1
|
Spearman P, Tomaras GD, Montefiori DC, Huang Y, Elizaga ML, Ferrari G, Alam SM, Isaacs A, Ahmed H, Hural J, McElrath MJ, Ouedraogo L, Pensiero M, Butler C, Kalams SA, Overton ET, Barnett SW. Rapid Boosting of HIV-1 Neutralizing Antibody Responses in Humans Following a Prolonged Immunologic Rest Period. J Infect Dis 2019; 219:1755-1765. [PMID: 30615119 PMCID: PMC6775047 DOI: 10.1093/infdis/jiz008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/04/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The durability and breadth of human immunodeficiency virus type 1 (HIV-1)-specific immune responses elicited through vaccination are important considerations in the development of an effective HIV-1 vaccine. Responses to HIV-1 envelope subunit protein (Env) immunization in humans are often described as short-lived. METHODS We enrolled 16 healthy volunteers who had received priming with an HIV-1 subtype B Env vaccine given with MF59 adjuvant 5-17 years previously and 20 healthy unprimed volunteers. Three booster immunizations with a heterologous subtype C trimeric gp140 protein vaccine were administered to the primed group, and the same subtype C gp140 protein vaccination regimen was administered to the unprimed subjects. RESULTS Binding antibodies and neutralizing antibodies to tier 1 viral isolates were detected in the majority of previously primed subjects. Remarkably, a single dose of protein boosted binding and neutralizing antibody titers in 100% of primed subjects following this prolonged immunologic rest period, and CD4+ T-cell responses were boosted in 75% of primed individuals. CONCLUSIONS These results demonstrate that HIV-1 protein immunogens can elicit durable memory T- and B-cell responses and that strong tier 1 virus neutralizing responses can be elicited by a single booster dose of protein following a long immunologic rest period. However, we found no evidence that cross-clade boosting led to a significantly broadened neutralizing antibody response.
Collapse
Affiliation(s)
- Paul Spearman
- Department of Pediatrics, Cincinnati Children’s Hospital, Ohio
| | - Georgia D Tomaras
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Marnie L Elizaga
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - S Munir Alam
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Abby Isaacs
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, Georgia
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Laissa Ouedraogo
- Division of AIDS, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michael Pensiero
- Division of AIDS, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Chris Butler
- Division of AIDS, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Spyros A Kalams
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Edgar Turner Overton
- Department of Medicine, University of Alabama at Birmingham, Cambridge, Massachusetts
| | | | | |
Collapse
|
2
|
Kudriavtseva OM, Semakova AP, Mikshis NI, Popova PY, Kozhevnikov VA, Stepanov AV, Bugorkova SA. Immunological Efficacy and Safety of Synthesized CpG Oligodeoxynucleotides. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818090041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Moseri A, Sinha E, Zommer H, Arshava B, Naider F, Anglister J. Immunofocusing using conformationally constrained V3 peptide immunogens improves HIV-1 neutralization. Vaccine 2017; 35:222-230. [DOI: 10.1016/j.vaccine.2016.11.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/07/2023]
|
4
|
Apostólico JDS, Boscardin SB, Yamamoto MM, de Oliveira-Filho JN, Kalil J, Cunha-Neto E, Rosa DS. HIV Envelope Trimer Specific Immune Response Is Influenced by Different Adjuvant Formulations and Heterologous Prime-Boost. PLoS One 2016; 11:e0145637. [PMID: 26727218 PMCID: PMC4699765 DOI: 10.1371/journal.pone.0145637] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023] Open
Abstract
The development of a preventive vaccine against human immunodeficiency virus (HIV-1) infection is the most efficient method to control the epidemic. The ultimate goal is to develop a vaccine able to induce specific neutralizing, non-neutralizing antibodies and cellular mediated immunity (CMI). Humoral and CMI responses can be directed to glycoproteins that are normally presented as a trimeric spike on the virus surface (gp140). Despite safer, subunit vaccines are normally less immunogenic/effective and need to be delivered together with an adjuvant. The choice of a suitable adjuvant can induce effective humoral and CMI that utterly lead to full protection against disease. In this report, we established a hierarchy of adjuvant potency on humoral and CMI when admixed with the recombinant HIV gp140 trimer. We show that vaccination with gp140 in the presence of different adjuvants can induce high-affinity antibodies, follicular helper T cells and germinal center B cells. The data show that poly (I:C) is the most potent adjuvant to induce specific CMI responses evidenced by IFN-γ production and CD4+/CD8+ T cell proliferation. Furthermore, we demonstrate that combining some adjuvants like MPL plus Alum and MPL plus MDP exert additive effects that impact on the magnitude and quality of humoral responses while mixing MDP with poly (I:C) or with R848 had no impact on total IgG titers but highly impact IgG subclass. In addition, heterologous DNA prime- protein boost yielded higher IgG titers when compare to DNA alone and improved the quality of humoral response when compare to protein immunization as evidenced by IgG1/IgG2a ratio. The results presented in this paper highlight the importance of selecting the correct adjuvant-antigen combination to potentiate desired cells for optimal stimulation.
