1
|
Guzman Ruiz L, Zollner AM, Hoxie I, Küchler J, Hausjell C, Mesurado T, Krammer F, Jungbauer A, Pereira Aguilar P, Klausberger M, Grabherr R. Enhancing NA immunogenicity through novel VLP designs. Vaccine 2024; 42:126270. [PMID: 39197219 DOI: 10.1016/j.vaccine.2024.126270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Current influenza virus vaccines poorly display key neuraminidase (NA) epitopes and do not robustly induce NA-reactive antibodies; instead, they focus on the induction of hemagglutinin (HA)-reactive antibodies. Next-generation influenza vaccines should be optimized in order to activate NA-reactive B cells and to induce a broadly cross-reactive and protective antibody response. We aimed at enhancing the immunogenicity of the NA on vaccines by two strategies: (i) modifying the HA:NA ratio of the vaccine preparation and (ii) exposing epitopes on the lateral surface or beneath the head of the NA by extending the NA stalk. The H1N1 glycoproteins from the influenza virus A/California/04/2009 strain were displayed on human immunodeficiency virus 1 (HIV-1) gag-based virus-like particles (VLP). Using the baculovirus insect cell expression system, we biased the quantity of surface glycoproteins employing two different promoters, the very late baculovirus p10 promoter and the early and late gp64 promoter. This led to a 1:1 to 2:1 HA:NA ratio, which was approximately double or triple the amount of NA as present on the wild-type influenza A virus (HA:NA ratio 3:1 to 5:1). Furthermore, by insertion of 15 amino acids from the A-New York/61/2012 strain (NY12) which prolongates the NA stalk (NA long stalk; NA-LS), we intended to improve the accessibility of the NA. Six different types of VLPs were produced and purified using a platform downstream process based on Capto-Core 700™ followed by Capto-Heparin™ affinity chromatography combined with ultracentrifugation. These VLPs were then tested in a mouse model. Robust titers of antibodies that inhibit the neuraminidase activity were elicited even after vaccination with two low doses (0.3 μg) of the H1N1 VLPs without compromising the anti-HA responses. In conclusion, our results demonstrate the feasibility of the two developed strategies to retain HA immunogenicity and improve NA immunogenicity as a future influenza vaccine candidate.
Collapse
Affiliation(s)
- Leticia Guzman Ruiz
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria; University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Alexander M Zollner
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Irene Hoxie
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, Gustave L. Levy Place, 10029-5674 New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan Küchler
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Christina Hausjell
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria
| | - Tomas Mesurado
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, Gustave L. Levy Place, 10029-5674 New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Alois Jungbauer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
| | - Patricia Pereira Aguilar
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
| | - Miriam Klausberger
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria
| | - Reingard Grabherr
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
2
|
Gaymard A, Picard C, Vazzoler G, Massin P, Frobert E, Sabatier M, Barthelemy M, Valette M, Ottmann M, Casalegno JS, Lina B, Escuret V. Impact of the H274Y Substitution on N1, N4, N5, and N8 Neuraminidase Enzymatic Properties and Expression in Reverse Genetic Influenza A Viruses. Viruses 2024; 16:388. [PMID: 38543754 PMCID: PMC10975200 DOI: 10.3390/v16030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
The H274Y substitution (N2 numbering) in neuraminidase (NA) N1 confers oseltamivir resistance to A(H1N1) influenza viruses. This resistance has been associated with reduced N1 expression using transfected cells, but the effect of this substitution on the enzymatic properties and on the expression of other group-1-NA subtypes is unknown. The aim of the present study was to evaluate the antiviral resistance, enzymatic properties, and expression of wild-type (WT) and H274Y-substituted NA for each group-1-NA. To this end, viruses with WT or H274Y-substituted NA (N1pdm09 or avian N4, N5 or N8) were generated by reverse genetics, and for each reverse-genetic virus, antiviral susceptibility, NA affinity (Km), and maximum velocity (Vm) were measured. The enzymatic properties were coupled with NA quantification on concentrated reverse genetic viruses using mass spectrometry. The H274Y-NA substitution resulted in highly reduced inhibition by oseltamivir and normal inhibition by zanamivir and laninamivir. This resistance was associated with a reduced affinity for MUNANA substrate and a conserved Vm in all viruses. NA quantification was not significantly different between viruses carrying WT or H274Y-N1, N4 or N8, but was lower for viruses carrying H274Y-N5 compared to those carrying a WT-N5. In conclusion, the H274Y-NA substitution of different group-1-NAs systematically reduced their affinity for MUNANA substrate without a significant impact on NA Vm. The impact of the H274Y-NA substitution on viral NA expression was different according to the studied NA.
