1
|
Wang K, Jordan T, Dowdell K, Herbert R, Moore IN, Koelle DM, Cohen JI. A nonhuman primate model for genital herpes simplex virus 2 infection that results in vaginal vesicular lesions, virus shedding, and seroconversion. PLoS Pathog 2024; 20:e1012477. [PMID: 39226323 PMCID: PMC11371218 DOI: 10.1371/journal.ppat.1012477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
The most commonly used animal models for evaluating the efficacy of HSV-2 candidate vaccines are mice and guinea pigs. While numerous HSV-2 vaccine candidates have been tested in these animals and were effective in reducing disease and mortality, these results did not predict the effectiveness of the vaccines in human trials. Infection of rhesus macaques rarely results in lesions or HSV-2 specific antibody responses. In seeking an animal model that better recapitulates human disease and that might be more predictive of the efficacy of prophylactic vaccines than mice and guinea pigs, we evaluated Cebus apella (C. apella), a New World primate, in an HSV-2 genital infection model. Infectious HSV-2 was cultured from vaginal swabs from all 4 animals for 9-14 days after intravaginal inoculation of HSV-2 seronegative monkeys. Two of 4 monkeys had vesicular lesions in the vagina or vulva. No neurological symptoms were noted. Recurrent lesions and HSV-2 DNA shedding after acute disease resolved was infrequent. UV irradiation of the genital area did not induce recurrent genital lesions or virus shedding. All 4 monkeys developed HSV-2 neutralizing antibodies as well as virus-specific CD4 and CD8 T cell responses. Reinfection of animals 15 to 19 months after primary infection did not result in lesions; animals had reduced virus shedding and a shorter duration of shedding compared with that during primary infection, suggesting that primary infection induced protective immunity. Primary fibroblasts from C. apella monkeys supported the growth of HSV-2 in vitro; in contrast, HSV-2 did not replicate above the titer of the input inoculum in fibroblasts from rhesus macaques. These observations suggest that the C. apella monkey has potential to serve as a model for evaluating the efficacy of prophylactic vaccines, antivirals, or monoclonal antibodies to HSV-2.
Collapse
Affiliation(s)
- Kening Wang
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tristan Jordan
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kennichi Dowdell
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Ian N. Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, School of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Jeffrey I. Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
Jamour P, Jamali A, Langeroudi AG, Sharafabad BE, Abdoli A. Comparing chemical transfection, electroporation, and lentiviral vector transduction to achieve optimal transfection conditions in the Vero cell line. BMC Mol Cell Biol 2024; 25:15. [PMID: 38741034 PMCID: PMC11089686 DOI: 10.1186/s12860-024-00511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Transfection is an important analytical method for studying gene expression in the cellular environment. There are some barriers to efficient DNA transfection in host cells, including circumventing the plasma membrane, escaping endosomal compartmentalization, autophagy, immune sensing pathways, and translocating the nuclear envelope. Therefore, it would be very useful to introduce an optimum transfection approach to achieve a high transfection efficiency in the Vero cell line. The aim of this study was to compare various transfection techniques and introduce a highly efficient method for gene delivery in Vero cells. METHODS In the current study, three transfection methods were used, including chemical transfection, electroporation, and lentiviral vector transduction, to obtain the optimum transfection conditions in the Vero cell line. Vero cells were cultured and transfected with chemical transfection reagents, electroporation, or HIV-1-based lentivectors under different experimental conditions. Transfection efficiency was assessed using flow cytometry and fluorescence microscopy to detect GFP-positive cells. RESULTS Among the tested methods, TurboFect™ chemical transfection exhibited the highest efficiency. Optimal transfection conditions were achieved using 1 µg DNA and 4 µL TurboFect™ in 6 × 104 Vero cells. CONCLUSION TurboFect™, a cationic polymer transfection reagent, demonstrated superior transfection efficiency in Vero cells compared with electroporation and lentivirus particles, and is the optimal choice for chemical transfection in the Vero cell line.
Collapse
Affiliation(s)
- Parisa Jamour
- Department of Hepatitis and HIV, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Jamali
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Ghalyanchi Langeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Behrouz Ebadi Sharafabad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and HIV, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Primate Simplexviruses Differ in Tropism for Macaque Cells. Microorganisms 2022; 11:microorganisms11010026. [PMID: 36677317 PMCID: PMC9864361 DOI: 10.3390/microorganisms11010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Primate simplexviruses are closely related neurotropic herpesviruses, which are largely apathogenic in their respective host species. However, cross-species transmission of Macacine alphaherpesvirus 1 (McHV1, also termed herpes B virus) from rhesus macaques to humans can cause fatal encephalomyelitis. In contrast, closely related viruses, such as Cercopithecine alphaherpesvirus 2 (CeHV2, also termed simian agent 8) or Papiine alphaherpesvirus 2 (PaHV2, also termed herpesvirus papio 2), have not been linked to human disease and are believed to be largely apathogenic in humans. Here, we investigated whether McHV1, PaHV2 and CeHV2 differ in their capacity to infect human and non-human primate (NHP) cells. For comparison, we included the human simplexviruses HSV1 and HSV2 in our analyses. All five viruses replicated efficiently in cell lines of human and African green monkey origin, and McHV1 and PaHV2 also showed robust replication in rhesus macaque cell lines. In contrast, the replication of CeHV2 and particularly HSV1 and HSV2 in cell lines of rhesus macaque origin were reduced or inefficient. Similarly, McHV1, but not CeHV2, efficiently infected rhesus macaque brain organoids. These results point towards the previously unappreciated partial resistance of certain rhesus macaque cells to HSV1/HSV2/CeHV2 infection and reveal similarities between the cell tropism of McHV1 and PaHV2 that might be relevant for risk assessment.