Collapse
Affiliation(s)
- Juliana de Souza Apostólico
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Márcio Massao Yamamoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jethe Nunes de Oliveira-Filho
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - Jorge Kalil
- Heart Institute (InCor), University of São Paulo—School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology—INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Heart Institute (InCor), University of São Paulo—School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology—INCT, São Paulo, Brazil
- Laboratory of Clinical Immunology and Allergy—LIM60, University of São Paulo- School of Medicine, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
- Institute for Investigation in Immunology—INCT, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
5
|
Killick MA, Grant ML, Cerutti NM, Capovilla A, Papathanasopoulos MA. Env-2dCD4 S60C complexes act as super immunogens and elicit potent, broadly neutralizing antibodies against clinically relevant human immunodeficiency virus type 1 (HIV-1). Vaccine 2015; 33:6298-306. [PMID: 26432912 DOI: 10.1016/j.vaccine.2015.09.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/24/2015] [Accepted: 09/16/2015] [Indexed: 11/28/2022]
Abstract
The ability to induce a broadly neutralizing antibody (bNAb) response following vaccination is regarded as a crucial aspect in developing an effective vaccine against human immunodeficiency virus type 1 (HIV-1). The bNAbs target the HIV-1 envelope glycoprotein (Env) which is exposed on the virus surface, thereby preventing cell entry. To date, conventional vaccine approaches such as the use of Env-based immunogens have been unsuccessful. We expressed, purified, characterized and evaluated the immunogenicity of several unique HIV-1 subtype C Env immunogens in small animals. Here we report that vaccine immunogens based on Env liganded to a two domain CD4 variant, 2dCD4(S60C) are capable of consistently eliciting potent, broadly neutralizing antibody responses in New Zealand white rabbits against a panel of clinically relevant HIV-1 pseudoviruses. This was irrespective of the Env protein subtype and context. Importantly, depletion of the anti-CD4 antibodies appeared to abrogate the neutralization activity in the rabbit sera. Taken together, this data suggests that the Env-2dCD4(S60C) complexes described here are "super" immunogens, and potentially immunofocus antibody responses to a unique epitope spanning the 2dCD4(60C). Recent data from the two available anti-CD4 monoclonal antibodies, Ibalizumab and CD4-Ig (and bispecific variants thereof) have highlighted that the use of these broad and potent entry inhibitors could circumvent the need for a conventional vaccine targeting HIV-1. Overall, the ability of the unique Env-2dCD4(S60C) complexes to elicit potent bNAb responses has not been described previously, reinforcing that further investigation for their utility in preventing and controlling HIV-1/SIV infection is warranted.
Collapse
Affiliation(s)
- Mark A Killick
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Michelle L Grant
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Nichole M Cerutti
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Alexio Capovilla
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Maria A Papathanasopoulos
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| |
Collapse
|
6
|
Functional and Structural Characterization of Human V3-Specific Monoclonal Antibody 2424 with Neutralizing Activity against HIV-1 JRFL. J Virol 2015; 89:9090-102. [PMID: 26109728 PMCID: PMC4524078 DOI: 10.1128/jvi.01280-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/06/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The V3 region of HIV-1 gp120 is important for virus-coreceptor interaction and highly immunogenic. Although most anti-V3 antibodies neutralize only the sensitive tier 1 viruses, anti-V3 antibodies effective against the more resistant viruses exist, and a better understanding of these antibodies and their epitopes would be beneficial for the development of novel vaccine immunogens against HIV. The HIV-1 isolate JRFL with its cryptic V3 is resistant to most V3-specific monoclonal antibodies (MAbs). However, the V3 MAb 2424 achieves 100% neutralization against JRFL. 2424 is encoded by IGHV3-53 and IGLV2-28 genes, a pairing rarely used by the other V3 MAbs. 2424 also has distinct binding and neutralization profiles. Studies of 2424-mediated neutralization of JRFL produced with a mannosidase inhibitor further revealed that its neutralizing activity is unaffected by the glycan composition of the virus envelope. To understand the distinct activity of 2424, we determined the crystal structure of 2424 Fab in complex with a JRFL V3 peptide and showed that the 2424 epitope is located at the tip of the V3 crown ((307)IHIGPGRAFYT(319)), dominated by interactions with His(P308), Pro(P313), and Arg(P315). The binding mode of 2424 is similar to that of the well-characterized MAb 447-52D, although 2424 is more side chain dependent. The 2424 epitope is focused on the very apex of V3, away from nearby glycans, facilitating antibody access. This feature distinguishes the 2424 epitope from the other V3 crown epitopes and indicates that the tip of V3 is a potential site to target and incorporate into HIV vaccine immunogens. IMPORTANCE HIV/AIDS vaccines are crucial for controlling the HIV epidemics that continue to afflict millions of people worldwide. However, HIV vaccine development has been hampered by significant scientific challenges, one of which is the inability of HIV vaccine candidates evaluated thus far to elicit production of potent and broadly neutralizing antibodies. The V3 loop is one of the few immunogenic targets on the virus envelope glycoprotein that can induce neutralizing antibodies, but in many viruses, parts of V3 are inaccessible for antibody recognition. This study examined a V3-specific monoclonal antibody that can completely neutralize HIV-1 JRFL, a virus isolate resistant to most V3 antibodies. Our data reveal that this antibody recognizes the most distal tip of V3, which is not as occluded as other parts of V3. Hence, the epitope of 2424 is in one of the vulnerable sites on the virus that may be exploited in designing HIV vaccine immunogens.