Collapse
Affiliation(s)
- Alexandre Gaymard
- Virpath Unit, CIRI, Inserm U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, F-69372 Lyon, France
- Centre National de Référence des Virus des Infections Respiratoires, Groupement Hospitalier Nord, Hospices Civils de Lyon, F-69317 Lyon CEDEX 04, France
| | - Caroline Picard
- Virpath Unit, CIRI, Inserm U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, F-69372 Lyon, France
| | - Guilhem Vazzoler
- Virpath Unit, CIRI, Inserm U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, F-69372 Lyon, France
| | - Pascale Massin
- Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, Anses, Ploufragan-Plouzané-Niort Laboratory, BP53, F-22440 Ploufragan, France;
| | - Emilie Frobert
- Virpath Unit, CIRI, Inserm U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, F-69372 Lyon, France
- Centre National de Référence des Virus des Infections Respiratoires, Groupement Hospitalier Nord, Hospices Civils de Lyon, F-69317 Lyon CEDEX 04, France
| | - Murielle Sabatier
- Virpath Unit, CIRI, Inserm U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, F-69372 Lyon, France
| | - Mendy Barthelemy
- Virpath Unit, CIRI, Inserm U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, F-69372 Lyon, France
| | - Martine Valette
- Centre National de Référence des Virus des Infections Respiratoires, Groupement Hospitalier Nord, Hospices Civils de Lyon, F-69317 Lyon CEDEX 04, France
| | - Michèle Ottmann
- Virpath Unit, CIRI, Inserm U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, F-69372 Lyon, France
| | - Jean-Sébastien Casalegno
- Virpath Unit, CIRI, Inserm U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, F-69372 Lyon, France
- Centre National de Référence des Virus des Infections Respiratoires, Groupement Hospitalier Nord, Hospices Civils de Lyon, F-69317 Lyon CEDEX 04, France
| | - Bruno Lina
- Virpath Unit, CIRI, Inserm U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, F-69372 Lyon, France
- Centre National de Référence des Virus des Infections Respiratoires, Groupement Hospitalier Nord, Hospices Civils de Lyon, F-69317 Lyon CEDEX 04, France
| | - Vanessa Escuret
- Virpath Unit, CIRI, Inserm U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, F-69372 Lyon, France
- Centre National de Référence des Virus des Infections Respiratoires, Groupement Hospitalier Nord, Hospices Civils de Lyon, F-69317 Lyon CEDEX 04, France
| |
Collapse
|
3
|
ARHGAP1 Transported with Influenza Viral Genome Ensures Integrity of Viral Particle Surface through Efficient Budozone Formation. mBio 2022; 13:e0072122. [PMID: 35475647 PMCID: PMC9239208 DOI: 10.1128/mbio.00721-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Influenza viral particles are assembled at the plasma membrane concomitantly with Rab11a-mediated endocytic transport of viral ribonucleoprotein complexes (vRNPs). The mechanism of spatiotemporal regulation of viral budozone formation and its regulatory molecules on the endocytic vesicles remain unclear. Here, we performed a proximity-based proteomics approach for Rab11a and found that ARHGAP1, a Rho GTPase-activating protein, is transported through the Rab11a-mediated apical transport of vRNP. ARHGAP1 stabilized actin filaments in infected cells for the lateral clustering of hemagglutinin (HA) molecules, a viral surface membrane protein, to the budozone. Disruption of the HA clustering results in the production of virions with low HA content, and such virions were less resistant to protease and had enhanced antigenicity, presumably because reduced clustering of viral membrane proteins exposes hidden surfaces. Collectively, these results demonstrate that Rab11a-mediated endocytic transport of ARHGAP1 with vRNPs stimulates budozone formation to ensure the integrity of virion surface required for viral survival.
Collapse
|
4
|
An SH, Son SE, Song JH, Hong SM, Lee CY, Lee NH, Jeong YJ, Choi JG, Lee YJ, Kang HM, Choi KS, Kwon HJ. Selection of an Optimal Recombinant Egyptian H9N2 Avian Influenza Vaccine Strain for Poultry with High Antigenicity and Safety. Vaccines (Basel) 2022; 10:vaccines10020162. [PMID: 35214621 PMCID: PMC8876024 DOI: 10.3390/vaccines10020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
For the development of an optimized Egyptian H9N2 vaccine candidate virus for poultry, various recombinant Egyptian H9N2 viruses generated by a PR8-based reverse genetics system were compared in terms of their productivity and biosafety since Egyptian H9N2 avian influenza viruses already possess mammalian pathogenicity-related mutations in the hemagglutinin (HA), neuraminidase (NA), and PB2 genes. The Egyptian HA and NA genes were more compatible with PR8 than with H9N2 AIV (01310) internal genes, and the 01310-derived recombinant H9N2 strains acquired the L226Q reverse mutation in HA after passages in eggs. Additionally, the introduction of a strong promoter at the 3′-ends of PB2 and PB1 genes induced an additional mutation of P221S. When recombinant Egyptian H9N2 viruses with intact or reverse mutated HA (L226Q and P221S) and NA (prototypic 2SBS) were compared, the virus with HA and NA mutations had high productivity in ECES but was lower in antigenicity when used as an inactivated vaccine due to its high binding affinity into non-specific inhibitors in eggs. Finally, we substituted the PB2 gene of PR8 with 01310 to remove the replication ability in mammalian hosts and successfully generated the best recombinant vaccine candidate in terms of immunogenicity, antigenicity, and biosafety.
