1
|
Benning FMC, Jenni S, Garcia CY, Nguyen TH, Zhang X, Chao LH. Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid assembly. Nat Commun 2024; 15:250. [PMID: 38177118 PMCID: PMC10767040 DOI: 10.1038/s41467-023-44596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Baculoviruses are insect-infecting pathogens with wide applications as biological pesticides, in vitro protein production vehicles and gene therapy tools. Its cylindrical nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA encoding proteins for viral replication and entry, is formed by the highly conserved major capsid protein VP39. The mechanism for VP39 assembly remains unknown. We use electron cryomicroscopy to determine a 3.2 Å helical reconstruction of an infectious nucleocapsid of Autographa californica multiple nucleopolyhedrovirus, revealing how dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises a distinct protein fold conserved across baculoviruses, which includes a Zinc finger domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism shows that VP39 assembles in several closely-related helical geometries. This VP39 reconstruction reveals general principles for baculoviral nucleocapsid assembly.
Collapse
Affiliation(s)
- Friederike M C Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Coby Y Garcia
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard College, Cambridge, MA, 02138, USA
| | - Tran H Nguyen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Benning FMC, Jenni S, Garcia CY, Nguyen TH, Zhang X, Chao LH. Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545104. [PMID: 37398449 PMCID: PMC10312762 DOI: 10.1101/2023.06.15.545104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Baculoviruses are insect-infecting pathogens with wide applications as biological pesticides, in vitro protein production vehicles and gene therapy tools. Its cylindrical nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA encoding proteins for viral replication and entry, is formed by the highly conserved major capsid protein VP39. The mechanism for VP39 assembly remains unknown. We determined a 3.2 Å electron cryomicroscopy helical reconstruction of an infectious nucleocapsid of Autographa californica multiple nucleopolyhedrovirus, revealing how dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises a unique protein fold conserved across baculoviruses, which includes a Zinc finger domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism revealed that VP39 assembles in several closely-related helical geometries. This VP39 reconstruction reveals general principles for baculoviral nucleocapsid assembly.
Collapse
Affiliation(s)
- Friederike M. C. Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Coby Y. Garcia
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard College, Cambridge, MA 02138, USA
| | - Tran H. Nguyen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luke H. Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Cross Talk between Viruses and Insect Cells Cytoskeleton. Viruses 2021; 13:v13081658. [PMID: 34452522 PMCID: PMC8402729 DOI: 10.3390/v13081658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
Viruses are excellent manipulators of host cellular machinery, behavior, and life cycle, with the host cell cytoskeleton being a primordial viral target. Viruses infecting insects generally enter host cells through clathrin-mediated endocytosis or membrane fusion mechanisms followed by transport of the viral particles to the corresponding replication sites. After viral replication, the viral progeny egresses toward adjacent cells and reaches the different target tissues. Throughout all these steps, actin and tubulin re-arrangements are driven by viruses. The mechanisms used by viruses to manipulate the insect host cytoskeleton are well documented in the case of alphabaculoviruses infecting Lepidoptera hosts and plant viruses infecting Hemiptera vectors, but they are not well studied in case of other insect-virus systems such as arboviruses-mosquito vectors. Here, we summarize the available knowledge on how viruses manipulate the insect host cell cytoskeleton, and we emphasize the primordial role of cytoskeleton components in insect virus motility and the need to expand the study of this interaction.
Collapse
|
4
|
Simón O, Palma L, Fernández AB, Williams T, Caballero P. Baculovirus Expression and Functional Analysis of Vpa2 Proteins from Bacillus thuringiensis. Toxins (Basel) 2020; 12:toxins12090543. [PMID: 32842608 PMCID: PMC7551607 DOI: 10.3390/toxins12090543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023] Open
Abstract
The mode of action underlying the insecticidal activity of the Bacillus thuringiensis (Bt) binary pesticidal protein Vpa1/Vpa2 is uncertain. In this study, three recombinant baculoviruses were constructed using Bac-to-Bac technology to express Vpa2Ac1 and two novel Vpa2-like genes, Vpa2-like1 and Vpa2-like2, under the baculovirus p10 promoter in transfected Sf9 cells. Pairwise amino acid analyses revealed a higher percentage of identity and a lower number of gaps between Vpa2Ac1 and Vpa2-like2 than to Vpa2-like1. Moreover, Vpa2-like1 lacked the conserved Ser-Thr-Ser motif, involved in NAD binding, and the (F/Y)xx(Q/E)xE consensus sequence, characteristic of the ARTT toxin family involved in actin polymerization. Vpa2Ac1, Vpa2-like1 and Vpa2-like2 transcripts and proteins were detected in Sf9 culture cells, but the signals of Vpa2Ac1 and Vpa2-like2 were weak and decreased over time. Sf9 cells infected by a recombinant bacmid expressing Vpa2-like1 showed typical circular morphology and produced viral occlusion bodies (OBs) at the same level as the control virus. However, expression of Vpa2Ac1 and Vpa2-like2 induced cell polarization, similar to that produced by the microfilament-destabilizing agent cytochalasin D and OBs were not produced. The presence of filament disrupting agents, such as nicotinamide and nocodazole, during transfection prevented cell polarization and OB production was observed. We conclude that Vpa2Ac1 and Vpa2-like2 proteins likely possess ADP-ribosyltransferase activity that modulated actin polarization, whereas Vpa2-like1 is not a typical Vpa2 protein. Vpa2-like2 has now been designated Vpa2Ca1 (accession number AAO86513) by the Bacillus thuringiensis delta-endotoxin nomenclature committee.
Collapse
Affiliation(s)
- Oihane Simón
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Navarra, Spain; (A.B.F.); (P.C.)
- Correspondence: ; Tel.: +34-948168012
| | - Leopoldo Palma
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional De Villa María, Villa María, Córdoba 5900, Argentina;
| | - Ana Beatriz Fernández
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Navarra, Spain; (A.B.F.); (P.C.)
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Polígono Industrial Mocholi Plaza Cein 5, Nave A14, 31110 Noain, Navarra, Spain
| | | | - Primitivo Caballero
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Navarra, Spain; (A.B.F.); (P.C.)
