1
|
Hartman AL, Myler PJ. Bunyavirales: Scientific Gaps and Prototype Pathogens for a Large and Diverse Group of Zoonotic Viruses. J Infect Dis 2023; 228:S376-S389. [PMID: 37849397 PMCID: PMC10582323 DOI: 10.1093/infdis/jiac338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Research directed at select prototype pathogens is part of the approach put forth by the National Institute of Allergy and Infectious Disease (NIAID) to prepare for future pandemics caused by emerging viruses. We were tasked with identifying suitable prototypes for four virus families of the Bunyavirales order (Phenuiviridae, Peribunyaviridae, Nairoviridae, and Hantaviridae). This is a challenge due to the breadth and diversity of these viral groups. While there are many differences among the Bunyavirales, they generally have complex ecological life cycles, segmented genomes, and cause a range of human clinical outcomes from mild to severe and even death. Here, we delineate potential prototype species that encompass the breadth of clinical outcomes of a given family, have existing reverse genetics tools or animal disease models, and can be amenable to a platform approach to vaccine testing. Suggested prototype pathogens outlined here can serve as a starting point for further discussions.
Collapse
Affiliation(s)
- Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Peter J Myler
- Department of Pediatrics and the Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| |
Collapse
|
2
|
Wuerth JD, Weber F. NSs of the mildly virulent sandfly fever Sicilian virus is unable to inhibit interferon signaling and upregulation of interferon-stimulated genes. J Gen Virol 2021; 102. [PMID: 34726591 PMCID: PMC8742993 DOI: 10.1099/jgv.0.001676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phleboviruses (order Bunyavirales, family Phenuiviridae) are globally emerging arboviruses with a wide spectrum of virulence. Sandfly fever Sicilian virus (SFSV) is one of the most ubiquitous members of the genus Phlebovirus and associated with a self-limited, incapacitating febrile disease in travellers and military troops. The phleboviral NSs protein is an established virulence factor, acting as antagonist of the antiviral interferon (IFN) system. Consistently, we previously reported that SFSV NSs targets the induction of IFN mRNA synthesis by specifically binding to the DNA-binding domain of the IFN transcription factor IRF3. Here, we further characterized the effect of SFSV and its NSs towards IFN induction, and evaluated its potential to affect the downstream IFN-stimulated signalling and the subsequent transactivation of antiviral interferon-stimulated genes (ISGs). We found that SFSV dampened, but did not entirely abolish type I and type III IFN induction. Furthermore, SFSV NSs did not affect IFN signalling, resulting in substantial ISG expression in infected cells. Hence, although SFSV targets IRF3 to reduce IFN induction, it is not capable of entirely disarming the IFN system in the presence of high basal IRF3 and/or IRF7 levels, and we speculate that this significantly contributes to its low level of virulence.
Collapse
Affiliation(s)
- Jennifer Deborah Wuerth
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany.,Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
3
|
Rath CT, de Carvalho Vivarini A, Pereira RM, Lopes UG. Production, Quantitation, and Infection of Amazonian Icoaraci Phlebovirus (Bunyaviridae). Bio Protoc 2021; 11:e4072. [PMID: 34327269 PMCID: PMC8292122 DOI: 10.21769/bioprotoc.4072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 11/02/2022] Open
Abstract
Phlebotomine vectors, sand flies of the order Diptera, are known to transmit Leishmania parasites as well as RNA viruses (arboviruses) to humans. The arbovirus, Icoaraci Phlebovirus (BeAN 24262 - ICOV), used in this study was isolated from Nectomys rodents, a mammalian species that is the same natural sylvatic reservoir of Leishmania (Leishmania) amazonensis. This Leishmania species is distributed in primary and secondary forests in Brazil and other countries in America and causes localized and diffuse anergic skin lesions. In our recent studies, we observed an aggravation of the protozoan infection by ICOV through the modulation of cytokine expression, such as IL-10 and IFN-β, enhancing the parasite load and possibly the pathogenesis. Efficient viral production and quantitation had to be developed and standardized to ensure that immuno-molecular assays provide consistent and reproducible viral infection results. The standardization of these procedures becomes a particularly useful tool in research, with several applications in understanding the interaction between the host cell and Phlebovirus, as well as co-infections, allowing the study of intracellular signaling pathways. Here, we detail a protocol that allows the production and quantitation of the Icoaraci Phlebovirus using BHK-21 cells (baby hamster kidney cells) and subsequent infection of peritoneal macrophages from C57BL/6 mice.