Collapse
Affiliation(s)
- Se-Hee An
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea; (S.-H.A.); (S.-E.S.); (J.-H.S.); (S.-M.H.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 88026, Korea
| | - Seung-Eun Son
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea; (S.-H.A.); (S.-E.S.); (J.-H.S.); (S.-M.H.)
| | - Jin-Ha Song
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea; (S.-H.A.); (S.-E.S.); (J.-H.S.); (S.-M.H.)
| | - Seung-Min Hong
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea; (S.-H.A.); (S.-E.S.); (J.-H.S.); (S.-M.H.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 88026, Korea
| | - Chung-Young Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Nak-Hyung Lee
- KBNP, Inc., 235-9, Chusa-ro, Sinam-myeon, Yesan-gun 32417, Korea; (N.-H.L.); (Y.-J.J.)
| | - Young-Ju Jeong
- KBNP, Inc., 235-9, Chusa-ro, Sinam-myeon, Yesan-gun 32417, Korea; (N.-H.L.); (Y.-J.J.)
| | - Jun-Gu Choi
- Animal and Plant Quarantine Agency, Gimcheon-si 39960, Korea; (J.-G.C.); (Y.-J.L.); (H.-M.K.)
| | - Youn-Jeong Lee
- Animal and Plant Quarantine Agency, Gimcheon-si 39960, Korea; (J.-G.C.); (Y.-J.L.); (H.-M.K.)
| | - Hyun-Mi Kang
- Animal and Plant Quarantine Agency, Gimcheon-si 39960, Korea; (J.-G.C.); (Y.-J.L.); (H.-M.K.)
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea; (S.-H.A.); (S.-E.S.); (J.-H.S.); (S.-M.H.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 88026, Korea
- Correspondence: (K.-S.C.); (H.-J.K.); Tel.: +82-2-880-1266 (K.-S.C. & H.-J.K.); Fax: +82-2-885-6614 (H.-J.K.)
| | - Hyuk-Joon Kwon
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 88026, Korea
- Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul 88026, Korea
- Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Seoul 88026, Korea
- Correspondence: (K.-S.C.); (H.-J.K.); Tel.: +82-2-880-1266 (K.-S.C. & H.-J.K.); Fax: +82-2-885-6614 (H.-J.K.)
| |
Collapse
|
5
|
Algal and Cyanobacterial Lectins and Their Antimicrobial Properties. Mar Drugs 2021; 19:md19120687. [PMID: 34940686 PMCID: PMC8707200 DOI: 10.3390/md19120687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Lectins are proteins with a remarkably high affinity and specificity for carbohydrates. Many organisms naturally produce them, including animals, plants, fungi, protists, bacteria, archaea, and viruses. The present report focuses on lectins produced by marine or freshwater organisms, in particular algae and cyanobacteria. We explore their structure, function, classification, and antimicrobial properties. Furthermore, we look at the expression of lectins in heterologous systems and the current research on the preclinical and clinical evaluation of these fascinating molecules. The further development of these molecules might positively impact human health, particularly the prevention or treatment of diseases caused by pathogens such as human immunodeficiency virus, influenza, and severe acute respiratory coronaviruses, among others.
Collapse
|
6
|
Nuwarda RF, Alharbi AA, Kayser V. An Overview of Influenza Viruses and Vaccines. Vaccines (Basel) 2021; 9:1032. [PMID: 34579269 PMCID: PMC8473132 DOI: 10.3390/vaccines9091032] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023] Open
Abstract
Influenza remains one of the major public health concerns because it causes annual epidemics and can potentially instigate a global pandemic. Numerous countermeasures, including vaccines and antiviral treatments, are in use against seasonal influenza infection; however, their effectiveness has always been discussed due to the ongoing resistance to antivirals and relatively low and unpredictable efficiency of influenza vaccines compared to other vaccines. The growing interest in vaccines as a promising approach to prevent and control influenza may provide alternative vaccine development options with potentially increased efficiency. In addition to currently available inactivated, live-attenuated, and recombinant influenza vaccines on the market, novel platforms such as virus-like particles (VLPs) and nanoparticles, and new vaccine formulations are presently being explored. These platforms provide the opportunity to design influenza vaccines with improved properties to maximize quality, efficacy, and safety. The influenza vaccine manufacturing process is also moving forward with advancements relating to egg- and cell-based production, purification processes, and studies into the physicochemical attributes and vaccine degradation pathways. These will contribute to the design of more stable, optimized vaccine formulations guided by contemporary analytical testing methods and via the implementation of the latest advances in the field.
Collapse
Affiliation(s)
| | | | - Veysel Kayser
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, NSW 2006, Australia; (R.F.N.); (A.A.A.)