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Polígono Industrial Mocholi Plaza Cein 5, Nave A14, 31110 Noain, Navarra, Spain
| |
Collapse
|
5
|
Host AAA+ ATPase TER94 Plays Critical Roles in Building the Baculovirus Viral Replication Factory and Virion Morphogenesis. J Virol 2020; 94:JVI.01674-19. [PMID: 31896597 DOI: 10.1128/jvi.01674-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
TER94 is a multifunctional AAA+ ATPase crucial for diverse cellular processes, especially protein quality control and chromatin dynamics in eukaryotic organisms. Many viruses, including coronavirus, herpesvirus, and retrovirus, coopt host cellular TER94 for optimal viral invasion and replication. Previous proteomics analysis identified the association of TER94 with the budded virions (BVs) of baculovirus, an enveloped insect large DNA virus. Here, the role of TER94 in the prototypic baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) life cycle was investigated. In virus-infected cells, TER94 accumulated in virogenic stroma (VS) at the early stage of infection and subsequently partially rearranged in the ring zone region. In the virions, TER94 was associated with the nucleocapsids of both BV and occlusion-derived virus (ODV). Inhibition of TER94 ATPase activity significantly reduced viral DNA replication and BV production. Electron/immunoelectron microscopy revealed that inhibition of TER94 resulted in the trapping of nucleocapsids within cytoplasmic vacuoles at the nuclear periphery for BV formation and blockage of ODV envelopment at a premature stage within infected nuclei, which appeared highly consistent with its pivotal function in membrane biogenesis. Further analyses showed that TER94 was recruited to the VS or subnuclear structures through interaction with viral early proteins LEF3 and helicase, whereas inhibition of TER94 activity blocked the proper localization of replication-related viral proteins and morphogenesis of VS, providing an explanation for its role in viral DNA replication. Taken together, these data indicated the crucial functions of TER94 at multiple steps of the baculovirus life cycle, including genome replication, BV formation, and ODV morphogenesis.IMPORTANCE TER94 constitutes an important AAA+ ATPase that associates with diverse cellular processes, including protein quality control, membrane fusion of the Golgi apparatus and endoplasmic reticulum network, nuclear envelope reformation, and DNA replication. To date, little is known regarding the role(s) of TER94 in the baculovirus life cycle. In this study, TER94 was found to play a crucial role in multiple steps of baculovirus infection, including viral DNA replication and BV and ODV formation. Further evidence showed that the membrane fission/fusion function of TER94 is likely to be exploited by baculovirus for virion morphogenesis. Moreover, TER94 could interact with the viral early proteins LEF3 and helicase to transport and further recruit viral replication-related proteins to establish viral replication factories. This study highlights the critical roles of TER94 as an energy-supplying chaperon in the baculovirus life cycle and enriches our knowledge regarding the biological function of this important host factor.
Collapse
|
6
|
Bombyx mori nucleopolyhedrovirus F-like protein Bm14 is a cofactor for GP64-Mediated efficient infection via forming a complex on the envelope of budded virus. Virology 2020; 539:61-68. [DOI: 10.1016/j.virol.2019.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/11/2022]
|
7
|
Dissecting the Cell Entry Pathway of Baculovirus by Single-Particle Tracking and Quantitative Electron Microscopic Analysis. J Virol 2019; 93:JVI.00033-19. [PMID: 30760565 DOI: 10.1128/jvi.00033-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023] Open
Abstract
The budded virus of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infects insect cells through mainly clathrin-mediated endocytosis. However, the cell entry pathway of AcMNPV remains unclear. In this study, by using population-based analysis of single-virus tracking and electron microscopy, we investigated the internalization, fusion behavior, and endocytic trafficking of AcMNPV. AcMNPV internalization into host insect cells was facilitated by actin polymerization and dynamin. After incorporation into early endosomes, the AcMNPV envelope fused with the membranes of early endosome, allowing for nucleocapsid release into the cytoplasm. Microtubules were implicated in the bidirectional and long-range transport of virus-containing endosomes. In addition, microtubule depolymerization reduced the motility of virus-bearing early endosomes, impairing the progression of infection beyond enlarged early endosomes. These findings demonstrated that AcMNPV internalization was facilitated by actin polymerization in a dynamin-dependent manner, and nucleocapsid release occurred in early endosomes in a microtubule-dependent manner. This study provides mechanistic and kinetic insights into AcMNPV infection and enhance our understanding of the infection pathway of baculoviruses.IMPORTANCE Baculoviruses are used widely as environmentally benign pesticides, protein expression systems, and potential mammalian gene delivery vectors. Despite the significant application value, little is known about the cell entry and endocytic trafficking pathways of baculoviruses. In this study, we demonstrated that the alphabaculovirus AcMNPV exhibited actin- and microtubule-dependent transport for nucleocapsid release predominantly from within early endosomes. In contrast to AcMNPV transduction in mammalian cells, its infection in host insect cells is facilitated by actin polymerization for internalization and microtubules for endocytic trafficking within early endosomes, implying that AcMNPV exhibits cell type specificity in the requirement of the cytoskeleton network. In addition, experimental depolymerization of microtubules impaired the progression of infection beyond enlarged early endosomes. This is the first study that dissects the cell entry pathway of baculoviruses in host cells at the single-particle level, which advances our understanding of the early steps of baculovirus entry.