Collapse
Affiliation(s)
- Carolina Torturella Rath
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aislan de Carvalho Vivarini
- Laboratory of Molecular Parasitology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata M. Pereira
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ulisses Gazos Lopes
- Laboratory of Molecular Parasitology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Host Cell Restriction Factors of Bunyaviruses and Viral Countermeasures. Viruses 2021; 13:v13050784. [PMID: 33925004 PMCID: PMC8146327 DOI: 10.3390/v13050784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023] Open
Abstract
The Bunyavirales order comprises more than 500 viruses (generally defined as bunyaviruses) classified into 12 families. Some of these are highly pathogenic viruses infecting different hosts, including humans, mammals, reptiles, arthropods, birds, and/or plants. Host cell sensing of infection activates the innate immune system that aims at inhibiting viral replication and propagation. Upon recognition of pathogen-associated molecular patterns (PAMPs) by cellular pattern recognition receptors (PRRs), numerous signaling cascades are activated, leading to the production of interferons (IFNs). IFNs act in an autocrine and paracrine manner to establish an antiviral state by inducing the expression of hundreds of IFN-stimulated genes (ISGs). Some of these ISGs are known to restrict bunyavirus infection. Along with other constitutively expressed host cellular factors with antiviral activity, these proteins (hereafter referred to as “restriction factors”) target different steps of the viral cycle, including viral entry, genome transcription and replication, and virion egress. In reaction to this, bunyaviruses have developed strategies to circumvent this antiviral response, by avoiding cellular recognition of PAMPs, inhibiting IFN production or interfering with the IFN-mediated response. Herein, we review the current knowledge on host cellular factors that were shown to restrict infections by bunyaviruses. Moreover, we focus on the strategies developed by bunyaviruses in order to escape the antiviral state developed by the infected cells.
Collapse
|
5
|
Ter Horst S, Conceição-Neto N, Neyts J, Rocha-Pereira J. Structural and functional similarities in bunyaviruses: Perspectives for pan-bunya antivirals. Rev Med Virol 2019; 29:e2039. [PMID: 30746831 PMCID: PMC7169261 DOI: 10.1002/rmv.2039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/29/2018] [Accepted: 01/17/2019] [Indexed: 01/03/2023]
Abstract
The order of Bunyavirales includes numerous (re)emerging viruses that collectively have a major impact on human and animal health worldwide. There are no vaccines for human use or antiviral drugs available to prevent or treat infections with any of these viruses. The development of efficacious and safe drugs and vaccines is a pressing matter. Ideally, such antivirals possess pan‐bunyavirus antiviral activity, allowing the containment of every bunya‐related threat. The fact that many bunyaviruses need to be handled in laboratories with biosafety level 3 or 4, the great variety of species and the frequent emergence of novel species complicate such efforts. We here examined the potential druggable targets of bunyaviruses, together with the level of conservation of their biological functions, structure, and genetic similarity by means of heatmap analysis. In the light of this, we revised the available models and tools currently available, pointing out directions for antiviral drug discovery.
Collapse
Affiliation(s)
- Sebastiaan Ter Horst
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Nádia Conceição-Neto
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Joana Rocha-Pereira
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Heartland Virus Epidemiology, Vector Association, and Disease Potential. Viruses 2018; 10:v10090498. [PMID: 30223439 PMCID: PMC6164824 DOI: 10.3390/v10090498] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
First identified in two Missouri farmers exhibiting low white-blood-cell and platelet counts in 2009, Heartland virus (HRTV) is genetically closely related to severe fever with thrombocytopenia syndrome virus (SFTSV), a tick-borne phlebovirus producing similar symptoms in China, Korea, and Japan. Field isolations of HRTV from several life stages of unfed, host-seeking Amblyomma americanum, the lone star tick, implicated it as a putative vector capable of transstadial transmission. Laboratory vector competence assessments confirmed transstadial transmission of HRTV, demonstrated vertical infection, and showed co-feeding infection between A. americanum. A vertical infection rate of 33% from adult females to larvae in the laboratory was observed, while only one of 386 pools of molted nymphs (1930) reared from co-feeding larvae was positive for HRTV (maximum-likelihood estimate of infection rate = 0.52/1000). Over 35 human HRTV cases, all within the distribution range of A. americanum, have been documented. Serological testing of wildlife in areas near the index human cases, as well as in widely separated regions of the eastern United States where A. americanum occur, indicated many potential hosts such as raccoons and white-tailed deer. Attempts, however, to experimentally infect mice, rabbits, hamsters, chickens, raccoons, goats, and deer failed to produce detectable viremia. Immune-compromised mice and hamsters are the only susceptible models. Vertical infection augmented by co-feeding transmission could play a role in maintaining the virus in nature. A more complete assessment of the natural transmission cycle of HRTV coupled with serosurveys and enhanced HRTV disease surveillance are needed to better understand transmission dynamics and human health risks.