Collapse
|
4
|
Regulation of Epstein-Barr Virus Minor Capsid Protein BORF1 by TRIM5α. Int J Mol Sci 2022; 23:ijms232315340. [PMID: 36499678 PMCID: PMC9735550 DOI: 10.3390/ijms232315340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
TRIM5α is a host anti-retroviral restriction factor that destroys human immunodeficiency virus (HIV) virions and triggers innate immune signaling. TRIM5α also mediates the autophagic degradation of target proteins via TRIMosome formation. We previously showed that TRIM5α promotes Epstein-Barr virus (EBV) Rta ubiquitination and attenuates EBV lytic progression. In this study, we sought to elucidate whether TRIM5α can interact with and induce the degradation of EBV capsid proteins. Glutathione S-transferase (GST) pulldown and immunoprecipitation assays were conducted to identify interacting proteins, and mutants were generated to investigate key binding domains and ubiquitination sites. Results showed that TRIM5α binds directly with BORF1, an EBV capsid protein with a nuclear localization signal (NLS) that enables the transport of EBV capsid proteins into the host nucleus to facilitate capsid assembly. TRIM5α promotes BORF1 ubiquitination, which requires the surface patch region in the TRIM5α PRY/SPRY domain. TRIM5α expression also decreases the stability of BORF1(6KR), a mutant with all lysine residues mutated to arginine. However, chloroquine treatment restores the stability of BORF1(6KR), suggesting that TRIM5α destabilizes BORF1 via direct recognition of its substrate for autophagic degradation. These results reveal novel insights into the antiviral impact of TRIM5α beyond retroviruses.
Collapse
|
5
|
Reddi TS, Merkl PE, Lim SY, Letvin NL, Knipe DM. Tripartite Motif 22 (TRIM22) protein restricts herpes simplex virus 1 by epigenetic silencing of viral immediate-early genes. PLoS Pathog 2021; 17:e1009281. [PMID: 33524065 PMCID: PMC7877759 DOI: 10.1371/journal.ppat.1009281] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/11/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Intrinsic resistance is a crucial line of defense against virus infections, and members of the Tripartite Ring Interaction Motif (TRIM) family of proteins are major players in this system, such as cytoplasmic TRIM5α or nuclear promyelocytic leukemia (PML/TRIM19) protein. Previous reports on the antiviral function of another TRIM protein, TRIM22, emphasized its innate immune role as a Type I and Type II interferon-stimulated gene against RNA viruses. This study shows that TRIM22 has an additional intrinsic role against DNA viruses. Here, we report that TRIM22 is a novel restriction factor of HSV-1 and limits ICP0-null virus replication by increasing histone occupancy and heterochromatin, thereby reducing immediate-early viral gene expression. The corresponding wild-type equivalent of the virus evades the TRIM22-specific restriction by a mechanism independent of ICP0-mediated degradation. We also demonstrate that TRIM22 inhibits other DNA viruses, including representative members of the β- and γ- herpesviruses. Allelic variants in TRIM22 showed different degrees of anti-herpesviral activity; thus, TRIM22 genetic variability may contribute to the varying susceptibility to HSV-1 infection in humans. Collectively, these results argue that TRIM22 is a novel restriction factor and expand the list of restriction factors functioning in the infected cell nucleus to counter DNA virus infection. The host immune response to herpesviruses includes intrinsic immunity, which is a constitutively active line of defense. Members of the Tripartite Motif (TRIM) superfamily of proteins, such as cytoplasmic TRIM5α and nuclear TRIM19, are examples of such restriction factors against the prototypical α-herpesvirus, herpes simplex virus-1 (HSV-1). Previous reports on the antiviral function of the protein encoded by TRIM22, a gene closely related to the TRIM5 gene, emphasized its antiretroviral role. We show that TRIM22 has an additional role as a restriction factor against herpesviruses. We found that TRIM22 inhibits a mutant form of HSV-1, by promoting chromatin compaction of the viral DNA encoding immediate-early viral genes–this consequently inhibits viral replication and reduces virus yields. Unlike other restriction factors that are degraded by the viral infected cell polypeptide 0 (ICP0), TRIM22 is not degraded by ICP0. We also show that TRIM22 inhibits representative members of the β-herpesvirus (cytomegalovirus) and γ- herpesviruses (Epstein-Barr virus). In addition, different TRIM22 genetic variants show differing levels of HSV-1 inhibition. Together, these results argue for the importance of the TRIM22 gene as a restriction factor against herpesviruses, and offer a novel avenue for further investigation on the role of TRIM genes in host genetic variation in herpesviral susceptibility.