Collapse
|
7
|
Giraldo DM, Hernandez JC, Urcuqui Inchima S. Impact of in vitro Costimulation with TLR2, TLR4 and TLR9 Agonists and HIV-1 on Antigen-Presenting Cell Activation. Intervirology 2015; 58:122-9. [DOI: 10.1159/000371765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 12/26/2014] [Indexed: 11/19/2022] Open
Abstract
Objective: HIV-1 infects several immune cells including dendritic cells (DCs) and monocytes, which contributes in both to dissemination of HIV-1 infection and induction of antiviral immunity. These cells produce high amounts of type I IFN and proinflammatory cytokines upon Toll-like receptor (TLR) stimulation. During HIV-1 infection, an altered production of proinflammatory cytokines has been reported. However, the mechanisms underlying cytokine modulation have not been well described. Here, we evaluated the production of proinflammatory cytokines and activation of myeloid and plasmacytoid DCs and monocytes costimulated in vitro with TLR agonists and HIV-1. Methods: Changes in cytokine expression by real-time PCR and activation of DCs and monocytes by flow cytometry were evaluated after costimulation with HIV-1 and TLR agonists. Results: We observed an upregulation of TNF-α expression after TLR4 stimulation, but a downregulation of IL-6 when TLR2/TLR9 were stimulated. Interestingly, the expression of CD80 and CD86 costimulatory molecules in monocytes and DCs were significantly increased in cells challenged with HIV-1 and TLR2/TLR4/TLR9 agonists. Conclusion: This regulation of TNF-α and IL-6 production and changes in the expression of costimulatory molecules can be critical in the context of HIV-1 infection, by favoring the antigen-presenting cell activation through the stimulation of TLRs.
Collapse
|
8
|
A multivalent clade C HIV-1 Env trimer cocktail elicits a higher magnitude of neutralizing antibodies than any individual component. J Virol 2014; 89:2507-19. [PMID: 25540368 DOI: 10.1128/jvi.03331-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The sequence diversity of human immunodeficiency virus type 1 (HIV-1) presents a formidable challenge to the generation of an HIV-1 vaccine. One strategy to address such sequence diversity and to improve the magnitude of neutralizing antibodies (NAbs) is to utilize multivalent mixtures of HIV-1 envelope (Env) immunogens. Here we report the generation and characterization of three novel, acute clade C HIV-1 Env gp140 trimers (459C, 405C, and 939C), each with unique antigenic properties. Among the single trimers tested, 459C elicited the most potent NAb responses in vaccinated guinea pigs. We evaluated the immunogenicity of various mixtures of clade C Env trimers and found that a quadrivalent cocktail of clade C trimers elicited a greater magnitude of NAbs against a panel of tier 1A and 1B viruses than any single clade C trimer alone, demonstrating that the mixture had an advantage over all individual components of the cocktail. These data suggest that vaccination with a mixture of clade C Env trimers represents a promising strategy to augment vaccine-elicited NAb responses. IMPORTANCE It is currently not known how to generate potent NAbs to the diverse circulating HIV-1 Envs by vaccination. One strategy to address this diversity is to utilize mixtures of different soluble HIV-1 envelope proteins. In this study, we generated and characterized three distinct, novel, acute clade C soluble trimers. We vaccinated guinea pigs with single trimers as well as mixtures of trimers, and we found that a mixture of four trimers elicited a greater magnitude of NAbs than any single trimer within the mixture. The results of this study suggest that further development of Env trimer cocktails is warranted.
Collapse
|
9
|
Abstract
Purpose of review To summarize the role of adjuvants in eliciting desirable antibody responses against HIV-1 with particular emphasis on both historical context and recent developments. Recent findings Increased understanding of the role of pattern recognition receptors such as Toll-like receptors in recruiting and directing the immune system has increased the variety of adjuvant formulations being tested in animal models and humans. Across all vaccine platforms, adjuvant formulations have been shown to enhance desirable immune responses such as higher antibody titers and increased functional activity. Although no vaccine formulation has yet succeeded in eliciting broad neutralizing antibodies against HIV-1, the ability of adjuvants to direct the immune response to immunogens suggests they will be critically important in any successful HIV-1 vaccine. Summary The parallel development of adjuvants along with better HIV-1 immunogens will be needed for a successful AIDS vaccine. Additional comparative testing will be required to determine the optimal adjuvant and immunogen regimen that can elicit antibody responses capable of blocking HIV-1 transmission.