| |
Collapse
|
7
|
Kordyukova LV, Mintaev RR, Rtishchev AA, Kunda MS, Ryzhova NN, Abramchuk SS, Serebryakova MV, Khrustalev VV, Khrustaleva TA, Poboinev VV, Markushin SG, Voronina OL. Filamentous versus Spherical Morphology: A Case Study of the Recombinant A/WSN/33 (H1N1) Virus. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:297-309. [PMID: 32036809 DOI: 10.1017/s1431927620000069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Influenza A virus is a serious human pathogen that assembles enveloped virions on the plasma membrane of the host cell. The pleiomorphic morphology of influenza A virus, represented by spherical, elongated, or filamentous particles, is important for the spread of the virus in nature. Using fixative protocols for sample preparation and negative staining electron microscopy, we found that the recombinant A/WSN/33 (H1N1) (rWSN) virus, a strain considered to be strictly spherical, may produce filamentous particles when amplified in the allantoic cavity of chicken embryos. In contrast, the laboratory WSN strain and the rWSN virus amplified in Madin-Darby canine kidney cells exhibited a spherical morphology. Next-generation sequencing (NGS) suggested a rare Ser126Cys substitution in the M1 protein of rWSN, which was confirmed by the mass spectrometric analysis. No structurally relevant substitutions were found by NGS in other proteins of rWSN. Bioinformatics algorithms predicted a neutral structural effect of the Ser126Cys mutation. The mrWSN_M1_126S virus generated after the introduction of the reverse Cys126Ser substitution exhibited a similar host-dependent partially filamentous phenotype. We hypothesize that a shortage of some as-yet-undefined cellular components involved in virion budding and membrane scission may result in the appearance of filamentous particles in the case of usually "nonfilamentous" virus strains.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991Moscow, Russia
| | - Ramil R Mintaev
- Mechnikov Research Institute of Vaccine and Sera, 105064Moscow, Russia
- Federal State Budgetary Institution «Center for Strategic Planning and Management for Medical and Biological Health Risks», Ministry of Health, 119121Moscow, Russia
| | | | - Marina S Kunda
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health, 123098Moscow, Russia
| | - Natalia N Ryzhova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health, 123098Moscow, Russia
| | - Sergei S Abramchuk
- Department of Chemistry, Lomonosov Moscow State University, 119234Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991Moscow, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991Moscow, Russia
| | - Vladislav V Khrustalev
- Department of General Chemistry, Belarusian State Medical University, 220116Minsk, Belarus
| | - Tatyana A Khrustaleva
- Biochemical Group of the Multidisciplinary Diagnostic Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus, 220072Minsk, Belarus
| | - Victor V Poboinev
- Department of General Chemistry, Belarusian State Medical University, 220116Minsk, Belarus
| | | | - Olga L Voronina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health, 123098Moscow, Russia
| |
Collapse
|
8
|
Direct visualization of avian influenza H5N1 hemagglutinin precursor and its conformational change by high-speed atomic force microscopy. Biochim Biophys Acta Gen Subj 2020; 1864:129313. [DOI: 10.1016/j.bbagen.2019.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 01/06/2023]
|
9
|
Cholesterol Binding to the Transmembrane Region of a Group 2 Hemagglutinin (HA) of Influenza Virus Is Essential for Virus Replication, Affecting both Virus Assembly and HA Fusion Activity. J Virol 2019; 93:JVI.00555-19. [PMID: 31118253 DOI: 10.1128/jvi.00555-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
Hemagglutinin (HA) of influenza virus is incorporated into cholesterol-enriched nanodomains of the plasma membrane. Phylogenetic group 2 HAs contain the conserved cholesterol consensus motif (CCM) YKLW in the transmembrane region. We previously reported that mutations in the CCM retarded intracellular transport of HA and decreased its nanodomain association. Here, we analyzed whether cholesterol interacts with the CCM. Incorporation of photocholesterol into HA was significantly reduced if the whole CCM is replaced by alanine, both using immunoprecipitated HA and when HA is embedded in the membrane. We next used reverse genetics to investigate the significance of the CCM for virus replication. No virus was rescued if the whole motif is exchanged (YKLW4A); singly (LA) or doubly (YK2A and LW2A) mutated virus showed decreased titers and a comparative fitness disadvantage. In polarized cells, transport of HA mutants to the apical membrane was not disturbed. Reduced amounts of HA and cholesterol were incorporated into the viral membrane. Mutant viruses exhibit a decrease in hemolysis, which is only partially corrected if the membrane is replenished with cholesterol. More specifically, viruses have a defect in hemifusion, as demonstrated by fluorescence dequenching. Cells expressing HA YKLW4A fuse with erythrocytes, but the number of events is reduced. Even after acidification unfused erythrocytes remain cell bound, a phenomenon not observed with wild-type HA. We conclude that cholesterol binding to a group 2 HA is essential for virus replication. It has pleiotropic effects on virus assembly and membrane fusion, mainly on lipid mixing and possibly a preceding step.IMPORTANCE The glycoprotein HA is a major pathogenicity factor of influenza viruses. Whereas the structure and function of HA's ectodomain is known in great detail, similar data for the membrane-anchoring part of the protein are missing. Here, we demonstrate that the transmembrane region of a group 2 HA interacts with cholesterol, the major lipid of the plasma membrane and the defining element of the viral budding site nanodomains of the plasma membrane. The cholesterol binding motif is essential for virus replication. Its partial removal affects various steps of the viral life cycle, such as assembly of new virus particles and their subsequent cell entry via membrane fusion. A cholesterol binding pocket in group 2 HAs might be a promising target for a small lipophilic drug that inactivates the virus.
Collapse
|
10
|
Altman MO, Angeletti D, Yewdell JW. Antibody Immunodominance: The Key to Understanding Influenza Virus Antigenic Drift. Viral Immunol 2018; 31:142-149. [PMID: 29356618 PMCID: PMC5863095 DOI: 10.1089/vim.2017.0129] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Influenza A virus (IAV) imposes a significant socioeconomic burden on humanity. Vaccination is effective in only 60% of individuals, even under optimal circumstances. The difficulty stems from the remarkable ability of IAV to evade existing immunity. IAV's error prone polymerase enables the rapid antigenic evolution of the two virion surface glycoproteins, neuraminidase and hemagglutinin (HA). Since the most potent antibodies (Abs) at neutralizing viral infectivity are directed the head of the HA, amino acid substitutions in this region enable IAV to evade Ab-based immunity. Here, we review recent progress in understanding how immunodominance, the tendency of the immune system to respond to foreign immunogens in a hierarchical manner, shapes IAV evolution.
