1
|
Bosso M, Stürzel CM, Kmiec D, Badarinarayan SS, Braun E, Ito J, Sato K, Hahn BH, Sparrer KMJ, Sauter D, Kirchhoff F. An additional NF-κB site allows HIV-1 subtype C to evade restriction by nuclear PYHIN proteins. Cell Rep 2021; 36:109735. [PMID: 34551301 PMCID: PMC8505707 DOI: 10.1016/j.celrep.2021.109735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/23/2021] [Accepted: 08/26/2021] [Indexed: 10/28/2022] Open
Abstract
Subtype C is the most prevalent clade of human immunodeficiency virus type 1 (HIV-1) worldwide. The reasons for this are poorly understood. Here, we demonstrate that a characteristic additional third nuclear factor κB (NF-κB) binding site in the long terminal repeat (LTR) promoter allows subtype C HIV-1 strains to evade restriction by nuclear PYHIN proteins, which sequester the transcription factor Sp1. Further, other LTR alterations are responsible for rare PYHIN resistance of subtype B viruses. Resistance-conferring mutations generally reduce the dependency of HIV-1 on Sp1 for virus production and render LTR transcription highly responsive to stimulation by NF-κB/p65. A third NF-κB binding site increases infectious virus yield in primary CD4+ T cells in an γ-interferon-inducible protein 16 (IFI16)-dependent manner. Comprehensive sequence analyses suggest that the frequency of circulating PYHIN-resistant HIV-1 strains is increasing. Our finding that an additional NF-κB binding site in the LTR confers resistance to nuclear PYHIN proteins helps to explain the dominance of clade C HIV-1 strains.
Collapse
Affiliation(s)
- Matteo Bosso
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE5 9RS, UK
| | - Smitha Srinivasachar Badarinarayan
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Elisabeth Braun
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | | | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
2
|
Makinde J, Nduati EW, Freni-Sterrantino A, Streatfield C, Kibirige C, Dalel J, Black SL, Hayes P, Macharia G, Hare J, McGowan E, Abel B, King D, Joseph S, Hunter E, Sanders EJ, Price M, Gilmour J. A Novel Sample Selection Approach to Aid the Identification of Factors That Correlate With the Control of HIV-1 Infection. Front Immunol 2021; 12:634832. [PMID: 33777023 PMCID: PMC7991997 DOI: 10.3389/fimmu.2021.634832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Individuals infected with HIV display varying rates of viral control and disease progression, with a small percentage of individuals being able to spontaneously control infection in the absence of treatment. In attempting to define the correlates associated with natural protection against HIV, extreme heterogeneity in the datasets generated from systems methodologies can be further complicated by the inherent variability encountered at the population, individual, cellular and molecular levels. Furthermore, such studies have been limited by the paucity of well-characterised samples and linked epidemiological data, including duration of infection and clinical outcomes. To address this, we selected 10 volunteers who rapidly and persistently controlled HIV, and 10 volunteers each, from two control groups who failed to control (based on set point viral loads) from an acute and early HIV prospective cohort from East and Southern Africa. A propensity score matching approach was applied to control for the influence of five factors (age, risk group, virus subtype, gender, and country) known to influence disease progression on causal observations. Fifty-two plasma proteins were assessed at two timepoints in the 1st year of infection. We independently confirmed factors known to influence disease progression such as the B*57 HLA Class I allele, and infecting virus Subtype. We demonstrated associations between circulating levels of MIP-1α and IL-17C, and the ability to control infection. IL-17C has not been described previously within the context of HIV control, making it an interesting target for future studies to understand HIV infection and transmission. An in-depth systems analysis is now underway to fully characterise host, viral and immunological factors contributing to control.
Collapse
Affiliation(s)
- Julia Makinde
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Eunice W Nduati
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Anna Freni-Sterrantino
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Claire Streatfield
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Catherine Kibirige
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Jama Dalel
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - S Lucas Black
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Gladys Macharia
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Edward McGowan
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Brian Abel
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Deborah King
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Sarah Joseph
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | | | - Eric Hunter
- Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, GA, United States.,Zambia-Emory HIV Research Project, Lusaka, Zambia
| | - Eduard J Sanders
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Matt Price
- IAVI, New York, NY, United States.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Alex D, Raj Williams TI, Sachithanandham J, Prasannakumar S, Demosthenes JP, Ramalingam VV, Victor PJ, Rupali P, Fletcher GJ, Kannangai R. Performance of a Modified In-House HIV-1 Avidity Assay among a Cohort of Newly Diagnosed HIV-1 Infected Individuals and the Effect of ART on the Maturation of HIV-1 Specific Antibodies. Curr HIV Res 2020; 17:134-145. [PMID: 31309891 DOI: 10.2174/1570162x17666190712125606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Viral kinetics impact humoral immune response to HIV; antibody avidity testing helps distinguish recent (<6 months) and long-term HIV infection. This study aims to determine the frequency of recent HIV-1 infection among clients attending ICTC (Integrated Counselling and Testing Centre) using a commercial EIA, to correlate it with a modified in-house avidity assay and to study the impact of ART on anti-HIV-1 antibody maturation. METHODS Commercial LAg Avidity EIA was used to detect antibody avidity among 117 treatment naïve HIV-1 infected individuals. A second-generation HIV ELISA was modified for in-house antibody avidity testing and cutoff was set based on Receiver Operating Characteristic (ROC) analysis. Archived paired samples from 25 HIV-1 infected individuals before ART and after successful ART; samples from 7 individuals responding to ART and during virological failure were also tested by LAg Avidity EIA. RESULTS Six individuals (5.1%) were identified as recently infected by a combination of LAg avidity assay and HIV-1 viral load testing. The modified in-house avidity assay demonstrated sensitivity and specificity of 100% and 98.2%, respectively, at AI=0.69 by ROC analysis. Median ODn values of individuals when responding to ART were significantly lower than pre-ART [4.136 (IQR 3.437- 4.827) vs 4.455 (IQR 3.748-5.120), p=0.006] whereas ODn values were higher during virological failure [4.260 (IQR 3.665 - 4.515) vs 2.868 (IQR 2.247 - 3.921), p=0.16]. CONCLUSION This modified in-house antibody avidity assay is an inexpensive method to detect recent HIV-1 infection. ART demonstrated significant effect on HIV-1 antibody avidity owing to changes in viral kinetics.
Collapse
Affiliation(s)
- Diviya Alex
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | | | | | | | - John Paul Demosthenes
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | | | - Punitha John Victor
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Priscilla Rupali
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | | | - Rajesh Kannangai
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| |
Collapse
|
4
|
Price MA, Rida W, Kilembe W, Karita E, Inambao M, Ruzagira E, Kamali A, Sanders EJ, Anzala O, Hunter E, Allen S, Edward VA, Wall KM, Tang J, Fast PE, Kaleebu P, Lakhi S, Mutua G, Bekker LG, Abu-Baker G, Tichacek A, Chetty P, Latka MH, Maenetje P, Makkan H, Kibengo F, Priddy F, Gilmour J. Control of the HIV-1 Load Varies by Viral Subtype in a Large Cohort of African Adults With Incident HIV-1 Infection. J Infect Dis 2020; 220:432-441. [PMID: 30938435 PMCID: PMC6603968 DOI: 10.1093/infdis/jiz127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
Few human immunodeficiency virus (HIV)–infected persons can maintain low viral levels without therapeutic intervention. We evaluate predictors of spontaneous control of the viral load (hereafter, “viral control”) in a prospective cohort of African adults shortly after HIV infection. Viral control was defined as ≥2 consecutively measured viral loads (VLs) of ≤10 000 copies/mL after the estimated date of infection, followed by at least 4 subsequent measurements for which the VL in at least 75% was ≤10 000 copies/mL in the absence of ART. Multivariable logistic regression characterized predictors of viral control. Of 590 eligible volunteers, 107 (18.1%) experienced viral control, of whom 25 (4.2%) maintained a VL of 51–2000 copies/mL, and 5 (0.8%) sustained a VL of ≤50 copies/mL. The median ART-free follow-up time was 3.3 years (range, 0.3–9.7 years). Factors independently associated with control were HIV-1 subtype A (reference, subtype C; adjusted odds ratio [aOR], 2.1 [95% confidence interval {CI}, 1.3–3.5]), female sex (reference, male sex; aOR, 1.8 [95% CI, 1.1–2.8]), and having HLA class I variant allele B*57 (reference, not having this allele; aOR, 1.9 [95% CI, 1.0–3.6]) in a multivariable model that also controlled for age at the time of infection and baseline CD4+ T-cell count. We observed strong associations between infecting HIV-1 subtype, HLA type, and sex on viral control in this cohort. HIV-1 subtype is important to consider when testing and designing new therapeutic and prevention technologies, including vaccines.
