1 and interferes with the signal transmission in JAK-STAT signaling pathway. Collectively, this study indicates that PPRV C protein is important for innate immune evasion and disease progression.
Collapse
Affiliation(s)
- Li Linjie
- Key Laboratory of Bioengineering & Biotechnology of the National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Shi Xiaoling
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Ma Xiaoxia
- Key Laboratory of Bioengineering & Biotechnology of the National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Cao Xin
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Amjad Ali
- Key Laboratory of Bioengineering & Biotechnology of the National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Bai Jialin
- Key Laboratory of Bioengineering & Biotechnology of the National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
5
|
Li P, Zhu Z, Cao W, Yang F, Ma X, Tian H, Zhang K, Liu X, Zheng H. Dysregulation of the RIG-I-like Receptor Pathway Signaling by Peste des Petits Ruminants Virus Phosphoprotein. THE JOURNAL OF IMMUNOLOGY 2020; 206:566-579. [PMID: 33380495 DOI: 10.4049/jimmunol.2000432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Peste des petits ruminants virus (PPRV) is a Morbillivirus that causes highly contagious and severe disease in various ruminants. PPRV infection leads to a severe inhibition of host antiviral immune response. Our previous study demonstrated that PPRV V protein blocks IFN response by targeting STAT proteins. In the current study, we identified the phosphoprotein (P) as a novel antagonistic factor of PPRV to counteract host antiviral innate immune response. PPRV P protein significantly suppressed RIG-I-like receptor pathway signaling and impaired IFN-β and ISGs expression by targeting IFN regulatory factor (IRF)3 in both human embryonic kidney 293T cells and primary goat fibroblasts. The 1-102 region of P protein was critical for the antagonistic function of P protein. P protein interacted with IRF association domain (IAD) of IRF3 to block the interaction between TBK1 and IRF3. The interaction between TBK1 and the IAD of IRF3 is responsible for triggering the phosphorylation of IRF3. P protein competed with TBK1 to bind to the IAD of IRF3 that contributed to the decreased phosphorylation of IRF3, which, in turn, interfered with the dimerization of IRF3 and blocked IRF3 nuclear transportation. Besides, we also found that P protein interacted with IRF5 and IRF8. However, the involved mechanism remains unknown. Taken together, our results reveal a novel mechanism by which PPRV P protein antagonizes host antiviral innate immune response by interacting with the transcription factor IRF3, thereby inhibiting the type I IFN production and promoting viral replication.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Xusheng Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Hong Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and.,National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| |
Collapse
|
6
|
Takeda M, Seki F, Yamamoto Y, Nao N, Tokiwa H. Animal morbilliviruses and their cross-species transmission potential. Curr Opin Virol 2020; 41:38-45. [PMID: 32344228 DOI: 10.1016/j.coviro.2020.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/01/2023]
Abstract
Like measles virus (MV), whose primary hosts are humans, non-human animal morbilliviruses use SLAM (signaling lymphocytic activation molecule) and PVRL4 (nectin-4) expressed on immune and epithelial cells, respectively, as receptors. PVRL4's amino acid sequence is highly conserved across species, while that of SLAM varies significantly. However, non-host animal SLAMs often function as receptors for different morbilliviruses. Uniquely, human SLAM is somewhat specific for MV, but canine distemper virus, which shows the widest host range among morbilliviruses, readily gains the ability to use human SLAM. The host range for morbilliviruses is also modulated by their ability to counteract the host's innate immunity, but the risk of cross-species transmission of non-human animal morbilliviruses to humans could occur if MV is successfully eradicated.
Collapse
Affiliation(s)
- Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan.
| | - Fumio Seki
- Department of Virology 3, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Yuta Yamamoto
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan
| | - Naganori Nao
- Department of Virology 3, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Hiroaki Tokiwa
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
7
|
Intrinsically disordered proteins of viruses: Involvement in the mechanism of cell regulation and pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:1-78. [PMID: 32828463 PMCID: PMC7129803 DOI: 10.1016/bs.pmbts.2020.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) possess the property of inherent flexibility and can be distinguished from other proteins in terms of lack of any fixed structure. Such dynamic behavior of IDPs earned the name "Dancing Proteins." The exploration of these dancing proteins in viruses has just started and crucial details such as correlation of rapid evolution, high rate of mutation and accumulation of disordered contents in viral proteome at least understood partially. In order to gain a complete understanding of this correlation, there is a need to decipher the complexity of viral mediated cell hijacking and pathogenesis in the host organism. Further there is necessity to identify the specific patterns within viral and host IDPs such as aggregation; Molecular recognition features (MoRFs) and their association to virulence, host range and rate of evolution of viruses in order to tackle the viral-mediated diseases. The current book chapter summarizes the aforementioned details and suggests the novel opportunities for further research of IDPs senses in viruses.