Collapse
Affiliation(s)
- Meghan O Altman
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH , Bethesda, Maryland
| | - Davide Angeletti
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH , Bethesda, Maryland
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH , Bethesda, Maryland
| |
Collapse
|
11
|
Pizzorno A, Dubois J, Machado D, Cartet G, Traversier A, Julien T, Lina B, Bourdon JC, Rosa-Calatrava M, Terrier O. Influenza A viruses alter the stability and antiviral contribution of host E3-ubiquitin ligase Mdm2 during the time-course of infection. Sci Rep 2018; 8:3746. [PMID: 29487367 PMCID: PMC5829072 DOI: 10.1038/s41598-018-22139-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/19/2018] [Indexed: 11/09/2022] Open
Abstract
The interplay between influenza A viruses (IAV) and the p53 pathway has been reported in several studies, highlighting the antiviral contribution of p53. Here, we investigated the impact of IAV on the E3-ubiquitin ligase Mdm2, a major regulator of p53, and observed that IAV targets Mdm2, notably via its non-structural protein (NS1), therefore altering Mdm2 stability, p53/Mdm2 interaction and regulatory loop during the time-course of infection. This study also highlights a new antiviral facet of Mdm2 possibly increasing the list of its many p53-independent functions. Altogether, our work contributes to better understand the mechanisms underlining the complex interactions between IAV and the p53 pathway, for which both NS1 and Mdm2 arise as key players.
Collapse
Affiliation(s)
- Andrés Pizzorno
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Julia Dubois
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Daniela Machado
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
- Laboratoire des Pathogènes Emergents, Fondation Mérieux. CIRI, UCBL1- INSERM U1111, ENS Lyon, CNRS UMR5308, Lyon, France
| | - Gaëlle Cartet
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Aurelien Traversier
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Thomas Julien
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Bruno Lina
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
- Laboratoire de Virologie, Centre National de Référence des virus Influenza, Institut des Agents Infectieux, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Jean-Christophe Bourdon
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Olivier Terrier
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France.
| |
Collapse
|
12
|
Wu NC, Xie J, Zheng T, Nycholat CM, Grande G, Paulson JC, Lerner RA, Wilson IA. Diversity of Functionally Permissive Sequences in the Receptor-Binding Site of Influenza Hemagglutinin. Cell Host Microbe 2018; 21:742-753.e8. [PMID: 28618270 DOI: 10.1016/j.chom.2017.05.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/24/2017] [Accepted: 05/27/2017] [Indexed: 12/21/2022]
Abstract
Influenza A virus hemagglutinin (HA) initiates viral entry by engaging host receptor sialylated glycans via its receptor-binding site (RBS). The amino acid sequence of the RBS naturally varies across avian and human influenza virus subtypes and is also evolvable. However, functional sequence diversity in the RBS has not been fully explored. Here, we performed a large-scale mutational analysis of the RBS of A/WSN/33 (H1N1) and A/Hong Kong/1/1968 (H3N2) HAs. Many replication-competent mutants not yet observed in nature were identified, including some that could escape from an RBS-targeted broadly neutralizing antibody. This functional sequence diversity is made possible by pervasive epistasis in the RBS 220-loop and can be buffered by avidity in viral receptor binding. Overall, our study reveals that the HA RBS can accommodate a much greater range of sequence diversity than previously thought, which has significant implications for the complex evolutionary interrelationships between receptor specificity and immune escape.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tianqing Zheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Corwin M Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Geramie Grande
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Generation of monoclonal pan-hemagglutinin antibodies for the quantification of multiple strains of influenza. PLoS One 2017; 12:e0180314. [PMID: 28662134 PMCID: PMC5491208 DOI: 10.1371/journal.pone.0180314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/13/2017] [Indexed: 11/27/2022] Open
Abstract
Vaccination is the most effective course of action to prevent influenza. About 150 million doses of influenza vaccines were distributed for the 2015–2016 season in the USA alone according to the Centers for Disease Control and Prevention. Vaccine dosage is calculated based on the concentration of hemagglutinin (HA), the main surface glycoprotein expressed by influenza which varies from strain to strain. Therefore yearly-updated strain-specific antibodies and calibrating antigens are required. Preparing these quantification reagents can take up to three months and significantly slows down the release of new vaccine lots. Therefore, to circumvent the need for strain-specific sera, two anti-HA monoclonal antibodies (mAbs) against a highly conserved sequence have been produced by immunizing mice with a novel peptide-conjugate. Immunoblots demonstrate that 40 strains of influenza encompassing HA subtypes H1 to H13, as well as B strains from the Yamagata and Victoria lineage were detected when the two mAbs are combined to from a pan-HA mAb cocktail. Quantification using this pan-HA mAbs cocktail was achieved in a dot blot assay and results correlated with concentrations measured in a hemagglutination assay with a coefficient of correlation of 0.80. A competitive ELISA was also optimised with purified viral-like particles. Regardless of the quantification method used, pan-HA antibodies can be employed to accelerate process development when strain-specific antibodies are not available, and represent a valuable tool in case of pandemics. These antibodies were also expressed in CHO cells to facilitate large-scale production using bioreactor technologies which might be required to meet industrial needs for quantification reagents. Finally, a simulation model was created to predict the binding affinity of the two anti-HA antibodies to the amino acids composing the highly conserved epitope; different probabilities of interaction between a given amino acid and the antibodies might explain the affinity of each antibody against different influenza strains.
