1
|
A gammaherpesvirus licenses CD8 T cells to protect the host from pneumovirus-induced immunopathologies. Mucosal Immunol 2020; 13:799-813. [PMID: 32424182 PMCID: PMC7116076 DOI: 10.1038/s41385-020-0293-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 02/04/2023]
Abstract
Human respiratory syncytial virus (RSV) is a pneumovirus that causes severe infections in infants worldwide. Despite intensive research, safe and effective vaccines against RSV have remained elusive. The main reason is that RSV infection of children previously immunized with formalin-inactivated-RSV vaccines has been associated with exacerbated pathology, a phenomenon called RSV vaccine-enhanced respiratory disease. In parallel, despite the high RSV prevalence, only a minor proportion of children develop severe diseases. Interestingly, variation in the immune responses against RSV or following RSV vaccination could be linked with differences of exposure to microbes during childhood. Gammaherpesviruses (γHVs), such as the Epstein-Barr virus, are persistent viruses that deeply influence the immune system of their host and could therefore affect the development of pneumovirus-induced immunopathologies for the long term. Here, we showed that a previous ɣHV infection protects against both pneumovirus vaccine-enhanced disease and pneumovirus primary infection and that CD8 T cells are essential for this protection. These observations shed a new light on the understanding of pneumovirus-induced diseases and open new perspectives for the development of vaccine strategies.
Collapse
|
2
|
Hemmi S, Spindler KR. Murine adenoviruses: tools for studying adenovirus pathogenesis in a natural host. FEBS Lett 2019; 593:3649-3659. [PMID: 31777948 DOI: 10.1002/1873-3468.13699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022]
Abstract
Small laboratory animals are powerful models for investigating in vivo viral pathogenesis of a number of viruses. For adenoviruses (AdVs), however, species-specificity poses limitations to studying human adenoviruses (HAdVs) in mice and other small laboratory animals. Thus, this review covers work on naturally occurring mouse AdVs, primarily mouse adenovirus type 1 (MAdV-1), a member of the species Murine mastadenovirus A. Molecular genetics, virus life cycle, cell and tissue tropism, interactions with the host immune response, persistence, and host genetics of susceptibility are described. A brief discussion of MAdV-2 (member of species Murine mastadenovirus B) and MAdV-3 (member of species Murine mastadenovirus C) is included. We report the use of MAdVs in the development of vectors and vaccines.
Collapse
Affiliation(s)
- Silvio Hemmi
- Institute of Molecular Life Sciences, University of Zürich, Switzerland
| | - Katherine R Spindler
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Molloy CT, Adkins LJ, Griffin C, Singer K, Weinberg JB. Mouse adenovirus type 1 infection of adipose tissue. Virus Res 2017; 244:90-98. [PMID: 29141203 DOI: 10.1016/j.virusres.2017.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 01/13/2023]
Abstract
Human adenovirus (HAdV) type 36 seropositivity has been linked to obesity in humans. That link is supported by a small number of studies using HAdV-36 infection of animals that are not natural hosts for HAdVs. In this study, we infected mice with mouse adenovirus type 1 (MAV-1), a mouse pathogen, to determine whether MAV-1 infected adipose tissue and was associated with adipose tissue inflammation and obesity. We detected MAV-1 in adipose tissue during acute MAV-1 infection, but we did not detect virus-induced increases in adipose tissue cytokine expression or histological evidence of adipose tissue inflammation during acute infection. MAV-1 did not persist in adipose tissue at later times, and we did not detect long-term adipose inflammation, increased adipose tissue mass, or body weight in infected mice. Our data indicate that MAV-1 is not associated with obesity in infected mice.