Collapse
Affiliation(s)
- Matt A Price
- International AIDS Vaccine Initiative, New York, New York.,Department of Epidemiology and Biostatistics, University of California-San Francisco
| | | | - William Kilembe
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda
| | - Etienne Karita
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda
| | - Mubiana Inambao
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda
| | | | - Anatoli Kamali
- International AIDS Vaccine Initiative, New York, New York
| | - Eduard J Sanders
- Kenyan Medical Research Institute-Wellcome Trust, Kilifi, Nairobi, Kenya.,Nuffield Department of Clinical Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Headington, London, United Kingdom
| | - Omu Anzala
- KAVI Institute of Clinical Research, Nairobi, Kenya
| | - Eric Hunter
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda.,Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Susan Allen
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda.,Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Vinodh A Edward
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut.,The Aurum Institute, South Africa.,School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, South Africa.,Advancing Care and Treatment for TB/HIV, South African Medical Research Council, Johannesburg, South Africa
| | - Kristin M Wall
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda.,Department of Epidemiology, Emory University, Atlanta, Georgia
| | - Jianming Tang
- Department of Medicine, University of Alabama-Birmingham
| | | | | | - Shabir Lakhi
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda
| | | | | | | | - Amanda Tichacek
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda.,Department of Epidemiology, Emory University, Atlanta, Georgia
| | - Paramesh Chetty
- International AIDS Vaccine Initiative, New York, New York.,International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom
| | | | | | | | | | - Fran Priddy
- International AIDS Vaccine Initiative, New York, New York
| | - Jill Gilmour
- International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom
| |
Collapse
|
5
|
D'Souza RR, Gopalan BP, Rajnala N, Phetsouphanh C, Shet A. Increased monocyte activation with age among HIV-infected long term non-progressor children: implications for early treatment initiation. HIV Med 2019; 20:513-522. [PMID: 31131542 DOI: 10.1111/hiv.12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The key to newer therapeutic and eradication approaches often lies in understanding slow disease progression in HIV infection. The paediatric population has been poorly studied in this regard. We aimed to describe a cohort of perinatally infected long-term nonprogressor (LTNP) children living with HIV in India and to evaluate the immune biomarkers of disease progression. METHODS LTNPs (ART-naïve, with a CD4 count ≥ 500 cells/μL at age ≥ 7 years) among the cohort of HIV-infected children were identified and monitored longitudinally, and their CD4 T-cell counts and plasma viral loads were measured every 6 months. The plasma monocyte/macrophage activation markers, namely soluble CD14 (sCD14), soluble CD163 (sCD163) and interferon-inducible protein-10 (IP-10) were measured by enzyme-linked immunosorbent assay (ELISA) in LTNPs and progressors. The Mann-Whitney U-test was used to compare the two groups and P values < 0.05 were considered statistically significant. Spearman's rank or Pearson's correlation coefficient (r) was calculated to determine the associations between variables. RESULTS Among 378 children living with HIV-1 surveyed in our cohort, 40 (10.6%) were LTNPs. Longitudinal analysis of the LTNP data showed that both CD4 count and viral load declined significantly with age (P < 0.0001 for both). Plasma sCD14 levels were significantly (P < 0.005) higher in progressors and sCD163 levels were significantly (P < 0.0001) higher in LTNPs. CONCLUSIONS The prevalence of LTNPs in our cohort of perinatally infected children living with HIV was 10.6%. We observed a trend for associations between the increasing sCD163 monocyte/macrophage activation marker levels, declining CD4 counts and the gradual loss of nonprogressor status with age in the LTNPs. These findings underscore the need for early antiretroviral therapy in those children with proven slow disease progression.
Collapse
Affiliation(s)
- R R D'Souza
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.,Division of Infectious Diseases, St John's Research Institute, Bangalore, India
| | - B P Gopalan
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India.,The University of Trans-disciplinary Health Sciences and Technology, Bangalore, India
| | - N Rajnala
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India
| | - C Phetsouphanh
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - A Shet
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
6
|
Naidoo L, Mzobe Z, Jin SW, Rajkoomar E, Reddy T, Brockman MA, Brumme ZL, Ndung'u T, Mann JK. Nef-mediated inhibition of NFAT following TCR stimulation differs between HIV-1 subtypes. Virology 2019; 531:192-202. [PMID: 30927712 DOI: 10.1016/j.virol.2019.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 01/11/2023]
Abstract
Functional characterisation of different HIV-1 subtypes may improve understanding of viral pathogenesis and spread. Here, we evaluated the ability of 345 unique HIV-1 Nef clones representing subtypes A, B, C and D to inhibit NFAT signalling following TCR stimulation. The contribution of this Nef function to disease progression was also assessed in 211 additional Nef clones isolated from unique subtype C infected individuals in early or chronic infection. On average, subtype A and C Nef clones exhibited significantly lower ability to inhibit TCR-mediated NFAT signalling compared to subtype B and D Nef clones. While this observation corroborates accumulating evidence supporting relative attenuation of subtypes A and C that may paradoxically contribute to their increased global prevalence and spread, no significant correlations between Nef-mediated NFAT inhibition activity and clinical markers of HIV-1 infection were observed, indicating that the relationship between Nef function and pathogenesis is complex.
Collapse
Affiliation(s)
- Lisa Naidoo
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Zinhle Mzobe
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Steven W Jin
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Erasha Rajkoomar
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Tarylee Reddy
- Medical Research Council, Biostatistics Unit, Durban 4001, South Africa
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada V6Z 1Y6
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; Africa Health Research Institute, Durban 4001, South Africa; Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa.
| |
Collapse
|
7
|
Janes H, Corey L, Ramjee G, Carpp LN, Lombard C, Cohen MS, Gilbert PB, Gray GE. Weighing the Evidence of Efficacy of Oral PrEP for HIV Prevention in Women in Southern Africa. AIDS Res Hum Retroviruses 2018; 34:645-656. [PMID: 29732896 PMCID: PMC6080090 DOI: 10.1089/aid.2018.0031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
As oral tenofovir-based regimens for preexposure prophylaxis (PrEP) are adopted as standard of care for HIV prevention, their utilization in clinical trials among women in southern Africa will require an accurate estimate of oral PrEP efficacy in this population. This information is critical for women in choosing this prevention strategy, and in public health policy making. Estimates of the efficacy of oral PrEP regimens containing tenofovir have varied widely across trials that enrolled women, with some studies reporting high efficacy and others reporting no efficacy. Although poor adherence is strongly associated with lack of efficacy, other factors, such as mode of transmission (sexual vs. parenteral), predominant HIV subtype (C vs. non-C), intensity of exposure, and percentage of stable serodiscordant couples, may also contribute to the variation in efficacy estimates. In this article, we evaluate the evidence for PrEP efficacy in women and propose potential explanations for the observed differences in efficacy among studies. Our review emphasizes the need to continue to refine estimates of efficacy and effectiveness of tenofovir-based oral PrEP so as to best develop the next generation of HIV prevention tools, and to inform public policies directed toward HIV prevention.