Collapse
|
8
|
The Autographa californica Multiple Nucleopolyhedrovirus ac51 Gene Is Required for Efficient Nuclear Egress of Nucleocapsids and Is Essential for In Vivo Virulence. J Virol 2019; 93:JVI.01923-18. [PMID: 30429334 DOI: 10.1128/jvi.01923-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
Alphabaculoviruses are lepidopteran-specific nucleopolyhedroviruses that replicate within the nucleus; however, the anterograde transport of the nucleocapsids of these viruses, which is an obligatory step for progeny virion production, is not well understood. In the present study, a unique Alphabaculovirus gene with unknown function, namely, the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac51 gene, was found to be required for efficient nuclear egress of AcMNPV nucleocapsids. Our results indicate that ac51 is a late gene, and Ac51 protein was detectable from 24 to 72 h postinfection using an antibody raised against Ac51. Ac51 is distributed in both the cytoplasm and nuclei of infected cells. Upon ac51 deletion, budded virion (BV) production by 96 h posttransfection was reduced by approximately 1,000-fold compared with that of wild-type AcMNPV. Neither viral DNA synthesis nor viral gene expression was affected. Ac51 was demonstrated to be a nucleocapsid protein of BVs, and ac51 deletion did not interrupt nucleocapsid assembly and occlusion-derived virion (ODV) formation. However, BV production in the supernatants of transfected cells during a viral life cycle was substantially decreased when ac51 was deleted. Further analysis showed that, compared with wild-type AcMNPV, ac51 deletion decreased nucleocapsid egress, while the numbers of nucleocapsids in the nuclei were comparable. Deletion of ac51 also eliminated the virulence of AcMNPV in vivo Taken together, our results support the conclusion that ac51 plays an important role in the nuclear egress of nucleocapsids during BV formation and is essential for the in vivo virulence of AcMNPV.
Collapse
|
9
|
Ohkawa T, Welch MD. Baculovirus Actin-Based Motility Drives Nuclear Envelope Disruption and Nuclear Egress. Curr Biol 2018; 28:2153-2159.e4. [PMID: 30008331 DOI: 10.1016/j.cub.2018.05.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/30/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
Abstract
Viruses that replicate in the host cell nucleus face challenges in usurping cellular pathways to enable passage through the nuclear envelope [1]. Baculoviruses are enveloped, double-stranded DNA viruses that infect lepidopteran insects and are tools for protein expression, cell transduction, and pest management [2-4]. The type species Autographa californica M nucleopolyhedrovirus (AcMNPV) shares with other pathogens an ability to assemble host actin monomers (G-actin) into actin filaments (F-actin) to drive motility [5]. During early infection, actin-based motility in the cytoplasm speeds AcMNPV transit to the nucleus and passage through nuclear pores, enabling nuclear ingress [6, 7]. During late infection, AcMNPV assembles F-actin within the nucleus [8], which is essential for virus production [9, 10]. However, the function of nuclear F-actin is poorly understood [11], and its mechanistic role in AcMNPV infection was unknown. We show that AcMNPV mobilizes actin within the nucleus to promote egress. AcMNPV nucleocapsids exhibit intranuclear actin-based motility, mediated by the viral protein P78/83 and the host Arp2/3 complex. Viral motility drives transit to the nuclear periphery and is required for viruses to enter protrusions of the nuclear envelope. Moreover, actin polymerization is necessary for viral disruption of nuclear envelope integrity during egress. In the cytoplasm, viruses use actin-based motility to reach the plasma membrane to enable budding. Our results demonstrate that pathogens can harness actin polymerization to disrupt the nuclear envelope. Employing actin for nuclear envelope disruption may reflect viral appropriation of normal functions of nuclear actin in nuclear envelope integrity, stability, and remodeling.
Collapse
Affiliation(s)
- Taro Ohkawa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
10
|
Autographa californica Nucleopolyhedrovirus AC141 (Exon0), a Potential E3 Ubiquitin Ligase, Interacts with Viral Ubiquitin and AC66 To Facilitate Nucleocapsid Egress. J Virol 2018; 92:JVI.01713-17. [PMID: 29142135 DOI: 10.1128/jvi.01713-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022] Open
Abstract
During the infection cycle of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), two forms of virions are produced, budded virus (BV) and occlusion-derived virus (ODV). Nucleocapsids that form BV have to egress from the nucleus, whereas nucleocapsids that form ODV remain inside the nucleus. The molecular mechanism that determines whether nucleocapsids remain inside or egress from the nucleus is unknown. AC141 (a predicted E3 ubiquitin ligase) and viral ubiquitin (vUbi) have both been shown to be required for efficient BV production. In this study, it was hypothesized that vUbi interacts with AC141, and in addition, that this interaction was required for BV production. Deletion of both ac141 and vubi restricted viral infection to a single cell, and BV production was completely eliminated. AC141 was ubiquitinated by either vUbi or cellular Ubi, and this interaction was required for optimal BV production. Nucleocapsids in BV, but not ODV, were shown to be specifically ubiquitinated by vUbi, including a 100-kDa protein, as well as high-molecular-weight conjugates. The viral ubiquitinated 100-kDa BV-specific nucleocapsid protein was identified as AC66, which is known to be required for BV production and was shown by coimmunoprecipitation and mass spectrometry to interact with AC141. Confocal microscopy also showed that AC141, AC66, and vUbi interact at the nuclear periphery. These results suggest that ubiquitination of nucleocapsid proteins by vUbi functions as a signal to determine if a nucleocapsid will egress from the nucleus and form BV or remain in the nucleus to form ODV.IMPORTANCE Baculoviruses produce two types of virions called occlusion-derived virus (ODV) and budded virus (BV). ODVs are required for oral infection, whereas BV enables the systemic spread of virus to all host tissues, which is critical for killing insects. One of the important steps for BV production is the export of nucleocapsids out of the nucleus. This study investigated the molecular mechanisms that enable the selection of nucleocapsids for nuclear export instead of being retained within the nucleus, where they would become ODV. Our data show that ubiquitination, a universal cellular process, specifically tags nucleocapsids of BV, but not those found in ODV, using a virus-encoded ubiquitin (vUbi). Therefore, ubiquitination may be the molecular signal that determines if a nucleocapsid is destined to form a BV, thus ensuring lethal infection of the host.