Collapse
Affiliation(s)
- Tejaswini S. Reddi
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Philipp E. Merkl
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - So-Yon Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Norman L. Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David M. Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
TRIM26 Facilitates HSV-2 Infection by Downregulating Antiviral Responses through the IRF3 Pathway. Viruses 2021; 13:v13010070. [PMID: 33419081 PMCID: PMC7825454 DOI: 10.3390/v13010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is the primary cause of genital herpes which results in significant morbidity and mortality, especially in women, worldwide. HSV-2 is transmitted primarily through infection of epithelial cells at skin and mucosal surfaces. Our earlier work to examine interactions between HSV-2 and vaginal epithelial cells demonstrated that infection of the human vaginal epithelial cell line (VK2) with HSV-2 resulted in increased expression of TRIM26, a negative regulator of the Type I interferon pathway. Given that upregulation of TRIM26 could negatively affect anti-viral pathways, we decided to further study the role of TRIM26 in HSV-2 infection and replication. To do this, we designed and generated two cell lines derived from VK2s with TRIM26 overexpressed (OE) and knocked out (KO). Both, along with wildtype (WT) VK2, were infected with HSV-2 and viral titres were measured in supernatants 24 h later. Our results showed significantly enhanced virus production by TRIM26 OE cells, but very little replication in TRIM26 KO cells. We next examined interferon-β production and expression of two distinct interferon stimulated genes (ISGs), MX1 and ISG15, in all three cell lines, prior to and following HSV-2 infection. The absence of TRIM26 (KO) significantly upregulated interferon-β production at baseline and even further after HSV-2 infection. TRIM26 KO cells also showed significant increase in the expression of MX1 and ISG15 before and after HSV-2 infection. Immunofluorescent staining indicated that overexpression of TRIM26 substantially decreased the nuclear localization of IRF3, the primary mediator of ISG activation, before and after HSV-2 infection. Taken together, our data indicate that HSV-2 utilizes host factor TRIM26 to evade anti-viral response and thereby increase its replication in vaginal epithelial cells.
Collapse
|
7
|
Zhu H, Zheng C. The Race between Host Antiviral Innate Immunity and the Immune Evasion Strategies of Herpes Simplex Virus 1. Microbiol Mol Biol Rev 2020; 84:e00099-20. [PMID: 32998978 PMCID: PMC7528619 DOI: 10.1128/mmbr.00099-20] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is very successful in establishing acute and latent infections in humans by counteracting host antiviral innate immune responses. HSV-1 has evolved various strategies to evade host antiviral innate immunity and some cellular survival-associated pathways. Since there is still no vaccine available for HSV-1, a continuous update of information regarding the interaction between HSV-1 infection and the host antiviral innate immunity will provide novel insights to develop new therapeutic strategies for HSV-1 infection and its associated diseases. Here, we update recent studies about how HSV-1 evades the host antiviral innate immunity, specifically how HSV-1 proteins directly or indirectly target the adaptors in the antiviral innate immunity signaling pathways to downregulate the signal transduction. Additionally, some classical intracellular stress responses, which also play important roles in defense of viral invasion, will be discussed here. With a comprehensive review of evasion mechanisms of antiviral innate immunity by HSV-1, we will be able to develop potential new targets for therapies and a possible vaccine against HSV-1 infections.
Collapse
Affiliation(s)
- Huifang Zhu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Kolyvushko O, Kelch MA, Osterrieder N, Azab W. Equine Alphaherpesviruses Require Activation of the Small GTPases Rac1 and Cdc42 for Intracellular Transport. Microorganisms 2020; 8:microorganisms8071013. [PMID: 32645930 PMCID: PMC7409331 DOI: 10.3390/microorganisms8071013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Viruses utilize host cell signaling to facilitate productive infection. Equine herpesvirus type 1 (EHV-1) has been shown to activate Ca2+ release and phospholipase C upon contact with α4β1 integrins on the cell surface. Signaling molecules, including small GTPases, have been shown to be activated downstream of Ca2+ release, and modulate virus entry, membrane remodeling and intracellular transport. In this study, we show that EHV-1 activates the small GTPases Rac1 and Cdc42 during infection. The activation of Rac1 and Cdc42 is necessary for virus-induced acetylation of tubulin, effective viral transport to the nucleus, and cell-to-cell spread. We also show that inhibitors of Rac1 and Cdc42 did not block virus entry, but inhibited overall virus infection. The Rac1 and Cdc42 signaling is presumably orthogonal to Ca2+ release, since Rac1 and Cdc42 inhibitors affected the infection of both EHV-1 and EHV-4, which do not bind to integrins.