Collapse
Affiliation(s)
- Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Gita Ramjee
- HIV Prevention Research Unit, South African Medical Research Council, Durban, South Africa
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Global Health, University of Washington, Seattle, Washington
| | - Lindsay N. Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Carl Lombard
- Biostatistics Unit, Medical Research Council of South Africa, Cape Town, South Africa
| | - Myron S. Cohen
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Glenda E. Gray
- Perinatal HIV Research Unit, University of the Witwatersrand, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa
- Office of the President, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
8
|
Liu D, Wang C, Hora B, Zuo T, Goonetilleke N, Liu MKP, Berrong M, Ferrari G, McMichael AJ, Bhattacharya T, Perelson AS, Gao F. A strongly selected mutation in the HIV-1 genome is independent of T cell responses and neutralizing antibodies. Retrovirology 2017; 14:46. [PMID: 29017536 PMCID: PMC5634943 DOI: 10.1186/s12977-017-0371-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/03/2017] [Indexed: 01/19/2023] Open
Abstract
Background Mutations rapidly accumulate in the HIV-1 genome after infection. Some of those mutations are selected by host immune responses and often cause viral fitness losses. This study is to investigate whether strongly selected mutations that are not associated with immune responses result in fitness losses. Results Strongly selected mutations were identified by analyzing 5′-half HIV-1 genome (gag/pol) sequences from longitudinal samples of subject CH0131. The K43R mutation in the gag gene was first detected at day 91 post screening and was fixed in the viral population at day 273 while the synonymous N323tc mutation was first detected at day 177 and fixed at day 670. No conventional or cryptic T cell responses were detected against either mutation sites by ELISpot analysis. However, when fitness costs of both mutations were measured by introducing each mutation into their cognate transmitted/founder (T/F) viral genome, the K43R mutation caused a significant fitness loss while the N323tc mutation had little impact on viral fitness. Conclusions The rapid fixation, the lack of detectable immune responses and the significant fitness cost of the K43R mutation suggests that it was strongly selected by host factors other than T cell responses and neutralizing antibodies.
Collapse
Affiliation(s)
- Donglai Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA.,Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA
| | - Bhavna Hora
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA
| | - Tao Zuo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA
| | - Nilu Goonetilleke
- Department of Microbiology, Immunology and Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael K P Liu
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | - Mark Berrong
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Andrew J McMichael
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | | | - Alan S Perelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China. .,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA.
| |
Collapse
|
9
|
Panels of HIV-1 Subtype C Env Reference Strains for Standardized Neutralization Assessments. J Virol 2017; 91:JVI.00991-17. [PMID: 28747500 PMCID: PMC5599761 DOI: 10.1128/jvi.00991-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022] Open
Abstract
In the search for effective immunologic interventions to prevent and treat HIV-1 infection, standardized reference reagents are a cost-effective way to maintain robustness and reproducibility among immunological assays. To support planned and ongoing studies where clade C predominates, here we describe three virus panels, chosen from 200 well-characterized clade C envelope (Env)-pseudotyped viruses from early infection. All 200 Envs were expressed as a single round of replication pseudoviruses and were tested to quantify neutralization titers by 16 broadly neutralizing antibodies (bnAbs) and sera from 30 subjects with chronic clade C infections. We selected large panels of 50 and 100 Envs either to characterize cross-reactive breadth for sera identified as having potent neutralization activity based on initial screening or to evaluate neutralization magnitude-breadth distributions of newly isolated antibodies. We identified these panels by downselection after hierarchical clustering of bnAb neutralization titers. The resulting panels represent the diversity of neutralization profiles throughout the range of virus sensitivities identified in the original panel of 200 viruses. A small 12-Env panel was chosen to screen sera from vaccine trials or natural-infection studies for neutralization responses. We considered panels selected by previously described methods but favored a computationally informed method that enabled selection of viruses representing diverse neutralization sensitivity patterns, given that we do not a priori know what the neutralization-response profile of vaccine sera will be relative to that of sera from infected individuals. The resulting 12-Env panel complements existing panels. Use of standardized panels enables direct comparisons of data from different trials and study sites testing HIV-1 clade C-specific products. IMPORTANCE HIV-1 group M includes nine clades and many recombinants. Clade C is the most common lineage, responsible for roughly half of current HIV-1 infections, and is a focus for vaccine design and testing. Standard reference reagents, particularly virus panels to study neutralization by antibodies, are crucial for developing cost-effective and yet rigorous and reproducible assays against diverse examples of this variable virus. We developed clade C-specific panels for use as standardized reagents to monitor complex polyclonal sera for neutralization activity and to characterize the potency and breadth of cross-reactive neutralization by monoclonal antibodies, whether engineered or isolated from infected individuals. We chose from 200 southern African, clade C envelope-pseudotyped viruses with neutralization titers against 16 broadly neutralizing antibodies and 30 sera from chronic clade C infections. We selected panels to represent the diversity of bnAb neutralization profiles and Env neutralization sensitivities. Use of standard virus panels can facilitate comparison of results across studies and sites.
Collapse
|
10
|
Subtype-Specific Differences in Gag-Protease-Driven Replication Capacity Are Consistent with Intersubtype Differences in HIV-1 Disease Progression. J Virol 2017; 91:JVI.00253-17. [PMID: 28424286 DOI: 10.1128/jvi.00253-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
There are marked differences in the spread and prevalence of HIV-1 subtypes worldwide, and differences in clinical progression have been reported. However, the biological reasons underlying these differences are unknown. Gag-protease is essential for HIV-1 replication, and Gag-protease-driven replication capacity has previously been correlated with disease progression. We show that Gag-protease replication capacity correlates significantly with that of whole isolates (r = 0.51; P = 0.04), indicating that Gag-protease is a significant contributor to viral replication capacity. Furthermore, we investigated subtype-specific differences in Gag-protease-driven replication capacity using large well-characterized cohorts in Africa and the Americas. Patient-derived Gag-protease sequences were inserted into an HIV-1 NL4-3 backbone, and the replication capacities of the resulting recombinant viruses were measured in an HIV-1-inducible reporter T cell line by flow cytometry. Recombinant viruses expressing subtype C Gag-proteases exhibited substantially lower replication capacities than those expressing subtype B Gag-proteases (P < 0.0001); this observation remained consistent when representative Gag-protease sequences were engineered into an HIV-1 subtype C backbone. We identified Gag residues 483 and 484, located within the Alix-binding motif involved in virus budding, as major contributors to subtype-specific replicative differences. In East African cohorts, we observed a hierarchy of Gag-protease-driven replication capacities, i.e., subtypes A/C < D < intersubtype recombinants (P < 0.0029), which is consistent with reported intersubtype differences in disease progression. We thus hypothesize that the lower Gag-protease-driven replication capacity of subtypes A and C slows disease progression in individuals infected with these subtypes, which in turn leads to greater opportunity for transmission and thus increased prevalence of these subtypes.IMPORTANCE HIV-1 subtypes are unevenly distributed globally, and there are reported differences in their rates of disease progression and epidemic spread. The biological determinants underlying these differences have not been fully elucidated. Here, we show that HIV-1 Gag-protease-driven replication capacity correlates with the replication capacity of whole virus isolates. We further show that subtype B displays a significantly higher Gag-protease-mediated replication capacity than does subtype C, and we identify a major genetic determinant of these differences. Moreover, in two independent East African cohorts we demonstrate a reproducible hierarchy of Gag-protease-driven replicative capacity, whereby recombinants exhibit the greatest replication, followed by subtype D, followed by subtypes A and C. Our data identify Gag-protease as a major determinant of subtype differences in disease progression among HIV-1 subtypes; furthermore, we propose that the poorer viral replicative capacity of subtypes A and C may paradoxically contribute to their more efficient spread in sub-Saharan Africa.
