1
|
Rostøl JT, Quiles-Puchalt N, Iturbe-Sanz P, Lasa Í, Penadés JR. Bacteriophages avoid autoimmunity from cognate immune systems as an intrinsic part of their life cycles. Nat Microbiol 2024; 9:1312-1324. [PMID: 38565896 PMCID: PMC11087260 DOI: 10.1038/s41564-024-01661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Dormant prophages protect lysogenic cells by expressing diverse immune systems, which must avoid targeting their cognate prophages upon activation. Here we report that multiple Staphylococcus aureus prophages encode Tha (tail-activated, HEPN (higher eukaryotes and prokaryotes nucleotide-binding) domain-containing anti-phage system), a defence system activated by structural tail proteins of incoming phages. We demonstrate the function of two Tha systems, Tha-1 and Tha-2, activated by distinct tail proteins. Interestingly, Tha systems can also block reproduction of the induced tha-positive prophages. To prevent autoimmunity after prophage induction, these systems are inhibited by the product of a small overlapping antisense gene previously believed to encode an excisionase. This genetic organization, conserved in S. aureus prophages, allows Tha systems to protect prophages and their bacterial hosts against phage predation and to be turned off during prophage induction, balancing immunity and autoimmunity. Our results show that the fine regulation of these processes is essential for the correct development of prophages' life cycle.
Collapse
Affiliation(s)
- Jakob T Rostøl
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| | - Nuria Quiles-Puchalt
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca, Spain
| | - Pablo Iturbe-Sanz
- Laboratory of Microbial Pathogenesis. Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Íñigo Lasa
- Laboratory of Microbial Pathogenesis. Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - José R Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| |
Collapse
|
2
|
Turchi B, Campobasso C, Nardinocchi A, Wagemans J, Torracca B, Lood C, Di Giuseppe G, Nieri P, Bertelloni F, Turini L, Ruffo V, Lavigne R, Di Luca M. Isolation and characterization of novel Staphylococcus aureus bacteriophage Hesat from dairy origin. Appl Microbiol Biotechnol 2024; 108:299. [PMID: 38619619 PMCID: PMC11018700 DOI: 10.1007/s00253-024-13129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
A novel temperate phage, named Hesat, was isolated by the incubation of a dairy strain of Staphylococcus aureus belonging to spa-type t127 with either bovine or ovine milk. Hesat represents a new species of temperate phage within the Phietavirus genus of the Azeredovirinae subfamily. Its genome has a length of 43,129 bp and a GC content of 35.11% and contains 75 predicted ORFs, some of which linked to virulence. This includes (i) a pathogenicity island (SaPln2), homologous to the type II toxin-antitoxin system PemK/MazF family toxin; (ii) a DUF3113 protein (gp30) that is putatively involved in the derepression of the global repressor Stl; and (iii) a cluster coding for a PVL. Genomic analysis of the host strain indicates Hesat is a resident prophage. Interestingly, its induction was obtained by exposing the bacterium to milk, while the conventional mitomycin C-based approach failed. The host range of phage Hesat appears to be broad, as it was able to lyse 24 out of 30 tested S. aureus isolates. Furthermore, when tested at high titer (108 PFU/ml), Hesat phage was also able to lyse a Staphylococcus muscae isolate, a coagulase-negative staphylococcal strain. KEY POINTS: • A new phage species was isolated from a Staphylococcus aureus bovine strain. • Pathogenicity island and PVL genes are encoded within phage genome. • The phage is active against most of S. aureus strains from both animal and human origins.
Collapse
Affiliation(s)
- Barbara Turchi
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Claudia Campobasso
- Department of Biology, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
| | - Arianna Nardinocchi
- Department of Biology, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy
| | - Jeroen Wagemans
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
| | - Beatrice Torracca
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Cédric Lood
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
- Department of Microbial and Molecular Systems, Centre for Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Fabrizio Bertelloni
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Luca Turini
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Valeria Ruffo
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
| | - Mariagrazia Di Luca
- Department of Biology, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy.
| |
Collapse
|
3
|
Mukherjee A, Kizziah JL, Hawkins NC, Nasef MO, Parker LK, Dokland T. Structure of the Portal Complex from Staphylococcus aureus Pathogenicity Island 1 Transducing Particles In Situ and In Isolation. J Mol Biol 2024; 436:168415. [PMID: 38135177 PMCID: PMC10923094 DOI: 10.1016/j.jmb.2023.168415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Staphylococcus aureus is an important human pathogen, and the prevalence of antibiotic resistance is a major public health concern. The evolution of pathogenicity and resistance in S. aureus often involves acquisition of mobile genetic elements (MGEs). Bacteriophages play an especially important role, since transduction represents the main mechanism for horizontal gene transfer. S. aureus pathogenicity islands (SaPIs), including SaPI1, are MGEs that carry genes encoding virulence factors, and are mobilized at high frequency through interactions with specific "helper" bacteriophages, such as 80α, leading to packaging of the SaPI genomes into virions made from structural proteins supplied by the helper. Among these structural proteins is the portal protein, which forms a ring-like portal at a fivefold vertex of the capsid, through which the DNA is packaged during virion assembly and ejected upon infection of the host. We have used high-resolution cryo-electron microscopy to determine structures of the S. aureus bacteriophage 80α portal itself, produced by overexpression, and in situ in the empty and full SaPI1 virions, and show how the portal interacts with the capsid. These structures provide a basis for understanding portal and capsid assembly and the conformational changes that occur upon DNA packaging and ejection.
Collapse
Affiliation(s)
- Amarshi Mukherjee
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James L Kizziah
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - N'Toia C Hawkins
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohamed O Nasef
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Laura K Parker
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Terje Dokland
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
Banh DV, Roberts CG, Morales-Amador A, Berryhill BA, Chaudhry W, Levin BR, Brady SF, Marraffini LA. Bacterial cGAS senses a viral RNA to initiate immunity. Nature 2023; 623:1001-1008. [PMID: 37968393 PMCID: PMC10686824 DOI: 10.1038/s41586-023-06743-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
Cyclic oligonucleotide-based antiphage signalling systems (CBASS) protect prokaryotes from viral (phage) attack through the production of cyclic oligonucleotides, which activate effector proteins that trigger the death of the infected host1,2. How bacterial cyclases recognize phage infection is not known. Here we show that staphylococcal phages produce a structured RNA transcribed from the terminase subunit genes, termed CBASS-activating bacteriophage RNA (cabRNA), which binds to a positively charged surface of the CdnE03 cyclase and promotes the synthesis of the cyclic dinucleotide cGAMP to activate the CBASS immune response. Phages that escape the CBASS defence harbour mutations that lead to the generation of a longer form of the cabRNA that cannot activate CdnE03. As the mammalian cyclase OAS1 also binds viral double-stranded RNA during the interferon response, our results reveal a conserved mechanism for the activation of innate antiviral defence pathways.
Collapse
Affiliation(s)
- Dalton V Banh
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Cameron G Roberts
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA
| | - Adrian Morales-Amador
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | | | - Waqas Chaudhry
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Mukherjee A, Kizziah JL, Hawkins NC, Nasef MO, Parker LK, Dokland T. Structure of the portal complex from Staphylococcus aureus pathogenicity island 1 transducing particles in situ and in solution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.557803. [PMID: 37786723 PMCID: PMC10541612 DOI: 10.1101/2023.09.18.557803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Staphylococcus aureus is an important human pathogen, and the prevalence of antibiotic resistance is a major public health concern. The evolution of pathogenicity and resistance in S. aureus often involves acquisition of mobile genetic elements (MGEs). Bacteriophages play an especially important role, since transduction represents the main mechanism for horizontal gene transfer. S. aureus pathogenicity islands (SaPIs), including SaPI1, are MGEs that carry genes encoding virulence factors, and are mobilized at high frequency through interactions with specific "helper" bacteriophages, such as 80α, leading to packaging of the SaPI genomes into virions made from structural proteins supplied by the helper. Among these structural proteins is the portal protein, which forms a ring-like portal at a fivefold vertex of the capsid, through which the DNA is packaged during virion assembly and ejected upon infection of the host. We have used high-resolution cryo-electron microscopy to determine structures of the S. aureus bacteriophage 80α portal in solution and in situ in the empty and full SaPI1 virions, and show how the portal interacts with the capsid. These structures provide a basis for understanding portal and capsid assembly and the conformational changes that occur upon DNA packaging and ejection.
Collapse
Affiliation(s)
| | | | | | - Mohamed O. Nasef
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Laura K. Parker
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Terje Dokland
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Chee MSJ, Serrano E, Chiang YN, Harling-Lee J, Man R, Bacigalupe R, Fitzgerald JR, Penadés JR, Chen J. Dual pathogenicity island transfer by piggybacking lateral transduction. Cell 2023; 186:3414-3426.e16. [PMID: 37541198 DOI: 10.1016/j.cell.2023.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/30/2023] [Accepted: 07/03/2023] [Indexed: 08/06/2023]
Abstract
Lateral transduction (LT) is the process by which temperate phages mobilize large sections of bacterial genomes. Despite its importance, LT has only been observed during prophage induction. Here, we report that superantigen-carrying staphylococcal pathogenicity islands (SaPIs) employ a related but more versatile and complex mechanism of gene transfer to drive chromosomal hypermobility while self-transferring with additional virulence genes from the host. We found that after phage infection or prophage induction, activated SaPIs form concatamers in the bacterial chromosome by switching between parallel genomic tracks in replication bubbles. This dynamic life cycle enables SaPIbov1 to piggyback its LT of staphylococcal pathogenicity island vSaα, which encodes an array of genes involved in host-pathogen interactions, allowing both islands to be mobilized intact and transferred in a single infective particle. Our findings highlight previously unknown roles of pathogenicity islands in bacterial virulence and show that their evolutionary impact extends beyond the genes they carry.