Collapse
|
10
|
Rao M, Peachman KK, Kim J, Gao G, Alving CR, Michael NL, Rao VB. HIV-1 variable loop 2 and its importance in HIV-1 infection and vaccine development. Curr HIV Res 2014; 11:427-38. [PMID: 24191938 DOI: 10.2174/1570162x113116660064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 12/30/2022]
Abstract
A vaccine that can prevent the transmission of HIV-1 at the site of exposure to the host is one of the best hopes to control the HIV-1 pandemic. The trimeric envelope spike consisting of heterodimers, gp120 and gp41, is essential for virus entry and thus has been a key target for HIV-1 vaccine development. However, it has been extremely difficult to identify the types of antibodies required to block the transmission of various HIV-1 strains and the immunogens that can elicit such antibodies due to the high genetic diversity of the HIV-1 envelope. The modest efficacy of the gp120 HIV-1 vaccine used in the RV144 Thai trial, including the studies on the immune correlates of protection, and the discovery of vaccine-induced immune responses to certain signature regions of the envelope have shown that the gp120 variable loop 2 (V2) is an important region. Since there is evidence that the V2 region interacts with the integrin α4β7 receptor of the host cell, and that this interaction might be important for virus capture, induction of antibodies against V2 loop could be postulated as one of the mechanisms to prevent the acquisition of HIV-1. Immunogens that can induce these antibodies should therefore be taken into consideration when designing HIV-1 vaccine formulations.
Collapse
Affiliation(s)
- Mangala Rao
- Laboratory of Adjuvant and Antigen Research, USMHRP at the Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Rm 2A08, Sliver Spring, MD 20910, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Dey AK, Srivastava IK. Novel adjuvants and delivery systems for enhancing immune responses induced by immunogens. Expert Rev Vaccines 2014; 10:227-51. [DOI: 10.1586/erv.10.142] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
A novel emulsion-type adjuvant containing CpG oligodeoxynucleotides enhances CD8+ T-cell-mediated anti-tumor immunity. J Control Release 2013; 173:158-65. [PMID: 24177312 DOI: 10.1016/j.jconrel.2013.10.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/02/2013] [Accepted: 10/21/2013] [Indexed: 01/31/2023]
Abstract
PELC is a novel emulsion-type adjuvant that contains the bioresorbable polymer poly (ethylene glycol)-block-poly (lactide-co-ε-caprolactone) (PEG-b-PLACL), Span®85 and squalene. To investigate whether PELC is able to enhance CTL responses of antigens for treating tumor, peptides or protein antigens derived from HPV16 E7 were formulated with PELC nanoparticles and CpG oligodeoxynucleotide. We identified that PELC formulation could delay the release of antigens in vitro and in vivo. We assessed the immunogenicity of an H-2D(b)-restricted CTL epitope RAHYNIVTF (RAH) formulated with PELC or PELC/CpG and investigated the ability of these formulations to promote tumor regression. Following a single-dose subcutaneous injection in mice, we found that the RAH peptide formulated with PELC/CpG (RAH/PELC/CpG) resulted in increased numbers of IFN-γ-secreting cells and RAH-specific CD8(+) T cells and an enhanced cytotoxic T cell response compared with RAH formulated with PELC or CpG alone. The tumor-bearing mice received a single-dose injection of RAH/PELC/CpG, which induced complete tumor regression. These results demonstrated that peptide antigen formulated with PELC/CpG nanoparticles is feasible for cancer immunotherapy.
Collapse
|
13
|
Efficient delivery of the toll-like receptor agonists polyinosinic:polycytidylic acid and CpG to macrophages by acetalated dextran microparticles. Mol Pharm 2013; 10:2849-57. [PMID: 23768126 DOI: 10.1021/mp300643d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To enhance the immune activity of vaccine adjuvants polyinosinic:polycytidylic acid (poly I:C) and CpG acetalated dextran (Ac-DEX) microparticles can be used. Ac-DEX is a biodegradable and water-insoluble polymer that degrades significantly faster at pH 5.0 (phagosomal pH) than at pH 7.4 and has tunable degradation rates that can range from hours to months. This is an ideal characteristic for delivery of an antigen and adjuvant within the lysosomal compartment of a phagocytic cell. We evaluated poly I:C and CpG encapsulated in Ac-DEX microparticles using RAW macrophages as a model antigen-presenting cell. These cells were cultured with poly I:C or CpG in their free form, encapsulated in a fast degrading Ac-DEX, in slow degrading Ac-DEX, or in the Food and Drug Administration-approved polymer poly(lactic-co-glycolic acid) (PLGA). Ac-DEX had higher encapsulation efficiencies for both poly I:C and CpG than PLGA. Furthermore, poly I:C or CpG encapsulated in Ac-DEX also showed, in general, a significantly stronger immunostimulatory response than PLGA and unencapsulated CpG or poly I:C, which was indicated by a higher rate of nitric oxide release and increased levels of cytokines such as TNF-α, IL-6, IL-10, and IFN-γ. Overall, we have illustrated a method for enhancing the delivery of these vaccine adjuvants to further enhance the development of Ac-DEX vaccine formulations.