Collapse
|
11
|
Roles of Cellular NSF Protein in Entry and Nuclear Egress of Budded Virions of Autographa californica Multiple Nucleopolyhedrovirus. J Virol 2017; 91:JVI.01111-17. [PMID: 28747507 DOI: 10.1128/jvi.01111-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/20/2017] [Indexed: 02/03/2023] Open
Abstract
In eukaryotic cells, the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) proteins comprise the minimal machinery that triggers fusion of transport vesicles with their target membranes. Comparative studies revealed that genes encoding the components of the SNARE system are highly conserved in yeast, insect, and human genomes. Upon infection of insect cells by the virus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the transcript levels of most SNARE genes initially were upregulated. We found that overexpression of dominant-negative (DN) forms of NSF or knockdown of the expression of NSF, the key regulator of the SNARE system, significantly affected infectious AcMNPV production. In cells expressing DN NSF, entering virions were trapped in the cytoplasm or transported to the nucleus with low efficiency. The presence of DN NSF also moderately reduced trafficking of the viral envelope glycoprotein GP64 to the plasma membrane but dramatically inhibited production of infectious budded virions (BV). Transmission electron microscopy analysis of infections in cells expressing DN NSF revealed that progeny nucleocapsids were retained in a perinuclear space surrounded by inner and outer nuclear membranes. Several baculovirus conserved (core) proteins (Ac76, Ac78, GP41, Ac93, and Ac103) that are important for infectious budded virion production were found to associate with NSF, and NSF was detected within the assembled BV. Together, these data indicate that the cellular SNARE system is involved in AcMNPV infection and that NSF is required for efficient entry and nuclear egress of budded virions of AcMNPV.IMPORTANCE Little is known regarding the complex interplay between cellular factors and baculoviruses during viral entry and egress. Here, we examined the cellular SNARE system, which mediates the fusion of vesicles in healthy cells, and its relation to baculovirus infection. Using a DN approach and RNA interference knockdown, we demonstrated that a general disruption of the SNARE machinery significantly inhibited the production of infectious BV of AcMNPV. The presence of a DN NSF protein resulted in low-efficiency entry of BV and the retention of progeny nucleocapsids in the perinuclear space during egress. Combined with these effects, we also found that several conserved (core) baculovirus proteins closely associate with NSF, and these results suggest their involvement in the egress of BV. Our findings are the first to demonstrate that the SNARE system is required for efficient entry of BV and nuclear egress of progeny nucleocapsids of baculoviruses.
Collapse
|
12
|
Comparative Subcellular Proteomics Analysis of Susceptible and Near-isogenic Resistant Bombyx mori (Lepidoptera) Larval Midgut Response to BmNPV infection. Sci Rep 2017; 7:45690. [PMID: 28361957 PMCID: PMC5374506 DOI: 10.1038/srep45690] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/03/2017] [Indexed: 02/01/2023] Open
Abstract
The molecular mechanism of silkworm resistance to Bombyx mori nucleopolyhedrovirus (BmNPV) infection remains largely unclear. Accumulating evidence suggests that subcellular fractionation combined with proteomics is an ideal technique to analyse host antiviral mechanisms. To clarify the anti-BmNPV mechanism of the silkworm, the near-isogenic line BC9 (resistant strain) and the recurrent parent P50 (susceptible strain) were used in a comparative subcellular proteomics study. Two-dimensional gel electrophoresis (2-DE) combined with mass spectrometry (MS) was conducted on proteins extracted from the cytosol, mitochondria, and microsomes of BmNPV-infected and control larval midguts. A total of 87 proteins were successfully identified from the three subcellular fractions. These proteins were primarily involved in energy metabolism, protein metabolism, signalling pathways, disease, and transport. In particular, disease-relevant proteins were especially changed in microsomes. After infection with BmNPV, differentially expressed proteins (DEPs) primarily appeared in the cytosolic and microsomal fractions, which indicated that these two fractions might play a more important role in the response to BmNPV infection. After removing genetic background and individual immune stress response proteins, 16 proteins were identified as potentially involved in repressing BmNPV infection. Of these proteins, the differential expression patterns of 8 proteins according to reverse transcription quantitative PCR (RT-qPCR) analyses were consistent with the 2-DE results.
Collapse
|
13
|
Trichoplusia ni Kinesin-1 Associates with Autographa californica Multiple Nucleopolyhedrovirus Nucleocapsid Proteins and Is Required for Production of Budded Virus. J Virol 2016; 90:3480-95. [PMID: 26763996 DOI: 10.1128/jvi.02912-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/08/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The mechanism by which nucleocapsids of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) egress from the nucleus to the plasma membrane, leading to the formation of budded virus (BV), is not known. AC141 is a nucleocapsid-associated protein required for BV egress and has previously been shown to be associated with β-tubulin. In addition, AC141 and VP39 were previously shown by fluorescence resonance energy transfer by fluorescence lifetime imaging to interact directly with the Drosophila melanogaster kinesin-1 light chain (KLC) tetratricopeptide repeat (TPR) domain. These results suggested that microtubule transport systems may be involved in baculovirus nucleocapsid egress and BV formation. In this study, we investigated the role of lepidopteran microtubule transport using coimmunoprecipitation, colocalization, yeast two-hybrid, and small interfering RNA (siRNA) analyses. We show that nucleocapsid AC141 associates with the lepidopteran Trichoplusia ni KLC and kinesin-1 heavy chain (KHC) by coimmunoprecipitation and colocalization. Kinesin-1, AC141, and microtubules colocalized predominantly at the plasma membrane. In addition, the nucleocapsid proteins VP39, FP25, and BV/ODV-C42 were also coimmunoprecipitated with T. ni KLC. Direct analysis of the role of T. ni kinesin-1 by downregulation of KLC by siRNA resulted in a significant decrease in BV production. Nucleocapsids labeled with VP39 fused with three copies of the mCherry fluorescent protein also colocalized with microtubules. Yeast two-hybrid analysis showed no evidence of a direct interaction between kinesin-1 and AC141 or VP39, suggesting that either other nucleocapsid proteins or adaptor proteins may be required. These results further support the conclusion that microtubule transport is required for AcMNPV BV formation. IMPORTANCE In two key processes of the replication cycle of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), nucleocapsids are transported through the cell. These include (i) entry of budded virus (BV) into the host cell and (ii) egress and budding of nucleocapsids newly produced from the plasma membrane. Prior studies have shown that the entry of nucleocapsids involves the polymerization of actin to propel nucleocapsids to nuclear pores and entry into the nucleus. For the spread of infection, progeny viruses must rapidly exit the infected cells, but the mechanism by which AcMNPV nucleocapsids traverse the cytoplasm is unknown. In this study, we examined whether nucleocapsids interact with lepidopteran kinesin-1 motor molecules and are potentially carried as cargo on microtubules to the plasma membrane in AcMNPV-infected cells. This study indicates that microtubule transport is utilized for the production of budded virus.