Collapse
Affiliation(s)
- Melissa Su Juan Chee
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Ester Serrano
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Yin Ning Chiang
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Joshua Harling-Lee
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh EH259RG, UK
| | - Rebecca Man
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh EH259RG, UK
| | - Rodrigo Bacigalupe
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh EH259RG, UK
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh EH259RG, UK
| | - José R Penadés
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46113 Moncada, Spain; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK.
| | - John Chen
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
| |
Collapse
|
7
|
Portela R, A. Faria N, Mwangi M, Miragaia M, de Lencastre H, Tomasz A, Gonçalves Sobral R. Analysis of a Cell Wall Mutant Highlights Rho-Dependent Genome Amplification Events in Staphylococcus aureus. Microbiol Spectr 2022; 10:e0248321. [PMID: 36094182 PMCID: PMC9603463 DOI: 10.1128/spectrum.02483-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/06/2022] [Indexed: 01/04/2023] Open
Abstract
In a study of antibiotic resistance in Staphylococcus aureus, specific cell wall mutants were previously generated for the peptidoglycan biosynthesis gene murF, by the insertion of an integrative plasmid. A collection of 30 independent mutants was obtained, and all harbored a variable number of copies of the inserted plasmid, arranged in tandem in the chromosome. Of the 30 mutants, only 3, F9, F20 and F26, with a lower number of plasmid copies, showed an altered peptidoglycan structure, lower resistance to β-lactams and a different loss-of-function mutation in rho gene, that encodes a transcription termination factor. The rho mutations were found to correlate with the level of oxacillin resistance, since genetic complementation with rho gene reestablished the resistance and cell wall parental profile in F9, F20 and F26 strains. Furthermore, complementation with rho resulted in the amplification of the number of plasmid tandem repeats, suggesting that Rho enabled events of recombination that favored a rearrangement in the chromosome in the region of the impaired murF gene. Although the full mechanism of reversion of the cell wall damage was not fully elucidated, we showed that Rho is involved in the recombination process that mediates the tandem amplification of exogeneous DNA fragments inserted into the chromosome. IMPORTANCE The cell wall of bacteria, namely, peptidoglycan, is the target of several antibiotic classes such as β-lactams. Staphylococcus aureus is well known for its capacity to adapt to antibiotic stress and develop resistance strategies, namely, to β-lactams. In this context, the construction of cell wall mutants provides useful models to study the development of such resistance mechanisms. Here, we characterized a collection of independent mutants, impaired in the same peptidoglycan biosynthetic step, obtained through the insertion of a plasmid in the coding region of murF gene. S. aureus demonstrated the capacity to overcome the cell wall damage by amplifying the copy number of the inserted plasmid, through an undescribed mechanism that involves the Rho transcription termination factor.
Collapse
Affiliation(s)
- Raquel Portela
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Laboratory of Molecular Microbiology of Bacterial Pathogens, UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Nuno A. Faria
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Michael Mwangi
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Maria Miragaia
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Hermínia de Lencastre
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Alexander Tomasz
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Rita Gonçalves Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Laboratory of Molecular Microbiology of Bacterial Pathogens, UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
8
|
Hotinger JA, Gallagher AH, May AE. Phage-Related Ribosomal Proteases (Prps): Discovery, Bioinformatics, and Structural Analysis. Antibiotics (Basel) 2022; 11:antibiotics11081109. [PMID: 36009978 PMCID: PMC9405229 DOI: 10.3390/antibiotics11081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Many new antimicrobials are analogs of existing drugs, sharing the same targets and mechanisms of action. New antibiotic targets are critically needed to combat the growing threat of antimicrobial-resistant bacteria. Phage-related ribosomal proteases (Prps) are a recently structurally characterized antibiotic target found in pathogens such as Staphylococcus aureus, Clostridioides difficile, and Streptococcus pneumoniae. These bacteria encode an N-terminal extension on their ribosomal protein L27 that is not present in other bacteria. The cleavage of this N-terminal extension from L27 by Prp is necessary to create a functional ribosome. Thus, Prp inhibition may serve as an alternative to direct binding and inhibition of the ribosome. This bioinformatic and structural analysis covers the discovery, function, and structural characteristics of known Prps. This information will be helpful in future endeavors to design selective therapeutics targeting the Prps of important pathogens.
Collapse
|
9
|
Sprotte S, Rasmussen TS, Cho GS, Brinks E, Lametsch R, Neve H, Vogensen FK, Nielsen DS, Franz CMAP. Morphological and Genetic Characterization of Eggerthella lenta Bacteriophage PMBT5. Viruses 2022; 14:1598. [PMID: 35893664 PMCID: PMC9394477 DOI: 10.3390/v14081598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Eggerthella lenta is a common member of the human gut microbiome. We here describe the isolation and characterization of a putative virulent bacteriophage having E. lenta as host. The double-layer agar method for isolating phages was adapted to anaerobic conditions for isolating bacteriophage PMBT5 from sewage on a strictly anaerobic E. lenta strain of intestinal origin. For this, anaerobically grown E. lenta cells were concentrated by centrifugation and used for a 24 h phage enrichment step. Subsequently, this suspension was added to anaerobically prepared top (soft) agar in Hungate tubes and further used in the double-layer agar method. Based on morphological characteristics observed by transmission electron microscopy, phage PMBT5 could be assigned to the Siphoviridae phage family. It showed an isometric head with a flexible, noncontractile tail and a distinct single 45 nm tail fiber under the baseplate. Genome sequencing and assembly resulted in one contig of 30,930 bp and a mol% GC content of 51.3, consisting of 44 predicted protein-encoding genes. Phage-related proteins could be largely identified based on their amino acid sequence, and a comparison with metagenomes in the human virome database showed that the phage genome exhibits similarity to two distantly related phages.
Collapse
Affiliation(s)
- Sabrina Sprotte
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - Torben S. Rasmussen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - Erik Brinks
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| | - Finn K. Vogensen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (T.S.R.); (R.L.); (F.K.V.); (D.S.N.)
| | - Charles M. A. P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; (G.-S.C.); (E.B.); (H.N.); (C.M.A.P.F.)
| |
Collapse
|
10
|
Abstract
Bacteriophage (phage) are both predators and evolutionary drivers for bacteria, notably contributing to the spread of antimicrobial resistance (AMR) genes by generalized transduction. Our current understanding of this complex relationship is limited. We used an interdisciplinary approach to quantify how these interacting dynamics can lead to the evolution of multidrug-resistant bacteria. We cocultured two strains of methicillin-resistant Staphylococcus aureus, each harboring a different antibiotic resistance gene, with generalized transducing phage. After a growth phase of 8 h, bacteria and phage surprisingly coexisted at a stable equilibrium in our culture, the level of which was dependent on the starting concentration of phage. We detected double-resistant bacteria as early as 7 h, indicating that transduction of AMR genes had occurred. We developed multiple mathematical models of the bacteria and phage relationship and found that phage-bacteria dynamics were best captured by a model in which phage burst size decreases as the bacteria population reaches stationary phase and where phage predation is frequency-dependent. We estimated that one in every 108 new phage generated was a transducing phage carrying an AMR gene and that double-resistant bacteria were always predominantly generated by transduction rather than by growth. Our results suggest a shift in how we understand and model phage-bacteria dynamics. Although rates of generalized transduction could be interpreted as too rare to be significant, they are sufficient in our system to consistently lead to the evolution of multidrug-resistant bacteria. Currently, the potential of phage to contribute to the growing burden of AMR is likely underestimated. IMPORTANCE Bacteriophage (phage), viruses that can infect and kill bacteria, are being investigated through phage therapy as a potential solution to the threat of antimicrobial resistance (AMR). In reality, however, phage are also natural drivers of bacterial evolution by transduction when they accidentally carry nonphage DNA between bacteria. Using laboratory work and mathematical models, we show that transduction leads to evolution of multidrug-resistant bacteria in less than 8 h and that phage production decreases when bacterial growth decreases, allowing bacteria and phage to coexist at stable equilibria. The joint dynamics of phage predation and transduction lead to complex interactions with bacteria, which must be clarified to prevent phage from contributing to the spread of AMR.
Collapse
|
11
|
Ibarra-Chávez R, Brady A, Chen J, Penadés JR, Haag AF. Phage-inducible chromosomal islands promote genetic variability by blocking phage reproduction and protecting transductants from phage lysis. PLoS Genet 2022; 18:e1010146. [PMID: 35344558 PMCID: PMC8989297 DOI: 10.1371/journal.pgen.1010146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/07/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Phage-inducible chromosomal islands (PICIs) are a widespread family of highly mobile genetic elements that disseminate virulence and toxin genes among bacterial populations. Since their life cycle involves induction by helper phages, they are important players in phage evolution and ecology. PICIs can interfere with the lifecycle of their helper phages at different stages resulting frequently in reduced phage production after infection of a PICI-containing strain. Since phage defense systems have been recently shown to be beneficial for the acquisition of exogenous DNA via horizontal gene transfer, we hypothesized that PICIs could provide a similar benefit to their hosts and tested the impact of PICIs in recipient strains on host cell viability, phage propagation and transfer of genetic material. Here we report an important role for PICIs in bacterial evolution by promoting the survival of phage-mediated transductants of chromosomal or plasmid DNA. The presence of PICIs generates favorable conditions for population diversification and the inheritance of genetic material being transferred, such as antibiotic resistance and virulence genes. Our results show that by interfering with phage reproduction, PICIs can protect the bacterial population from phage attack, increasing the overall survival of the bacterial population as well as the transduced cells. Moreover, our results also demonstrate that PICIs reduce the frequency of lysogenization after temperate phage infection, creating a more genetically diverse bacterial population with increased bet-hedging opportunities to adapt to new niches. In summary, our results identify a new role for the PICIs and highlight them as important drivers of bacterial evolution.
Collapse
Affiliation(s)
- Rodrigo Ibarra-Chávez
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Aisling Brady
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, United Kingdom
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - José R. Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, United Kingdom
- Universidad CEU Cardenal Herrera, Moncada, Spain
| | - Andreas F. Haag
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- School of Medicine, University of St Andrews, North Haugh, St Andrews, United Kingdom
| |
Collapse
|
12
|
Ibarra-Chávez R, Hansen MF, Pinilla-Redondo R, Seed KD, Trivedi U. Phage satellites and their emerging applications in biotechnology. FEMS Microbiol Rev 2021; 45:fuab031. [PMID: 34104956 PMCID: PMC8632786 DOI: 10.1093/femsre/fuab031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The arms race between (bacterio)phages and their hosts is a recognised hot spot for genome evolution. Indeed, phages and their components have historically paved the way for many molecular biology techniques and biotech applications. Further exploration into their complex lifestyles has revealed that phages are often parasitised by distinct types of hyperparasitic mobile genetic elements. These so-called phage satellites exploit phages to ensure their own propagation and horizontal transfer into new bacterial hosts, and their prevalence and peculiar lifestyle has caught the attention of many researchers. Here, we review the parasite-host dynamics of the known phage satellites, their genomic organisation and their hijacking mechanisms. Finally, we discuss how these elements can be repurposed for diverse biotech applications, kindling a new catalogue of exciting tools for microbiology and synthetic biology.