Collapse
|
14
|
Dey AK, Burke B, Sun Y, Hartog K, Heeney JL, Montefiori D, Srivastava IK, Barnett SW. Use of a polyanionic carbomer, Carbopol971P, in combination with MF59, improves antibody responses to HIV-1 envelope glycoprotein. Vaccine 2012; 30:2749-59. [PMID: 22366638 DOI: 10.1016/j.vaccine.2012.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/09/2012] [Accepted: 02/11/2012] [Indexed: 12/20/2022]
Abstract
Identification of optimal antigen(s) and adjuvant combination(s) to elicit potent, protective, and long-lasting immunity has been a major challenge for the development of effective vaccines against chronic viral pathogens, such as HIV-1, for which there are not yet any licensed vaccines. Here we describe the use of a novel adjuvant approach employing Carbopol 971P(®) NF (hereafter referred to as Carbopol971P), a cross-linked polyanionic carbomer, in combination with the Novartis proprietary oil-in-water adjuvant, MF59, as a potentially safe and effective adjuvant to augment humoral immune responses to the HIV-1 envelope glycoprotein (Env). Intramuscular immunization of small animals with recombinant Env glycoprotein (gp140) formulated in Carbopol971P plus MF59 gave significantly higher titers of binding and virus neutralizing antibodies as compared to immunization using gp140 with either MF59 or Carbopol971P alone. In addition, the antibodies generated were of higher avidity. Importantly, the use of Carbopol971P plus MF59 did not cause any serious adverse reactions or any obvious health problems in animals upon intramuscular administration. Hence, the Carbopol971P plus MF59 adjuvant formulation may provide a benefit for future vaccine applications.
Collapse
Affiliation(s)
- Antu K Dey
- Novartis Vaccines & Diagnostics, 45 Sidney Street, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Dey AK, Burke B, Sun Y, Sirokman K, Nandi A, Hartog K, Lian Y, Geonnotti AR, Montefiori D, Franti M, Martin G, Carfi A, Kessler P, Martin L, Srivastava IK, Barnett SW. Elicitation of neutralizing antibodies directed against CD4-induced epitope(s) using a CD4 mimetic cross-linked to a HIV-1 envelope glycoprotein. PLoS One 2012; 7:e30233. [PMID: 22291921 PMCID: PMC3265465 DOI: 10.1371/journal.pone.0030233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/12/2011] [Indexed: 11/19/2022] Open
Abstract
The identification of HIV-1 envelope glycoprotein (Env) structures that can generate broadly neutralizing antibodies (BNAbs) is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s) that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4) receptor-bound state, thereby exposing highly conserved "CD4 induced" (CD4i) epitope(s) known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH), was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140) using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1) complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-2(7312/V434M) and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s). These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s) here, and its potential role in vaccine application.
Collapse
Affiliation(s)
- Antu K. Dey
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Brian Burke
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Yide Sun
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Klara Sirokman
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Avishek Nandi
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Karin Hartog
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Ying Lian
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Anthony R. Geonnotti
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael Franti
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Grégoire Martin
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Andrea Carfi
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Pascal Kessler
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Loïc Martin
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Indresh K. Srivastava
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Susan W. Barnett
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| |
Collapse
|
16
|
Spearman P, Lally MA, Elizaga M, Montefiori D, Tomaras GD, McElrath MJ, Hural J, De Rosa SC, Sato A, Huang Y, Frey SE, Sato P, Donnelly J, Barnett S, Corey LJ. A trimeric, V2-deleted HIV-1 envelope glycoprotein vaccine elicits potent neutralizing antibodies but limited breadth of neutralization in human volunteers. J Infect Dis 2011; 203:1165-73. [PMID: 21451004 DOI: 10.1093/infdis/jiq175] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A key missing element in the development of a successful human immunodeficiency virus (HIV) vaccine is an immunogen that can generate broadly cross-neutralizing antibodies against primary isolates of the virus. METHODS This phase 1 clinical trial employed a DNA prime and subunit envelope protein boost in an attempt to generate cellular and humoral immune responses that might be desirable in a protective HIV vaccine. Priming was performed via intramuscular injection with gag and env DNA adsorbed to polylactide coglycolide microspheres, followed by boosting with a recombinant trimeric envelope (Env) glycoprotein delivered in MF59 adjuvant. RESULTS The DNA prime and protein boost were generally safe and well-tolerated. Env-specific CD4(+) cellular responses were generated that were predominantly detected after Env protein boosting. Neutralizing antibody responses against the homologous SF162 viral isolate were remarkably strong and were present in the majority of vaccine recipients, including a strong response against CD4-induced epitopes on gp120. Despite the promising potency of this vaccine approach, neutralization breadth against heterologous tier 2 strains of HIV-1 was minimal. CONCLUSIONS Potent neutralization against neutralization-sensitive strains of HIV is achievable in humans through a DNA prime, recombinant oligomeric Env protein boost regimen. Eliciting substantial breadth of neutralization remains an elusive goal. CLINICAL TRIALS REGISTRATION NCT00073216.