Collapse
|
14
|
Wu NC, Wilson IA. A Perspective on the Structural and Functional Constraints for Immune Evasion: Insights from Influenza Virus. J Mol Biol 2017. [PMID: 28648617 DOI: 10.1016/j.jmb.2017.06.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Influenza virus evolves rapidly to constantly escape from natural immunity. Most humoral immune responses to influenza virus target the hemagglutinin (HA) glycoprotein, which is the major antigen on the surface of the virus. The HA is composed of a globular head domain for receptor binding and a stem domain for membrane fusion. The major antigenic sites of HA are located in the globular head subdomain, which is highly tolerant of amino acid substitutions and continual addition of glycosylation sites. Nonetheless, the evolution of the receptor-binding site and the stem region on HA is severely constrained by their functional roles in engaging the host receptor and in mediating membrane fusion, respectively. Here, we review how broadly neutralizing antibodies (bnAbs) exploit these evolutionary constraints to protect against diverse influenza strains. We also discuss the emerging role of other epitopes that are conserved only in subsets of viruses. This rapidly increasing knowledge of the evolutionary biology, immunology, structural biology, and virology of influenza virus is invaluable for development and design of more universal influenza vaccines and novel therapeutics.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Milián E, Julien T, Biaggio R, Venereo-Sanchez A, Montes J, Manceur AP, Ansorge S, Petiot E, Rosa-Calatrava M, Kamen A. Accelerated mass production of influenza virus seed stocks in HEK-293 suspension cell cultures by reverse genetics. Vaccine 2017; 35:3423-3430. [PMID: 28495315 DOI: 10.1016/j.vaccine.2017.04.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/14/2017] [Accepted: 04/23/2017] [Indexed: 01/20/2023]
Abstract
Despite major advances in developing capacities and alternative technologies to egg-based production of influenza vaccines, responsiveness to an influenza pandemic threat is limited by the time it takes to generate a Candidate Vaccine Virus (CVV) as reported by the 2015 WHO Informal Consultation report titled "Influenza Vaccine Response during the Start of a Pandemic". In previous work, we have shown that HEK-293 cell culture in suspension and serum free medium is an efficient production platform for cell culture manufacturing of influenza candidate vaccines. This report, took advantage of, recombinant DNA technology using Reverse Genetics of influenza strains, and advances in the large-scale transfection of suspension cultured HEK-293 cells. We demonstrate the efficient generation of H1N1 with the PR8 backbone reassortant under controlled bioreactor conditions in two sequential steps (transfection/rescue and infection/production). This approach could deliver a CVV for influenza vaccine manufacturing within two-weeks, starting from HA and NA pandemic sequences. Furthermore, the scalability of the transfection technology combined with the HEK-293 platform has been extensively demonstrated at >100L scale for several biologics, including recombinant viruses. Thus, this innovative approach is better suited to rationally engineer and mass produce influenza CVV within significantly shorter timelines to enable an effective global response in pandemic situations.
Collapse
Affiliation(s)
- Ernest Milián
- Department of Bioengineering, McGill University, Montréal, Québec, Canada; Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada
| | - Thomas Julien
- Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Rafael Biaggio
- Department of Bioengineering, McGill University, Montréal, Québec, Canada
| | - Alina Venereo-Sanchez
- Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada
| | - Johnny Montes
- Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada
| | - Aziza P Manceur
- Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada
| | - Sven Ansorge
- Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada
| | - Emma Petiot
- Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montréal, Québec, Canada; Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada.
| |
Collapse
|
16
|
Yuge S, Akiyama M, Ishii M, Namkoong H, Yagi K, Nakai Y, Adachi R, Komatsu T. Glycoprotein Nanotube Traps Influenza Virus. CHEM LETT 2017. [DOI: 10.1246/cl.160805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shuta Yuge
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551
| | - Motofusa Akiyama
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582
| | - Ho Namkoong
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582
| | - Kazuma Yagi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582
| | - Yoko Nakai
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551
| | - Ryo Adachi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551
| |
Collapse
|
17
|
Gaymard A, Le Briand N, Frobert E, Lina B, Escuret V. Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clin Microbiol Infect 2016; 22:975-983. [DOI: 10.1016/j.cmi.2016.07.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2016] [Indexed: 01/15/2023]
|
18
|
Petiot E, Ansorge S, Rosa-Calatrava M, Kamen A. Critical phases of viral production processes monitored by capacitance. J Biotechnol 2016; 242:19-29. [PMID: 27867077 DOI: 10.1016/j.jbiotec.2016.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022]
Abstract
Over the last decade industrial manufacturing of viral vaccines and viral vectors for prophylactic and therapeutic applications is experiencing a remarkable growth. Currently, the quality attributes of viral derived products are assessed only at the end-point of the production process, essentially because in-process monitoring tools are not available or not implemented at industrial scale. However, to demonstrate process reproducibility and robustness, manufacturers are strongly advised by regulatory agencies to adopt more on-line process monitoring and control. Dielectric spectroscopy has been successfully used as an excellent indicator of the cell culture state in mammalian and yeast cell systems. We previously reported the use of this technique for monitoring influenza and lentiviral productions in HEK293 cell cultures. For both viruses, multi-frequency capacitance measurements allowed not only the on-line monitoring of the production kinetics, but also the identification of the viral release time from the cells. The present study demonstrates that the same approach can be successfully exploited for the on-line monitoring of different enveloped and non-enveloped virus production kinetics in cell culture processes. The on-line monitoring multi-frequency capacitance method was assessed in human HEK293 and Sf9 insect cells expression systems, with viral productions initiated by either infection or transfection. The comparative analyses of all the data acquired indicate that the characteristic capacitance signals were highly correlated with the occurrence of viral replication phases. Furthermore the evolution of the cell dielectric properties (intracellular conductivity and membrane capacitance) were indicative of each main replication steps. In conclusion, multi-frequency capacitance has a great potential for on-line monitoring, supervision and control of viral vector production in cell culture processes.