Collapse
Affiliation(s)
- Rodrigo Ibarra-Chávez
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Rafael Pinilla-Redondo
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Staphylococcal phages and pathogenicity islands drive plasmid evolution. Nat Commun 2021; 12:5845. [PMID: 34615859 PMCID: PMC8494744 DOI: 10.1038/s41467-021-26101-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
Conjugation has classically been considered the main mechanism driving plasmid transfer in nature. Yet bacteria frequently carry so-called non-transmissible plasmids, raising questions about how these plasmids spread. Interestingly, the size of many mobilisable and non-transmissible plasmids coincides with the average size of phages (~40 kb) or that of a family of pathogenicity islands, the phage-inducible chromosomal islands (PICIs, ~11 kb). Here, we show that phages and PICIs from Staphylococcus aureus can mediate intra- and inter-species plasmid transfer via generalised transduction, potentially contributing to non-transmissible plasmid spread in nature. Further, staphylococcal PICIs enhance plasmid packaging efficiency, and phages and PICIs exert selective pressures on plasmids via the physical capacity of their capsids, explaining the bimodal size distribution observed for non-conjugative plasmids. Our results highlight that transducing agents (phages, PICIs) have important roles in bacterial plasmid evolution and, potentially, in antimicrobial resistance transmission.
Collapse
|
14
|
Staphylococcus epidermidis Phages Transduce Antimicrobial Resistance Plasmids and Mobilize Chromosomal Islands. mSphere 2021; 6:6/3/e00223-21. [PMID: 33980677 PMCID: PMC8125051 DOI: 10.1128/msphere.00223-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multidrug-resistant strains of S. epidermidis emerge in both nosocomial and livestock environments as the most important pathogens among coagulase-negative staphylococcal species. The study of transduction by phages is essential to understanding how virulence and antimicrobial resistance genes spread in originally commensal bacterial populations. Staphylococcus epidermidis is a leading opportunistic pathogen causing nosocomial infections that is notable for its ability to form a biofilm and for its high rates of antibiotic resistance. It serves as a reservoir of multiple antimicrobial resistance genes that spread among the staphylococcal population by horizontal gene transfer such as transduction. While phage-mediated transduction is well studied in Staphylococcus aureus, S. epidermidis transducing phages have not been described in detail yet. Here, we report the characteristics of four phages, 27, 48, 456, and 459, previously used for S. epidermidis phage typing, and the newly isolated phage E72, from a clinical S. epidermidis strain. The phages, classified in the family Siphoviridae and genus Phietavirus, exhibited an S. epidermidis-specific host range, and together they infected 49% of the 35 strains tested. A whole-genome comparison revealed evolutionary relatedness to transducing S. aureus phietaviruses. In accordance with this, all the tested phages were capable of transduction with high frequencies up to 10−4 among S. epidermidis strains from different clonal complexes. Plasmids with sizes from 4 to 19 kb encoding resistance to streptomycin, tetracycline, and chloramphenicol were transferred. We provide here the first evidence of a phage-inducible chromosomal island transfer in S. epidermidis. Similarly to S. aureus pathogenicity islands, the transfer was accompanied by phage capsid remodeling; however, the interfering protein encoded by the island was distinct. Our findings underline the role of S. epidermidis temperate phages in the evolution of S. epidermidis strains by horizontal gene transfer, which can also be utilized for S. epidermidis genetic studies. IMPORTANCE Multidrug-resistant strains of S. epidermidis emerge in both nosocomial and livestock environments as the most important pathogens among coagulase-negative staphylococcal species. The study of transduction by phages is essential to understanding how virulence and antimicrobial resistance genes spread in originally commensal bacterial populations. In this work, we provide a detailed description of transducing S. epidermidis phages. The high transduction frequencies of antimicrobial resistance plasmids and the first evidence of chromosomal island transfer emphasize the decisive role of S. epidermidis phages in attaining a higher pathogenic potential of host strains. To date, such importance has been attributed only to S. aureus phages, not to those of coagulase-negative staphylococci. This study also proved that the described transducing bacteriophages represent valuable genetic modification tools in S. epidermidis strains where other methods for gene transfer fail.
Collapse
|
15
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Cañas B, Rama JLR, Villa TG, Calo-Mata P. Proteomic Characterization of Bacteriophage Peptides from the Mastitis Producer Staphylococcus aureus by LC-ESI-MS/MS and the Bacteriophage Phylogenomic Analysis. Foods 2021; 10:799. [PMID: 33917943 PMCID: PMC8068337 DOI: 10.3390/foods10040799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The present work describes LC-ESI-MS/MS MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) analyses of tryptic digestion peptides from phages that infect mastitis-causing Staphylococcus aureus isolated from dairy products. A total of 1933 nonredundant peptides belonging to 1282 proteins were identified and analyzed. Among them, 79 staphylococcal peptides from phages were confirmed. These peptides belong to proteins such as phage repressors, structural phage proteins, uncharacterized phage proteins and complement inhibitors. Moreover, eighteen of the phage origin peptides found were specific to S. aureus strains. These diagnostic peptides could be useful for the identification and characterization of S. aureus strains that cause mastitis. Furthermore, a study of bacteriophage phylogeny and the relationship among the identified phage peptides and the bacteria they infect was also performed. The results show the specific peptides that are present in closely related phages and the existing links between bacteriophage phylogeny and the respective Staphylococcus spp. infected.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.); (T.G.V.)
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, 36208 Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Benito Cañas
- Department of Analytical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain;
| | - José-Luis R. Rama
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.); (T.G.V.)
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.); (T.G.V.)
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain;
| |
Collapse
|
16
|
Moller AG, Winston K, Ji S, Wang J, Hargita Davis MN, Solís-Lemus CR, Read TD. Genes Influencing Phage Host Range in Staphylococcus aureus on a Species-Wide Scale. mSphere 2021; 6:e01263-20. [PMID: 33441407 PMCID: PMC7845607 DOI: 10.1128/msphere.01263-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that causes serious diseases, ranging from skin infections to septic shock. Bacteriophages (phages) are both natural killers of S. aureus, offering therapeutic possibilities, and important vectors of horizontal gene transfer (HGT) in the species. Here, we used high-throughput approaches to understand the genetic basis of strain-to-strain variation in sensitivity to phages, which defines the host range. We screened 259 diverse S. aureus strains covering more than 40 sequence types for sensitivity to eight phages, which were representatives of the three phage classes that infect the species. The phages were variable in host range, each infecting between 73 and 257 strains. Using genome-wide association approaches, we identified putative loci that affect host range and validated their function using USA300 transposon knockouts. In addition to rediscovering known host range determinants, we found several previously unreported genes affecting bacterial growth during phage infection, including trpA, phoR, isdB, sodM, fmtC, and relA We used the data from our host range matrix to develop predictive models that achieved between 40% and 95% accuracy. This work illustrates the complexity of the genetic basis for phage susceptibility in S. aureus but also shows that with more data, we may be able to understand much of the variation. With a knowledge of host range determination, we can rationally design phage therapy cocktails that target the broadest host range of S. aureus strains and address basic questions regarding phage-host interactions, such as the impact of phage on S. aureus evolution.IMPORTANCEStaphylococcus aureus is a widespread, hospital- and community-acquired pathogen, many strains of which are antibiotic resistant. It causes diverse diseases, ranging from local to systemic infection, and affects both the skin and many internal organs, including the heart, lungs, bones, and brain. Its ubiquity, antibiotic resistance, and disease burden make new therapies urgent. One alternative therapy to antibiotics is phage therapy, in which viruses specific to infecting bacteria clear infection. In this work, we identified and validated S. aureus genes that influence phage host range-the number of strains a phage can infect and kill-by testing strains representative of the diversity of the S. aureus species for phage host range and associating the genome sequences of strains with host range. These findings together improved our understanding of how phage therapy works in the bacterium and improve prediction of phage therapy efficacy based on the predicted host range of the infecting strain.
Collapse
Affiliation(s)
- Abraham G Moller
- Microbiology and Molecular Genetics (MMG) Program, Graduate Division of Biological and Biomedical Sciences (GDBBS), Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Kyle Winston
- Department of Epidemiology, Rollins School of Public Health (RSPH), Emory University, Atlanta, Georgia, USA
| | - Shiyu Ji
- Eugene Gangarosa Laboratory Research Fellowship, Emory College Online & Summer Programs, Emory College of Arts and Sciences, Atlanta, Georgia, USA
| | - Junting Wang
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michelle N Hargita Davis
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Claudia R Solís-Lemus
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Pilát Z, Jonáš A, Pilátová J, Klementová T, Bernatová S, Šiler M, Maňka T, Kizovský M, Růžička F, Pantůček R, Neugebauer U, Samek O, Zemánek P. Analysis of Bacteriophage-Host Interaction by Raman Tweezers. Anal Chem 2020; 92:12304-12311. [PMID: 32815709 DOI: 10.1021/acs.analchem.0c01963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteriophages, or "phages" for short, are viruses that replicate in bacteria. The therapeutic and biotechnological potential of phages and their lytic enzymes is of interest for their ability to selectively destroy pathogenic bacteria, including antibiotic-resistant strains. Introduction of phage preparations into medicine, biotechnology, and food industry requires a thorough characterization of phage-host interaction on a molecular level. We employed Raman tweezers to analyze the phage-host interaction of Staphylococcus aureus strain FS159 with a virulent phage JK2 (=812K1/420) of the Myoviridae family and a temperate phage 80α of the Siphoviridae family. We analyzed the timeline of phage-induced molecular changes in infected host cells. We reliably detected the presence of replicating phages in bacterial cells within 5 min after infection. Our results lay the foundations for building a Raman-based diagnostic instrument capable of real-time, in vivo, in situ, nondestructive characterization of the phage-host relationship on the level of individual cells, which has the potential of importantly contributing to the development of phage therapy and enzybiotics.
Collapse
Affiliation(s)
- Zdeněk Pilát
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Alexandr Jonáš
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Jana Pilátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Tereza Klementová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Silvie Bernatová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Martin Šiler
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Tadeáš Maňka
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Martin Kizovský
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Filip Růžička
- Department of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's Faculty Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.,Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, D-07745 Jena, Germany
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Pavel Zemánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| |
Collapse
|
18
|
Abstract
Influenza A virus (IAV) causes annual epidemics and sporadic pandemics of respiratory disease. Secondary bacterial coinfection by organisms such as Staphylococcus aureus is the most common complication of primary IAV infection and is associated with high levels of morbidity and mortality. Here, we report the first identified S. aureus factor (lipase 1) that enhances IAV replication during infection via positive modulation of virus budding. The effect is observed in vivo in embryonated hen’s eggs and greatly enhances the yield of a vaccine strain, a finding that could be applied to address global shortages of influenza vaccines. Influenza A virus (IAV) causes annual epidemics of respiratory disease in humans, often complicated by secondary coinfection with bacterial pathogens such as Staphylococcus aureus. Here, we report that the S. aureus secreted protein lipase 1 enhances IAV replication in vitro in primary cells, including human lung fibroblasts. The proviral activity of lipase 1 is dependent on its enzymatic function, acts late in the viral life cycle, and results in increased infectivity through positive modulation of virus budding. Furthermore, the proviral effect of lipase 1 on IAV is exhibited during in vivo infection of embryonated hen’s eggs and, importantly, increases the yield of a vaccine strain of IAV by approximately 5-fold. Thus, we have identified the first S. aureus protein to enhance IAV replication, suggesting a potential role in coinfection. Importantly, this activity may be harnessed to address global shortages of influenza vaccines.