Collapse
Affiliation(s)
| | | | | | - Walid Azab
- Correspondence: ; Tel.: +49-30-838-50087
| |
Collapse
|
9
|
Crisci E, Svanberg C, Ellegård R, Khalid M, Hellblom J, Okuyama K, Bhattacharya P, Nyström S, Shankar EM, Eriksson K, Larsson M. HSV-2 Cellular Programming Enables Productive HIV Infection in Dendritic Cells. Front Immunol 2019; 10:2889. [PMID: 31867020 PMCID: PMC6909011 DOI: 10.3389/fimmu.2019.02889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Genital herpes is a common sexually transmitted infection caused by herpes simplex virus type 2 (HSV-2). Genital herpes significantly enhances the acquisition and transmission of HIV-1 by creating a microenvironment that supports HIV infection in the host. Dendritic cells (DCs) represent one of the first innate cell types that encounter HIV-1 and HSV-2 in the genital mucosa. HSV-2 infection has been shown to modulate DCs, rendering them more receptive to HIV infection. Here, we investigated the potential mechanisms underlying HSV-2-mediated augmentation of HIV-1 infection. We demonstrated that the presence of HSV-2 enhanced productive HIV-1 infection of DCs and boosted inflammatory and antiviral responses. The HSV-2 augmented HIV-1 infection required intact HSV-2 DNA, but not active HSV-2 DNA replication. Furthermore, the augmented HIV infection of DCs involved the cGAS-STING pathway. Interestingly, we could not see any involvement of TLR2 or TLR3 nor suppression of infection by IFN-β production. The conditioning by HSV-2 in dual exposed DCs decreased protein expression of IFI16, cGAS, STING, and TBK1, which is associated with signaling through the STING pathway. Dual exposure to HSV-2 and HIV-1 gave decreased levels of several HIV-1 restriction factors, especially SAMHD1, TREX1, and APOBEC3G. Activation of the STING pathway in DCs by exposure to both HSV-2 and HIV-1 most likely led to the proteolytic degradation of the HIV-1 restriction factors SAMHD1, TREX1, and APOBEC3G, which should release their normal restriction of HIV infection in DCs. This released their normal restriction of HIV infection in DCs. We showed that HSV-2 reprogramming of cellular signaling pathways and protein expression levels in the DCs provided a setting where HIV-1 can establish a higher productive infection in the DCs. In conclusion, HSV-2 reprogramming opens up DCs for HIV-1 infection and creates a microenvironment favoring HIV-1 transmission.
Collapse
Affiliation(s)
- Elisa Crisci
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Cecilia Svanberg
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Rada Ellegård
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mohammad Khalid
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Julia Hellblom
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Kazuki Okuyama
- Division of Experimental Haematology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Pradyot Bhattacharya
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Sofia Nyström
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Kristina Eriksson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Sun C, Luecke S, Bodda C, Jønsson KL, Cai Y, Zhang BC, Jensen SB, Nordentoft I, Jensen JM, Jakobsen MR, Paludan SR. Cellular Requirements for Sensing and Elimination of Incoming HSV-1 DNA and Capsids. J Interferon Cytokine Res 2019; 39:191-204. [PMID: 30855198 DOI: 10.1089/jir.2018.0141] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Incoming viruses challenge the cell with diverse foreign molecules, which need to be sensed quickly to initiate immune responses and to remove the viral components. In this study, we investigate the cellular requirements for sensing and degradation of incoming viral DNA and capsids during herpes simplex virus type 1 (HSV-1) infections. Using click chemistry labeling of the viral genome, we found that HSV-1 DNA was released from a subset of capsids into the cytosol early in infection. By next-generation sequencing of cyclic GMP-AMP (cGAMP) synthase (cGAS)-bound DNA from HSV-1-infected cells, we show that HSV-1 DNA was bound by the cytosolic DNA sensor cGAS. Activation of cGAS enzymatic activity by viral DNA did not require proteasomal activity, indicating that viral DNA release into the cytosol is not proteasome-dependent. However, induction of interferon (IFN)-β expression was blocked by inhibition of the proteasome, suggesting a contribution of the proteasome to IFN-β induction through the cGAS-stimulator of interferon genes pathway. Viral DNA was cleared from the cytosol within few hours, in a manner dependent on TREX1 and a cGAS-dependent process. Capsid material in the cytoplasm was also degraded rapidly. This was partially blocked by treatment with a proteasome inhibitor. This treatment led to accumulation of DNA-containing viral capsids near the nucleus and reduced nuclear entry of viral DNA. Thus, cells infected with HSV-1 use a panel of mechanisms to eliminate viral DNA and capsids. This represents a barrier for establishment of infection and potentially enables the host to gear the IFN-β response to a level required for antiviral defense without causing immunopathology.