Collapse
|
8
|
Host Cellular Receptors for the Peste des Petits Ruminant Virus. Viruses 2019; 11:v11080729. [PMID: 31398809 PMCID: PMC6723671 DOI: 10.3390/v11080729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Peste des Petits Ruminant (PPR) is an important transboundary, OIE-listed contagious viral disease of primarily sheep and goats caused by the PPR virus (PPRV), which belongs to the genus Morbillivirus of the family Paramyxoviridae. The mortality rate is 90–100%, and the morbidity rate may reach up to 100%. PPR is considered economically important as it decreases the production and productivity of livestock. In many endemic poor countries, it has remained an obstacle to the development of sustainable agriculture. Hence, proper control measures have become a necessity to prevent its rapid spread across the world. For this, detailed information on the pathogenesis of the virus and the virus host interaction through cellular receptors needs to be understood clearly. Presently, two cellular receptors; signaling lymphocyte activation molecule (SLAM) and Nectin-4 are known for PPRV. However, extensive information on virus interactions with these receptors and their impact on host immune response is still required. Hence, a thorough understanding of PPRV receptors and the mechanism involved in the induction of immunosuppression is crucial for controlling PPR. In this review, we discuss PPRV cellular receptors, viral host interaction with cellular receptors, and immunosuppression induced by the virus with reference to other Morbilliviruses.
Collapse
|
9
|
Manjunath S, Saxena S, Mishra B, Santra L, Sahu AR, Wani SA, Tiwari AK, Mishra BP, Singh RK, Janga SC, Kumar GR. Early transcriptome profile of goat peripheral blood mononuclear cells (PBMCs) infected with peste des petits ruminant's vaccine virus (Sungri/96) revealed induction of antiviral response in an interferon independent manner. Res Vet Sci 2019; 124:166-177. [PMID: 30903969 DOI: 10.1016/j.rvsc.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Sungri/96 vaccine strain is considered the most potent vaccine providing long-term immunity against peste des petits ruminants (PPR) in India. Previous studies in our laboratory highlighted induction of robust antiviral response in an interferon independent manner at 48 h and 120 h post infection (p.i.). However, immune response at the earliest time point 6 h p.i. (time taken to complete one PPRV life cycle), in PBMCs infected with Sungri/96 vaccine virus has not been investigated. This study was taken up to understand the global gene expression profiling of goat PBMCs after Sungri/96 PPRV vaccine strain infection at 6 h post infection (p.i.). A total of 1926 differentially expressed genes (DEGs) were identified with 616 - upregulated and 1310 - downregulated. TLR7/TLR3, IRF7/IRF1, ISG20, IFIT1/IFIT2, IFITM3, IL27 and TREX1 were identified as key immune sensors and antiviral candidate genes. Interestingly, type I interferons (IFNα/β) were not differentially expressed at this time point as well. TREX1, an exonuclease which inhibits type I interferons at the early stage of virus infection was found to be highly upregulated. IL27, an important antiviral host immune factor was significantly upregulated. ISG20, an antiviral interferon induced gene with exonuclease activity specific to ssRNA viruses was highly expressed. Functional profiling of DEGs showed significant enrichment of immune system processes with 233 genes indicating initiation of immune defense response in host cells. Protein interaction network showed important innate immune molecules in the immune network with high connectivity. The study highlights important immune and antiviral genes at the earliest time point.
Collapse
Affiliation(s)
- Siddappa Manjunath
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, IN, 46202, USA
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Bina Mishra
- Division of Biological Products, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Lakshman Santra
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Sajad Ahmed Wani
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Bishnu Prasad Mishra
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Sarath Chandra Janga
- School of Informatics and Computing, Indiana University Purdue University, 719 Indiana Ave Ste 319, Walker Plaza Building, Indianapolis, IN 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, IN, 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, 975 West Walnut Street, Indianapolis, IN 46202, USA.
| | - Gandham Ravi Kumar
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad 500032, India.
| |
Collapse
|
10
|
Yang B, Xue Q, Qi X, Wang X, Jia P, Chen S, Wang T, Xue T, Wang J. Autophagy enhances the replication of Peste des petits ruminants virus and inhibits caspase-dependent apoptosis in vitro. Virulence 2018; 9:1176-1194. [PMID: 30067475 PMCID: PMC6086290 DOI: 10.1080/21505594.2018.1496776] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Peste des petits ruminants (PPR) is an acute and highly contagious disease in small ruminants that causes significant economic losses in developing countries. An increasing number of studies have demonstrated that both autophagy and apoptosis are important cellular mechanisms for maintaining homeostasis, and they participate in the host response to pathogens. However, the crosstalk between apoptosis and autophagy in host cells during PPRV infection has not been clarified. In this study, autophagy was induced upon virus infection in caprine endometrial epithelial cells (EECs), as determined by the appearance of double- and single-membrane autophagy-like vesicles, LC3-I/LC3-II conversion, and p62 degradation. We also found that PPRV infection triggered a complete autophagic response, most likely mediated by the non-structural protein C and nucleoprotein N. Moreover, our results suggest that autophagy not only promotes the replication of PPRV in EECs but also provides a potential mechanism for inhibiting PPRV-induced apoptosis. Inhibiting autophagosome formation by wortmannin and knocking down the essential autophagic proteins Beclin-1 and ATG7 induces caspase-dependent apoptosis in EECs in PPRV infection. However, inhibiting autophagosome and lysosome fusion by NH4Cl and chloroquine did not increase the number of apoptotic cells. Collectively, these data are the first to indicate that PPRV-induced autophagy inhibits caspase-dependent apoptosis and thus contributes to the enhancement of viral replication and maturity in host cells.