Collapse
Affiliation(s)
- Caitlyn T Molloy
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Laura J Adkins
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Cameron Griffin
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Kanakadurga Singer
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Jason B Weinberg
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
4
|
McCarthy MK, Malitz DH, Molloy CT, Procario MC, Greiner KE, Zhang L, Wang P, Day SM, Powell SR, Weinberg JB. Interferon-dependent immunoproteasome activity during mouse adenovirus type 1 infection. Virology 2016; 498:57-68. [PMID: 27560373 DOI: 10.1016/j.virol.2016.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/04/2016] [Accepted: 08/11/2016] [Indexed: 12/13/2022]
Abstract
The immunoproteasome is an inducible host mechanism that aids in the clearance of damaged proteins. The immunoproteasome also influences immune function by enhancing peptide presentation by MHC class I and promotes inflammation via IκB degradation and activation of NF-κB. We used mouse adenovirus type 1 (MAV-1) to characterize the role of the immunoproteasome in adenovirus pathogenesis. Following intranasal infection of mice, immunoproteasome activity in the heart and lung was significantly increased in an IFN-γ-dependent manner. Absence of the β5i immunoproteasome subunit and pharmacological inhibition of β5i activity had minimal effects on viral replication, virus-induced cellular inflammation, or induction of cytokine expression. Likewise, the establishment of protective immunity following primary infection was not significantly altered by β5i deficiency. Thus, although immunoproteasome activity is robustly induced during acute infection with MAV-1, our data suggest that other mechanisms are capable of compensating for immunoproteasome activity to maintain antiviral immunity and appropriate inflammatory responses.
Collapse
Affiliation(s)
- Mary K McCarthy
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Danielle H Malitz
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Caitlyn T Molloy
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Megan C Procario
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Kaitlyn E Greiner
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Luna Zhang
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Ping Wang
- Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Sharlene M Day
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Saul R Powell
- Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Jason B Weinberg
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Prostaglandin E2 Production and T Cell Function in Mouse Adenovirus Type 1 Infection following Allogeneic Bone Marrow Transplantation. PLoS One 2015; 10:e0139235. [PMID: 26407316 PMCID: PMC4583312 DOI: 10.1371/journal.pone.0139235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/10/2015] [Indexed: 11/19/2022] Open
Abstract
Adenovirus infections are important complications of bone marrow transplantation (BMT). We demonstrate delayed clearance of mouse adenovirus type 1 (MAV-1) from lungs of mice following allogeneic BMT. Virus-induced prostaglandin E2 (PGE2) production was greater in BMT mice than in untransplanted controls, but BMT using PGE2-deficient donors or recipients failed to improve viral clearance, and treatment of untransplanted mice with the PGE2 analog misoprostol did not affect virus clearance. Lymphocyte recruitment to the lungs was not significantly affected by BMT. Intracellular cytokine staining of lung lymphocytes demonstrated impaired production of INF-γ and granzyme B by cells from BMT mice, and production of IFN-γ, IL-2, IL-4, and IL-17 following ex vivo stimulation was impaired in lymphocytes obtained from lungs of BMT mice. Viral clearance was not delayed in untransplanted INF-γ-deficient mice, suggesting that delayed viral clearance in BMT mice was not a direct consequence of impaired IFN-γ production. However, lung viral loads were higher in untransplanted CD8-deficient mice than in controls, suggesting that delayed MAV-1 clearance in BMT mice is due to defective CD8 T cell function. We did not detect significant induction of IFN-β expression in lungs of BMT mice or untransplanted controls, and viral clearance was not delayed in untransplanted type I IFN-unresponsive mice. We conclude that PGE2 overproduction in BMT mice is not directly responsible for delayed viral clearance. PGE2-independent effects on CD8 T cell function likely contribute to the inability of BMT mice to clear MAV-1 from the lungs.