Collapse
|
14
|
Egress of budded virions of Autographa californica nucleopolyhedrovirus does not require activity of Spodoptera frugiperda HSP/HSC70 chaperones. Virus Res 2014; 192:1-5. [DOI: 10.1016/j.virusres.2014.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 11/17/2022]
|
15
|
Li XF, Yu H, Zhang CX, Chen H, Wang D. Helicoverpa armigera nucleopolyhedrovirus orf81 is a late gene involved in budded virus production. Arch Virol 2014; 159:2011-22. [PMID: 24623087 DOI: 10.1007/s00705-014-2034-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 02/22/2014] [Indexed: 10/25/2022]
Abstract
Helicoverpa armigera nucleopolyhedrovirus (HearNPV) orf81 (ha81) is a core gene that is highly conserved in all lepidopteran baculoviruses. Its homolog in the group I baculoviruses, ac93, has been shown to be essential for the nuclear egress of nucleocapsids, but its role in the group II HearNPV life cycle remains unknown. In this study, an ha81 mutant bacmid was constructed by homologous recombination to investigate the role of HA81 in the viral life cycle. Quantitative PCR analysis showed that viral DNA replication was unaffected in the absence of ha81. However, the budded virus production of the ha81-null virus was completely blocked. Transmission electron microscopic analysis showed that ha81 is required for the egress of nucleocapsids from the nucleus. Analysis of the time course of transcription and expression revealed that ha81 is a late gene. An immunofluorescence analysis showed that the protein mainly localizes in the cytoplasm. To understand whether the transcription of other genes is affected by the deletion of ha81, the transcription of several well-characterized viral genes was investigated in the ha81-knockout HearNPV mutant. No obvious changes were observed at the transcription level, except for the odv-e25 gene downstream from ha81. In conclusion, these data indicate that ha81 is a late gene that is critical for budded virus production but is involved in neither viral DNA replication nor gene transcription.
Collapse
Affiliation(s)
- Xiao-Feng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Superinfection exclusion in alphabaculovirus infections is concomitant with actin reorganization. J Virol 2014; 88:3548-56. [PMID: 24403587 DOI: 10.1128/jvi.02974-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Superinfection exclusion is the ability of an established virus to interfere with a second virus infection. This effect was studied in vitro during lepidopteran-specific nucleopolyhedrovirus (genus Alphabaculovirus, family Baculoviridae) infection. Homologous interference was detected in Sf9 cells sequentially infected with two genotypes of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), each one expressing a different fluorescent protein. This was a progressive process in which a sharp decrease in the signs of infection caused by the second virus was observed, affecting not only the number of coinfected cells observed, but also the level of protein expression due to the second virus infection. Superinfection exclusion was concurrent with reorganization of cytoplasmic actin to F-actin in the nucleus, followed by budded virus production (16 to 20 h postinfection). Disruption of actin filaments by cell treatment with cytochalasin D resulted in a successful second infection. Protection against heterologous nucleopolyhedrovirus infection was also demonstrated, as productive infection of Sf9 cells by Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) was inhibited by prior infection with AcMNPV, and vice versa. Finally, coinfected cells were observed following inoculation with mixtures of these two phylogenetically distant nucleopolyhedroviruses--AcMNPV and SfMNPV--but at a frequency lower than predicted, suggesting interspecific virus interference during infection or replication. The temporal window of infection is likely necessary to maintain genotypic diversity that favors virus survival but also permits dual infection by heterospecific alphabaculoviruses. IMPORTANCE Infection of a cell by more than one virus particle implies sharing of cell resources. We show that multiple infection, by closely related or distantly related baculoviruses, is possible only during a brief window of time that allows additional virus particles to enter an infected cell over a period of ca. 16 h but then blocks multiple infections as newly generated virus particles begin to leave the infected cell. This temporal window has two important consequences. First, it allows multiple genotypes to almost simultaneously infect cells within the host, thus generating genetically diverse virus particles for transmission. Second, it provides a mechanism by which different viruses replicating in the same cell nucleus can exchange genetic material, so that the progeny viruses may be a mosaic of genes from each of the parental viruses. This opens a completely new avenue of research into the evolution of these insect pathogens.
Collapse
|
17
|
Nguyen Q, Nielsen LK, Reid S. Genome scale transcriptomics of baculovirus-insect interactions. Viruses 2013; 5:2721-47. [PMID: 24226166 PMCID: PMC3856412 DOI: 10.3390/v5112721] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 01/25/2023] Open
Abstract
Baculovirus-insect cell technologies are applied in the production of complex proteins, veterinary and human vaccines, gene delivery vectors' and biopesticides. Better understanding of how baculoviruses and insect cells interact would facilitate baculovirus-based production. While complete genomic sequences are available for over 58 baculovirus species, little insect genomic information is known. The release of the Bombyx mori and Plutella xylostella genomes, the accumulation of EST sequences for several Lepidopteran species, and especially the availability of two genome-scale analysis tools, namely oligonucleotide microarrays and next generation sequencing (NGS), have facilitated expression studies to generate a rich picture of insect gene responses to baculovirus infections. This review presents current knowledge on the interaction dynamics of the baculovirus-insect system' which is relatively well studied in relation to nucleocapsid transportation, apoptosis, and heat shock responses, but is still poorly understood regarding responses involved in pro-survival pathways, DNA damage pathways, protein degradation, translation, signaling pathways, RNAi pathways, and importantly metabolic pathways for energy, nucleotide and amino acid production. We discuss how the two genome-scale transcriptomic tools can be applied for studying such pathways and suggest that proteomics and metabolomics can produce complementary findings to transcriptomic studies.