Collapse
Affiliation(s)
- Bo Yang
- a College of Veterinary Medicine , Northwest A&F University , Yangling , China
| | - Qinghong Xue
- b China Institute of Veterinary Drug Control , Beijing , China
| | - Xuefeng Qi
- a College of Veterinary Medicine , Northwest A&F University , Yangling , China
| | - Xueping Wang
- a College of Veterinary Medicine , Northwest A&F University , Yangling , China
| | - Peilong Jia
- a College of Veterinary Medicine , Northwest A&F University , Yangling , China
| | - Shuying Chen
- a College of Veterinary Medicine , Northwest A&F University , Yangling , China
| | - Ting Wang
- a College of Veterinary Medicine , Northwest A&F University , Yangling , China
| | - Tianxia Xue
- a College of Veterinary Medicine , Northwest A&F University , Yangling , China
| | - Jingyu Wang
- a College of Veterinary Medicine , Northwest A&F University , Yangling , China
| |
Collapse
|
11
|
Pfeffermann K, Dörr M, Zirkel F, von Messling V. Morbillivirus Pathogenesis and Virus-Host Interactions. Adv Virus Res 2018; 100:75-98. [PMID: 29551144 DOI: 10.1016/bs.aivir.2017.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the availability of safe and effective vaccines against measles and several animal morbilliviruses, they continue to cause regular outbreaks and epidemics in susceptible populations. Morbilliviruses are highly contagious and share a similar pathogenesis in their respective hosts. This review provides an overview of morbillivirus history and the general replication cycle and recapitulates Morbillivirus pathogenesis focusing on common and unique aspects seen in different hosts. It also summarizes the state of knowledge regarding virus-host interactions on the cellular level with an emphasis on viral interference with innate immune response activation, and highlights remaining knowledge gaps.
Collapse
|
12
|
Sanz Bernardo B, Goodbourn S, Baron MD. Control of the induction of type I interferon by Peste des petits ruminants virus. PLoS One 2017; 12:e0177300. [PMID: 28475628 PMCID: PMC5419582 DOI: 10.1371/journal.pone.0177300] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is a morbillivirus that produces clinical disease in goats and sheep. We have studied the induction of interferon-β (IFN-β) following infection of cultured cells with wild-type and vaccine strains of PPRV, and the effects of such infection with PPRV on the induction of IFN-β through both MDA-5 and RIG-I mediated pathways. Using both reporter assays and direct measurement of IFN-β mRNA, we have found that PPRV infection induces IFN-β only weakly and transiently, and the virus can actively block the induction of IFN-β. We have also generated mutant PPRV that lack expression of either of the viral accessory proteins (V&C) to characterize the role of these proteins in IFN-β induction during virus infection. Both PPRV_ΔV and PPRV_ΔC were defective in growth in cell culture, although in different ways. While the PPRV V protein bound to MDA-5 and, to a lesser extent, RIG-I, and over-expression of the V protein inhibited both IFN-β induction pathways, PPRV lacking V protein expression can still block IFN-β induction. In contrast, PPRV C bound to neither MDA-5 nor RIG-I, but PPRV lacking C protein expression lost the ability to block both MDA-5 and RIG-I mediated activation of IFN-β. These results shed new light on the inhibition of the induction of IFN-β by PPRV.
Collapse
Affiliation(s)
| | - Stephen Goodbourn
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | | |
Collapse
|
13
|
Comparative and temporal transcriptome analysis of peste des petits ruminants virus infected goat peripheral blood mononuclear cells. Virus Res 2017; 229:28-40. [DOI: 10.1016/j.virusres.2016.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 11/22/2022]
|
14
|
Horie R, Yoneda M, Uchida S, Sato H, Kai C. Region of Nipah virus C protein responsible for shuttling between the cytoplasm and nucleus. Virology 2016; 497:294-304. [PMID: 27501340 DOI: 10.1016/j.virol.2016.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 12/31/2022]
Abstract
Nipah virus (NiV) causes severe encephalitis in humans, with high mortality. NiV nonstructural C protein (NiV-C) is essential for its pathogenicity, but its functions are unclear. In this study, we focused on NiV-C trafficking in cells and found that it localizes predominantly in the cytoplasm but partly in the nucleus. An analysis of NiV-C mutants showed that amino acids 2, 21-24 and 110-139 of NiV-C are important for its localization in the cytoplasm. Inhibitor treatment indicates that the nuclear export determinant is not a classical CRM1-dependent nuclear export signal. We also determined that amino acids 60-75 and 72-75 were important for nuclear localization of NiV-C. Furthermore, NiV-C mutants that had lost their capacity for nuclear localization inhibited the interferon (IFN) response more strongly than complete NiV-C. These results indicate that the IFN-antagonist activity of NiV-C occurs in the cytoplasm.