Collapse
Affiliation(s)
- Paul Spearman
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Recent clinical trial results have indicated that it may be possible for vaccines to induce protection against HIV. To build on this result, strategies should be designed to enhance duration, breadth, and magnitude of antibody production. Strategic formulation of agonists of the innate immune system and carriers that selectively present the target antigen yields a class of pharmaceuticals, named 'adjuvants', that greatly influence immunity resulting from vaccination. As researchers begin to focus not only on creating an immune response to an antigen, but also on the quality of that response, the role of adjuvants is becoming increasingly significant. This review is intended to give an overview of recent findings on how adjuvants model the immune response to antigens with a focus on the field of vaccines for HIV. RECENT FINDINGS It is clear that innate and adaptive immunity are linked by communication channels that allow innate signals to influence the quality of adaptive responses as well as adaptive signals that temper innate responses. Adjuvants take advantage of this bridge to shape the immune response to antigens. In this review, we will discuss the different classes of adjuvants currently available; recent findings on the relationship between adjuvants and the type of immune profile generated; and the breadth of neutralizing antibodies as influenced by adjuvants. SUMMARY Because adjuvants influence the breadth of antibodies generated and the type of cells that proliferate in response to a vaccine this review is relevant for scientists clinicians involved in creating a new HIV vaccine.
Collapse
|
18
|
Bachelder EM, Beaudette TT, Broaders KE, Fréchet JMJ, Albrecht MT, Mateczun AJ, Ainslie KM, Pesce JT, Keane-Myers AM. In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants. Mol Pharm 2010; 7:826-35. [PMID: 20230025 DOI: 10.1021/mp900311x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toll-like receptor (TLR) agonists induce potent innate immune responses and can be used in the development of novel vaccine adjuvants. However, access to TLRs can be challenging as exemplified by TLR 7, which is located intracellularly in endosomal compartments. To increase recognition and subsequent stimulatory effects of TLR 7, imiquimod was encapsulated in acetalated dextran (Ac-DEX) microparticles. Ac-DEX, a water-insoluble and biocompatible polymer, is relatively stable at pH 7.4, but degrades rapidly under acidic conditions, such as those found in lysosomal vesicles. To determine the immunostimulatory capacity of encapsulated imiquimod, we compared the efficacy of free versus encapsulated imiquimod in activating RAW 264.7 macrophages, MH-S macrophages, and bone marrow derived dendritic cells. Encapsulated imiquimod significantly increased IL-1 beta, IL-6, and TNF-alpha cytokine expression in macrophages relative to the free drug. Furthermore, significant increases were observed in classic macrophage activation markers (iNOS, PD1-L1, and NO) after treatment with encapsulated imiquimod over the free drug. Also, bone marrow derived dendritic cells produced significantly higher levels of IL-1 beta, IL-6, IL-12p70, and MIP-1 alpha as compared to their counterparts receiving free imiquimod. These results suggest that encapsulation of TLR ligands within Ac-DEX microparticles results in increased immunostimulation and potentially better protection from disease when used in conjunction with vaccine formulations.
Collapse
Affiliation(s)
- Eric M Bachelder
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sun Y, Santra S, Buzby AP, Mascola JR, Nabel GJ, Letvin NL. Recombinant vector-induced HIV/SIV-specific CD4+ T lymphocyte responses in rhesus monkeys. Virology 2010; 406:48-55. [PMID: 20667574 DOI: 10.1016/j.virol.2010.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/14/2010] [Accepted: 07/02/2010] [Indexed: 11/25/2022]
Abstract
The recently reported modest success of the RV144 Thai trial vaccine regimen in preventing HIV-1 acquisition has focused interest on the potential contribution to that protection of vaccine-elicited CD4(+) T cell responses. We evaluated the induction of virus-specific CD4(+) T cell responses in rhesus monkeys using a series of diverse vaccine vectors. We assessed both the magnitudes and functional profiles of the antigen-specific CD4(+) T cells by measuring cytokine production, memory differentiation, and the expression of mucosal homing molecules. We found that DNA prime/recombinant MVA boost immunizations induced particularly high-frequency virus-specific CD4(+) T cell responses with polyfunctional repertoires, and these responses were partially preserved following SHIV-89.6P challenge. The majority of the vaccine-elicited CD4(+) T cells were CD28(+) memory T cells that expressed low levels of beta7. Neither the magnitudes nor the functional profiles of the virus-specific CD4(+) T cells generated by vaccination were associated with a preservation of CD4(+) T cells or control of viral replication following SHIV-89.6P challenge. Interestingly, monkeys primed with recombinant Ad5 immunogens showed a dramatic expansion of both the magnitude and polyfunctionality of the vaccine-elicited CD4(+) T cell responses following envelope protein boost. These results demonstrate that vaccine strategies that include recombinant MVA or recombinant Ad5 vectors can elicit robust CD4(+) T cell responses.