Collapse
Affiliation(s)
- Quan Nguyen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | | | | |
Collapse
|
18
|
Zhang X, Chen M, Ma X, Zhao X, Wang J, Shao H, Song Q, Stanley D. Suppression of AcMNPV replication by adf and thymosin protein up-regulation in a new testis cell line, Ha-shl-t. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 82:158-171. [PMID: 23315790 DOI: 10.1002/arch.21082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Host cytoskeletons facilitate the entry, replication, and egress of viruses because cytoskeletons are essential for viral survival. One mechanism of resisting viral infections involves regulating cytoskeletal polymerization/depolymerization. However, the molecular mechanisms of regulating these changes in cytoskeleton to suppress viral replication remain unclear. We established a cell line (named Ha-shl-t) from the pupal testis of Helicoverpa armigera (Lepidoptera: Noctuidae). The new testis cell line suppresses Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) replication via disassembly of cytoskeleton. Up-regulation of thymosin (actin disassembling factor) and adf (actin depolymerizing factor) reduces F-actin. Silencing thymosin or adf or treating cells with the F-actin stabilizer phalloidin led to increased AcMNPV replication, while treating cells with an F-actin assembly inhibitor cytochalasin B decreased viral replication. We infer that Ha-shl-t cells utilize F-actin depolymerization to suppress AcMNPV replication by up-regulating thymosin and adf. We propose Ha-shl-t as a model system for investigating cytoskeletal regulation in antiviral action and testicular biology generally.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Monteiro F, Carinhas N, Carrondo MJT, Bernal V, Alves PM. Toward system-level understanding of baculovirus-host cell interactions: from molecular fundamental studies to large-scale proteomics approaches. Front Microbiol 2012; 3:391. [PMID: 23162544 PMCID: PMC3494084 DOI: 10.3389/fmicb.2012.00391] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/23/2012] [Indexed: 01/16/2023] Open
Abstract
Baculoviruses are insect viruses extensively exploited as eukaryotic protein expression vectors. Molecular biology studies have provided exciting discoveries on virus-host interactions, but the application of omic high-throughput techniques on the baculovirus-insect cell system has been hampered by the lack of host genome sequencing. While a broader, systems-level analysis of biological responses to infection is urgently needed, recent advances on proteomic studies have yielded new insights on the impact of infection on the host cell. These works are reviewed and critically assessed in the light of current biological knowledge of the molecular biology of baculoviruses and insect cells.
Collapse
Affiliation(s)
- Francisca Monteiro
- Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica Oeiras, Portugal ; Animal Cell Technology Unit, Instituto de Tecnologia Quimica e Biológica Oeiras, Portugal
| | | | | | | | | |
Collapse
|
20
|
Shen H, Wang R, Han Q, Zhang W, Nin B, Zhou Y, Shao S, Yao Q, Chen K, Liu X. Characterization of Bombyx mori nucleopolyhedrovirus Bm17. J Basic Microbiol 2012; 53:808-14. [PMID: 22961820 DOI: 10.1002/jobm.201200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 05/20/2012] [Indexed: 11/07/2022]
Abstract
Open reading frame17 (Bm17) of Bombyx mori nucleopolyhedrovirus is a highly conserved gene in lepidopteran nucleopolyhedroviruses, suggesting that it performs an important role in the virus life cycle whose function is unknown. In this report, we describe the characterization of Bm17. Reversed transcriptive-PCR (RT-PCR) and Western blot analysis demonstrated that Bm17 was expressed as a late gen. Immunofluorescence analysis by confocal microscopy showed that BM17 protein was localized on cytoplasm and nucleus of infected cells. These results show that BM17 was a late protein localized in cytoplasm and nucleus.
Collapse
Affiliation(s)
- Hongxing Shen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China; School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dickison VL, Willis LG, Sokal NR, Theilmann DA. Deletion of AcMNPV ac146 eliminates the production of budded virus. Virology 2012; 431:29-39. [PMID: 22682215 DOI: 10.1016/j.virol.2012.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/02/2012] [Accepted: 05/04/2012] [Indexed: 12/22/2022]
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac146 is a highly conserved gene in the Alpha- and Betabaculovirus genera that has an unknown function. Northern blot analysis and transcript mapping showed that ac146 is transcribed at late times post infection as a 1.2 kb mRNA. To determine the role of ac146 in the baculovirus life cycle ac146 knock out viruses were constructed. Transfection and plaque assays showed that all the ac146 deletions produced a single cell phenotype indicating that no infectious budded virus (BV) was produced, however occlusion bodies were formed. The lack of BV production was confirmed by viral titration utilizing both qPCR and TCID₅₀. Analysis of BV and occlusion derived virus (ODV) revealed that AC146 is associated with both forms of the virus and is modified specifically in ODV. This study therefore demonstrates that AC146 is a late virion associated protein and is essential for the viral life cycle.
Collapse
Affiliation(s)
- Virginia L Dickison
- Irving K. Barber School of Arts and Sciences, Unit 2 Biology, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada
| | | | | | | |
Collapse
|
22
|
BM61 of Bombyx mori nucleopolyhedrovirus: its involvement in the egress of nucleocapsids from the nucleus. FEBS Lett 2012; 586:990-5. [PMID: 22569252 DOI: 10.1016/j.febslet.2011.12.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/23/2011] [Indexed: 12/31/2022]
Abstract
All lepidopteran baculovirus genomes sequenced encode a homolog of the Bombyx mori nucleopolyhedrovirus orf61 gene (Bm61). To determine the role of Bm61 in the baculoviral life cycle, we constructed a Bm61 knockout virus and characterized it in cells. We observed that the Bm61 deletion bacmid led to a defect in production of infectious budded virus (BV). Quantitative PCR analysis of BV in the media culturing the transfected cell indicated that BV was not produced due to Bm61 deletion. Electron microscope analysis showed that in the knockout of Bm61, nucleocapsids were not transported from the nucleus to the cytoplasm. From these results we concluded that BM61 is required in the BV pathway for the egress of nucleocapsids from the nucleus to the cytoplasm.