Collapse
Affiliation(s)
- Ryo Horie
- Laboratory Animal Research Center and International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | - Misako Yoneda
- Laboratory Animal Research Center and International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan.
| | - Shotaro Uchida
- Laboratory Animal Research Center and International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | - Hiroki Sato
- Laboratory Animal Research Center and International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | - Chieko Kai
- Laboratory Animal Research Center and International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| |
Collapse
|
15
|
Kumar N, Maherchandani S, Kashyap SK, Singh SV, Sharma S, Chaubey KK, Ly H. Peste des petits ruminants virus infection of small ruminants: a comprehensive review. Viruses 2014; 6:2287-327. [PMID: 24915458 PMCID: PMC4074929 DOI: 10.3390/v6062287] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/14/2022] Open
Abstract
Peste des petits ruminants (PPR) is caused by a Morbillivirus that belongs to the family Paramyxoviridae. PPR is an acute, highly contagious and fatal disease primarily affecting goats and sheep, whereas cattle undergo sub-clinical infection. With morbidity and mortality rates that can be as high as 90%, PPR is classified as an OIE (Office International des Epizooties)-listed disease. Considering the importance of sheep and goats in the livelihood of the poor and marginal farmers in Africa and South Asia, PPR is an important concern for food security and poverty alleviation. PPR virus (PPRV) and rinderpest virus (RPV) are closely related Morbilliviruses. Rinderpest has been globally eradicated by mass vaccination. Though a live attenuated vaccine is available against PPR for immunoprophylaxis, due to its instability in subtropical climate (thermo-sensitivity), unavailability of required doses and insufficient coverage (herd immunity), the disease control program has not been a great success. Further, emerging evidence of poor cross neutralization between vaccine strain and PPRV strains currently circulating in the field has raised concerns about the protective efficacy of the existing PPR vaccines. This review summarizes the recent advancement in PPRV replication, its pathogenesis, immune response to vaccine and disease control. Attempts have also been made to highlight the current trends in understanding the host susceptibility and resistance to PPR.
Collapse
Affiliation(s)
- Naveen Kumar
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Sunil Maherchandani
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India.
| | - Sudhir Kumar Kashyap
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India.
| | - Shoor Vir Singh
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India.
| | - Kundan Kumar Chaubey
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Hinh Ly
- Veterinary and Biomedical Sciences Department, University of Minnesota, 1988 Fitch Ave., Ste 295, Saint Paul, MN 55108, USA.
| |
Collapse
|
16
|
Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S. Structural disorder in viral proteins. Chem Rev 2014; 114:6880-911. [PMID: 24823319 DOI: 10.1021/cr4005692] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, College of Fine Arts and Sciences, and ‡Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | | | | | | | |
Collapse
|
17
|
Lo MK, Søgaard TM, Karlin DG. Evolution and structural organization of the C proteins of paramyxovirinae. PLoS One 2014; 9:e90003. [PMID: 24587180 PMCID: PMC3934983 DOI: 10.1371/journal.pone.0090003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022] Open
Abstract
The phosphoprotein (P) gene of most Paramyxovirinae encodes several proteins in overlapping frames: P and V, which share a common N-terminus (PNT), and C, which overlaps PNT. Overlapping genes are of particular interest because they encode proteins originated de novo, some of which have unknown structural folds, challenging the notion that nature utilizes only a limited, well-mapped area of fold space. The C proteins cluster in three groups, comprising measles, Nipah, and Sendai virus. We predicted that all C proteins have a similar organization: a variable, disordered N-terminus and a conserved, α-helical C-terminus. We confirmed this predicted organization by biophysically characterizing recombinant C proteins from Tupaia paramyxovirus (measles group) and human parainfluenza virus 1 (Sendai group). We also found that the C of the measles and Nipah groups have statistically significant sequence similarity, indicating a common origin. Although the C of the Sendai group lack sequence similarity with them, we speculate that they also have a common origin, given their similar genomic location and structural organization. Since C is dispensable for viral replication, unlike PNT, we hypothesize that C may have originated de novo by overprinting PNT in the ancestor of Paramyxovirinae. Intriguingly, in measles virus and Nipah virus, PNT encodes STAT1-binding sites that overlap different regions of the C-terminus of C, indicating they have probably originated independently. This arrangement, in which the same genetic region encodes simultaneously a crucial functional motif (a STAT1-binding site) and a highly constrained region (the C-terminus of C), seems paradoxical, since it should severely reduce the ability of the virus to adapt. The fact that it originated twice suggests that it must be balanced by an evolutionary advantage, perhaps from reducing the size of the genetic region vulnerable to mutations.