Collapse
|
7
|
Kumarasamy D, Roy BG, Rocha-Pereira J, Neyts J, Nanjappan S, Maity S, Mookerjee M, Naesens L. Synthesis and in vitro antiviral evaluation of 4-substituted 3,4-dihydropyrimidinones. Bioorg Med Chem Lett 2017; 27:139-142. [PMID: 27979594 PMCID: PMC7127791 DOI: 10.1016/j.bmcl.2016.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/08/2016] [Accepted: 12/02/2016] [Indexed: 11/19/2022]
Abstract
A series of 4-substituted 3,4-dihydropyrimidine-2-ones (DHPM) was synthesized, characterized by IR, 1H NMR, 13C NMR and HRMS spectra. The compounds were evaluated in vitro for their antiviral activity against a broad range of DNA and RNA viruses, along with assessment for potential cytotoxicity in diverse mammalian cell lines. Compound 4m, which possesses a long lipophilic side chain, was found to be a potent and selective inhibitor of Punta Toro virus, a member of the Bunyaviridae. For Rift Valley fever virus, which is another Bunyavirus, the activity of 4m was negligible. DHPMs with a C-4 aryl moiety bearing halogen substitution (4b, 4c and 4d) were found to be cytotoxic in MT4 cells.
Collapse
Affiliation(s)
- Dhanabal Kumarasamy
- Department of Pharmaceutical Chemistry, NSHM College of Pharmaceutical Technology, 124, B.L Saha Road, Kolkata 700053, India.
| | - Biswajit Gopal Roy
- Department of Chemistry, School of Physical Sciences, Sikkim University, 6th Mile, Tadong, Gangtok, Sikkim 737102, India
| | - Joana Rocha-Pereira
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Satheeshkumar Nanjappan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research [NIPER-H], Balanagar, Hyderabad 500037, India
| | - Subhasis Maity
- Department of Pharmaceutical Chemistry, NSHM College of Pharmaceutical Technology, 124, B.L Saha Road, Kolkata 700053, India
| | - Musfiqua Mookerjee
- Department of Pharmaceutical Chemistry, NSHM College of Pharmaceutical Technology, 124, B.L Saha Road, Kolkata 700053, India
| | - Lieve Naesens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium
| |
Collapse
|
8
|
Lang Y, Henningson J, Jasperson D, Li Y, Lee J, Ma J, Li Y, Cao N, Liu H, Wilson W, Richt J, Ruder M, McVey S, Ma W. Mouse model for the Rift Valley fever virus MP12 strain infection. Vet Microbiol 2016; 195:70-77. [PMID: 27771072 DOI: 10.1016/j.vetmic.2016.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 08/25/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023]
Abstract
Rift Valley fever virus (RVFV), a Category A pathogen and select agent, is the causative agent of Rift Valley fever. To date, no fully licensed vaccine is available in the U.S. for human or animal use and effective antiviral drugs have not been identified. The RVFV MP12 strain is conditionally licensed for use for veterinary purposes in the U.S. which was excluded from the select agent rule of Health and Human Services and the U.S. Department of Agriculture. The MP12 vaccine strain is commonly used in BSL-2 laboratories that is generally not virulent in mice. To establish a small animal model that can be used in a BSL-2 facility for antiviral drug development, we investigated susceptibility of six mouse strains (129S6/SvEv, STAT-1 KO, 129S1/SvlmJ, C57BL/6J, NZW/LacJ, BALB/c) to the MP12 virus infection via an intranasal inoculation route. Severe weight loss, obvious clinical and neurologic signs, and 50% mortality was observed in the STAT-1 KO mice, whereas the other 5 mouse strains did not display obvious and/or severe disease. Virus replication and histopathological lesions were detected in brain and liver of MP12-infected STAT-1 KO mice that developed the acute-onset hepatitis and delayed-onset encephalitis. In conclusion, the STAT-1 KO mouse strain is susceptible to MP12 virus infection, indicating that it can be used to investigate RVFV antivirals in a BSL-2 environment.