Collapse
|
11
|
Ronsard L, Ganguli N, Singh VK, Mohankumar K, Rai T, Sridharan S, Pajaniradje S, Kumar B, Rai D, Chaudhuri S, Coumar MS, Ramachandran VG, Banerjea AC. Impact of Genetic Variations in HIV-1 Tat on LTR-Mediated Transcription via TAR RNA Interaction. Front Microbiol 2017; 8:706. [PMID: 28484443 PMCID: PMC5399533 DOI: 10.3389/fmicb.2017.00706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/05/2017] [Indexed: 01/10/2023] Open
Abstract
HIV-1 evades host defense through mutations and recombination events, generating numerous variants in an infected patient. These variants with an undiminished virulence can multiply rapidly in order to progress to AIDS. One of the targets to intervene in HIV-1 replication is the trans-activator of transcription (Tat), a major regulatory protein that transactivates the long terminal repeat promoter through its interaction with trans-activation response (TAR) RNA. In this study, HIV-1 infected patients (n = 120) from North India revealed Ser46Phe (20%) and Ser61Arg (2%) mutations in the Tat variants with a strong interaction toward TAR leading to enhanced transactivation activities. Molecular dynamics simulation data verified that the variants with this mutation had a higher binding affinity for TAR than both the wild-type Tat and other variants that lacked Ser46Phe and Ser61Arg. Other mutations in Tat conferred varying affinities for TAR interaction leading to differential transactivation abilities. This is the first report from North India with a clinical validation of CD4 counts to demonstrate the influence of Tat genetic variations affecting the stability of Tat and its interaction with TAR. This study highlights the co-evolution pattern of Tat and predominant nucleotides for Tat activity, facilitating the identification of genetic determinants for the attenuation of viral gene expression.
Collapse
Affiliation(s)
- Larance Ronsard
- Laboratory of Virology, National Institute of ImmunologyDelhi, India.,Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur HospitalDelhi, India
| | - Nilanjana Ganguli
- Laboratory of Virology, National Institute of ImmunologyDelhi, India
| | - Vivek K Singh
- Centre for Bioinformatics, School of Life Sciences, Pondicherry UniversityPondicherry, India
| | - Kumaravel Mohankumar
- Department of Biochemistry and Molecular Biology, Pondicherry UniversityPondicherry, India.,Department of Veterinary Physiology and Pharmacology, Texas A&M University, College StationTX, USA
| | - Tripti Rai
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical SciencesDelhi, India
| | - Subhashree Sridharan
- Department of Biochemistry and Molecular Biology, Pondicherry UniversityPondicherry, India.,Department of Symptom Research, The University of Texas MD Anderson Cancer Center, HoustonTX, USA
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, Pondicherry UniversityPondicherry, India
| | - Binod Kumar
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, ChicagoIL, USA
| | - Devesh Rai
- Department of Microbiology, All India Institute of Medical SciencesDelhi, India
| | - Suhnrita Chaudhuri
- Department of Neurological Surgery, Northwestern University, ChicagoIL, USA
| | - Mohane S Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry UniversityPondicherry, India
| | | | - Akhil C Banerjea
- Laboratory of Virology, National Institute of ImmunologyDelhi, India
| |
Collapse
|
12
|
Phanuphak N, Lo YR, Shao Y, Solomon SS, O'Connell RJ, Tovanabutra S, Chang D, Kim JH, Excler JL. HIV Epidemic in Asia: Implications for HIV Vaccine and Other Prevention Trials. AIDS Res Hum Retroviruses 2015; 31:1060-76. [PMID: 26107771 DOI: 10.1089/aid.2015.0049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An overall decrease of HIV prevalence is now observed in several key Asian countries due to effective prevention programs. The decrease in HIV prevalence and incidence may further improve with the scale-up of combination prevention interventions. The implementation of future prevention trials then faces important challenges. The opportunity to identify heterosexual populations at high risk such as female sex workers may rapidly wane. With unabating HIV epidemics among men who have sex with men (MSM) and transgender (TG) populations, an effective vaccine would likely be the only option to turn the epidemic. It is more likely that efficacy trials will occur among MSM and TG because their higher HIV incidence permits smaller and less costly trials. The constantly evolving patterns of HIV-1 diversity in the region suggest close monitoring of the molecular HIV epidemic in potential target populations for HIV vaccine efficacy trials. CRF01_AE remains predominant in southeast Asian countries and MSM populations in China. This relatively steady pattern is conducive to regional efficacy trials, and as efficacy warrants, to regional licensure. While vaccines inducing nonneutralizing antibodies have promise against HIV acquisition, vaccines designed to induce broadly neutralizing antibodies and cell-mediated immune responses of greater breadth and depth in the mucosal compartments should be considered for testing in MSM and TG. The rationale and design of efficacy trials of combination prevention modalities such as HIV vaccine and preexposure prophylaxis (PrEP) remain hypothetical, require high adherence to PrEP, are more costly, and present new regulatory challenges. The prioritization of prevention interventions should be driven by the HIV epidemic and decided by the country-specific health and regulatory authorities. Modeling the impact and cost-benefit may help this decision process.
Collapse
Affiliation(s)
| | - Ying-Ru Lo
- HIV, Hepatitis, and STI Unit, WHO Regional Office for the Western Pacific, Manila, Philippines
| | - Yiming Shao
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sunil Suhas Solomon
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Y.R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Robert J. O'Connell
- Department of Retrovirology, U.S. Army Medical Component, Armed Forces Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - David Chang
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jerome H. Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jean Louis Excler
- U.S. Military HIV Research Program, Bethesda, Maryland
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| |
Collapse
|
13
|
Genetic and functional characterization of HIV-1 Vif on APOBEC3G degradation: First report of emergence of B/C recombinants from North India. Sci Rep 2015; 5:15438. [PMID: 26494109 PMCID: PMC4616021 DOI: 10.1038/srep15438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/02/2015] [Indexed: 12/12/2022] Open
Abstract
HIV-1 is characterized by high genetic heterogeneity which is a challenge for developing therapeutics. Therefore, it is necessary to understand the extent of genetic variations that HIV is undergoing in North India. The objective of this study was to determine the role of genetic and functional role of Vif on APOBEC3G degradation. Vif is an accessory protein involved in counteracting APOBEC3/F proteins. Genetic analysis of Vif variants revealed that Vif C variants were closely related to South African Vif C whereas Vif B variants and Vif B/C showed distinct geographic locations. This is the first report to show the emergence of Vif B/C in our population. The functional domains, motifs and phosphorylation sites were well conserved. Vif C variants differed in APOBEC3G degradation from Vif B variants. Vif B/C revealed similar levels of APOBEC3G degradation to Vif C confirming the presence of genetic determinants in C-terminal region. High genetic diversity was observed in Vif variants which may cause the emergence of more complex and divergent strains. These results reveal the genetic determinants of Vif in mediating APOBEC3G degradation and highlight the genetic information for the development of anti-viral drugs against HIV. Importance: Vif is an accessory HIV-1 protein which plays significant role in the degradation of human DNA-editing factor APOBEC3G, thereby impeding the antiretroviral activity of APOBEC3G. It is known that certain natural polymorphisms in Vif could degrade APOBEC3G relatively higher rate, suggesting its role in HIV-1 pathogenesis. This is the first report from North India showcasing genetic variations and novel polymorphisms in Vif gene. Subtype C is prevalent in India, but for the first time we observed putative B/C recombinants with a little high ability to degrade APOBEC3G indicating adaptation and evolving nature of virus in our population. Indian Vif C variants were able to degrade APOBEC3G well in comparison to Vif B variants. These genetic changes were most likely selected during adaptation of HIV to our population. These results elucidate that the genetic determinants of Vif and highlights the potential targets for therapeutics.