Collapse
Affiliation(s)
- Yue Sun
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
20
|
Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design. Nat Rev Immunol 2010; 10:527-35. [PMID: 20577269 DOI: 10.1038/nri2801] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One of the main challenges of developing an HIV-1 vaccine lies in eliciting immune responses that can overcome the antigenic variability exhibited by HIV. Most HIV-1 vaccine development has focused on inducing immunity to conserved regions of the HIV-1 envelope. However, new studies of the sequence-variable regions of the HIV-1 gp120 envelope glycoprotein have shown that there are conserved immunological and structural features in these regions. Recombinant immunogens that include these features may provide the means to address the antigenic diversity of HIV-1 and induce protective antibodies that can prevent infection with HIV-1.
Collapse
|
21
|
Jiang X, Burke V, Totrov M, Williams C, Cardozo T, Gorny MK, Zolla-Pazner S, Kong XP. Conserved structural elements in the V3 crown of HIV-1 gp120. Nat Struct Mol Biol 2010; 17:955-61. [PMID: 20622876 DOI: 10.1038/nsmb.1861] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/29/2010] [Indexed: 11/09/2022]
Abstract
Binding of the third variable region (V3) of the HIV-1 envelope glycoprotein gp120 to the cell-surface coreceptors CCR5 or CXCR4 during viral entry suggests that there are conserved structural elements in this sequence-variable region. These conserved elements could serve as epitopes to be targeted by a vaccine against HIV-1. Here we perform a systematic structural analysis of representative human anti-V3 monoclonal antibodies in complex with V3 peptides, revealing that the crown of V3 has four conserved structural elements: an arch, a band, a hydrophobic core and the peptide backbone. These are either unaffected by or are subject to minimal sequence variation. As these regions are targeted by cross-clade neutralizing human antibodies, they provide a blueprint for the design of vaccine immunogens that could elicit broadly cross-reactive protective antibodies.
Collapse
Affiliation(s)
- Xunqing Jiang
- Department of Biochemistry, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kabanova A, Adamo R, Proietti D, Berti F, Tontini M, Rappuoli R, Costantino P. Preparation, characterization and immunogenicity of HIV-1 related high-mannose oligosaccharides-CRM197 glycoconjugates. Glycoconj J 2010; 27:501-13. [DOI: 10.1007/s10719-010-9295-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Revised: 05/04/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
|
23
|
Mamo T, Moseman EA, Kolishetti N, Salvador-Morales C, Shi J, Kuritzkes DR, Langer R, von Andrian U, Farokhzad OC. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond) 2010; 5:269-85. [PMID: 20148638 DOI: 10.2217/nnm.10.1] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Currently, there is no cure and no preventive vaccine for HIV/AIDS. Combination antiretroviral therapy has dramatically improved treatment, but it has to be taken for a lifetime, has major side effects and is ineffective in patients in whom the virus develops resistance. Nanotechnology is an emerging multidisciplinary field that is revolutionizing medicine in the 21st century. It has a vast potential to radically advance the treatment and prevention of HIV/AIDS. In this review, we discuss the challenges with the current treatment of the disease and shed light on the remarkable potential of nanotechnology to provide more effective treatment and prevention for HIV/AIDS by advancing antiretroviral therapy, gene therapy, immunotherapy, vaccinology and microbicides.