Collapse
|
23
|
Nouri MZ, Hiraga S, Yanagawa Y, Sunohara Y, Matsumoto H, Komatsu S. Characterization of calnexin in soybean roots and hypocotyls under osmotic stress. PHYTOCHEMISTRY 2012; 74:20-9. [PMID: 22169501 DOI: 10.1016/j.phytochem.2011.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 10/27/2011] [Accepted: 11/15/2011] [Indexed: 05/31/2023]
Abstract
Calnexin is an endoplasmic reticulum-localized molecular chaperone protein which is involved in folding and quality control of proteins. To evaluate the expression of calnexin in soybean seedlings under osmotic stress, immunoblot analysis was performed using a total membrane protein fraction. Calnexin constantly accumulated at an early growth stage of soybean under normal growth conditions. Expression of this protein decreased in 14-day-old soybean roots when treated with 10% polyethylene glycol for 2 days. Other abiotic stresses such as drought, salinity, cold as well as abscisic acid treatment, similarly reduced accumulation of calnexin and this reduction was correlated with reduction in root length in soybean seedlings under abiotic stresses. When compared between soybean and rice, calnexin expression was not changed in rice under abiotic stresses. Using Flag-tagged calnexin, a 70 kDa heat shock cognate protein was identified as an interacting protein. These results suggest that osmotic or other abiotic stresses highly reduce accumulation of the calnexin protein in developing soybean roots. It is also suggested that calnexin interacts with a 70 kDa heat shock cognate protein and probably functions as molecular chaperone in soybean.
Collapse
Affiliation(s)
- Mohammad-Zaman Nouri
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Fan H, Ye Y, Luo Y, Tong T, Yan G, Liao M. Quantitative Proteomics Using Stable Isotope Labeling with Amino Acids in Cell Culture Reveals Protein and Pathway Regulation in Porcine Circovirus Type 2 Infected PK-15 Cells. J Proteome Res 2011; 11:995-1008. [DOI: 10.1021/pr200755d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huiying Fan
- MOA Key Laboratory for Animal Vaccine Development, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642,
China
| | - Yu Ye
- MOA Key Laboratory for Animal Vaccine Development, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642,
China
| | - Yongwen Luo
- MOA Key Laboratory for Animal Vaccine Development, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642,
China
| | - Tiezhu Tong
- Huizhou Entry-Exit Inspection and Quarantine Bureau, Huizhou 516001, China
| | - Guangrong Yan
- Institute of Life and Health
Engineering and National Engineering and Research Center for Genetic
Medicine, Jinan University, Guangzhou 510632,
China
| | - Ming Liao
- MOA Key Laboratory for Animal Vaccine Development, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642,
China
| |
Collapse
|
25
|
Cellular VPS4 is required for efficient entry and egress of budded virions of Autographa californica multiple nucleopolyhedrovirus. J Virol 2011; 86:459-72. [PMID: 22072775 DOI: 10.1128/jvi.06049-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane budding is essential for the egress of many enveloped viruses, and this process shares similarities with the biogenesis of multivesicular bodies (MVBs). In eukaryotic cells, the budding of intraluminal vesicles (IVLs) is mediated by the endosomal sorting complex required for transport (ESCRT) machinery and some viruses require ESCRT machinery components or functions to bud from host cells. Baculoviruses, such as Autographa californica multiple nucleopolyhedrovirus (AcMNPV), enter host cells by clathrin-mediated endocytosis. Viral DNA replication and nucleocapsid assembly occur within the nucleus. Some progeny nucleocapsids are subsequently trafficked to, and bud from, the plasma membrane, forming budded virions (BV). To determine whether the host ESCRT machinery is important or necessary for AcMNPV replication, we cloned a cDNA of Spodoptera frugiperda VPS4, a key regulator for disassembly and recycling of ESCRT III. We then examined viral infection and budding in the presence of wild-type (WT) or dominant negative (DN) forms of VPS4. First, we used a viral complementation system, in combination with fluorescent tags, to examine the effects of transiently expressed WT or DN VPS4 on viral entry. We found that dominant negative VPS4 substantially inhibited virus entry. Entering virus was observed within aberrant compartments containing the DN VPS4 protein. We next used recombinant bacmids expressing WT or DN VPS4 proteins to examine virus egress. We found that production of infectious AcMNPV BV was substantially reduced by expression of DN VPS4 but not by WT VPS4. Together, these results indicate that a functional VPS4 is necessary for efficient AcMNPV BV entry into, and egress from, insect cells.
Collapse
|
26
|
Direct interaction of baculovirus capsid proteins VP39 and EXON0 with kinesin-1 in insect cells determined by fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy. J Virol 2011; 86:844-53. [PMID: 22072745 DOI: 10.1128/jvi.06109-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) replicates in the nucleus of insect cells to produce nucleocapsids, which are transported from the nucleus to the plasma membrane for budding through GP64-enriched areas to form budded viruses. However, little is known about the anterograde trafficking of baculovirus nucleocapsids in insect cells. Preliminary confocal scanning laser microscopy studies showed that enhanced green fluorescent protein (EGFP)-tagged nucleocapsids and capsid proteins aligned and colocalized with the peripheral microtubules of virus-infected insect cells. A colchicine inhibition assay of virus-infected insect cells showed a significant reduction in budded virus production, providing further evidence for the involvement of microtubules and suggesting a possible role of kinesin in baculovirus anterograde trafficking. We investigated the interaction between AcMNPV nucleocapsids and kinesin-1 with fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) and show for the first time that AcMNPV capsid proteins VP39 and EXON0, but not Orf1629, interact with the tetratricopeptide repeat (TPR) domain of kinesin. The excited-state fluorescence lifetime of EGFP fused to VP39 or EXON0 was quenched from 2.4 ± 1 ns to 2.1 ± 1 ns by monomeric fluorescent protein (mDsRed) fused to TPR (mDsRed-TPR). However, the excited-state fluorescence lifetime of an EGFP fusion of Orf1629 remained unquenched by mDsRed-TPR. These data indicate that kinesin-1 plays an important role in the anterograde trafficking of baculovirus in insect cells.