Collapse
|
14
|
Ronsard L, Lata S, Singh J, Ramachandran VG, Das S, Banerjea AC. Molecular and genetic characterization of natural HIV-1 Tat Exon-1 variants from North India and their functional implications. PLoS One 2014; 9:e85452. [PMID: 24465566 PMCID: PMC3900424 DOI: 10.1371/journal.pone.0085452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Designing an ideal vaccine against HIV-1 has been difficult due to enormous genetic variability as a result of high replication rate and lack of proofreading activity of reverse transcriptase leading to emergence of genetic variants and recombinants. Tat transactivates HIV-1 LTR, resulting in a remarkable increase in viral gene expression, and plays a vital role in pathogenesis. The aim of this study was to characterize the genetic variations of Tat exon-1 from HIV-1 infected patients from North India. METHODS Genomic DNA was isolated from PBMCs and Tat exon-1 was PCR amplified with specific primers followed by cloning, sequencing and sequence analyses using bioinformatic tools for predicting HIV-1 subtypes, recombination events, conservation of domains and phosphorylation sites, and LTR transactivation by luciferase assay. RESULTS Phylogenetic analysis of Tat exon-1 variants (n = 120) revealed sequence similarity with South African Tat C sequences and distinct geographical relationships were observed for B/C recombinants. Bootscan analysis of our variants showed 90% homology to Tat C and 10% to B/C recombinants with a precise breakpoint. Natural substitutions were observed with high allelic frequencies which may be beneficial for virus. High amino acid conservation was observed in Tat among Anti Retroviral Therapy (ART) recipients. Barring few changes, most of the functional domains, predicted motifs and phosphorylation sites were well conserved in most of Tat variants. dN/dS analysis revealed purifying selection, implying the importance of functional conservation of Tat exon-1. Our Indian Tat C variants and B/C recombinants showed differential LTR transactivation. CONCLUSIONS The possible role of Tat exon-1 variants in shaping the current HIV-1 epidemic in North India was highlighted. Natural substitutions across conserved functional domains were observed and provided evidence for the emergence of B/C recombinants within the ORF of Tat exon-1. These events are likely to have implications for viral pathogenesis and vaccine formulations.
Collapse
Affiliation(s)
- Larance Ronsard
- Virology Laboratory, National Institute of Immunology, New Delhi, India
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Sneh Lata
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Jyotsna Singh
- Virology Laboratory, National Institute of Immunology, New Delhi, India
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | | | - Shukla Das
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Akhil C. Banerjea
- Virology Laboratory, National Institute of Immunology, New Delhi, India
- * E-mail: ,
| |
Collapse
|
15
|
High frequency of HIV-1 infections with multiple HIV-1 strains in men having sex with men (MSM) in Senegal. INFECTION GENETICS AND EVOLUTION 2013; 20:206-14. [DOI: 10.1016/j.meegid.2013.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 02/01/2023]
|
16
|
Dezzutti CS, Hladik F. Use of human mucosal tissue to study HIV-1 pathogenesis and evaluate HIV-1 prevention modalities. Curr HIV/AIDS Rep 2013; 10:12-20. [PMID: 23224426 DOI: 10.1007/s11904-012-0148-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of human mucosal tissue models is an important tool advancing our understanding of the specific mechanisms of sexual HIV transmission. Despite 30 years of study, major gaps remain, including how HIV-1 transverses the epithelium and the identity of the early immune targets (gate keepers). Because defining HIV-1 transmission in vivo is difficult, mucosal tissue is being used ex vivo to identify key steps in HIV-1 entry and early dissemination. Elucidating early events of HIV-1 infection will help us develop more potent and specific HIV-1 preventatives such as microbicides and vaccines. Mucosal tissue has been incorporated into testing regimens for antiretroviral drugs and monoclonal antibodies. The use of mucosal tissue recapitulates the epithelium and immune cells that would be exposed in vivo to virus and drug. This review will discuss the use of mucosal tissue to better understand HIV-1 pathogenesis and prevention modalities.
Collapse
Affiliation(s)
- Charlene S Dezzutti
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Magee-Womens Research Institute, 204 Craft Avenue, Rm 503B, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
17
|
Nitayaphan S, Ngauy V, O'Connell R, Excler JL. HIV epidemic in Asia: optimizing and expanding vaccine development. Expert Rev Vaccines 2012; 11:805-19. [PMID: 22913258 DOI: 10.1586/erv.12.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent evidence in Thailand for protection from acquisition of HIV through vaccination in a mostly heterosexual population has generated considerable hope. Building upon these results and the analysis of the correlates of risk remains among the highest priorities. Improved vaccine concepts including heterologous prime-boost regimens, improved proteins with potent adjuvants and new vectors expressing mosaic antigens may soon enter clinical development to assess vaccine efficacy in men who have sex with men. Identifying heterosexual populations with sufficient HIV incidence for the conduct of efficacy trials represents perhaps the main challenge in Asia. Fostering translational research efforts in Asian countries may benefit from the development of master strategic plans and program management processes.
Collapse
Affiliation(s)
- Sorachai Nitayaphan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
18
|
Song H, Pavlicek JW, Cai F, Bhattacharya T, Li H, Iyer SS, Bar KJ, Decker JM, Goonetilleke N, Liu MKP, Berg A, Hora B, Drinker MS, Eudailey J, Pickeral J, Moody MA, Ferrari G, McMichael A, Perelson AS, Shaw GM, Hahn BH, Haynes BF, Gao F. Impact of immune escape mutations on HIV-1 fitness in the context of the cognate transmitted/founder genome. Retrovirology 2012; 9:89. [PMID: 23110705 PMCID: PMC3496648 DOI: 10.1186/1742-4690-9-89] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 10/07/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND A modest change in HIV-1 fitness can have a significant impact on viral quasispecies evolution and viral pathogenesis, transmission and disease progression. To determine the impact of immune escape mutations selected by cytotoxic T lymphocytes (CTL) on viral fitness in the context of the cognate transmitted/founder (T/F) genome, we developed a new competitive fitness assay using molecular clones of T/F genomes lacking exogenous genetic markers and a highly sensitive and precise parallel allele-specific sequencing (PASS) method. RESULTS The T/F and mutant viruses were competed in CD4+ T-cell enriched cultures, relative proportions of viruses were assayed after repeated cell-free passage, and fitness costs were estimated by mathematical modeling. Naturally occurring HLA B57-restricted mutations involving the TW10 epitope in Gag and two epitopes in Tat/Rev and Env were assessed independently and together. Compensatory mutations which restored viral replication fitness were also assessed. A principal TW10 escape mutation, T242N, led to a 42% reduction in replication fitness but V247I and G248A mutations in the same epitope restored fitness to wild-type levels. No fitness difference was observed between the T/F and a naturally selected variant carrying the early CTL escape mutation (R355K) in Env and a reversion mutation in the Tat/Rev overlapping region. CONCLUSIONS These findings reveal a broad spectrum of fitness costs to CTL escape mutations in T/F viral genomes, similar to recent findings reported for neutralizing antibody escape mutations, and highlight the extraordinary plasticity and adaptive potential of the HIV-1 genome. Analysis of T/F genomes and their evolved progeny is a powerful approach for assessing the impact of composite mutational events on viral fitness.