Collapse
Affiliation(s)
- Chenglong Sun
- 1 Department of Biomedicine and Aarhus University, Aarhus, Denmark
| | - Stefanie Luecke
- 1 Department of Biomedicine and Aarhus University, Aarhus, Denmark
| | | | - Kasper L Jønsson
- 1 Department of Biomedicine and Aarhus University, Aarhus, Denmark
| | - Yujia Cai
- 1 Department of Biomedicine and Aarhus University, Aarhus, Denmark
| | - Bao-Cun Zhang
- 1 Department of Biomedicine and Aarhus University, Aarhus, Denmark
| | - Søren B Jensen
- 1 Department of Biomedicine and Aarhus University, Aarhus, Denmark
| | - Iver Nordentoft
- 2 Department of Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob M Jensen
- 3 Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | | | - Søren R Paludan
- 1 Department of Biomedicine and Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Acute Infection and Subsequent Subclinical Reactivation of Herpes Simplex Virus 2 after Vaginal Inoculation of Rhesus Macaques. J Virol 2019; 93:JVI.01574-18. [PMID: 30333177 PMCID: PMC6321901 DOI: 10.1128/jvi.01574-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 01/25/2023] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a common sexually transmitted infection with a highly variable clinical course. Many infections quickly become subclinical, with episodes of spontaneous virus reactivation. To study host-HSV-2 interactions, an animal model of subclinical HSV-2 infection is needed. In an effort to develop a relevant model, rhesus macaques (RM) were inoculated intravaginally with two or three HSV-2 strains (186, 333, and/or G) at a total dose of 1 × 107 PFU of HSV-2 per animal. Infectious HSV-2 and HSV-2 DNA were consistently shed in vaginal swabs for the first 7 to 14 days after each inoculation. Proteins associated with wound healing, innate immunity, and inflammation were significantly increased in cervical secretions immediately after HSV-2 inoculation. There was histologic evidence of acute herpesvirus pathology, including acantholysis in the squamous epithelium and ballooning degeneration of and intranuclear inclusion bodies in epithelial cells, with HSV antigen in mucosal epithelial cells and keratinocytes. Further, an intense inflammatory infiltrate was found in the cervix and vulva. Evidence of latent infection and reactivation was demonstrated by the detection of spontaneous HSV-2 shedding post-acute inoculation (102 to 103 DNA copies/swab) in 80% of RM. Further, HSV-2 DNA was detected in ganglia in most necropsied animals. HSV-2-specifc T-cell responses were detected in all animals, although antibodies to HSV-2 were detected in only 30% of the animals. Thus, HSV-2 infection of RM recapitulates many of the key features of subclinical HSV-2 infection in women but seems to be more limited, as virus shedding was undetectable more than 40 days after the last virus inoculation.IMPORTANCE Herpes simplex virus 2 (HSV-2) infects nearly 500 million persons globally, with an estimated 21 million incident cases each year, making it one of the most common sexually transmitted infections (STIs). HSV-2 is associated with increased human immunodeficiency virus type 1 (HIV-1) acquisition, and this risk does not decline with the use of antiherpes drugs. As initial acquisition of both HIV and HSV-2 infections is subclinical, study of the initial molecular interactions of the two agents requires an animal model. We found that HSV-2 can infect RM after vaginal inoculation, establish latency in the nervous system, and spontaneously reactivate; these features mimic some of the key features of HSV-2 infection in women. RM may provide an animal model to develop strategies to prevent HSV-2 acquisition and reactivation.
Collapse
|
12
|
Innate Immune Mechanisms and Herpes Simplex Virus Infection and Disease. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2018; 223:49-75. [PMID: 28528439 DOI: 10.1007/978-3-319-53168-7_3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Innate immune responses play a major role in the control of herpes simplex virus (HSV) infections, and a multiplicity of mechanisms have emerged as a result of human evolution to sense and respond to HSV infections. HSV in turn has evolved a number of ways to evade immune detection and to blunt human innate immune responses. In this review, we summarize the major host innate immune mechanisms and the HSV evasion mechanisms that have evolved. We further discuss how disease can result if this equilibrium between virus and host response is disrupted.