Collapse
Affiliation(s)
- Michael K. Lo
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, United States of America
| | - Teit Max Søgaard
- Division of Structural Biology, Oxford University, Oxford, United Kingdom
| | - David G. Karlin
- Division of Structural Biology, Oxford University, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Chinnakannan SK, Holzer B, Bernardo BS, Nanda SK, Baron MD. Different functions of the common P/V/W and V-specific domains of rinderpest virus V protein in blocking IFN signalling. J Gen Virol 2013; 95:44-51. [PMID: 24158397 PMCID: PMC3917061 DOI: 10.1099/vir.0.056739-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The V proteins of paramyxoviruses are composed of two evolutionarily distinct domains, the N-terminal 75 % being common to the viral P, V and W proteins, and not highly conserved between viruses, whilst the remaining 25 % consists of a cysteine-rich V-specific domain, which is conserved across almost all paramyxoviruses. There is evidence supporting a number of different functions of the V proteins of morbilliviruses in blocking the signalling pathways of type I and II IFNs, but it is not clear which domains of V are responsible for which activities and whether all these activities are required for effective blockade of IFN signalling. We have shown here that the two domains of rinderpest virus V protein have distinct functions: the N-terminal domain acted to bind STAT1, whilst the C-terminal V-specific domain interacted with the IFN receptor-associated kinases Jak1 and Tyk2. Effective blockade of IFN signalling required the intact V protein.
Collapse
Affiliation(s)
| | - Barbara Holzer
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | | | - Sambit K Nanda
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Michael D Baron
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| |
Collapse
|
19
|
Audsley MD, Moseley GW. Paramyxovirus evasion of innate immunity: Diverse strategies for common targets. World J Virol 2013; 2:57-70. [PMID: 24175230 PMCID: PMC3785049 DOI: 10.5501/wjv.v2.i2.57] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/14/2013] [Accepted: 04/10/2013] [Indexed: 02/05/2023] Open
Abstract
The paramyxoviruses are a family of > 30 viruses that variously infect humans, other mammals and fish to cause diverse outcomes, ranging from asymptomatic to lethal disease, with the zoonotic paramyxoviruses Nipah and Hendra showing up to 70% case-fatality rate in humans. The capacity to evade host immunity is central to viral infection, and paramyxoviruses have evolved multiple strategies to overcome the host interferon (IFN)-mediated innate immune response through the activity of their IFN-antagonist proteins. Although paramyxovirus IFN antagonists generally target common factors of the IFN system, including melanoma differentiation associated factor 5, retinoic acid-inducible gene-I, signal transducers and activators of transcription (STAT)1 and STAT2, and IFN regulatory factor 3, the mechanisms of antagonism show remarkable diversity between different genera and even individual members of the same genus; the reasons for this diversity, however, are not currently understood. Here, we review the IFN antagonism strategies of paramyxoviruses, highlighting mechanistic differences observed between individual species and genera. We also discuss potential sources of this diversity, including biological differences in the host and/or tissue specificity of different paramyxoviruses, and potential effects of experimental approaches that have largely relied on in vitro systems. Importantly, recent studies using recombinant virus systems and animal infection models are beginning to clarify the importance of certain mechanisms of IFN antagonism to in vivo infections, providing important indications not only of their critical importance to virulence, but also of their potential targeting for new therapeutic/vaccine approaches.
Collapse
|
20
|
Chinnakannan SK, Nanda SK, Baron MD. Morbillivirus v proteins exhibit multiple mechanisms to block type 1 and type 2 interferon signalling pathways. PLoS One 2013; 8:e57063. [PMID: 23431397 PMCID: PMC3576338 DOI: 10.1371/journal.pone.0057063] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/17/2013] [Indexed: 12/20/2022] Open
Abstract
Morbilliviruses form a closely related group of pathogenic viruses which encode three non-structural proteins V, W and C in their P gene. Previous studies with rinderpest virus (RPV) and measles virus (MeV) have demonstrated that these non-structural proteins play a crucial role in blocking type I (IFNα/β) and type II (IFNγ) interferon action, and various mechanisms have been proposed for these effects. We have directly compared four important morbilliviruses, rinderpest (RPV), measles virus (MeV), peste des petits ruminants virus (PPRV) and canine distemper virus (CDV). These viruses and their V proteins could all block type I IFN action. However, the viruses and their V proteins had varying abilities to block type II IFN action. The ability to block type II IFN-induced gene transcription correlated with co-precipitation of STAT1 with the respective V protein, but there was no correlation between co-precipitation of either STAT1 or STAT2 and the abilities of the V proteins to block type I IFN-induced gene transcription or the creation of the antiviral state. Further study revealed that the V proteins of RPV, MeV, PPRV and CDV could all interfere with phosphorylation of the interferon-receptor-associated kinase Tyk2, and the V protein of highly virulent RPV could also block the phosphorylation of another such kinase, Jak1. Co-precipitation studies showed that morbillivirus V proteins all form a complex containing Tyk2 and Jak1. This study highlights the ability of morbillivirus V proteins to target multiple components of the IFN signalling pathways to control both type I and type II IFN action.