Collapse
Affiliation(s)
- Tewodros Mamo
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
An optimally constrained V3 peptide is a better immunogen than its linear homolog or HIV-1 gp120. Virology 2010; 401:293-304. [PMID: 20347111 DOI: 10.1016/j.virol.2010.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/12/2010] [Accepted: 03/01/2010] [Indexed: 11/20/2022]
Abstract
Synthetic peptides offer an attractive option for development of a V3-directed vaccine. However, immunization with flexible linear peptides may result in an immune response to multiple conformations, many of which differ from the native conformation of the corresponding region in the protein. Here we show that optimization of the location of a disulfide bond in peptides constrained to mimic the beta-hairpin conformation of the V3, yields an immunogen that elicits a 30-fold stronger HIV-1 neutralizing response in rabbits compared with the homologous linear V3 peptide. The HIV-1 neutralizing response elicited by the optimally constrained peptide is also significantly stronger than that elicited by a gp120 construct in which the V3 is exposed. Neutralization of an HIV-1 strain that shares only 72% identity with the immunizing peptide was demonstrated. The most effective immunogen was also able to neutralize primary isolates that are more resistant to neutralization such as SS1196 and 6535.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW We summarize and discuss recent developments regarding the immunogenicity of human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) oligomers, focusing, for the most part, on trimeric, recombinant protein immunogens. RECENT FINDINGS The three-dimensional cryo-electron tomography images of the HIV-1 Env trimeric spike, coupled with previous data demonstrating the impact on envelope glycoprotein (gp120)-transmembrane glycoprotein (gp41) cleavage of the architecture of the Env trimers, provide exciting information that may lead to new avenues for novel immunogen design. Through new processes to map region-specific anti-Env antibodies present in immune serum, it is now possible to define antibody specificities against conformationally sensitive surfaces of Env. A number of strategies designed to counteract the immunodominance of the HIV-1 Env variable regions were attempted, and a recent study demonstrates that immunization with Env trimers provides sterilizing protection against mucosal challenge with virus. Importantly, protection against the challenge virus was associated with in-vitro HIV-1 neutralization titers. SUMMARY Several studies within the past 18 months provide exciting structural information and the development of tools that have the potential to improve Env trimer design and the analysis of trimer immunogenicity studies. The ability to predict protection against a challenge virus through an in-vitro neutralization screen may be very helpful for evaluation of immunogens to move forward into clinical trials.
Collapse
|
26
|
Breadth of neutralizing antibodies elicited by stable, homogeneous clade A and clade C HIV-1 gp140 envelope trimers in guinea pigs. J Virol 2010; 84:3270-9. [PMID: 20053749 DOI: 10.1128/jvi.02252-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The native envelope (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) is trimeric, and thus trimeric Env vaccine immunogens are currently being explored in preclinical immunogenicity studies. Key challenges have included the production and purification of biochemically homogeneous and stable trimers and the evaluation of these immunogens utilizing standardized virus panels for neutralization assays. Here we report the binding and neutralizing antibody (NAb) responses elicited by clade A (92UG037.8) and clade C (CZA97.012) Env gp140 trimer immunogens in guinea pigs. These trimers have been selected and engineered for optimal biochemical stability and have defined antigenic properties. Purified gp140 trimers with Ribi adjuvant elicited potent, cross-clade NAb responses against tier 1 viruses as well as detectable but low-titer NAb responses against select tier 2 viruses from clades A, B, and C. In particular, the clade C trimer elicited NAbs that neutralized 27%, 20%, and 47% of tier 2 viruses from clades A, B, and C, respectively. Heterologous DNA prime, protein boost as well as DNA prime, recombinant adenovirus boost regimens expressing these antigens, however, did not result in an increased magnitude or breadth of NAb responses in this system. These data demonstrate the immunogenicity of stable, homogeneous clade A and clade C gp140 trimers and exemplify the utility of standardized tier 1 and tier 2 virus panels for assessing the NAb responses of candidate HIV-1 Env immunogens.
Collapse
|
27
|
Zolla-Pazner S, Cohen S, Pinter A, Krachmarov C, Wrin T, Wang S, Lu S. Cross-clade neutralizing antibodies against HIV-1 induced in rabbits by focusing the immune response on a neutralizing epitope. Virology 2009; 392:82-93. [PMID: 19632700 DOI: 10.1016/j.virol.2009.05.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/18/2009] [Accepted: 05/28/2009] [Indexed: 11/17/2022]
Abstract
Studies were performed to induce cross-clade neutralizing antibodies (Abs) by testing various combinations of prime and boost constructs that focus the immune response on structurally-conserved epitopes in the V3 loop of HIV-1 gp120. Rabbits were immunized with gp120 DNA containing a V3 loop characterized by the GPGR motif at its tip, and/or with gp120 DNA with a V3 loop carrying the GPGQ motif. Priming was followed by boosts with V3-fusion proteins (V3-FPs) carrying the V3 sequence from a subtype B virus (GPGR motif), and/or with V3 sequences from subtypes A and C (GPGQ motif). The broadest and most consistent neutralizing responses were generated when using a clade C gp120 DNA prime and with the V3(B)-FP boost. Immune sera displayed neutralizing activity in three assays against pseudoviruses and primary isolates from subtypes A, AG, B, C, and D. Polyclonal Abs in the immune rabbit sera neutralized viruses that were not neutralized by pools of human anti-V3 monoclonal Abs. Greater than 80% of the neutralizing Abs were specific for V3, showing that the immune response could be focused on a neutralizing epitope and that vaccine-induced anti-V3 Abs have cross-clade neutralizing activity.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- New York University School of Medicine, 550 First Avenue, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|