Collapse
|
13
|
Aravantinou M, Mizenina O, Calenda G, Kenney J, Frank I, Lifson JD, Szpara M, Jing L, Koelle DM, Teleshova N, Grasperge B, Blanchard J, Gettie A, Martinelli E, Derby N. Experimental Oral Herpes Simplex Virus-1 (HSV-1) Co-infection in Simian Immunodeficiency Virus (SIV)-Infected Rhesus Macaques. Front Microbiol 2017; 8:2342. [PMID: 29259582 PMCID: PMC5723348 DOI: 10.3389/fmicb.2017.02342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/14/2017] [Indexed: 01/27/2023] Open
Abstract
Herpes simplex virus 1 and 2 (HSV-1/2) similarly initiate infection in mucosal epithelia and establish lifelong neuronal latency. Anogenital HSV-2 infection augments the risk for sexual human immunodeficiency virus (HIV) transmission and is associated with higher HIV viral loads. However, whether oral HSV-1 infection contributes to oral HIV susceptibility, viremia, or oral complications of HIV infection is unknown. Appropriate non-human primate (NHP) models would facilitate this investigation, yet there are no published studies of HSV-1/SIV co-infection in NHPs. Thus, we performed a pilot study for an oral HSV-1 infection model in SIV-infected rhesus macaques to describe the feasibility of the modeling and resultant immunological changes. Three SIV-infected, clinically healthy macaques became HSV-1-infected by inoculation with 4 × 108 pfu HSV-1 McKrae on buccal, tongue, gingiva, and tonsils after gentle abrasion. HSV-1 DNA was shed in oral swabs for up to 21 days, and shedding recurred in association with intra-oral lesions after periods of no shedding during 56 days of follow up. HSV-1 DNA was detected in explant cultures of trigeminal ganglia collected at euthanasia on day 56. In the macaque with lowest baseline SIV viremia, SIV plasma RNA increased following HSV-1 infection. One macaque exhibited an acute pro-inflammatory response, and all three animals experienced T cell activation and mobilization in blood. However, T cell and antibody responses to HSV-1 were low and atypical. Through rigorous assessesments, this study finds that the virulent HSV-1 strain McKrae resulted in a low level HSV-1 infection that elicited modest immune responses and transiently modulated SIV infection.
Collapse
Affiliation(s)
- Meropi Aravantinou
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Olga Mizenina
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Giulia Calenda
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Jessica Kenney
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Moriah Szpara
- Departments of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Benaroya Research Institute, Seattle, WA, United States
| | - Natalia Teleshova
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, United States
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, NY, United States
| |
Collapse
|
14
|
Hijacking of the Ubiquitin/Proteasome Pathway by the HIV Auxiliary Proteins. Viruses 2017; 9:v9110322. [PMID: 29088112 PMCID: PMC5707529 DOI: 10.3390/v9110322] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) ensures regulation of the protein pool in the cell by ubiquitination of proteins followed by their degradation by the proteasome. It plays a central role in the cell under normal physiological conditions as well as during viral infections. On the one hand, the UPS can be used by the cell to degrade viral proteins, thereby restricting the viral infection. On the other hand, it can also be subverted by the virus to its own advantage, notably to induce degradation of cellular restriction factors. This makes the UPS a central player in viral restriction and counter-restriction. In this respect, the human immunodeficiency viruses (HIV-1 and 2) represent excellent examples. Indeed, many steps of the HIV life cycle are restricted by cellular proteins, some of which are themselves components of the UPS. However, HIV itself hijacks the UPS to mediate defense against several cellular restriction factors. For example, the HIV auxiliary proteins Vif, Vpx and Vpu counteract specific restriction factors by the recruitment of cellular UPS components. In this review, we describe the interplay between HIV and the UPS to illustrate its role in the restriction of viral infections and its hijacking by viral proteins for counter-restriction.
Collapse
|
15
|
Vasireddi M, Hilliard JK. Regulation of PI3K/Akt dependent apoptotic markers during b virus infection of human and macaque fibroblasts. PLoS One 2017; 12:e0178314. [PMID: 28558072 PMCID: PMC5448769 DOI: 10.1371/journal.pone.0178314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
B virus (Macacine herpesvirus 1), a simplex virus endemic in macaques, causes encephalitis, encephalomyelitis, and death in 80% of untreated zoonotically infected humans with delayed or no treatment. Here we report a significant difference in PI3K/Akt-dependent apoptosis between B virus infected human and macaque dermal fibroblasts. Our data show that B virus infection in either human or macaque fibroblasts results in activation of Akt via PI3K and this activation does not require viral de novo protein synthesis. Inhibition of PI3K with LY294002 results in a significant reduction of viral titers in B virus infected macaque and human fibroblasts with only a modest difference in the reduction of virus titers between the two cell types. We, therefore, tested the hypothesis that B virus results in the phosphorylation of Akt (S473), which prevents apoptosis, enhancing virus replication in B virus infected macaque dermal fibroblasts. We observed markers of intrinsic apoptosis when PI3K activation of Akt was inhibited in B virus infected macaque cells, while, these apoptotic markers were absent in B virus infected human fibroblasts under the same conditions. From these data we suggest that PI3K activates Akt in B virus infected macaque and human fibroblasts, but this enhances virus replication in macaque fibroblast cells by blocking apoptosis.