Collapse
|
21
|
Dong C, Zafrullah M, Mixson-Hayden T, Dai X, Liang J, Meng J, Kamili S. Suppression of interferon-α signaling by hepatitis E virus. Hepatology 2012; 55:1324-32. [PMID: 22183878 DOI: 10.1002/hep.25530] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/02/2011] [Indexed: 12/11/2022]
Abstract
UNLABELLED The interferon (IFN) system is integral to the host response against viruses, and many viruses have developed strategies to overcome its antiviral effects. The effects of hepatitis E virus (HEV), the causative agent of hepatitis E, on IFN signaling have not been investigated primarily because of the nonavailability of an efficient in vitro culture system or small animal models of infection. We report here the generation of A549 cell lines persistently infected with genotype 3 HEV, designated as HEV-A549 cells and the effects HEV has on IFN-α-mediated Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling. Treatment of HEV-A549 cells with 250, 500, and 1000 U/mL of IFN-α for 72 hours showed a dose-dependent reduction in HEV RNA levels by 10%, 20%, and 50%, respectively. IFN-α-stimulated genes coding for the antiviral proteins dsRNA-activated protein kinase (PKR) and 2',5'-oligoadenylate synthetase (2',5'-OAS) were down-regulated in IFN-α-treated HEV-A549 cells. HEV infection also prevented IFN-α-induced phosphorylation of STAT1. Regulation of STAT1 by HEV was specific, as phosphorylation of STAT2, tyrosine kinase (Tyk) 2, and Jak1 by IFN-α was unaltered. Additionally, STAT1 levels were markedly increased in HEV-A549 cells compared with naive A549 cells. Furthermore, binding of HEV open reading frame (ORF)3 protein to STAT1 in HEV-A549 cells was observed. HEV ORF3 protein alone inhibited IFN-α-induced phosphorylation of STAT1 and down-regulated the IFN-α-stimulated genes encoding PKR, 2',5'-OAS, and myxovirus resistance A. CONCLUSION HEV inhibits IFN-α signaling through the regulation of STAT1 phosphorylation in A549 cells. These findings have implications for the development of new strategies against hepatitis E.
Collapse
Affiliation(s)
- Chen Dong
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Sparrer KMJ, Pfaller CK, Conzelmann KK. Measles virus C protein interferes with Beta interferon transcription in the nucleus. J Virol 2012; 86:796-805. [PMID: 22072748 PMCID: PMC3255862 DOI: 10.1128/jvi.05899-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/31/2011] [Indexed: 12/18/2022] Open
Abstract
Transcriptional induction of beta interferon (IFN-β) through pattern recognition receptors is a key event in the host defense against invading viruses. Infection of cells by paramyxoviruses, like measles virus (MV) (genus Morbillivirus), is sensed predominantly by the ubiquitous cytoplasmic helicase RIG-I, recognizing viral 5'-triphosphate RNAs, and to some degree by MDA5. While MDA5 activation is effectively prevented by the MV V protein, the viral mechanisms for inhibition of MDA5-independent induction of IFN-β remained obscure. Here, we identify the 186-amino-acid MV C protein, which shuttles between the nucleus and the cytoplasm, as a major viral inhibitor of IFN-β transcription in human cells. Activation of the transcription factor IRF3 by upstream kinases and nuclear import of activated IRF3 were not affected in the presence of C protein, suggesting a nuclear target. Notably, C proteins of wild-type MV isolates, which are poor IFN-β inducers, were found to comprise a canonical nuclear localization signal (NLS), whereas the NLSs of all vaccine strains, irrespective of their origins, were mutated. Site-directed mutagenesis of the C proteins from an MV wild-type isolate and from the vaccine virus strain Schwarz confirmed a correlation of nuclear localization and inhibition of IFN-β transcription. A functional NLS and efficient nuclear accumulation are therefore critical for MV C to retain its potential to downregulate IFN-β induction. We suggest that a defect in efficient nuclear import of C protein contributes to attenuation of MV vaccine strains.
Collapse
Affiliation(s)
- Konstantin M J Sparrer
- Max von Pettenkofer-Institute and Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | |
Collapse
|
23
|
Basler CF. Nipah and hendra virus interactions with the innate immune system. Curr Top Microbiol Immunol 2012; 359:123-52. [PMID: 22491899 DOI: 10.1007/82_2012_209] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nipah virus and Hendra virus are related, highly pathogenic paramyxoviruses with unusually broad host ranges. Henipaviruses encode several proteins that block innate immune responses, and these are likely to serve as virulence factors. Specfically, four virus-encoded proteins, the phosphoprotein (P), the V protein, the W protein, and the C protein have each been demonstrated to counteract aspects of the interferon (IFN)-α/β response, a key component of the innate immune response to virus infection. The available data indicate that V and W can inhibit the production of IFNα/β in response to various stimuli, while the P, V, and W proteins also block the ability of IFNs to signal and induce an antiviral state in cells. The C protein also inhibits the antiviral effects of IFNα/β by a poorly characterized mechanism. Reverse genetics systems, which allow the generation of recombinant viruses bearing specific mutations, have demonstrated the importance of the viral IFN-antagonists for replication. With these systems in hand, the field is now poised to define how specific viral IFN-antagonist functions influence viral pathogenesis.