Collapse
Affiliation(s)
- Emma Petiot
- NRC, Human Health Therapeutics Portfolio, 6100 Royalmount Ave, Montréal, QC, H4P 2R2, Canada; Virologie et Pathologie Humaine - VirPath Team, International Center for Infectious diseases Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, Lyon, France.
| | - Sven Ansorge
- NRC, Human Health Therapeutics Portfolio, 6100 Royalmount Ave, Montréal, QC, H4P 2R2, Canada.
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - VirPath Team, International Center for Infectious diseases Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, Lyon, France.
| | - Amine Kamen
- NRC, Human Health Therapeutics Portfolio, 6100 Royalmount Ave, Montréal, QC, H4P 2R2, Canada; McGill University, Bioengineering Dpt. 817, Sherbrooke St. W., Montreal, QC, H2 B 2C6, Canada.
| |
Collapse
|
19
|
Gaymard A, Charles-Dufant A, Sabatier M, Cortay JC, Frobert E, Picard C, Casalegno JS, Rosa-Calatrava M, Ferraris O, Valette M, Ottmann M, Lina B, Escuret V. Impact on antiviral resistance of E119V, I222L and R292K substitutions in influenza A viruses bearing a group 2 neuraminidase (N2, N3, N6, N7 and N9). J Antimicrob Chemother 2016; 71:3036-3045. [PMID: 27432605 DOI: 10.1093/jac/dkw275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES While subtype-specific substitutions linked to neuraminidase (NA) inhibitor resistance are well described in human N1 and N2 influenza NAs, little is known about other NA subtypes. The aim of this study was to determine whether the R292K and E119V ± I222L substitutions could be associated with oseltamivir resistance in all group 2 NAs and had an impact on virus fitness. METHODS Reassortant viruses with WT NA or variant N2, N3, N6, N7 or N9 NAs, bearing R292K or E119V ± I222L substitutions, were produced by reverse genetics. The antiviral susceptibility, activity, Km of the NA, mutation stability and in vitro virus fitness in MDCK cells were determined. RESULTS NA activities could be ranked as follows regardless of the substitution: N3 ≥ N6 > N2 ≥ N9 > N7. Using NA inhibitor resistance interpretation criteria used for human N1 or N2, the NA-R292K substitution conferred highly reduced inhibition by oseltamivir and the N6- or N9-R292K substitution conferred reduced inhibition by zanamivir and laninamivir. Viruses with the N3- or N6-E119V substitution showed normal inhibition by oseltamivir, while those with the N2-, N7- or N9-E119V substitution showed reduced inhibition by oseltamivir. Viruses with NA-E119V + I222L substitutions showed reduced inhibition (N3 and N6) or highly reduced inhibition (N2, N7 and N9) by oseltamivir. Viruses bearing the NA-R292K substitution had lower affinity and viruses bearing the NA-E119V substitution had higher affinity for the MUNANA substrate than viruses with corresponding WT NA. CONCLUSIONS NA-R292K and E119V + I222L substitutions conferred reduced inhibition by oseltamivir for all group 2 NAs. Surveillance of NA inhibitor resistance for zoonotic and human influenza viruses and the development of novel antiviral agents with different targets should be continued.
Collapse
Affiliation(s)
- Alexandre Gaymard
- Univ Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, CIRI Inserm U1111, équipe Virpath, F-69008, Lyon, France.,Hospices Civils de Lyon, Centre National de Référence virus influenzae France Sud, Laboratoire de Virologie, Groupement Hospitalier Nord, F-69317, Lyon cedex 04, France
| | - Aymeric Charles-Dufant
- Univ Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, CIRI Inserm U1111, équipe Virpath, F-69008, Lyon, France
| | - Murielle Sabatier
- Univ Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, CIRI Inserm U1111, équipe Virpath, F-69008, Lyon, France
| | - Jean-Claude Cortay
- Univ Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, CIRI Inserm U1111, équipe Virpath, F-69008, Lyon, France
| | - Emilie Frobert
- Univ Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, CIRI Inserm U1111, équipe Virpath, F-69008, Lyon, France.,Hospices Civils de Lyon, Centre National de Référence virus influenzae France Sud, Laboratoire de Virologie, Groupement Hospitalier Nord, F-69317, Lyon cedex 04, France
| | - Caroline Picard
- Univ Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, CIRI Inserm U1111, équipe Virpath, F-69008, Lyon, France
| | - Jean-Sébastien Casalegno
- Univ Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, CIRI Inserm U1111, équipe Virpath, F-69008, Lyon, France.,Hospices Civils de Lyon, Centre National de Référence virus influenzae France Sud, Laboratoire de Virologie, Groupement Hospitalier Nord, F-69317, Lyon cedex 04, France
| | - Manuel Rosa-Calatrava
- Univ Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, CIRI Inserm U1111, équipe Virpath, F-69008, Lyon, France
| | - Olivier Ferraris
- Univ Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, CIRI Inserm U1111, équipe Virpath, F-69008, Lyon, France
| | - Martine Valette
- Univ Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, CIRI Inserm U1111, équipe Virpath, F-69008, Lyon, France.,Hospices Civils de Lyon, Centre National de Référence virus influenzae France Sud, Laboratoire de Virologie, Groupement Hospitalier Nord, F-69317, Lyon cedex 04, France
| | - Michèle Ottmann
- Univ Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, CIRI Inserm U1111, équipe Virpath, F-69008, Lyon, France
| | - Bruno Lina
- Univ Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, CIRI Inserm U1111, équipe Virpath, F-69008, Lyon, France.,Hospices Civils de Lyon, Centre National de Référence virus influenzae France Sud, Laboratoire de Virologie, Groupement Hospitalier Nord, F-69317, Lyon cedex 04, France