Collapse
Affiliation(s)
- Mugdha Vasireddi
- Viral Immunology Center, Biology Department, Georgia State University, Atlanta, GA, United States of America
| | - Julia K. Hilliard
- Viral Immunology Center, Biology Department, Georgia State University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
16
|
Huang HH, Chen CS, Wang WH, Hsu SW, Tsai HH, Liu ST, Chang LK. TRIM5α Promotes Ubiquitination of Rta from Epstein-Barr Virus to Attenuate Lytic Progression. Front Microbiol 2017; 7:2129. [PMID: 28105027 PMCID: PMC5214253 DOI: 10.3389/fmicb.2016.02129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/16/2016] [Indexed: 12/04/2022] Open
Abstract
Replication and transcription activator (Rta), a key protein expressed by Epstein–Barr virus (EBV) during the immediate-early stage of the lytic cycle, is responsible for the activation of viral lytic genes. In this study, GST-pulldown and coimmunoprecipitation assays showed that Rta interacts in vitro and in vivo with TRIM5α, a host factor known to be involved in the restriction of retroviral infections. Confocal microscopy results revealed that Rta colocalizes with TRIM5α in the nucleus during lytic progression. The interaction involves 190 amino acids in the N-terminal of Rta and the RING domain in TRIM5α, and it was further found that TRIM5α acts as an E3 ubiquitin ligase to promote Rta ubiquitination. Overexpression of TRIM5α reduced the transactivating capabilities of Rta, while reducing TRIM5α expression enhanced EBV lytic protein expression and DNA replication. Taken together, these results point to a critical role for TRIM5α in attenuating EBV lytic progression through the targeting of Rta for ubiquitination, and suggest that the restrictive capabilities of TRIM5α may go beyond retroviral infections.
Collapse
Affiliation(s)
- Hsiang-Hung Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University Taipei, Taiwan
| | - Chien-Sin Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University Taipei, Taiwan
| | - Wen-Hung Wang
- Department of Internal Medicine, Kaohsiung Medical University Hospital Kaohsiung, Taiwan
| | - Shih-Wei Hsu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University Taipei, Taiwan
| | - Hsiao-Han Tsai
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University Taipei, Taiwan
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University Taoyuan, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University Taipei, Taiwan
| |
Collapse
|
17
|
Huang Y, Yang M, Yu Y, Yang Y, Zhou L, Huang X, Qin Q. Grouper TRIM13 exerts negative regulation of antiviral immune response against nodavirus. FISH & SHELLFISH IMMUNOLOGY 2016; 55:106-115. [PMID: 27235367 PMCID: PMC7129363 DOI: 10.1016/j.fsi.2016.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/19/2016] [Accepted: 05/22/2016] [Indexed: 06/05/2023]
Abstract
The tripartite motif (TRIM)-containing proteins have attracted particular attention to their multiple functions in different biological processes. TRIM13, a member of the TRIM family, is a RING domain-containing E3 ubiquitin ligase which plays critical roles in diverse cellular processes including cell death, cancer and antiviral immunity. In this study, a TRIM13 homolog from orange spotted grouper, Epinephelus coioides (EcTRIM13) was cloned and characterized. The full-length of EcTRIM13 cDNA encoded a polypeptide of 399 amino acids which shared 81% identity with TRIM13 homolog from large yellow croaker (Larimichthys crocea). Amino acid alignment analysis showed that EcTRIM13 contained conserved RING finger and B-box domain. Expression patterns analysis indicated that EcTRIM13 was abundant in liver, spleen, kidney, intestine and gill. Moreover, the transcript of EcTRIM13 in grouper spleen was differently regulated after injection with Singapore grouper iridovirus (SGIV) or polyinosin-polycytidylic acid (poly I:C). Under fluorescence microscopy, we observed the tubular structure in wild type EcTRIM13 transfected cells, but the RING domain mutant resulted in the fluorescence distribution was changed and the bright punctate fluorescence was evenly situated throughout the cytoplasm, suggesting that the RING domain was essential for its accurate localization. Overexpression of EcTRIM13 in vitro obviously increased the replication of red spotted grouper nervous necrosis virus (RGNNV), and the enhancing effect of EcTRIM13 on virus replication was affected by the RING domain. Furthermore, the ectopic expression of EcTRIM13 not only negatively regulated the interferon promoter activity induced by interferon regulator factor (IRF) 3, IRF7, and melanoma differentiation-associated protein 5 (MDA5), but also decreased the expression of several interferon related factors. In addition, the overexpression of EcTRIM13 also differently regulated the transcription of pro-inflammatory factors. Together, our results firstly demonstrated that fish TRIM13 exerted negative regulation of antiviral response against nodavirus infection.