Collapse
|
6
|
Ueha R, Mukherjee S, Ueha S, de Almeida Nagata DE, Sakamoto T, Kondo K, Yamasoba T, Lukacs NW, Kunkel SL. Viral disruption of olfactory progenitors is exacerbated in allergic mice. Int Immunopharmacol 2014; 22:242-7. [PMID: 24998164 DOI: 10.1016/j.intimp.2014.06.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/03/2014] [Accepted: 06/20/2014] [Indexed: 11/30/2022]
Abstract
Upper airway viral infection in patients with airway allergy often exacerbates olfactory dysfunction, but the mechanism for this exacerbation remains unclear. Here, we examined the effects of respiratory syncytial virus (RSV) infection, in the presence or absence of airway allergy, on olfactory receptor neurons (ORNs) and their progenitors in mice. Immunohistological analyses revealed that cockroach allergen (CRA)-induced airway allergy alone did not affect the number of OMP(+) mature ORNs and SOX2(+) ORN progenitors. Intranasal RSV line 19 infection in allergy-free mice resulted in a transient decrease in SOX2(+) ORN progenitors without affecting OMP(+) ORNs. In contrast, the RSV-induced decrease in SOX2(+) ORN progenitors was exacerbated and prolonged in allergic mice, which resulted in eventual loss of OMP(+) ORNs. In the allergic mice, reduction of RSV in the olfactory epithelium was delayed as compared with allergy-free mice. These results suggest that ORN progenitors were impaired by RSV infection and that airway allergy exacerbated damage to ORN progenitors by reducing viral clearance.
Collapse
Affiliation(s)
- R Ueha
- Department of Pathology, University of Michigan, United States; Department of Otolaryngology, University of Tokyo, Japan.
| | - S Mukherjee
- Department of Pathology, University of Michigan, United States
| | - S Ueha
- Department of Pathology, University of Michigan, United States; Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Japan; CREST, Japan Science and Technology Agency, Japan
| | | | - T Sakamoto
- Department of Otolaryngology, University of Tokyo, Japan
| | - K Kondo
- Department of Otolaryngology, University of Tokyo, Japan
| | - T Yamasoba
- Department of Otolaryngology, University of Tokyo, Japan
| | - N W Lukacs
- Department of Pathology, University of Michigan, United States
| | - S L Kunkel
- Department of Pathology, University of Michigan, United States
| |
Collapse
|
7
|
McCarthy MK, Zhu L, Procario MC, Weinberg JB. IL-17 contributes to neutrophil recruitment but not to control of viral replication during acute mouse adenovirus type 1 respiratory infection. Virology 2014; 456-457:259-67. [PMID: 24889245 DOI: 10.1016/j.virol.2014.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/12/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
IL-17-producing CD4(+) helper T cells (Th17 cells) promote inflammatory responses to many pathogens. We used mouse adenovirus type 1 (MAV-1) to determine contributions of IL-17 to adenovirus pathogenesis. MAV-1 infection of C57BL/6 mice upregulated lung expression of IL-17 and the Th17-associated factors IL-23 and RORγt. Only CD4(+)T cells were associated with virus-specific IL-17 production. Fewer neutrophils were recruited to airways of IL-17(-/-) mice following MAV-1 infection, but there were no other differences in pulmonary inflammation between IL-17(+/+) and IL-17(-/-) mice. Mice depleted of neutrophils using anti-Gr-1 antibody had greater lung viral loads than controls. Despite impaired neutrophil recruitment, there were no differences between IL-17(+/+) and IL-17(-/-) mice in peak lung viral loads, clearance of virus from the lungs, or establishment of protective immunity. We demonstrate robust Th17 responses during MAV-1 respiratory infection, but these responses are not essential for control of virus infection or for virus-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Mary K McCarthy
- Department of Microbiology and Immunology, University of Michigan, 5641 Medical Science Building II, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Lingqiao Zhu
- Department of Microbiology and Immunology, University of Michigan, 5641 Medical Science Building II, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Megan C Procario
- Department of Pediatrics and Communicable Diseases, University of Michigan, 7510A Medical Science Research Building I, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Jason B Weinberg
- Department of Microbiology and Immunology, University of Michigan, 5641 Medical Science Building II, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, 7510A Medical Science Research Building I, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Han J, Wang Y, Gan X, Song J, Sun P, Dong XP. Serum cytokine profiles of children with human enterovirus 71-associated hand, foot, and mouth disease. J Med Virol 2014; 86:1377-85. [DOI: 10.1002/jmv.23929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Han
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University); National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing China
| | - Ying Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University); National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing China
| | - Xing Gan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University); National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing China