Collapse
|
19
|
The gp44 Ejection Protein of Staphylococcus aureus Bacteriophage 80α Binds to the Ends of the Genome and Protects It from Degradation. Viruses 2020; 12:v12050563. [PMID: 32443723 PMCID: PMC7290940 DOI: 10.3390/v12050563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/21/2023] Open
Abstract
Bacteriophage 80α is a representative of a class of temperate phages that infect Staphylococcus aureus and other Gram-positive bacteria. Many of these phages carry genes encoding toxins and other virulence factors. This phage, 80α, is also involved in high-frequency mobilization of S. aureus pathogenicity islands (SaPIs), mobile genetic elements that carry virulence factor genes. Bacteriophage 80α encodes a minor capsid protein, gp44, between the genes for the portal protein and major capsid protein. Gp44 is essential for a productive infection by 80α but not for transduction of SaPIs or plasmids. We previously demonstrated that gp44 is an ejection protein that acts to promote progression to the lytic cycle upon infection and suggested that the protein might act as an anti-repressor of CI in the lytic–lysogenic switch. However, an 80α Δ44 mutant also exhibited a reduced rate of lysogeny. Here, we show that gp44 is a non-specific DNA binding protein with affinity for the blunt ends of linear DNA. Our data suggest a model in which gp44 promotes circularization of the genome after injection into the host cell, a key initial step both for lytic growth and for the establishment of lysogeny.
Collapse
|
20
|
D'Souza R, White RC, Buzzeo R, Goglin K, Vashee S, Lee Y, Son B, Ryu S, Fouts DE. Complete Genome Sequence of Staphylococcus aureus Phage SA75, Isolated from Goat Feces. Microbiol Resour Announc 2020; 9:e00114-20. [PMID: 32299871 PMCID: PMC7163009 DOI: 10.1128/mra.00114-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/24/2020] [Indexed: 11/20/2022] Open
Abstract
Antibiotic-resistant Staphylococcus aureus is an opportunistic pathogen causing serious human infections worldwide. Here, we report the complete annotated genome of bacteriophage SA75, a member of the Siphoviridae family which could be an alternative to traditional antibiotics for treating Staphylococcus infections. We used a hybrid approach combining MinION and Illumina MiSeq sequencing, which yielded a 43,134-bp genome and 65 open reading frames.
Collapse
Affiliation(s)
| | | | | | - Karrie Goglin
- J. Craig Venter Institute, La Jolla, California, USA
| | | | - Yoona Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Bokyung Son
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | | |
Collapse
|
21
|
Barth ZK, Silvas TV, Angermeyer A, Seed KD. Genome replication dynamics of a bacteriophage and its satellite reveal strategies for parasitism and viral restriction. Nucleic Acids Res 2020; 48:249-263. [PMID: 31667508 PMCID: PMC7145576 DOI: 10.1093/nar/gkz1005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
Phage-inducible chromosomal island-like elements (PLEs) are bacteriophage satellites found in Vibrio cholerae. PLEs parasitize the lytic phage ICP1, excising from the bacterial chromosome, replicating, and mobilizing to new host cells following cell lysis. PLEs protect their host cell populations by completely restricting the production of ICP1 progeny. Previously, it was found that ICP1 replication was reduced during PLE(+) infection. Despite robust replication of the PLE genome, relatively few transducing units are produced. We investigated if PLE DNA replication itself is antagonistic to ICP1 replication. Here we identify key constituents of PLE replication and assess their role in interference of ICP1. PLE encodes a RepA_N initiation factor that is sufficient to drive replication from the PLE origin of replication during ICP1 infection. In contrast to previously characterized bacteriophage satellites, expression of the PLE initiation factor was not sufficient for PLE replication in the absence of phage. Replication of PLE was necessary for interference of ICP1 DNA replication, but replication of a minimalized PLE replicon was not sufficient for ICP1 DNA replication interference. Despite restoration of ICP1 DNA replication, non-replicating PLE remained broadly inhibitory against ICP1. These results suggest that PLE DNA replication is one of multiple mechanisms contributing to ICP1 restriction.
Collapse
Affiliation(s)
- Zachary K Barth
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tania V Silvas
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Angus Angermeyer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
22
|
Kizziah JL, Manning KA, Dearborn AD, Dokland T. Structure of the host cell recognition and penetration machinery of a Staphylococcus aureus bacteriophage. PLoS Pathog 2020; 16:e1008314. [PMID: 32069326 PMCID: PMC7048315 DOI: 10.1371/journal.ppat.1008314] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/28/2020] [Accepted: 01/10/2020] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is a common cause of infections in humans. The emergence of virulent, antibiotic-resistant strains of S. aureus is a significant public health concern. Most virulence and resistance factors in S. aureus are encoded by mobile genetic elements, and transduction by bacteriophages represents the main mechanism for horizontal gene transfer. The baseplate is a specialized structure at the tip of bacteriophage tails that plays key roles in host recognition, cell wall penetration, and DNA ejection. We have used high-resolution cryo-electron microscopy to determine the structure of the S. aureus bacteriophage 80α baseplate at 3.75 Å resolution, allowing atomic models to be built for most of the major tail and baseplate proteins, including two tail fibers, the receptor binding protein, and part of the tape measure protein. Our structure provides a structural basis for understanding host recognition, cell wall penetration and DNA ejection in viruses infecting Gram-positive bacteria. Comparison to other phages demonstrates the modular design of baseplate proteins, and the adaptations to the host that take place during the evolution of staphylococci and other pathogens.
Collapse
Affiliation(s)
- James L. Kizziah
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Keith A. Manning
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Altaira D. Dearborn
- Structural Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
23
|
Do T, Schaefer K, Santiago AG, Coe KA, Fernandes PB, Kahne D, Pinho MG, Walker S. Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan. Nat Microbiol 2020; 5:291-303. [PMID: 31932712 PMCID: PMC7046134 DOI: 10.1038/s41564-019-0632-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Abstract
Bacteria are protected by a polymer of peptidoglycan that serves as an exoskeleton1. In Staphylococcus aureus, the peptidoglycan assembly enzymes relocate during the cell cycle from the periphery, where they are active during growth, to the division site where they build the partition between daughter cells2-4. But how peptidoglycan synthesis is regulated throughout the cell cycle is poorly understood5,6. Here, we used a transposon screen to identify a membrane protein complex that spatially regulates S. aureus peptidoglycan synthesis. This complex consists of an amidase that removes stem peptides from uncrosslinked peptidoglycan and a partner protein that controls its activity. Amidases typically hydrolyse crosslinked peptidoglycan between daughter cells so that they can separate7. However, this amidase controls cell growth. In its absence, peptidoglycan synthesis becomes spatially dysregulated, which causes cells to grow so large that cell division is defective. We show that the cell growth and division defects due to loss of this amidase can be mitigated by attenuating the polymerase activity of the major S. aureus peptidoglycan synthase. Our findings lead to a model wherein the amidase complex regulates the density of peptidoglycan assembly sites to control peptidoglycan synthase activity at a given subcellular location. Removal of stem peptides from peptidoglycan at the cell periphery promotes peptidoglycan synthase relocation to midcell during cell division. This mechanism ensures that cell expansion is properly coordinated with cell division.
Collapse
Affiliation(s)
- Truc Do
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Kaitlin Schaefer
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Kathryn A Coe
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Pedro B Fernandes
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Mariana G Pinho
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Zeman M, Bárdy P, Vrbovská V, Roudnický P, Zdráhal Z, Růžičková V, Doškař J, Pantůček R. New Genus Fibralongavirus in Siphoviridae Phages of Staphylococcus pseudintermedius. Viruses 2019; 11:E1143. [PMID: 31835553 PMCID: PMC6950010 DOI: 10.3390/v11121143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages of the significant veterinary pathogen Staphylococcus pseudintermedius are rarely described morphologically and genomically in detail, and mostly include phages of the Siphoviridae family. There is currently no taxonomical classification for phages of this bacterial species. Here we describe a new phage designated vB_SpsS_QT1, which is related to phage 2638A originally described as a Staphylococcus aureus phage. Propagating strain S. aureus 2854 of the latter was reclassified by rpoB gene sequencing as S. pseudintermedius 2854 in this work. Both phages have a narrow but different host range determined on 54 strains. Morphologically, both of them belong to the family Siphoviridae, share the B1 morphotype, and differ from other staphylococcal phage genera by a single long fibre at the terminus of the tail. The complete genome of phage vB_SpsS_QT1 was sequenced with the IonTorrent platform and expertly annotated. Its linear genome with cohesive ends is 43,029 bp long and encodes 60 predicted genes with the typical modular structure of staphylococcal siphophages. A global alignment found the genomes of vB_SpsS_QT1 and 2638A to share 84% nucleotide identity, but they have no significant similarity of nucleotide sequences with other phage genomes available in public databases. Based on the morphological, phylogenetic, and genomic analyses, a novel genus Fibralongavirus in the family Siphoviridae is described with phage species vB_SpsS_QT1 and 2638A.
Collapse
Affiliation(s)
- Michal Zeman
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Pavol Bárdy
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Veronika Vrbovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Pavel Roudnický
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vladislava Růžičková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jiří Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
25
|
Ingmer H, Gerlach D, Wolz C. Temperate Phages of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0058-2018. [PMID: 31562736 PMCID: PMC10921950 DOI: 10.1128/microbiolspec.gpp3-0058-2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
Most Staphylococcus aureus isolates carry multiple bacteriophages in their genome, which provide the pathogen with traits important for niche adaptation. Such temperate S. aureus phages often encode a variety of accessory factors that influence virulence, immune evasion and host preference of the bacterial lysogen. Moreover, transducing phages are primary vehicles for horizontal gene transfer. Wall teichoic acid (WTA) acts as a common phage receptor for staphylococcal phages and structural variations of WTA govern phage-host specificity thereby shaping gene transfer across clonal lineages and even species. Thus, bacteriophages are central for the success of S. aureus as a human pathogen.