Collapse
Affiliation(s)
- Hongshuo Song
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey W Pavlicek
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Fangping Cai
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- The Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shilpa S Iyer
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katharine J Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie M Decker
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nilu Goonetilleke
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, OX3 9DS, UK
| | - Michael KP Liu
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, OX3 9DS, UK
| | - Anna Berg
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Mark S Drinker
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Josh Eudailey
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Joy Pickeral
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Andrew McMichael
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, OX3 9DS, UK
| | - Alan S Perelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
19
|
Hemelaar J. Implications of HIV diversity for the HIV-1 pandemic. J Infect 2012; 66:391-400. [PMID: 23103289 DOI: 10.1016/j.jinf.2012.10.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/21/2012] [Indexed: 11/17/2022]
Abstract
HIV-1 genetic variability within individuals and populations plays a central role in the HIV pandemic. Multiple zoonotic transmissions of SIV to humans have resulted in distinct HIV lineages in humans which have further diversified within the population over time. High rates of mutation and recombination during HIV reverse transcription create a genetic diversity in the host which is subject to selection pressures by the immune response and antiretroviral treatment. The global distribution of HIV genetic variants and the impact of HIV diversity on pathogenesis, transmission and clinical management are reviewed. Finally, the key role of escape mutations in the immune response to HIV is discussed as well as the major challenge which HIV-1 diversity poses to HIV vaccine development.
Collapse
Affiliation(s)
- Joris Hemelaar
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
20
|
Wargo AR, Kurath G. Viral fitness: definitions, measurement, and current insights. Curr Opin Virol 2012; 2:538-45. [PMID: 22986085 PMCID: PMC7102723 DOI: 10.1016/j.coviro.2012.07.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/24/2012] [Indexed: 11/03/2022]
Abstract
Viral fitness is an active area of research, with recent work involving an expanded number of human, non-human vertebrate, invertebrate, plant, and bacterial viruses. Many publications deal with RNA viruses associated with major disease emergence events, such as HIV-1, influenza virus, and Dengue virus. Study topics include drug resistance, immune escape, viral emergence, host jumps, mutation effects, quasispecies diversity, and mathematical models of viral fitness. Important recent trends include increasing use of in vivo systems to assess vertebrate virus fitness, and a broadening of research beyond replicative fitness to also investigate transmission fitness and epidemiologic fitness. This is essential for a more integrated understanding of overall viral fitness, with implications for disease management in the future.
Collapse
Affiliation(s)
- Andrew R Wargo
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115, USA
| | | |
Collapse
|
21
|
Rusine J, Jurriaans S, van de Wijgert J, Cornelissen M, Kateera B, Boer K, Karita E, Mukabayire O, de Jong M, Ondoa P. Molecular and phylogeographic analysis of human immuno-deficiency virus type 1 strains infecting treatment-naive patients from Kigali, Rwanda. PLoS One 2012; 7:e42557. [PMID: 22905148 PMCID: PMC3419187 DOI: 10.1371/journal.pone.0042557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/09/2012] [Indexed: 01/18/2023] Open
Abstract
This study aimed at describing the genetic subtype distribution of HIV-1 strains circulating in Kigali and their epidemiological link with the HIV-1 strains from the five countries surrounding Rwanda. One hundred and thirty eight pol (RT and PR) sequences from 116 chronically- and 22 recently-infected antiretroviral therapy (ART)-naïve patients from Kigali were generated and subjected to HIV drug resistance (HIV-DR), phylogenetic and recombinant analyses in connection with 366 reference pol sequences from Rwanda, Burundi, Kenya, Democratic Republic of Congo, Tanzania and Uganda (Los Alamos database). Among the Rwandan samples, subtype A1 predominated (71.7%), followed by A1/C recombinants (18.1%), subtype C (5.8%), subtype D (2.9%), one A1/D recombinant (0.7%) and one unknown subtype (0.7%). Thirteen unique and three multiple A1/C recombinant forms were identified. No evidence for direct transmission events was found within the Rwandan strains. Molecular characteristics of HIV-1 were similar between chronically and recently-infected individuals and were not significantly associated with demographic or social factors. Our report suggests that the HIV-1 epidemic in Kigali is characterized by the emergence of A1/C recombinants and is not phylogenetically connected with the HIV-1 epidemic in the five neighboring countries. The relatively low level of transmitted HIV-DR mutations (2.9%) reported here indicates the good performance of the ART programme in Rwanda. However, the importance of promoting couples' counseling, testing and disclosure during HIV prevention strategies is highlighted.
Collapse
Affiliation(s)
- John Rusine
- National Reference Laboratory, Kigali, Rwanda
| | - Suzanne Jurriaans
- Laboratory of Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands
| | - Janneke van de Wijgert
- Department of Global Health, Academic Medical Center, University of Amsterdam, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands
| | - Marion Cornelissen
- Laboratory of Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands
| | - Brenda Kateera
- Department of Global Health, Academic Medical Center, University of Amsterdam, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands
- The Infectious Diseases Network for Treatment and Research in Africa (INTERACT) Project, Kigali, Rwanda
- Royal Tropical Institute (KIT), Biomedical Research, Epidemiology Unit, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands
| | - Kimberly Boer
- Department of Global Health, Academic Medical Center, University of Amsterdam, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands
- The Infectious Diseases Network for Treatment and Research in Africa (INTERACT) Project, Kigali, Rwanda
- Royal Tropical Institute (KIT), Biomedical Research, Epidemiology Unit, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands
| | | | | | - Menno de Jong
- Laboratory of Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands
| | - Pascale Ondoa
- Department of Global Health, Academic Medical Center, University of Amsterdam, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
22
|
Alcalde R, Guimarães ML, Duarte AJS, Casseb J. Clinical, epidemiological and molecular features of the HIV-1 subtype C and recombinant forms that are circulating in the city of São Paulo, Brazil. Virol J 2012; 9:156. [PMID: 22877156 PMCID: PMC3511064 DOI: 10.1186/1743-422x-9-156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 07/11/2012] [Indexed: 12/04/2022] Open
Abstract
Background The city of Sao Paulo has the highest AIDS case rate, with nearly 60% in Brazil. Despite, several studies involving molecular epidemiology, lack of data regarding a large cohort study has not been published from this city. Objectives This study aimed to describe the HIV-1 subtypes, recombinant forms and drug resistance mutations, according to subtype, with emphasis on subtype C and BC recombinants in the city of São Paulo, Brazil. Study design RNA was extracted from the plasma samples of 302 HIV-1-seropositive subjects, of which 211 were drug-naive and 82 were exposed to ART. HIV-1 partial pol region sequences were used in phylogenetic analyses for subtyping and identification of drug resistance mutations. The envelope gene of subtype C and BC samples was also sequenced. Results From partial pol gene analyses, 239 samples (79.1%) were assigned as subtype B, 23 (7.6%) were F1, 16 (5.3%) were subtype C and 24 (8%) were mosaics (3 CRF28/CRF29-like). The subtype C and BC recombinants were mainly identified in drug-naïve patients (72.7%) and the heterosexual risk exposure category (86.3%), whereas for subtype B, these values were 69.9% and 57.3%, respectively (p = 0.97 and p = 0.015, respectively). An increasing trend of subtype C and BC recombinants was observed (p < 0.01). Conclusion The HIV-1 subtype C and CRFs seem to have emerged over the last few years in the city of São Paulo, principally among the heterosexual population. These findings may have an impact on preventive measures and vaccine development in Brazil.