| | - Juan Song
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University); National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing China
| | - Peng Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University); National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University); National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Beijing China
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
| |
Collapse
|
9
|
McCarthy MK, Levine RE, Procario MC, McDonnell PJ, Zhu L, Mancuso P, Crofford LJ, Aronoff DM, Weinberg JB. Prostaglandin E2 induction during mouse adenovirus type 1 respiratory infection regulates inflammatory mediator generation but does not affect viral pathogenesis. PLoS One 2013; 8:e77628. [PMID: 24147040 PMCID: PMC3797793 DOI: 10.1371/journal.pone.0077628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/03/2013] [Indexed: 01/13/2023] Open
Abstract
Respiratory viruses cause substantial disease and are a significant healthcare burden. Virus-induced inflammation can be detrimental to the host, causing symptoms during acute infection and leading to damage that contributes to long-term residual lung disease. Prostaglandin E2 (PGE2) is a lipid mediator that is increased in response to many viral infections, and inhibition of PGE2 production during respiratory viral infection often leads to a decreased inflammatory response. We tested the hypothesis that PGE2 promotes inflammatory responses to mouse adenovirus type 1 (MAV-1) respiratory infection. Acute MAV-1 infection increased COX-2 expression and PGE2 production in wild type mice. Deficiency of the E prostanoid 2 receptor had no apparent effect on MAV-1 pathogenesis. Virus-induced induction of PGE2, IFN-γ, CXCL1, and CCL5 was reduced in mice deficient in microsomal PGE synthase-1 (mPGES-1-/- mice). However, there were no differences between mPGES-1+/+ and mPGES-1-/- mice in viral replication, recruitment of leukocytes to airways or lung inflammation. Infection of both mPGES‑1+/+ and mPGES-1-/- mice led to protection against reinfection. Thus, while PGE2 promotes the expression of a variety of cytokines in response to acute MAV-1 infection, PGE2 synthesis does not appear to be essential for generating pulmonary immunity.
Collapse
Affiliation(s)
- Mary K. McCarthy
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rachael E. Levine
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Megan C. Procario
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter J. McDonnell
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lingqiao Zhu
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter Mancuso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Leslie J. Crofford
- Department of Internal Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - David M. Aronoff
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jason B. Weinberg
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
10
|
Walline CC, Sehra S, Fisher AJ, Guindon LM, Kratzke IM, Montgomery JB, Lipking KP, Glosson NL, Benson HL, Sandusky GE, Wilkes DS, Brutkiewicz RR, Kaplan MH, Blum JS. Allergic airway disease in mice alters T and B cell responses during an acute respiratory poxvirus infection. PLoS One 2013; 8:e62222. [PMID: 23620814 PMCID: PMC3631162 DOI: 10.1371/journal.pone.0062222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/19/2013] [Indexed: 11/18/2022] Open
Abstract
Pulmonary viral infections can exacerbate or trigger the development of allergic airway diseases via multiple mechanisms depending upon the infectious agent. Respiratory vaccinia virus transmission is well established, yet the effects of allergic airway disease on the host response to intra-pulmonary vaccinia virus infection remain poorly defined. As shown here BALB/c mice with preexisting airway disease infected with vaccinia virus developed more severe pulmonary inflammation, higher lung virus titers and greater weight loss compared with mice inoculated with virus alone. This enhanced viremia was observed despite increased pulmonary recruitment of CD8+ T effectors, greater IFNγ production in the lung, and high serum levels of anti-viral antibodies. Notably, flow cytometric analyses of lung CD8+ T cells revealed a shift in the hierarchy of immunodominant viral epitopes in virus inoculated mice with allergic airway disease compared to mice treated with virus only. Pulmonary IL-10 production by T cells and antigen presenting cells was detected following virus inoculation of animals and increased dramatically in allergic mice exposed to virus. IL-10 modulation of host responses to this respiratory virus infection was greatly influenced by the localized pulmonary microenvironment. Thus, blocking IL-10 signaling in virus-infected mice with allergic airway disease enhanced pulmonary CD4+ T cell production of IFNγ and increased serum anti-viral IgG1 levels. In contrast, pulmonary IFNγ and virus-specific IgG1 levels were reduced in vaccinia virus-treated mice with IL-10 receptor blockade. These observations demonstrate that pre-existing allergic lung disease alters the quality and magnitude of immune responses to respiratory poxviruses through an IL-10-dependent mechanism.