Collapse
Affiliation(s)
- Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Gerlach
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Zlatohurska M, Gorb T, Romaniuk L, Korol N, Faidiuk Y, Kropinski AM, Kushkina A, Tovkach F. Complete genome sequence analysis of temperate Erwinia bacteriophages 49 and 59. J Basic Microbiol 2019; 59:754-764. [PMID: 31099101 DOI: 10.1002/jobm.201900205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/11/2019] [Indexed: 11/09/2022]
Abstract
To date, a small number of temperate phages are known to infect members of the genus Erwinia. In this study, the genomes of temperate phages vB_EhrS_49 and vB_EhrS_59 infecting Erwinia horticola, the causative agent of beech black bacteriosis in Ukraine, were sequenced and annotated. Their genomes reveal no significant similarity to that of any previously reported viruses of Enterobacteriaceae. At the same time, phages 49 and 59 share extensive nucleotide sequence identity across the regions encoding head assembly, DNA packaging, and lysis. Despite significant homology between structural modules, the organization of distal tail morphogenesis genes is different. Furthermore, a number of putative morons and DNA methylases have been found in both phage genomes. Due to the revealed synteny as well as the structure of lysogeny module, phages 49 and 59 are suggested to be novel members of the lambdoid phage group. Conservative structural genes together with varying homology across the nonstructural region of the genomes make phages 49 and 59 highly promising objects for studying the genetic recombination and evolution of microbial viruses. The obtained data may as well be helpful for better understanding of relationships among Erwinia species.
Collapse
Affiliation(s)
- Maryna Zlatohurska
- Department of Bacteriophage Molecular Genetics, D.K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana Gorb
- Department of Bacteriophage Molecular Genetics, D.K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Liudmyla Romaniuk
- Department of Bacteriophage Molecular Genetics, D.K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Natalia Korol
- Department of Bacteriophage Molecular Genetics, D.K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia Faidiuk
- Department of Bacteriophage Molecular Genetics, D.K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv, Ukraine.,ESC "Institute of Biology and Medicine", Department of Microbiology and Immunology, Taras Shevchenko Kyiv National University, Kyiv, Ukraine
| | - Andrew M Kropinski
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada.,Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Alla Kushkina
- Department of Bacteriophage Molecular Genetics, D.K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Fedor Tovkach
- Department of Bacteriophage Molecular Genetics, D.K. Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
27
|
Manning KA, Quiles-Puchalt N, Penadés JR, Dokland T. A novel ejection protein from bacteriophage 80α that promotes lytic growth. Virology 2018; 525:237-247. [PMID: 30308422 DOI: 10.1016/j.virol.2018.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022]
Abstract
Many staphylococcal bacteriophages encode a minor capsid protein between the genes for the portal and scaffolding proteins. In Staphylococcus aureus bacteriophage 80α, this protein, called gp44, is essential for the production of viable phage, but dispensable for the phage-mediated mobilization of S. aureus pathogenicity islands. We show here that gp44 is not required for capsid assembly, DNA packaging or ejection of the DNA, nor for generalized transduction of plasmids. An 80α Δ44 mutant could be complemented in trans by gp44 expressed from a plasmid, indicating that gp44 plays a post-injection role in the host. Our results show that gp44 is an ejection (pilot) protein that is involved in deciding the fate of the phage DNA after injection. Our data are consistent with a model in which gp44 acts as a regulatory protein that promotes progression to the lytic cycle.
Collapse
Affiliation(s)
- Keith A Manning
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
28
|
Kizziah JL, Manning KA, Dearborn AD, Wall EA, Klenow L, Hill RLL, Spilman MS, Stagg SM, Christie GE, Dokland T. Cleavage and Structural Transitions during Maturation of Staphylococcus aureus Bacteriophage 80α and SaPI1 Capsids. Viruses 2017; 9:v9120384. [PMID: 29258203 PMCID: PMC5744158 DOI: 10.3390/v9120384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022] Open
Abstract
In the tailed bacteriophages, DNA is packaged into spherical procapsids, leading to expansion into angular, thin-walled mature capsids. In many cases, this maturation is accompanied by cleavage of the major capsid protein (CP) and other capsid-associated proteins, including the scaffolding protein (SP) that serves as a chaperone for the assembly process. Staphylococcus aureus bacteriophage 80α is capable of high frequency mobilization of mobile genetic elements called S. aureus pathogenicity islands (SaPIs), such as SaPI1. SaPI1 redirects the assembly pathway of 80α to form capsids that are smaller than those normally made by the phage alone. Both CP and SP of 80α are N-terminally processed by a host-encoded protease, Prp. We have analyzed phage mutants that express pre-cleaved or uncleavable versions of CP or SP, and show that the N-terminal sequence in SP is absolutely required for assembly, but does not need to be cleaved in order to produce viable capsids. Mutants with pre-cleaved or uncleavable CP display normal viability. We have used cryo-EM to solve the structures of mature capsids from an 80α mutant expressing uncleavable CP, and from wildtype SaPI1. Comparisons with structures of 80α and SaPI1 procapsids show that capsid maturation involves major conformational changes in CP, consistent with a release of the CP N-arm by SP. The hexamers reorganize during maturation to accommodate the different environments in the 80α and SaPI1 capsids.
Collapse
Affiliation(s)
- James L Kizziah
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Keith A Manning
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Altaira D Dearborn
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, The National Institutes of Health, Bethesda, MD 20892, USA.
| | - Erin A Wall
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Laura Klenow
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Rosanne L L Hill
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Michael S Spilman
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| | - Scott M Stagg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| | - Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
29
|
Neamah MM, Mir-Sanchis I, López-Sanz M, Acosta S, Baquedano I, Haag AF, Marina A, Ayora S, Penadés JR. Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus. Nucleic Acids Res 2017; 45:6507-6519. [PMID: 28475766 PMCID: PMC5499656 DOI: 10.1093/nar/gkx308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 05/03/2017] [Indexed: 11/16/2022] Open
Abstract
DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate for the first time that these enzymes are absolutely required for phage reproduction. Deletion of the genes encoding these enzymes significantly reduced phage replication and the generation of infectious particles. Complementation studies revealed that these enzymes are required both in the donor (after prophage induction) and in the recipient strain (for infection). Moreover, our results indicated that to perform their function SSAPs require the activity of their cognate single strand binding (Ssb) proteins. Mutational studies demonstrated that the Ssb proteins are also required for phage replication, both in the donor and recipient strain. In summary, our results expand the functions attributed to the Sak and Sak4 proteins, and demonstrate that both SSAPs and Ssb proteins are essential for the life cycle of temperate staphylococcal phages.
Collapse
Affiliation(s)
- Maan M Neamah
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.,Department of Microbiology, Faculty of Veterinary Medicine, University of Kufa, Kufa, Iraq
| | - Ignacio Mir-Sanchis
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46113 Moncada, Valencia, Spain
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Sonia Acosta
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Ignacio Baquedano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Andreas F Haag
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
30
|
Novick RP, Ram G. Staphylococcal pathogenicity islands-movers and shakers in the genomic firmament. Curr Opin Microbiol 2017; 38:197-204. [PMID: 29100762 DOI: 10.1016/j.mib.2017.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 01/21/2023]
Abstract
The staphylococcal pathogenicity islands (SaPIs) are highly mobile 15kb genomic islands that carry superantigen genes and other virulence factors and are mobilized by helper phages. Helper phages counteract the SaPI repressor to induce the SaPI replication cycle, resulting in encapsidation in phage like particles, enabling high frequency transfer. The SaPIs split from a protophage lineage in the distant past, have evolved a variety of novel and salient features, and have become an invaluable component of the staphylococcal genome. This review focuses on recent studies describing three different mechanisms of SaPI interference with helper phage reproduction and other studies demonstrating that helper phage mutations to resistance against this interference impact phage evolution. Also described are recent results showing that SaPIs contribute in a major way to lateral transfer of host genes as well as enabling their own transfer. SaPI-like elements, readily identifiable in the bacterial genome, are widespread throughout the Gram-positive cocci, though functionality has thus far been demonstrated for only a single one of these.
Collapse
Affiliation(s)
- Richard P Novick
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, Departments of Medicine and Microbiology, 540 First Ave., New York, NY 10016, USA.
| | - Geeta Ram
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, Departments of Medicine and Microbiology, 540 First Ave., New York, NY 10016, USA
| |
Collapse
|
31
|
Dearborn AD, Wall EA, Kizziah JL, Klenow L, Parker LK, Manning KA, Spilman MS, Spear JM, Christie GE, Dokland T. Competing scaffolding proteins determine capsid size during mobilization of Staphylococcus aureus pathogenicity islands. eLife 2017; 6:30822. [PMID: 28984245 PMCID: PMC5644958 DOI: 10.7554/elife.30822] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/02/2017] [Indexed: 01/03/2023] Open
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs), such as SaPI1, exploit specific helper bacteriophages, like 80α, for their high frequency mobilization, a process termed 'molecular piracy'. SaPI1 redirects the helper's assembly pathway to form small capsids that can only accommodate the smaller SaPI1 genome, but not a complete phage genome. SaPI1 encodes two proteins, CpmA and CpmB, that are responsible for this size redirection. We have determined the structures of the 80α and SaPI1 procapsids to near-atomic resolution by cryo-electron microscopy, and show that CpmB competes with the 80α scaffolding protein (SP) for a binding site on the capsid protein (CP), and works by altering the angle between capsomers. We probed these interactions genetically and identified second-site suppressors of lethal mutations in SP. Our structures show, for the first time, the detailed interactions between SP and CP in a bacteriophage, providing unique insights into macromolecular assembly processes.