Collapse
Affiliation(s)
- Rosana Alcalde
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, Medical School of São Paulo University, LIM56/FMUSP, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
23
|
Evaluation of cervical mucosa in transmission bottleneck during acute HIV-1 infection using a cervical tissue-based organ culture. PLoS One 2012; 7:e32539. [PMID: 22412886 PMCID: PMC3296723 DOI: 10.1371/journal.pone.0032539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 02/01/2012] [Indexed: 11/24/2022] Open
Abstract
Background Although there are different strains of HIV-1 in a chronically infected individual, only one or limited virus strains are successfully transmitted to a new individual. The reason for this “transmission bottleneck” is as yet unknown. Methodology/Principal Findings A human cervical explant model was used to measure HIV-1 transmission efficiency of viral strains from chronic infections, and transmitter/founder variants. We also evaluated the genetic characteristics of HIV-1 variants in the inoculums compared to those transmitted across the cervical mucosa. Eight different HIV-1 isolates were used in this study, six chronic isolates and two transmitter/founder viruses. The transmission efficiency of the chronic and transmitter/founder virus isolates and the viral diversity of chronic isolates before and after viral transmission were assessed. The results indicate that transmitter/founder viruses did not display higher transmission efficiency than chronic HIV-1 isolates. Furthermore, no evidence for a difference in diversity was found between the inoculums and transmitted virus strains. Phylogenetic analysis indicated that the sequences of variants in the inoculums and those present in transmitted virus intermingled irrespective of co-receptor usage. In addition, the inoculum and transmitted variants had a similar pairwise distance distribution. Conclusion There was no selection of a single or limited number of viral variants during HIV-1 transmission across the cervical mucosa in the organ culture model, indicating that the cervical mucosa alone may not produce the transmission bottleneck of HIV-1 infection observed in vivo.
Collapse
|
24
|
Paranjape RS, Thakar MR, Ghate MV, Godbole SV. Current Status of Research on HIV Epidemic, Pathogenesis, Management and Prevention in India. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s40011-011-0013-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Chen XQ, Liu C, Kong XH. The role of HIV replicative fitness in perinatal transmission of HIV. Virol Sin 2011; 26:147-55. [PMID: 21667335 DOI: 10.1007/s12250-011-3180-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/31/2011] [Indexed: 11/28/2022] Open
Abstract
Perinatal transmission of Human immunodeficiency virus (HIV), also called mother-to-child transmission (MTCT), accounts for 90% of infections in infants worldwide and occurs in 30%-45% of children born to untreated HIV-1 infected mothers. Among HIV-1 infected mothers, some viruses are transmitted from mothers to their infants while others are not. The relationship between virologic properties and the pathogenesis caused by HIV-1 remains unclear. Previous studies have demonstrated that one obvious source of selective pressure in the perinatal transmission of HIV-1 is maternal neutralizing antibodies. Recent studies have shown that viruses which are successfully transmitted to the child have growth advantages over those not transmitted, when those two viruses are grown together. Furthermore, the higher fitness is determined by the gp120 protein of the virus envelope. This suggests that the selective transmission of viruses with higher fitness occurred exclusively, regardless of transmission routes. There are many factors contributing to the selective transmission and HIV replicative fitness is an important one that should not be neglected. This review summarizes current knowledge of the role of HIV replicative fitness in HIV MTCT transmission and the determinants of viral fitness upon MTCT.
Collapse
Affiliation(s)
- Xue-Qing Chen
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, China
| | | | | |
Collapse
|
26
|
Brígido L, Ferreira J, Almeida V, Rocha S, Ragazzo T, Estevam D, Rodrigues R. Southern Brazil HIV type 1 C expansion into the state of São Paulo, Brazil. AIDS Res Hum Retroviruses 2011; 27:339-44. [PMID: 20950149 DOI: 10.1089/aid.2010.0157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract HIV diversity reflects multifactorial evolutionary forces, but monitoring subtype prevalence may provide clues to understanding the epidemic. In the Americas HIV-1 C is present at significant levels only in the southern states of Brazil. We describe in this study the presence of the HIV-1 C pol genome in 11.6% (95 CI 6-21%) of antiretroviral-naive individuals from São Paulo, the major city of South America, and 6.8% (95 CI 4-12%) from the second metropolitan area of the State of São Paulo, Brazil. Moreover, a significant growth trend of this subtype was documented among cases failing therapy in the area. Sequences were obtained by direct nested PCR from cDNA retrotranscribed from plasma RNA. Phylogenetic and amino acid signatures support an expansion from variants previously identified in southern Brazil. The evaluation of additional genomic regions (partial gag, envelope, and/or integrase) in samples with HIV-1 C at pol showed extensive recombination with clade B, observed in 47% of ARV-naive cases. The spread of HIV-1 C locally and to other areas of South America should be monitored as it may influence the dynamics of the epidemic.
Collapse
Affiliation(s)
- L.F.M. Brígido
- Instituto Adolfo Lutz, Laboratorio de Retrovirus, São Paulo, Brazil
| | - J.L.P. Ferreira
- Instituto Adolfo Lutz, Laboratorio de Retrovirus, São Paulo, Brazil
| | - V.C. Almeida
- Centro de Referencia em DST/Aids, Campinas, Brazil
| | - S.Q. Rocha
- Centro de Referencia em DST/Aids, São Paulo, Brazil
| | - T.G. Ragazzo
- Centro de Referencia em DST/Aids, Campinas, Brazil
| | - D.L. Estevam
- Centro de Referencia em DST/Aids, São Paulo, Brazil
| | - R. Rodrigues
- Instituto Adolfo Lutz, Laboratorio de Retrovirus, São Paulo, Brazil
| | | |
Collapse
|
27
|
Merbah M, Introini A, Fitzgerald W, Grivel JC, Lisco A, Vanpouille C, Margolis L. Cervico-vaginal tissue ex vivo as a model to study early events in HIV-1 infection. Am J Reprod Immunol 2011; 65:268-78. [PMID: 21223429 DOI: 10.1111/j.1600-0897.2010.00967.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Vaginal intercourse remains the most prevalent route of infection of women. In spite of many efforts, the detailed mechanisms of HIV-1 transmission in the female lower genital tract remain largely unknown. With all the obvious restrictions on studying these mechanisms in humans, their understanding depends on the development of adequate experimental models. Isolated cell cultures do not faithfully reproduce important aspects of cell-cell interactions in living tissues and tissue responses to pathogens. Explants and other types of ex vivo tissue models serve as a bridge between cell culture and tissues in vivo. Herein, we discuss various cervico-vaginal tissue models and their use in studying HIV vaginal transmission and consider future directions of such studies.
Collapse
Affiliation(s)
- Melanie Merbah
- Section of Intercellular Interactions, Program in Physical Biology, Eunice-Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Kaul R, Cohen CR, Chege D, Yi TJ, Tharao W, McKinnon LR, Remis R, Anzala O, Kimani J. Biological factors that may contribute to regional and racial disparities in HIV prevalence. Am J Reprod Immunol 2011; 65:317-24. [PMID: 21223426 DOI: 10.1111/j.1600-0897.2010.00962.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Despite tremendous regional and subregional disparities in HIV prevalence around the world, epidemiology consistently demonstrates that black communities have been disproportionately affected by the pandemic. There are many reasons for this, and a narrow focus on socio-behavioural causes may be seen as laying blame on affected communities or individuals. HIV sexual transmission is very inefficient, and a number of biological factors are critical in determining whether an unprotected sexual exposure to HIV results in productive infection. This review will focus on ways in which biology, rather than behaviour, may contribute to regional and racial differences in HIV epidemic spread. Specific areas of focus are viral factors, host genetics, and the impact of co-infections and host immunology. Considering biological causes for these racial disparities may help to destigmatize the issue and lead to new and more effective strategies for prevention.