Collapse
Affiliation(s)
- Christopher F Basler
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
24
|
Holzer B, Bakshi S, Bridgen A, Baron MD. Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus. PLoS One 2011; 6:e28594. [PMID: 22163042 PMCID: PMC3230622 DOI: 10.1371/journal.pone.0028594] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/11/2011] [Indexed: 12/24/2022] Open
Abstract
The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU.
Collapse
Affiliation(s)
- Barbara Holzer
- Institute for Animal Health, Pirbright, Surrey, United Kingdom
| | - Siddharth Bakshi
- Institute for Animal Health, Pirbright, Surrey, United Kingdom
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, United Kingdom
| | - Anne Bridgen
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, United Kingdom
| | - Michael D. Baron
- Institute for Animal Health, Pirbright, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Gerlier D, Lyles DS. Interplay between innate immunity and negative-strand RNA viruses: towards a rational model. Microbiol Mol Biol Rev 2011; 75:468-90, second page of table of contents. [PMID: 21885681 PMCID: PMC3165544 DOI: 10.1128/mmbr.00007-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery of a new class of cytosolic receptors recognizing viral RNA, called the RIG-like receptors (RLRs), has revolutionized our understanding of the interplay between viruses and host cells. A tremendous amount of work has been accumulating to decipher the RNA moieties required for an RLR agonist, the signal transduction pathway leading to activation of the innate immunity orchestrated by type I interferon (IFN), the cellular and viral regulators of this pathway, and the viral inhibitors of the innate immune response. Previous reviews have focused on the RLR signaling pathway and on the negative regulation of the interferon response by viral proteins. The focus of this review is to put this knowledge in the context of the virus replication cycle within a cell. Likewise, there has been an expansion of knowledge about the role of innate immunity in the pathophysiology of viral infection. As a consequence, some discrepancies have arisen between the current models of cell-intrinsic innate immunity and current knowledge of virus biology. This holds particularly true for the nonsegmented negative-strand viruses (Mononegavirales), which paradoxically have been largely used to build presently available models. The aim of this review is to bridge the gap between the virology and innate immunity to favor the rational building of a relevant model(s) describing the interplay between Mononegavirales and the innate immune system.
Collapse
Affiliation(s)
- Denis Gerlier
- INSERM U758, CERVI, 21 avenue Tony Garnier, 69007 Lyon, France.
| | | |
Collapse
|
26
|
Gori Savellini G, Weber F, Terrosi C, Habjan M, Martorelli B, Cusi MG. Toscana virus induces interferon although its NSs protein reveals antagonistic activity. J Gen Virol 2010; 92:71-9. [PMID: 20861320 DOI: 10.1099/vir.0.025999-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Toscana virus (TOSV) is a phlebotomus-transmitted virus that belongs to the family Bunyaviridae and causes widespread infections in humans; about 30 % of these cases result in aseptic meningitis. In the present study, it was shown that TOSV is an inducer of beta interferon (IFN-β), although its non-structural protein (NSs) could inhibit the induction of IFN-β if expressed in a heterologous context. A recombinant Rift Valley fever virus expressing the TOSV NSs could suppress IFN-β expression in infected cells. Moreover, in cells expressing NSs protein from a cDNA plasmid, IFN-β transcripts were not inducible by poly(I : C). Unlike other members of the family Bunyaviridae, TOSV appears to express an NSs protein that is a weak antagonist of IFN induction. Characterization of the interaction of TOSV with the IFN system will help our understanding of virus-host cell interactions and may explain why the pathogenesis of this disease is mostly mild in humans.
Collapse
Affiliation(s)
- Gianni Gori Savellini
- Department of Molecular Biology, Microbiology Section, University of Siena, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Li H, Zheng Z, Zhou P, Zhang B, Shi Z, Hu Q, Wang H. The cysteine protease domain of porcine reproductive and respiratory syndrome virus non-structural protein 2 antagonizes interferon regulatory factor 3 activation. J Gen Virol 2010; 91:2947-58. [PMID: 20826620 DOI: 10.1099/vir.0.025205-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There is growing evidence that porcine reproductive and respiratory syndrome virus (PRRSV) has developed mechanisms to subvert the host innate immune response. PRRSV non-structural protein 2 (Nsp2) was suggested previously as a potential interferon (IFN) antagonist. This study focused on Nsp2 to investigate its inhibitory mechanism of IFN induction. It was demonstrated that Nsp2 strongly inhibited IFN-β production by antagonizing activation of the IFN regulatory factor 3 (IRF-3) pathway induced by the Sendai virus (SeV). Further studies revealed that the cysteine protease domain (PL2) of Nsp2 was necessary for IFN antagonism. Additionally, both full-length Nsp2 and the PL2 protease domain of Nsp2 were found to inhibit SeV-induced phosphorylation and nuclear translocation of IRF-3. These findings suggest that Nsp2 is likely to play an important role in subversion of IRF-3-dependent innate antiviral defences, providing a basis for elucidating the mechanisms underlying PRRSV pathogenesis.