Collapse
Affiliation(s)
- Yuekun Lang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Dane Jasperson
- USDA, ARS, Arthropod-Borne Animal Diseases Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS, USA
| | - Yonghai Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jinhwa Lee
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jingjiao Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yuhao Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Nan Cao
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Haixia Liu
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - William Wilson
- USDA, ARS, Arthropod-Borne Animal Diseases Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS, USA
| | - Juergen Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Mark Ruder
- USDA, ARS, Arthropod-Borne Animal Diseases Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS, USA
| | - Scott McVey
- USDA, ARS, Arthropod-Borne Animal Diseases Research Unit (ABADRU), Center for Grain and Animal Health Research, Manhattan, KS, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
9
|
Ly HJ, Ikegami T. Rift Valley fever virus NSs protein functions and the similarity to other bunyavirus NSs proteins. Virol J 2016; 13:118. [PMID: 27368371 PMCID: PMC4930582 DOI: 10.1186/s12985-016-0573-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022] Open
Abstract
Rift Valley fever is a mosquito-borne zoonotic disease that affects both ruminants and humans. The nonstructural (NS) protein, which is a major virulence factor for Rift Valley fever virus (RVFV), is encoded on the S-segment. Through the cullin 1-Skp1-Fbox E3 ligase complex, the NSs protein promotes the degradation of at least two host proteins, the TFIIH p62 and the PKR proteins. NSs protein bridges the Fbox protein with subsequent substrates, and facilitates the transfer of ubiquitin. The SAP30-YY1 complex also bridges the NSs protein with chromatin DNA, affecting cohesion and segregation of chromatin DNA as well as the activation of interferon-β promoter. The presence of NSs filaments in the nucleus induces DNA damage responses and causes cell-cycle arrest, p53 activation, and apoptosis. Despite the fact that NSs proteins have poor amino acid similarity among bunyaviruses, the strategy utilized to hijack host cells are similar. This review will provide and summarize an update of recent findings pertaining to the biological functions of the NSs protein of RVFV as well as the differences from those of other bunyaviruses.
Collapse
Affiliation(s)
- Hoai J Ly
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA. .,The Sealy Center for Vaccine Development, The University of Texas Medical Branch at Galveston, Galveston, TX, USA. .,The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
10
|
Wuerth JD, Weber F. Phleboviruses and the Type I Interferon Response. Viruses 2016; 8:v8060174. [PMID: 27338447 PMCID: PMC4926194 DOI: 10.3390/v8060174] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022] Open
Abstract
The genus Phlebovirus of the family Bunyaviridae contains a number of emerging virus species which pose a threat to both human and animal health. Most prominent members include Rift Valley fever virus (RVFV), sandfly fever Naples virus (SFNV), sandfly fever Sicilian virus (SFSV), Toscana virus (TOSV), Punta Toro virus (PTV), and the two new members severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus (HRTV). The nonstructural protein NSs is well established as the main phleboviral virulence factor in the mammalian host. NSs acts as antagonist of the antiviral type I interferon (IFN) system. Recent progress in the elucidation of the molecular functions of a growing list of NSs proteins highlights the astonishing variety of strategies employed by phleboviruses to evade the IFN system.
Collapse
Affiliation(s)
- Jennifer Deborah Wuerth
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen 35392, Germany.
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen 35392, Germany.
| |
Collapse
|
11
|
Gori Savellini G, Gandolfo C, Cusi MG. Truncation of the C-terminal region of Toscana Virus NSs protein is critical for interferon-β antagonism and protein stability. Virology 2015; 486:255-62. [PMID: 26474372 DOI: 10.1016/j.virol.2015.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/17/2015] [Accepted: 09/25/2015] [Indexed: 01/14/2023]
Abstract
Toscana Virus (TOSV) is a Phlebovirus responsible for central nervous system (CNS) injury in humans. The TOSV non-structural protein (NSs), which interacting with RIG-I leads to its degradation, was analysed in the C terminus fragment in order to identify its functional domains. To this aim, two C-terminal truncated NSs proteins, Δ1C-NSs (aa 1-284) and Δ2C-NSs (aa 1-287) were tested. Only Δ1C-NSs did not present any inhibitory effect on RIG-I and it showed a greater stability than the whole NSs protein. Moreover, the deletion of the TLQ aa sequence interposed between the two ΔC constructs caused a greater accumulation of the protein with a weak inhibitory effect on RIG-I, indicating some involvement of these amino acids in the NSs activity. Nevertheless, all the truncated proteins were still able to interact with RIG-I, suggesting that the domains responsible for RIG-I signaling and RIG-I interaction are mapped on different regions of the protein.