Collapse
Affiliation(s)
- Altaira D Dearborn
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Erin A Wall
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States
| | - James L Kizziah
- Department of Microbiology, University of Alabama, Birmingham, United States
| | - Laura Klenow
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States
| | - Laura K Parker
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States.,Department of Microbiology, University of Alabama, Birmingham, United States
| | - Keith A Manning
- Department of Microbiology, University of Alabama, Birmingham, United States
| | | | - John M Spear
- Biological Science Imaging Resource, Florida State University, Tallahassee, United States
| | - Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States
| | - Terje Dokland
- Department of Microbiology, University of Alabama, Birmingham, United States
| |
Collapse
|
32
|
Tuffs SW, James DBA, Bestebroer J, Richards AC, Goncheva MI, O’Shea M, Wee BA, Seo KS, Schlievert PM, Lengeling A, van Strijp JA, Torres VJ, Fitzgerald JR. The Staphylococcus aureus superantigen SElX is a bifunctional toxin that inhibits neutrophil function. PLoS Pathog 2017; 13:e1006461. [PMID: 28880920 PMCID: PMC5589267 DOI: 10.1371/journal.ppat.1006461] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/09/2017] [Indexed: 12/29/2022] Open
Abstract
Bacterial superantigens (SAgs) cause Vβ-dependent T-cell proliferation leading to immune dysregulation associated with the pathogenesis of life-threatening infections such as toxic shock syndrome, and necrotizing pneumonia. Previously, we demonstrated that staphylococcal enterotoxin-like toxin X (SElX) from Staphylococcus aureus is a classical superantigen that exhibits T-cell activation in a Vβ-specific manner, and contributes to the pathogenesis of necrotizing pneumonia. Here, we discovered that SElX can also bind to neutrophils from human and other mammalian species and disrupt IgG-mediated phagocytosis. Site-directed mutagenesis of the conserved sialic acid-binding motif of SElX abolished neutrophil binding and phagocytic killing, and revealed multiple glycosylated neutrophil receptors for SElX binding. Furthermore, the neutrophil binding-deficient mutant of SElX retained its capacity for T-cell activation demonstrating that SElX exhibits mechanistically independent activities on distinct cell populations associated with acquired and innate immunity, respectively. Finally, we demonstrated that the neutrophil-binding activity rather than superantigenicity is responsible for the SElX-dependent virulence observed in a necrotizing pneumonia rabbit model of infection. Taken together, we report the first example of a SAg, that can manipulate both the innate and adaptive arms of the human immune system during S. aureus pathogenesis. Staphylococcus aureus is a bacterial pathogen responsible for an array of disease types in healthcare and community settings. One of the keys to the success of this pathogen is its ability to subvert the immune system of the host. Here we demonstrate that the superantigen (SAg) staphylococcal enterotoxin-like toxin X (SElX) contributes to immune evasion by inducing unregulated T-cell proliferation, and by inhibition of phagocytosis by neutrophils. We observed that the capacity to bind neutrophils appears to be central to the SElX-dependent toxicity observed in a necrotising pneumonia infection model in rabbits. We report the first example of a staphylococcal SAg with two independent immunomodulatory functions acting on distinct immune cell types.
Collapse
Affiliation(s)
- Stephen W. Tuffs
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - David B. A. James
- Department of Microbiology, New York University School of Medicine, New York, NY, United Kingdom
| | - Jovanka Bestebroer
- Department Medical Microbiology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Amy C. Richards
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Mariya I. Goncheva
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Marie O’Shea
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Bryan A. Wee
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Keun Seok Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Patrick M. Schlievert
- Department of Microbiology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Andreas Lengeling
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Jos A. van Strijp
- Department Medical Microbiology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Victor J. Torres
- Department of Microbiology, New York University School of Medicine, New York, NY, United Kingdom
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hill RLL, Vlach J, Parker LK, Christie GE, Saad JS, Dokland T. Derepression of SaPIbov1 Is Independent of φNM1 Type 2 dUTPase Activity and Is Inhibited by dUTP and dUMP. J Mol Biol 2017; 429:1570-1580. [PMID: 28400210 DOI: 10.1016/j.jmb.2017.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 11/16/2022]
Abstract
Staphylococcus aureus is an opportunistic human pathogen able to transfer virulence genes to other cells through the mobilization of S. aureus pathogenicity islands (SaPIs). SaPIs are derepressed and packaged into phage-like transducing particles by helper phages like 80α or φNM1. Phages 80α and φNM1 encode structurally distinct dUTPases, Dut80α (type 1) and DutNM1 (type 2). Both dUTPases can interact with the SaPIbov1 Stl master repressor, leading to derepression and mobilization. That two structurally distinct dUTPases bind the same repressor led us to speculate that dUTPase activity may be important to the derepression process. In type 1 dUTPases, Stl binding is inhibited by dUTP. The purpose of this study was to assess the involvement of dUTP binding and dUTPase activity in derepression by DutNM1. DutNM1 activity mutants were created and tested for dUTPase activity using a novel NMR-based assay. We found that all DutNM1 null activity mutants interacted with the SaPIbov1 Stl C-terminal domain, formed DutNM1-Stl heterodimers, and caused the release of the Pstr promoter. However, promoter release was inhibited in the presence of dUTP or dUMP. We tested two φNM1 mutant phages that had null enzyme activity and found that they could still mobilize SaPIbov1. These results show that only the apo form of DutNM1 is active in Stl derepression and that dUTPase activity is not necessary for the mobilization of SaPIbov1 by DutNM1.
Collapse
Affiliation(s)
- Rosanne L L Hill
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jiri Vlach
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Laura K Parker
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
34
|
Penadés JR, Christie GE. The Phage-Inducible Chromosomal Islands: A Family of Highly Evolved Molecular Parasites. Annu Rev Virol 2016; 2:181-201. [PMID: 26958912 DOI: 10.1146/annurev-virology-031413-085446] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The phage-inducible chromosomal islands (PICIs) are a family of highly mobile genetic elements that contribute substantively to horizontal gene transfer, host adaptation, and virulence. Initially identified in Staphylococcus aureus, these elements are now thought to occur widely in gram-positive bacteria. They are molecular parasites that exploit certain temperate phages as helpers, using a variety of elegant strategies to manipulate the phage life cycle and promote their own spread, both intra- and intergenerically. At the same time, these PICI-encoded mechanisms severely interfere with helper phage reproduction, thereby enhancing survival of the bacterial population. In this review we discuss the genetics and the life cycle of these elements, with special emphasis on how they interact and interfere with the helper phage machinery for their own benefit. We also analyze the role that these elements play in driving bacterial and viral evolution.
Collapse
Affiliation(s)
- José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, United Kingdom;
| | - Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298;
| |
Collapse
|
35
|
De Novo Guanine Biosynthesis but Not the Riboswitch-Regulated Purine Salvage Pathway Is Required for Staphylococcus aureus Infection In Vivo. J Bacteriol 2016; 198:2001-2015. [PMID: 27161118 DOI: 10.1128/jb.00051-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/05/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED De novo guanine biosynthesis is an evolutionarily conserved pathway that creates sufficient nucleotides to support DNA replication, transcription, and translation. Bacteria can also salvage nutrients from the environment to supplement the de novo pathway, but the relative importance of either pathway during Staphylococcus aureus infection is not known. In S. aureus, genes important for both de novo and salvage pathways are regulated by a guanine riboswitch. Bacterial riboswitches have attracted attention as a novel class of antibacterial drug targets because they have high affinity for small molecules, are absent in humans, and regulate the expression of multiple genes, including those essential for cell viability. Genetic and biophysical methods confirm the existence of a bona fide guanine riboswitch upstream of an operon encoding xanthine phosphoribosyltransferase (xpt), xanthine permease (pbuX), inosine-5'-monophosphate dehydrogenase (guaB), and GMP synthetase (guaA) that represses the expression of these genes in response to guanine. We found that S. aureus guaB and guaA are also transcribed independently of riboswitch control by alternative promoter elements. Deletion of xpt-pbuX-guaB-guaA genes resulted in guanine auxotrophy, failure to grow in human serum, profound abnormalities in cell morphology, and avirulence in mouse infection models, whereas deletion of the purine salvage genes xpt-pbuX had none of these effects. Disruption of guaB or guaA recapitulates the xpt-pbuX-guaB-guaA deletion in vivo In total, the data demonstrate that targeting the guanine riboswitch alone is insufficient to treat S. aureus infections but that inhibition of guaA or guaB could have therapeutic utility. IMPORTANCE De novo guanine biosynthesis and purine salvage genes were reported to be regulated by a guanine riboswitch in Staphylococcus aureus We demonstrate here that this is not true, because alternative promoter elements that uncouple the de novo pathway from riboswitch regulation were identified. We found that in animal models of infection, the purine salvage pathway is insufficient for S. aureus survival in the absence of de novo guanine biosynthesis. These data suggest targeting the de novo guanine biosynthesis pathway may have therapeutic utility in the treatment of S. aureus infections.
Collapse
|
36
|
Ray MD, Boundy S, Archer GL. Transfer of the methicillin resistance genomic island among staphylococci by conjugation. Mol Microbiol 2016; 100:675-85. [PMID: 26822382 DOI: 10.1111/mmi.13340] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 01/20/2023]
Abstract
Methicillin resistance creates a major obstacle for treatment of Staphylococcus aureus infections. The resistance gene, mecA, is carried on a large (20 kb to > 60 kb) genomic island, staphylococcal cassette chromosome mec (SCCmec), that excises from and inserts site-specifically into the staphylococcal chromosome. However, although SCCmec has been designated a mobile genetic element, a mechanism for its transfer has not been defined. Here we demonstrate the capture and conjugative transfer of excised SCCmec. SCCmec was captured on pGO400, a mupirocin-resistant derivative of the pGO1/pSK41 staphylococcal conjugative plasmid lineage, and pGO400::SCCmec (pRM27) was transferred by filter-mating into both homologous and heterologous S. aureus recipients representing a range of clonal complexes as well as S. epidermidis. The DNA sequence of pRM27 showed that SCCmec had been transferred in its entirety and that its capture had occurred by recombination between IS257/431 elements present on all SCCmec types and pGO1/pSK41 conjugative plasmids. The captured SCCmec excised from the plasmid and inserted site-specifically into the chromosomal att site of both an isogenic S. aureus and a S. epidermidis recipient. These studies describe a means by which methicillin resistance can be environmentally disseminated and a novel mechanism, IS-mediated recombination, for the capture and conjugative transfer of genomic islands.
Collapse
Affiliation(s)
- M D Ray
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, 1101 East Marshall St., Richmond, VA, 23298, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 East Marshall St., Richmond, VA, 23298, USA
| | - S Boundy
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, 1101 East Marshall St., Richmond, VA, 23298, USA
| | - G L Archer
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, 1101 East Marshall St., Richmond, VA, 23298, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 East Marshall St., Richmond, VA, 23298, USA
| |
Collapse
|
37
|
Hill RLL, Dokland T. The Type 2 dUTPase of Bacteriophage ϕNM1 Initiates Mobilization of Staphylococcus aureus Bovine Pathogenicity Island 1. J Mol Biol 2015; 428:142-152. [PMID: 26585401 DOI: 10.1016/j.jmb.2015.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/20/2015] [Accepted: 11/10/2015] [Indexed: 02/09/2023]
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs) are genetic elements that are mobilized by specific helper phages. The initial step in mobilization is the derepression of the SaPI by the interaction of a phage protein with the SaPI master repressor Stl. Stl proteins are highly divergent between different SaPIs and respond to different phage-encoded derepressors. One such SaPI, SaPIbov1, is derepressed by the dUTPase (Dut) of bacteriophage 80α (Dut80α) and its phage ϕ11 homolog, Dut11. We previously showed that SaPIbov1 could also be mobilized by phage ϕNM1, even though its dut gene is not homologous with that of 80α. Here, we show that ϕNM1 dut encodes a type 2 dUTPase (DutNM1), which has an α-helical structure that is distinct from the type 1 trimeric, β-sheet structure of Dut80α. Deletion of dutNM1 abolishes the ability of ϕNM1 to mobilize SaPIbov1. Like Dut80α, DutNM1 forms a direct interaction with SaPIbov1 Stl both in vivo and in vitro, leading to inhibition of the dUTPase activity and Stl release from its target DNA. This work provides novel insights into the diverse mechanisms of genetic mobilization in S. aureus.