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Goodbourn S, Randall RE. The regulation of type I interferon production by paramyxoviruses. J Interferon Cytokine Res 2010; 29:539-47. [PMID: 19702509 DOI: 10.1089/jir.2009.0071] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Experimentally, paramyxoviruses are conventionally considered good inducers of type I interferons (IFN-alpha/beta), and have been used as agents in the commercial production of human IFN-alpha. However, in the last few years it has become clear that viruses in general mount a major challenge to the IFN system, and paramyxoviruses are no exception. Indeed, most paramyxoviruses encode mechanisms to inhibit both the production of, and response to, type I IFN. Here we review our knowledge of the type I IFN-inducing signals (by so-called pathogen-associated molecular patterns, or PAMPs) produced during paramyxovirus infections, and discuss how paramyxoviruses limit the production of PAMPs and inhibit the cellular responses to PAMPs by interfering with the activities of the pattern recognition receptors (PRRs), mda-5, and RIG-I, as well as downstream components in the type I IFN induction cascades.
Collapse
Affiliation(s)
- Stephen Goodbourn
- Division of Basic Medical Sciences, St. George's, University of London, London, United Kingdom
| | | |
Collapse
|
29
|
Infection of bovine dendritic cells by rinderpest or measles viruses induces different changes in host transcription. Virology 2009; 395:223-31. [PMID: 19854460 DOI: 10.1016/j.virol.2009.09.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/11/2009] [Accepted: 09/30/2009] [Indexed: 01/09/2023]
Abstract
The morbilliviruses are a closely related genus which are very similar in their sequences and share a common receptor, but nevertheless show significant restriction in the host species in which they cause disease. One contribution to this restriction might be the nature of the hosts' responses to infection. We have used microarrays to study the changes in the transcriptome of bovine dendritic cells after infection with wild-type (pathogenic) and vaccine (apathogenic) strains of rinderpest virus (RPV), a bovine pathogen, and a wild-type isolate of measles virus (MV), a morbillivirus that causes disease only in humans and some other primates. We found that, as previously observed in human cells, MV induces a rapid interferon response, while that induced by RPV was delayed and much reduced in magnitude. Pathogenic and apathogenic RPV also showed significant differences, with the latter inducing a slightly higher interferon response as well as significant effects on transcription of genes involved in cell cycle regulation.
Collapse
|
30
|
Differential regulation of type I interferon and epidermal growth factor pathways by a human Respirovirus virulence factor. PLoS Pathog 2009; 5:e1000587. [PMID: 19806178 PMCID: PMC2736567 DOI: 10.1371/journal.ppat.1000587] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 08/24/2009] [Indexed: 01/10/2023] Open
Abstract
A number of paramyxoviruses are responsible for acute respiratory infections in children, elderly and immuno-compromised individuals, resulting in airway inflammation and exacerbation of chronic diseases like asthma. To understand the molecular pathogenesis of these infections, we searched for cellular targets of the virulence protein C of human parainfluenza virus type 3 (hPIV3-C). We found that hPIV3-C interacts directly through its C-terminal domain with STAT1 and GRB2, whereas C proteins from measles or Nipah viruses failed to do so. Binding to STAT1 explains the previously reported capacity of hPIV3-C to block type I interferon signaling, but the interaction with GRB2 was unexpected. This adaptor protein bridges Epidermal Growth Factor (EGF) receptor to MAPK/ERK pathway, a signaling cascade recently found to be involved in airway inflammatory response. We report that either hPIV3 infection or transient expression of hPIV3-C both increase cellular response to EGF, as assessed by Elk1 transactivation and phosphorylation levels of ERK1/2, 40S ribosomal subunit protein S6 and translation initiation factor 4E (eIF4E). Furthermore, inhibition of MAPK/ERK pathway with U0126 prevented viral protein expression in infected cells. Altogether, our data provide molecular basis to explain the role of hPIV3-C as a virulence factor and determinant of pathogenesis and demonstrate that Paramyxoviridae have evolved a single virulence factor to block type I interferon signaling and to boost simultaneous cellular response to growth factors. Respiroviruses are important pathogens responsible for acute respiratory tract infections associated with severe airway inflammation in children, elderly and immuno-compromised individuals. Their RNA genome encodes for structural proteins that compose viral particles, but also for virulence factors that alter cell biology to enhance virus replication and spreading. Among them, the C protein plays a critical role by blocking cellular response to type I interferons, the main antiviral cytokines secreted during virus infections. To provide molecular basis to this activity, we found that the C protein of human parainfluenza virus type 3 (hPIV3-C), the most frequent human Respirovirus, interacts with STAT1, a key component of type I interferon receptor complex. But hPIV3-C was also found to interact with GRB2, an adaptor molecule involved in cellular response to Epidermal Growth Factor (EGF), and to enhance cell response to this cytokine. This pathway increases protein translation, promotes cell survival and contributes to airway inflammation and mucus secretion. Thus, our findings show that hPIV3-C not only inhibits the antiviral response but also stimulates cellular response to EGF, which benefits virus replication and induces an excessive inflammation of airways during infection.
Collapse
|