Collapse
Affiliation(s)
- Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Min Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yepin Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Linli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Horan KA, Hansen K, Jakobsen MR, Holm CK, Søby S, Unterholzner L, Thompson M, West JA, Iversen MB, Rasmussen SB, Ellermann-Eriksen S, Kurt-Jones E, Landolfo S, Damania B, Melchjorsen J, Bowie AG, Fitzgerald KA, Paludan SR. Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors. THE JOURNAL OF IMMUNOLOGY 2013; 190:2311-9. [PMID: 23345332 DOI: 10.4049/jimmunol.1202749] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The innate immune system is important for control of infections, including herpesvirus infections. Intracellular DNA potently stimulates antiviral IFN responses. It is known that plasmacytoid dendritic cells sense herpesvirus DNA in endosomes via TLR9 and that nonimmune tissue cells can sense herpesvirus DNA in the nucleus. However, it remains unknown how and where myeloid cells, such as macrophages and conventional dendritic cells, detect infections with herpesviruses. In this study, we demonstrate that the HSV-1 capsid was ubiquitinated in the cytosol and degraded by the proteasome, hence releasing genomic DNA into the cytoplasm for detection by DNA sensors. In this context, the DNA sensor IFN-γ-inducible 16 is important for induction of IFN-β in human macrophages postinfection with HSV-1 and CMV. Viral DNA localized to the same cytoplasmic regions as did IFN-γ-inducible 16, with DNA sensing being independent of viral nuclear entry. Thus, proteasomal degradation of herpesvirus capsids releases DNA to the cytoplasm for recognition by DNA sensors.
Collapse
Affiliation(s)
- Kristy A Horan
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Diaz-Griffero F, Gallo DE, Hope TJ, Sodroski J. Trafficking of some old world primate TRIM5α proteins through the nucleus. Retrovirology 2011; 8:38. [PMID: 21575157 PMCID: PMC3120760 DOI: 10.1186/1742-4690-8-38] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/15/2011] [Indexed: 01/15/2023] Open
Abstract
Background TRIM5α and TRIMCyp are cytoplasmic proteins that bind incoming retroviral capsids and mediate early blocks to viral infection. TRIM5 proteins form cytoplasmic bodies, which are highly dynamic structures. So far, TRIM5 proteins have been found only in the cytoplasm of cells. Interestingly, other proteins from the TRIM family localize to the nucleus. Therefore, we tested the possibility that TRIM5 proteins traffic to the nucleus and the impact of this trafficking on retroviral restriction. Results Here we report that the TRIM5α proteins of two Old World primates, humans and rhesus monkeys, are transported into the nucleus and are shuttled back to the cytoplasm by a leptomycin B-sensitive mechanism. In leptomycin B-treated cells, these TRIM5α proteins formed nuclear bodies that also contained TRIM19 (PML). Deletion of the amino terminus, including the linker 1 (L1) region, resulted in TRIM5α proteins that accumulated in nuclear bodies. Leptomycin B treatment of TRIM5α-expressing target cells only minimally affected the restriction of retrovirus infection. Conclusions We discovered the ability of human and rhesus TRIM5α to shuttle into and out of the nucleus. This novel trafficking ability of TRIM5α proteins could be important for an as-yet-unknown function of TRIM5α.
Collapse
Affiliation(s)
- Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
20
|
Meyerson NR, Sawyer SL. Two-stepping through time: mammals and viruses. Trends Microbiol 2011; 19:286-94. [PMID: 21531564 DOI: 10.1016/j.tim.2011.03.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/08/2011] [Accepted: 03/16/2011] [Indexed: 12/14/2022]
Abstract
Recent studies have identified ancient virus genomes preserved as fossils within diverse animal genomes. These fossils have led to the revelation that a broad range of mammalian virus families are older and more ubiquitous than previously appreciated. Long-term interactions between viruses and their hosts often develop into genetic arms races where both parties continually jockey for evolutionary dominance. It is difficult to imagine how mammalian hosts have kept pace in the evolutionary race against rapidly evolving viruses over large expanses of time, given their much slower evolutionary rates. However, recent data has begun to reveal the evolutionary strategy of slowly-evolving hosts. We review these data and suggest a modified arms race model where the evolutionary possibilities of viruses are relatively constrained. Such a model could allow more accurate forecasting of virus evolution.
Collapse
Affiliation(s)
- Nicholas R Meyerson
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
21
|
|
22
|
Gupta RK, Towers GJ. Ultra structural characterisation of tetherin - a protein capable of preventing viral release from the plasma membrane. Viruses 2010; 2:987-994. [PMID: 21994665 PMCID: PMC3185656 DOI: 10.3390/v2040987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/07/2010] [Accepted: 04/07/2010] [Indexed: 11/18/2022] Open
Abstract
Tetherin is an antiviral restriction factor made by mammalian cells to protect them from viral infection. It prevents newly formed virus particles from leaving infected cells. Its antiviral mechanism appears to be remarkably uncomplicated. In 2 studies published in PLoS Pathogens electron microscopy is used to support the hypothesis that the tethers that link HIV-1 virions to tetherin expressing cells contain tetherin and are likely to contain tetherin alone. They also show that the HIV-1 encoded tetherin antagonist that is known to cause tetherin degradation, Vpu, serves to reduce the amount of tetherin in the particles thereby allowing their release.
Collapse
Affiliation(s)
- Ravindra K. Gupta
- Medical Research Council Centre for Medical Molecular Virology, University College London, London W1T4JF, UK
- Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | - Greg J. Towers
- Medical Research Council Centre for Medical Molecular Virology, University College London, London W1T4JF, UK
- Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44 20 7679 9535
| |
Collapse
|