Collapse
Affiliation(s)
- Crystal C. Walline
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sarita Sehra
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Amanda J. Fisher
- Center for Immunobiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Lynette M. Guindon
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ian M. Kratzke
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jessica B. Montgomery
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kelsey P. Lipking
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Nicole L. Glosson
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Heather L. Benson
- Center for Immunobiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - George E. Sandusky
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - David S. Wilkes
- Center for Immunobiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Randy R. Brutkiewicz
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mark H. Kaplan
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Janice S. Blum
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
11
|
Susceptibility to acute mouse adenovirus type 1 respiratory infection and establishment of protective immunity in neonatal mice. J Virol 2012; 86:4194-203. [PMID: 22345470 DOI: 10.1128/jvi.06967-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
There is an incomplete understanding of the differences between neonatal immune responses that contribute to the increased susceptibility of neonates to some viral infections. We tested the hypothesis that neonates are more susceptible than adults to mouse adenovirus type 1 (MAV-1) respiratory infection and are impaired in the ability to generate a protective immune response against a second infection. Following intranasal infection, lung viral loads were greater in neonates than in adults during the acute phase but the virus was cleared from the lungs of neonates as efficiently as it was from adult lungs. Lung gamma interferon (IFN-γ) responses were blunted and delayed in neonates, and lung viral loads were higher in adult IFN-γ(-/-) mice than in IFN-γ(+/+) controls. However, administration of recombinant IFN-γ to neonates had no effect on lung viral loads. Recruitment of inflammatory cells to the airways was impaired in neonates. CD4 and CD8 T cell responses were similar in the lungs of neonates and adults, although a transient increase in regulatory T cells occurred only in the lungs of infected neonates. Infection of neonates led to protection against reinfection later in life that was associated with increased effector memory CD8 T cells in the lungs. We conclude that neonates are more susceptible than adults to acute MAV-1 respiratory infection but are capable of generating protective immune responses.
Collapse
|
12
|
Nguyen Y, Procario MC, Ashley SL, O'Neal WK, Pickles RJ, Weinberg JB. Limited effects of Muc1 deficiency on mouse adenovirus type 1 respiratory infection. Virus Res 2011; 160:351-9. [PMID: 21816184 DOI: 10.1016/j.virusres.2011.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 02/06/2023]
Abstract
Muc1 (MUC1 in humans) is a membrane-tethered mucin that exerts anti-inflammatory effects in the lung during bacterial infection. Muc1 and other mucins are also likely to form a protective barrier in the lung. We used mouse adenovirus type 1 (MAV-1, also known as MAdV-1) to determine the role of Muc1 in the pathogenesis of an adenovirus in its natural host. Following intranasal inoculation of wild type mice, we detected increased TNF-α, a cytokine linked to Muc1 production, but no consistent changes in the production of lung Muc1, Muc5ac or overall lung mucus production. Viral loads were modestly higher in the lungs of Muc1(-/-) mice compared to Muc1(+/+) mice at several early time points but decreased to similar levels by 14 days post infection in both groups. However, cellular inflammation and the expression of CXCL1, CCL5, and CCL2 did not significantly differ between Muc1(-/-) and Muc1(+/+) mice. Our data therefore suggest that Muc1 may contribute to a physical barrier that protects against MAV-1 respiratory infection. However, our data do not reveal an anti-inflammatory effect of Muc1 that contributes to MAV-1 pathogenesis.
Collapse
Affiliation(s)
- Y Nguyen
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States.
| | | | | | | | | | | |
Collapse
|