Collapse
Affiliation(s)
- Rupert Kaul
- Department of Medicine, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Duenas-Decamp MJ, Peters PJ, Repik A, Musich T, Gonzalez-Perez MP, Caron C, Brown R, Ball J, Clapham PR. Variation in the biological properties of HIV-1 R5 envelopes: implications of envelope structure, transmission and pathogenesis. Future Virol 2010; 5:435-451. [PMID: 20930940 DOI: 10.2217/fvl.10.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV-1 R5 viruses predominantly use CCR5 as a coreceptor to infect CD4(+) T cells and macrophages. While R5 viruses generally infect CD4(+) T cells, research over the past few years has demonstrated that they vary extensively in their capacity to infect macrophages. Thus, R5 variants that are highly macrophage tropic have been detected in late disease and are prominent in brain tissue of subjects with neurological complications. Other R5 variants that are less sensitive to CCR5 antagonists and use CCR5 differently have also been identified in late disease. These latter variants have faster replication kinetics and may contribute to CD4 T-cell depletion. In addition, R5 viruses are highly variable in many other properties, including sensitivity to neutralizing antibodies and inhibitors that block HIV-1 entry into cells. Here, we review what is currently known about how HIV-1 R5 viruses vary in cell tropism and other properties, and discuss the implications of this variation on transmission, pathogenesis, therapy and vaccines.
Collapse
Affiliation(s)
- Maria José Duenas-Decamp
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Arias JF, Nishihara R, Bala M, Ikuta K. High systemic levels of interleukin-10, interleukin-22 and C-reactive protein in Indian patients are associated with low in vitro replication of HIV-1 subtype C viruses. Retrovirology 2010; 7:15. [PMID: 20211031 PMCID: PMC2841095 DOI: 10.1186/1742-4690-7-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/09/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND HIV-1 subtype C (HIV-1C) accounts for almost 50% of all HIV-1 infections worldwide and predominates in countries with the highest case-loads globally. Functional studies suggest that HIV-1C is unique in its biological properties, and there are contradicting reports about its replicative characteristics. The present study was conducted to evaluate whether the host cytokine environment modulates the in vitro replication capacity of HIV-1C viruses. METHODS A small subset of HIV-1C isolates showing efficient replication in peripheral blood mononuclear cells (PBMC) is described, and the association of in vitro replication capacity with disease progression markers and the host cytokine response was evaluated. Viruses were isolated from patient samples, and the corresponding in vitro growth kinetics were determined by monitoring for p24 production. Genotype, phenotype and co-receptor usage were determined for all isolates, while clinical category, CD4 cell counts and viral loads were recorded for all patients. Plasmatic concentrations of cytokines and, acute-phase response, and microbial translocation markers were determined; and the effect of cytokine treatment on in vitro replication rates was also measured. RESULTS We identified a small number of viral isolates showing high in vitro replication capacity in healthy-donor PBMC. HIV-1C usage of CXCR4 co-receptor was rare; therefore, it did not account for the differences in replication potential observed. There was also no correlation between the in vitro replication capacity of HIV-1C isolates and patients' disease status. Efficient virus growth was significantly associated with low interleukin-10 (IL-10), interleukin-22 (IL-22), and C-reactive protein (CRP) levels in plasma (p < .0001). In vitro, pretreatment of virus cultures with IL-10 and CRP resulted in a significant reduction of virus production, whereas IL-22, which lacks action on immune cells appears to mediate its anti-HIV effect through interaction with both IL-10 and CRP, and its own protective effect on mucosal membranes. CONCLUSIONS These results indicate that high systemic levels of IL-10, CRP and IL-22 in HIV-1C-infected Indian patients are associated with low viral replication in vitro, and that the former two have direct inhibitory effects whereas the latter acts through downstream mechanisms that remain uncertain.
Collapse
Affiliation(s)
- Juan F Arias
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Viral Emergent Diseases Research Group (VIREM), Universidad del Valle, Cali, Colombia
| | - Reiko Nishihara
- Department of Health Promotion Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Manju Bala
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Regional STD Teaching, Training and Research Center, VM Medical College & Safdarjang Hospital, New Delhi, India
| | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Jakobsen MR, Ellett A, Churchill MJ, Gorry PR. Viral tropism, fitness and pathogenicity of HIV-1 subtype C. Future Virol 2010. [DOI: 10.2217/fvl.09.77] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The majority of studies on HIV-1 pathogenesis have been conducted on subtype B HIV-1 (B-HIV) strains. However, B-HIV strains constitute the minority of HIV-1 cases worldwide, and are not common in regions that stand to benefit the most from advances in HIV-1 research such as southern Africa and Asia, where the HIV-1 pandemic is at its worst. The majority of individuals with HIV-1 are infected with subtype C HIV-1 (C-HIV) and reside in Southern Africa and Central Asia. Relatively little is known about C-HIV, but current evidence suggests the pathogenesis of C-HIV is distinct from B-HIV and other HIV-1 subtypes. This article summarizes what is currently known about the viral tropism, fitness and pathogenicity of C-HIV, and compares and contrasts these features to B-HIV. A thorough understanding of the molecular pathogenesis of C-HIV is important for a targeted approach to developing vaccines and novel drugs optimized for effectiveness in populations that are most in need.
Collapse
Affiliation(s)
- Martin R Jakobsen
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia and Department of Infectious Diseases, Aarhus University Hospital, Skejby, Brendstrupgaardvej 100, 8200 Aarhus N, Denmark
| | - Anne Ellett
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | - Melissa J Churchill
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia and Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Paul R Gorry
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia and Department of Medicine, Monash University, Melbourne, Victoria, Australia and Department of Microbiology & Immunology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Soares EA, Santos AF, Gonzalez LM, Lalonde MS, Tebit DM, Tanuri A, Arts EJ, Soares MA. Mutation T74S in HIV-1 subtype B and C proteases resensitizes them to ritonavir and indinavir and confers fitness advantage. J Antimicrob Chemother 2009; 64:938-44. [PMID: 19710076 DOI: 10.1093/jac/dkp315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Several drug resistance and secondary mutations have been described in HIV-1 viruses from patients undergoing antiretroviral therapy. In this study, we assessed the impact of the protease substitution T74S on the phenotype and on the replicative fitness in HIV-1 subtypes B and C. METHODS HIV-1 molecular clones carrying subtype B or C proteases had these coding regions subjected to site-directed mutagenesis to include T74S alone or in combination with four known protease inhibitor (PI) primary drug resistance mutations. All clones were used in a phenotypic assay to evaluate their susceptibility to most commercially available PIs. The impact of T74S on virus fitness was also assessed for all viruses through head-to-head competitions and oligonucleotide ligation assays to measure the proportion of each virus in culture. RESULTS Viruses of both subtypes carrying T74S did not have their susceptibility altered to any tested PI. Viruses with the four resistance mutations showed strong resistance to most PIs with fold changes ranging from 5 to 300 times compared with their wild-type counterparts. Surprisingly, the addition of T74S to the multiresistant clones restored their susceptibilities to indinavir and ritonavir and partially to lopinavir, close to those of wild-type viruses. Most 74S-containing viruses were more fit than their 74T counterparts. CONCLUSIONS Our results suggest that T74S is not a major drug resistance mutation, but it resensitizes multiresistant viruses to certain PIs. T74S is a bona fide accessory mutation, restoring fitness of multidrug-resistant viruses in both subtypes B and C. T74S should be further studied in clinical settings and considered in drug resistance interpretation algorithms.
Collapse
Affiliation(s)
- Esmeralda A Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|