Collapse
|
27
|
Immediate-early protein ME53 forms foci and colocalizes with GP64 and the major capsid protein VP39 at the cell membranes of Autographa californica multiple nucleopolyhedrovirus-infected cells. J Virol 2011; 85:9696-707. [PMID: 21775466 DOI: 10.1128/jvi.00833-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
me53 is an immediate-early/late gene found in all lepidopteran baculoviruses sequenced to date. Deletion of me53 results in a greater-than-1,000-fold reduction in budded-virus production in tissue culture (J. de Jong, B. M. Arif, D. A. Theilmann, and P. J. Krell, J. Virol. 83:7440-7448, 2009). We investigated the localization of ME53 using an ME53 construct fused to green fluorescent protein (GFP). ME53:GFP adopted a primarily cytoplasmic distribution at early times postinfection and a primarily nuclear distribution at late times postinfection. Additionally, at late times ME53:GFP formed distinct foci at the cell periphery. These foci colocalized with the major envelope fusion protein GP64 and frequently with VP39 capsid protein, suggesting that these cell membrane regions may represent viral budding sites. Deletion of vp39 did not influence the distribution of ME53:GFP; however, deletion of gp64 abolished ME53:GFP foci at the cell periphery, implying an association between ME53 and GP64. Despite the association of ME53 and GP64, ME53 fractionated with the nucleocapsid only after budded-virus fractionation. Together these findings suggest that ME53 may be providing a scaffold that bridges the viral envelope and nucleocapsid.
Collapse
|
28
|
Baculovirus VP80 protein and the F-actin cytoskeleton interact and connect the viral replication factory with the nuclear periphery. J Virol 2011; 85:5350-62. [PMID: 21450830 DOI: 10.1128/jvi.00035-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recently, we showed that the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) VP80 protein is essential for the formation of both virion types, budded virus (BV) and occlusion-derived virus (ODV). Deletion of the vp80 gene did not affect assembly of nucleocapsids. However, these nucleocapsids were not able to migrate from the virogenic stroma to the nuclear periphery. In the current paper, we constructed a baculovirus recombinant with enhanced-green fluorescent protein (EGFP)-tagged VP80, allowing visualization of the VP80 distribution pattern during infection. In baculovirus-infected cells, the EGFP-VP80 protein is entirely localized in nuclei, adjacent to the virus-triggered F-actin scaffold that forms a highly organized three-dimensional network connecting the virogenic stroma physically with the nuclear envelope. Interaction between VP80 and host actin was confirmed by coimmunoprecipitation. We further showed that VP80 is associated with the nucleocapsid fraction of both BVs and ODVs, typically at one end of the nucleocapsids. In addition, the presence of sequence motifs with homology to invertebrate paramyosin proteins strongly supports a role for VP80 in the polar transport of nucleocapsids to the periphery of the nucleus on their way to the plasma membrane to form BVs and for assembly in the nuclear periphery to form ODVs for embedding in viral occlusion bodies.
Collapse
|
29
|
Ohkawa T, Volkman LE, Welch MD. Actin-based motility drives baculovirus transit to the nucleus and cell surface. ACTA ACUST UNITED AC 2010; 190:187-95. [PMID: 20660627 PMCID: PMC2930276 DOI: 10.1083/jcb.201001162] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This virus takes a less-travelled cytoskeletal road both to reach its replication site in the nucleus and to get back to the plasma membrane to escape the host cell. Most viruses move intracellularly to and from their sites of replication using microtubule-based mechanisms. In this study, we show that nucleocapsids of the baculovirus Autographa californica multiple nucleopolyhedrovirus undergo intracellular motility driven by actin polymerization. Motility requires the viral P78/83 capsid protein and the host Arp2/3 complex. Surprisingly, the virus directs two sequential and coordinated phases of actin-based motility. Immediately after cell entry, motility enables exploration of the cytoplasm and collision with the nuclear periphery, speeding nuclear entry and the initiation of viral gene expression. Nuclear entry itself requires transit through nuclear pore complexes. Later, after the onset of early gene expression, motility is required for accumulation of a subpopulation of nucleocapsids in the tips of actin-rich surface spikes. Temporal coordination of actin-based nuclear and surface translocation likely enables rapid transmission to neighboring cells during infection in insects and represents a distinctive evolutionary strategy for overcoming host defenses.
Collapse
Affiliation(s)
- Taro Ohkawa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
30
|
Peng K, Wu M, Deng F, Song J, Dong C, Wang H, Hu Z. Identification of protein-protein interactions of the occlusion-derived virus-associated proteins of Helicoverpa armigera nucleopolyhedrovirus. J Gen Virol 2009; 91:659-70. [PMID: 19906939 DOI: 10.1099/vir.0.017103-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to identify protein-protein interactions among the components of the occlusion-derived virus (ODV) of Helicoverpa armigera nucleopolyhedrovirus (HearNPV), a group II alphabaculovirus in the family Baculoviridae. To achieve this, 39 selected genes of potential ODV structural proteins were cloned and expressed in the Gal4 yeast two-hybrid (Y2H) system. The direct-cross Y2H assays identified 22 interactions comprising 13 binary interactions [HA9-ODV-EC43, ODV-E56-38K, ODV-E56-PIF3, LEF3-helicase, LEF3-alkaline nuclease (AN), GP41-38K, GP41-HA90, 38K-PIF3, 38K-PIF2, VP80-HA100, ODV-E66-PIF3, ODV-E66-PIF2 and PIF3-PIF2] and nine self-associations (IE1, HA44, LEF3, HA66, GP41, CG30, 38K, PIF3 and P24). Five of these interactions - LEF3-helicase and LEF3-AN, and the self-associations of IE1, LEF3 and 38K - have been reported previously in Autographa californica multiple nucleopolyhedrovirus. As HA44 and HA100 were two newly identified ODV proteins of group II viruses, their interactions were further confirmed. The self-association of HA44 was verified with a His pull-down assay and the interaction of VP80-HA100 was confirmed by a co-immunoprecipitation assay. A summary of the protein-protein interactions of baculoviruses reported so far, comprising 68 interactions with 45 viral proteins and five host proteins, is presented, which will facilitate our understanding of the molecular mechanisms of baculovirus infection.
Collapse
Affiliation(s)
- Ke Peng
- State Key Laboratory of Virology and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Cohen DPA, Marek M, Davies BG, Vlak JM, van Oers MM. Encyclopedia of Autographa californica nucleopolyhedrovirus genes. Virol Sin 2009. [DOI: 10.1007/s12250-009-3059-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|