Collapse
Affiliation(s)
- Gianni Gori Savellini
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Italy
| | - Claudia Gandolfo
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Italy
| | - Maria Grazia Cusi
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Italy.
| |
Collapse
|
12
|
Toscana virus NSs protein inhibits the induction of type I interferon by interacting with RIG-I. J Virol 2013; 87:6660-7. [PMID: 23552410 DOI: 10.1128/jvi.03129-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Toscana virus (TOSV) is a phlebovirus, of the Bunyaviridae family, that is responsible for central nervous system (CNS) injury in humans. Previous data have shown that the TOSV NSs protein is a gamma interferon (IFN-β) antagonist when transiently overexpressed in mammalian cells, inhibiting IRF-3 induction (G. Gori Savellini, F. Weber, C. Terrosi, M. Habjan, B. Martorelli, and M. G. Cusi, J. Gen. Virol. 92:71-79, 2011). In this study, we investigated whether an upstream sensor, which has a role in the signaling cascade leading to the production of type I IFN, was involved. We found a significant decrease in RIG-I protein levels in cells overexpressing TOSV NSs, suggesting that the nonstructural protein interacts with RIG-I and targets it for proteasomal degradation. In fact, the MG-132 proteasome inhibitor was able to restore IFN-β promoter activation in cells expressing NSs, demonstrating the existence of an evasion mechanism based on inhibition of the RIG-I sensor. Furthermore, a C-terminal truncated NSs protein (ΔNSs), although able to interact with RIG-I, did not affect the RIG-I-mediated IFN-β promoter activation, suggesting that the NSs domains responsible for RIG-I-mediated signaling and interaction with RIG-I are mapped on different regions. These results contribute to identify a novel mechanism for bunyaviruses by which TOSV NSs counteracts the early IFN response.
Collapse
|
13
|
Abstract
Rift Valley fever (RVF) is an emerging zoonotic disease distributed in sub-Saharan African countries and the Arabian Peninsula. The disease is caused by the Rift Valley fever virus (RVFV) of the family Bunyaviridae and the genus Phlebovirus. The virus is transmitted by mosquitoes, and virus replication in domestic ruminant results in high rates of mortality and abortion. RVFV infection in humans usually causes a self-limiting, acute and febrile illness; however, a small number of cases progress to neurological disorders, partial or complete blindness, hemorrhagic fever, or thrombosis. This review describes the pathology of RVF in human patients and several animal models, and summarizes the role of viral virulence factors and host factors that affect RVFV pathogenesis.
Collapse
|
14
|
Host genetic variation in susceptibility to Punta Toro virus. Virus Res 2011; 157:71-5. [PMID: 21320557 DOI: 10.1016/j.virusres.2011.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 11/23/2022]
Abstract
Infection of small laboratory animals by Punta Toro virus (PTV), family Bunyaviridae, genus Phlebovirus, is a model for the study of the human pathogen Rift Valley fever virus (RVFV). We have identified inbred mouse strains with significant differences in host response to the Adames strain of PTV. Nine inbred strains of mice representing major branches in the Mus musculus phylogeny were inoculated subcutaneously with a high dose of PTV in survival experiments. Two inbred strains of mice, NZW/LacJ and 129S1/SvImJ, died ~4 days after PTV infection, whereas 7 other strains survived the challenge and showed no clinical signs of disease. Histologically, 129S1/SvImJ mice showed massive hepatocellular necrosis and had additional lesions in lung, brain, and spleen, whereas NZW/LacJ mice had mild piecemeal hepatocellular necrosis. PTV viral loads in the livers of infected mice were determined by reverse transcriptase quantitative PCR. Inbred mice from strains that showed clinical signs and succumbed to PTV infection had higher liver viral loads than did mice of resistant strains. Hybrid F₁ mice were generated by crossing susceptible 129S1 and resistant FVB/N mice and tested for susceptibility. The hybrid F₁ mice showed significantly higher viral loads in the liver than the resistant parental FVB/N mice, suggesting that susceptibility is dominant. These findings will enable an unbiased genetic approach to identify host genes mediating susceptibility to PTV.
Collapse
|