Collapse
Affiliation(s)
- Rosanne L L Hill
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
38
|
Monteiro JM, Fernandes PB, Vaz F, Pereira AR, Tavares AC, Ferreira MT, Pereira PM, Veiga H, Kuru E, VanNieuwenhze MS, Brun YV, Filipe SR, Pinho MG. Cell shape dynamics during the staphylococcal cell cycle. Nat Commun 2015; 6:8055. [PMID: 26278781 PMCID: PMC4557339 DOI: 10.1038/ncomms9055] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/13/2015] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus is an aggressive pathogen and a model organism to study cell division in sequential orthogonal planes in spherical bacteria. However, the small size of staphylococcal cells has impaired analysis of changes in morphology during the cell cycle. Here we use super-resolution microscopy and determine that S. aureus cells are not spherical throughout the cell cycle, but elongate during specific time windows, through peptidoglycan synthesis and remodelling. Both peptidoglycan hydrolysis and turgor pressure are required during division for reshaping the flat division septum into a curved surface. In this process, the septum generates less than one hemisphere of each daughter cell, a trait we show is common to other cocci. Therefore, cell surface scars of previous divisions do not divide the cells in quadrants, generating asymmetry in the daughter cells. Our results introduce a need to reassess the models for division plane selection in cocci. Staphylococci are spherical bacteria that divide in sequential orthogonal planes. Here, the authors use super-resolution microscopy to show that staphylococcal cells elongate before dividing, and that the division septum generates less than one hemisphere of each daughter cell, generating asymmetry.
Collapse
Affiliation(s)
- João M Monteiro
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Pedro B Fernandes
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Filipa Vaz
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Ana R Pereira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Andreia C Tavares
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Maria T Ferreira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Pedro M Pereira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Helena Veiga
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Erkin Kuru
- 1] Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, USA [2] Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, USA
| | | | - Yves V Brun
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, USA
| | - Sérgio R Filipe
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Mariana G Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|
39
|
Ram G, Chen J, Ross HF, Novick RP. An insight into staphylococcal pathogenicity island-mediated interference with phage late gene transcription. BACTERIOPHAGE 2015; 5:e1028608. [PMID: 26459624 DOI: 10.1080/21597081.2015.1028608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 12/21/2022]
Abstract
Staphylococcal pathogenicity islands (SaPIs) are ∼15 kb chromosomally located mobile elements that parasitize "helper" phages which provide a de-repressor protein plus virion and lysis proteins which enable the release of infectious SaPI particles in very high titers. All SaPIs interfere with the reproduction of their helper phages, using 3 different mechanisms. The logic of SaPI reproduction requires that these interference mechanisms do not totally block phage production, as this would be lethal for them as well as for the phage. The discovery of 2 SaPI2 proteins that totally block phage 80 by interfering with late phage transcription was inconsistent with this principle and led to the discovery of a third protein that binds to one of the interference proteins and modulates its activity, thus preventing complete inhibition of the phage. These systems permit the SaPIs to engage in horizontal transfer of unlinked chromosomal genes as well as their own.
Collapse
Affiliation(s)
- Geeta Ram
- Departments of Microbiology and Medicine; New York University School of Medicine and Program in Molecular Pathogenesis; Skirball Institute ; New York, NY USA
| | - John Chen
- Departments of Microbiology and Medicine; New York University School of Medicine and Program in Molecular Pathogenesis; Skirball Institute ; New York, NY USA
| | - Hope F Ross
- Departments of Microbiology and Medicine; New York University School of Medicine and Program in Molecular Pathogenesis; Skirball Institute ; New York, NY USA
| | - Richard P Novick
- Departments of Microbiology and Medicine; New York University School of Medicine and Program in Molecular Pathogenesis; Skirball Institute ; New York, NY USA
| |
Collapse
|
40
|
Schmelcher M, Shen Y, Nelson DC, Eugster MR, Eichenseher F, Hanke DC, Loessner MJ, Dong S, Pritchard DG, Lee JC, Becker SC, Foster-Frey J, Donovan DM. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J Antimicrob Chemother 2015; 70:1453-65. [PMID: 25630640 DOI: 10.1093/jac/dku552] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES In the light of increasing drug resistance in Staphylococcus aureus, bacteriophage endolysins [peptidoglycan hydrolases (PGHs)] have been suggested as promising antimicrobial agents. The aim of this study was to determine the antimicrobial activity of nine enzymes representing unique homology groups within a diverse class of staphylococcal PGHs. METHODS PGHs were recombinantly expressed, purified and tested for staphylolytic activity in multiple in vitro assays (zymogram, turbidity reduction assay and plate lysis) and against a comprehensive set of strains (S. aureus and CoNS). PGH cut sites in the staphylococcal peptidoglycan were determined by biochemical assays (Park-Johnson and Ghuysen procedures) and MS analysis. The enzymes were tested for their ability to eradicate static S. aureus biofilms and compared for their efficacy against systemic MRSA infection in a mouse model. RESULTS Despite similar modular architectures and unexpectedly conserved cleavage sites in the peptidoglycan (conferred by evolutionarily divergent catalytic domains), the enzymes displayed varying degrees of in vitro lytic activity against numerous staphylococcal strains, including cell surface mutants and drug-resistant strains, and proved effective against static biofilms. In a mouse model of systemic MRSA infection, six PGHs provided 100% protection from death, with animals being free of clinical signs at the end of the experiment. CONCLUSIONS Our results corroborate the high potential of PGHs for treatment of S. aureus infections and reveal unique antimicrobial and biochemical properties of the different enzymes, suggesting a high diversity of potential applications despite highly conserved peptidoglycan target sites.
Collapse
Affiliation(s)
- Mathias Schmelcher
- Animal Biosciences and Biotechnology Laboratory, ANRI, NEA, ARS, USDA, 10300 Baltimore Ave., Beltsville, MD 20705-2350, USA Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Marcel R Eugster
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Daniela C Hanke
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Shengli Dong
- Department of Biochemistry and Molecular Genetics, MCLM 552, University of Alabama at Birmingham, 1530 3rd Ave., Birmingham, AL 35294-0005, USA
| | - David G Pritchard
- Department of Biochemistry and Molecular Genetics, MCLM 552, University of Alabama at Birmingham, 1530 3rd Ave., Birmingham, AL 35294-0005, USA
| | - Jean C Lee
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen C Becker
- Animal Biosciences and Biotechnology Laboratory, ANRI, NEA, ARS, USDA, 10300 Baltimore Ave., Beltsville, MD 20705-2350, USA
| | - Juli Foster-Frey
- Animal Biosciences and Biotechnology Laboratory, ANRI, NEA, ARS, USDA, 10300 Baltimore Ave., Beltsville, MD 20705-2350, USA
| | - David M Donovan
- Animal Biosciences and Biotechnology Laboratory, ANRI, NEA, ARS, USDA, 10300 Baltimore Ave., Beltsville, MD 20705-2350, USA
| |
Collapse
|
41
|
Adriaenssens EM, Edwards R, Nash JHE, Mahadevan P, Seto D, Ackermann HW, Lavigne R, Kropinski AM. Integration of genomic and proteomic analyses in the classification of the Siphoviridae family. Virology 2014; 477:144-154. [PMID: 25466308 DOI: 10.1016/j.virol.2014.10.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/08/2014] [Accepted: 10/17/2014] [Indexed: 11/26/2022]
Abstract
Using a variety of genomic (BLASTN, ClustalW) and proteomic (Phage Proteomic Tree, CoreGenes) tools we have tackled the taxonomic status of members of the largest bacteriophage family, the Siphoviridae. In all over 400 phages were examined and we were able to propose 39 new genera, comprising 216 phage species, and add 62 species to two previously defined genera (Phic3unalikevirus; L5likevirus) grouping, in total, 390 fully sequenced phage isolates. Many of the remainders are orphans which the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) chooses not to ascribe genus status at the time being.
Collapse
Affiliation(s)
- Evelien M Adriaenssens
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Lynnwood Road, Pretoria 0028, South Africa
| | - Rob Edwards
- Geology, Mathematics, and Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - John H E Nash
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON, Canada N1G 3W4
| | | | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Hans-Wolfgang Ackermann
- Département de Microbiologie-infectiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada G1K 7P4
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, KasteelparkArenberg 21 - b2462, Heverlee 3001, Belgium.
| | - Andrew M Kropinski
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON, Canada N1G 3W4; Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2A1.
| |
Collapse
|
42
|
Dearborn AD, Dokland T. Mobilization of pathogenicity islands by Staphylococcus aureus strain Newman bacteriophages. BACTERIOPHAGE 2014; 2:70-78. [PMID: 23050217 PMCID: PMC3442828 DOI: 10.4161/bact.20632] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs) are mobile genetic elements that encode virulence factors and depend on helper phages for their mobilization. Such mobilization is specific and depends on the ability of a phage protein to inactivate the SaPI repressor Stl. Phage 80α can mobilize several SaPIs, including SaPI1 and SaPIbov1, via its Sri and Dut proteins, respectively. In many cases, the capsids formed in the presence of the SaPI are smaller than those normally produced by the phage. Two SaPI-encoded proteins, CpmA and CpmB, are involved in this size determination process. S. aureus strain Newman contains four prophages, named φNM1 through φNM4. Phages φNM1 and φNM2 are very similar to phage 80α in the structural genes, and encode almost identical Sri proteins, while their Dut proteins are highly divergent. We show that φNM1 and φNM2 are able to mobilize both SaPI1 and SaPIbov1 and yield infectious transducing particles. The majority of the capsids formed in all cases are small, showing that both SaPIs can redirect the capsid size of both φNM1 and φNM2.
Collapse
Affiliation(s)
- Altaira D Dearborn
- Department of Microbiology; University of Alabama at Birmingham; Birmingham, AL USA
| | | |
Collapse
|
43
|
Precisely modulated pathogenicity island interference with late phage gene transcription. Proc Natl Acad Sci U S A 2014; 111:14536-41. [PMID: 25246539 DOI: 10.1073/pnas.1406749111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Having gone to great evolutionary lengths to develop resistance to bacteriophages, bacteria have come up with resistance mechanisms directed at every aspect of the bacteriophage life cycle. Most genes involved in phage resistance are carried by plasmids and other mobile genetic elements, including bacteriophages and their relatives. A very special case of phage resistance is exhibited by the highly mobile phage satellites, staphylococcal pathogenicity islands (SaPIs), which carry and disseminate superantigen and other virulence genes. Unlike the usual phage-resistance mechanisms, the SaPI-encoded interference mechanisms are carefully crafted to ensure that a phage-infected, SaPI-containing cell will lyse, releasing the requisite crop of SaPI particles as well as a greatly diminished crop of phage particles. Previously described SaPI interference genes target phage functions that are not required for SaPI particle production and release. Here we describe a SaPI-mediated interference system that affects expression of late phage gene transcription and consequently is required for SaPI and phage. Although when cloned separately, a single SaPI gene totally blocks phage production, its activity in situ is modulated accurately by a second gene, achieving the required level of interference. The advantage for the host bacteria is that the SaPIs curb excessive phage growth while enhancing their gene transfer activity. This activity is in contrast to that of the clustered regularly interspaced short palindromic repeats (CRISPRs), which totally block phage growth at the cost of phage-mediated gene transfer. In staphylococci the SaPI strategy seems to have prevailed during evolution: The great majority of Staphylococcus aureus strains carry one or more SaPIs, whereas CRISPRs are extremely rare.
Collapse
|
44
|
Chlebowicz MA, Mašlaňová I, Kuntová L, Grundmann H, Pantůček R, Doškař J, van Dijl JM, Buist G. The Staphylococcal Cassette Chromosome mec type V from Staphylococcus aureus ST398 is packaged into bacteriophage capsids. Int J Med Microbiol 2014; 304:764-74. [DOI: 10.1016/j.ijmm.2014.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/27/2014] [Accepted: 05/25/2014] [Indexed: 11/24/2022] Open
|
45
|
Staphylococcus aureus mobile genetic elements. Mol Biol Rep 2014; 41:5005-18. [DOI: 10.1007/s11033-014-3367-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/04/2014] [Indexed: 01/13/2023]
|
46
|
Abstract
The major clonal lineages of the human pathogen Staphylococcus aureus produce cell wall-anchored anionic poly-ribitol-phosphate (RboP) wall teichoic acids (WTA) substituted with d-Alanine and N-acetyl-d-glucosamine. The phylogenetically isolated S. aureus ST395 lineage has recently been found to produce a unique poly-glycerol-phosphate (GroP) WTA glycosylated with N-acetyl-d-galactosamine (GalNAc). ST395 clones bear putative WTA biosynthesis genes on a novel genetic element probably acquired from coagulase-negative staphylococci (CoNS). We elucidated the ST395 WTA biosynthesis pathway and identified three novel WTA biosynthetic genes, including those encoding an α-O-GalNAc transferase TagN, a nucleotide sugar epimerase TagV probably required for generation of the activated sugar donor substrate for TagN, and an unusually short GroP WTA polymerase TagF. By using a panel of mutants derived from ST395, the GalNAc residues carried by GroP WTA were found to be required for infection by the ST395-specific bacteriophage Φ187 and to play a crucial role in horizontal gene transfer of S. aureus pathogenicity islands (SaPIs). Notably, ectopic expression of ST395 WTA biosynthesis genes rendered normal S. aureus susceptible to Φ187 and enabled Φ187-mediated SaPI transfer from ST395 to regular S. aureus. We provide evidence that exchange of WTA genes and their combination in variable, mosaic-like gene clusters have shaped the evolution of staphylococci and their capacities to undergo horizontal gene transfer events. The structural highly diverse wall teichoic acids (WTA) are cell wall-anchored glycopolymers produced by most Gram-positive bacteria. While most of the dominant Staphylococcus aureus lineages produce poly-ribitol-phosphate WTA, the recently described ST395 lineage produces a distinct poly-glycerol-phosphate WTA type resembling the WTA backbone of coagulase-negative staphylococci (CoNS). Here, we analyzed the ST395 WTA biosynthesis pathway and found new types of WTA biosynthesis genes along with an evolutionary link between ST395 and CoNS, from which the ST395 WTA genes probably originate. The elucidation of ST395 WTA biosynthesis will help to understand how Gram-positive bacteria produce highly variable WTA types and elucidate functional consequences of WTA variation.
Collapse
|
47
|
Winstel V, Liang C, Sanchez-Carballo P, Steglich M, Munar M, Bröker BM, Penadés JR, Nübel U, Holst O, Dandekar T, Peschel A, Xia G. Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens. Nat Commun 2014; 4:2345. [PMID: 23965785 PMCID: PMC3903184 DOI: 10.1038/ncomms3345] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/22/2013] [Indexed: 01/08/2023] Open
Abstract
Mobile genetic elements (MGEs) encoding virulence and resistance genes are widespread in bacterial pathogens, but it has remained unclear how they occasionally jump to new host species. Staphylococcus aureus clones exchange MGEs such as S. aureus pathogenicity islands (SaPIs) with high frequency via helper phages. Here we report that the S. aureus ST395 lineage is refractory to horizontal gene transfer (HGT) with typical S. aureus but exchanges SaPIs with other species and genera including Staphylococcus epidermidis and Listeria monocytogenes. ST395 produces an unusual wall teichoic acid (WTA) resembling that of its HGT partner species. Notably, distantly related bacterial species and genera undergo efficient HGT with typical S. aureus upon ectopic expression of S. aureus WTA. Combined with genomic analyses, these results indicate that a ‘glycocode’ of WTA structures and WTA-binding helper phages permits HGT even across long phylogenetic distances thereby shaping the evolution of Gram-positive pathogens. Horizontal gene transfer of mobile genetic elements contributes to bacterial evolution and emergence of new pathogens. Here the authors demonstrate that the highly diverse structure of wall teichoic acid polymers governs horizontal gene transfer among Gram-positive pathogens, even across long phylogenetic distances.
Collapse
Affiliation(s)
- Volker Winstel
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhorn-Straße 6, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gutiérrez D, Adriaenssens EM, Martínez B, Rodríguez A, Lavigne R, Kropinski AM, García P. Three proposed new bacteriophage genera of staphylococcal phages: "3alikevirus", "77likevirus" and "Phietalikevirus". Arch Virol 2014; 159:389-98. [PMID: 24022640 DOI: 10.1007/s00705-013-1833-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
To date, most members of the Siphoviridae family of bacteriophages remain unclassified, including the 46 staphylococcal phages for which the complete genome sequences have been deposited in public databases. Comparative nucleotide and protein sequence analysis, in addition to available data on phage morphology, allowed us to propose three new phage genera within the family Siphoviridae: "3alikevirus", "77likevirus" and "Phietalikevirus", which include related phages infecting Staphylococcus aureus and Staphylococcus epidermidis. However, six phages infecting S. aureus, Staphylococcus pasteuri, Staphylococcus hominis and Staphylococcus capitis strains remain to be classified (orphan phages). Overall, the former phages share morphological features and genome organization. The three groups have conserved domains containing peptidoglycan hydrolytic activities clearly identified as part of tape measure proteins ("3alikevirus" and "77likevirus") or as individual virionassociated proteins ("Phietalikevirus"). In addition, bacteriophages belonging to the genus "3alikevirus" share closely related DNA-processing and packaging proteins, while bacteriophages included in the genus "Phietalikevirus" encode specific tail proteins for host interaction. These properties are considered distinctive for these genera. Orphan phages seem to have a more divergent organization, but they share some properties with members of these proposed genera.
Collapse
|
49
|
Uchiyama J, Takemura-Uchiyama I, Sakaguchi Y, Gamoh K, Kato SI, Daibata M, Ujihara T, Misawa N, Matsuzaki S. Intragenus generalized transduction in Staphylococcus spp. by a novel giant phage. ISME JOURNAL 2014; 8:1949-52. [PMID: 24599069 DOI: 10.1038/ismej.2014.29] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 12/10/2013] [Accepted: 01/24/2014] [Indexed: 01/22/2023]
Abstract
Bacteriophage (phage)-mediated generalized transduction is expected to contribute to the emergence of drug-resistant staphylococcal clones in various environments. In this study, novel phage S6 was isolated from sewage and used to test generalized transduction in human- and animal-derived staphylococci. Phage S6 was a novel type of giant myophage, which possessed a DNA genome that contained uracil instead of thymine, and it could infect all of the tested staphylococcal species. The phage S6 appeared to be similar to the transducing phage PBS1, which infects Bacillus spp. Moreover, phage S6 facilitated the transduction of a plasmid in Staphylococcus aureus and from S. aureus to non-aureus staphylococcal species, as well as vice versa. Transduction of methicillin resistance also occurred in S. aureus. This is the first report of successful intragenus generalized transduction among staphylococci.
Collapse
Affiliation(s)
- Jumpei Uchiyama
- 1] Department of Microbiology and Infection, Faculty of Medicine, Kochi University, Kochi, Japan [2] Center for Innovative and Translational Medicine, Faculty of Medicine, Kochi University, Kochi, Japan
| | - Iyo Takemura-Uchiyama
- Department of Microbiology and Infection, Faculty of Medicine, Kochi University, Kochi, Japan
| | - Yoshihiko Sakaguchi
- Interdisciplinary Research Organization, University of Miyazaki, Miyazaki, Japan
| | - Keiji Gamoh
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi, Japan
| | - Shin-ichiro Kato
- Research Institute of Molecular Genetics, Kochi University, Kochi, Japan
| | - Masanori Daibata
- 1] Department of Microbiology and Infection, Faculty of Medicine, Kochi University, Kochi, Japan [2] Center for Innovative and Translational Medicine, Faculty of Medicine, Kochi University, Kochi, Japan
| | | | - Naoaki Misawa
- Laboratory of Veterinary Public Health, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Shigenobu Matsuzaki
- 1] Department of Microbiology and Infection, Faculty of Medicine, Kochi University, Kochi, Japan [2] Center for Innovative and Translational Medicine, Faculty of Medicine, Kochi University, Kochi, Japan
| |
Collapse
|
50
|
Krausz KL, Bose JL. Bacteriophage Transduction in Staphylococcus aureus: Broth-Based Method. Methods Mol Biol 2014; 1373:63-8. [PMID: 25646607 DOI: 10.1007/7651_2014_185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ability to move DNA between Staphylococcus strains is essential for the genetic manipulation of this bacterium. Often in the Staphylococci, this is accomplished through transduction using generalized transducing phage and can be performed in different ways and therefore the presence of two transduction procedures in this book. The following protocol is a relatively easy-to-perform, broth-based procedure that we have used extensively to move both plasmids and chromosomal fragments between strains of Staphylococcus aureus.
Collapse
Affiliation(s)
- Kelsey L Krausz
- Department of Microbiology, Molecular Genetics, and Immunology, The University of Kansas Medical Center, MSN 3029, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics, and Immunology, The University of Kansas Medical Center, MSN 3029, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|