| | - Vanessa Escuret
- Univ Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, CIRI Inserm U1111, équipe Virpath, F-69008, Lyon, France .,Hospices Civils de Lyon, Centre National de Référence virus influenzae France Sud, Laboratoire de Virologie, Groupement Hospitalier Nord, F-69317, Lyon cedex 04, France
| |
Collapse
|
20
|
Mostafa A, Kanrai P, Ziebuhr J, Pleschka S. The PB1 segment of an influenza A virus H1N1 2009pdm isolate enhances the replication efficiency of specific influenza vaccine strains in cell culture and embryonated eggs. J Gen Virol 2016; 97:620-631. [PMID: 26743314 DOI: 10.1099/jgv.0.000390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza vaccine strains (IVSs) contain the haemagglutinin (HA) and neuraminidase (NA) genome segments of relevant circulating strains in the genetic background of influenza A/PR/8/1934 virus (PR8). Previous work has shown that the nature of the PB1 segment may be a limiting factor for the efficient production of IVSs. Here, we showed that the PB1 segment (PB1Gi) from the 2009 pandemic influenza A virus (IAV) A/Giessen/06/2009 (Gi wt, H1N1pdm) may help to resolve (some of) these limitations. We produced a set of recombinant PR8-derived viruses that contained (i) the HA and NA segments from representative IAV strains (H3N2, H5N1, H7N9, H9N2); (ii) the PB1 segment from PR8 or Gi wt, respectively; and (iii) the remaining five genome segments from PR8. Viruses containing the PB1Gi segment, together with the heterologous HA/NA segments and five PR8 segments (5+2+1), replicated to higher titres compared with their 6+2 counterparts containing six PR8 segments and the equivalent heterologous HA/NA segments. Compared with PB1PR8-containing IVSs, viruses with the PB1Gi segment replicated to higher or similar titres in both cell culture and embryonated eggs, most profoundly IVSs of the H5N1 and H7N9 subtype, which are known to grow poorly in these systems. IVSs containing either the PB1Gi or the cognate PB1 segment of the respective specific HA/NA donor strain showed enhanced or similar virus replication levels. This study suggests that substitution of PB1PR8 with the PB1Gi segment may greatly improve the large-scale production of PR8-derived IVSs, especially of those known to replicate poorly in vitro.
Collapse
MESH Headings
- Animals
- Chick Embryo
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/physiology
- Influenza A Virus, H9N2 Subtype/genetics
- Influenza A Virus, H9N2 Subtype/physiology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/epidemiology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Ovum/virology
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza, Egypt
| | - Pumaree Kanrai
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
21
|
Tetherin Sensitivity of Influenza A Viruses Is Strain Specific: Role of Hemagglutinin and Neuraminidase. J Virol 2015; 89:9178-88. [PMID: 26109730 DOI: 10.1128/jvi.00615-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/15/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED The expression of the antiviral host cell factor tetherin is induced by interferon and can inhibit the release of enveloped viruses from infected cells. The Vpu protein of HIV-1 antagonizes the antiviral activity of tetherin, and tetherin antagonists with Vpu-like activity have been identified in other viruses. In contrast, it is incompletely understood whether tetherin inhibits influenza A virus (FLUAV) release and whether FLUAV encodes tetherin antagonists. Here, we show that release of several laboratory-adapted FLUAV strains and a seasonal FLUAV strain is inhibited by tetherin, while pandemic FLUAV A/Hamburg/4/2009 is resistant. Studies with a virus-like particle system and analysis of reassortant viruses provided evidence that the viral hemagglutinin (HA) is an important determinant of tetherin antagonism but requires the presence of its cognate neuraminidase (NA) to inhibit tetherin. Finally, tetherin antagonism by FLUAV was dependent on the virion context, since retrovirus release from tetherin-positive cells was not rescued, and correlated with an HA- and NA-dependent reduction in tetherin expression. In sum, our study identifies HA and NA proteins of certain pandemic FLUAV as tetherin antagonists, which has important implications for understanding FLUAV pathogenesis. IMPORTANCE Influenza A virus (FLUAV) infection is responsible for substantial global morbidity and mortality, and understanding how the virus evades the immune defenses of the host may uncover novel targets for antiviral intervention. Tetherin is an antiviral effector molecule of the innate immune system which can contribute to control of viral invasion. However, it has been unclear whether FLUAV is inhibited by tetherin and whether these viruses encode tetherin-antagonizing proteins. Our observation that several pandemic FLUAV strains can counteract tetherin via their HA and NA proteins identifies these proteins as novel tetherin antagonists and indicates that HA/NA-dependent inactivation of innate defenses may contribute to the efficient spread of pandemic FLUAV.
Collapse
|
22
|
Johnson A, Chen LM, Winne E, Santana W, Metcalfe MG, Mateu-Petit G, Ridenour C, Hossain MJ, Villanueva J, Zaki SR, Williams TL, Cox NJ, Barr JR, Donis RO. Identification of Influenza A/PR/8/34 Donor Viruses Imparting High Hemagglutinin Yields to Candidate Vaccine Viruses in Eggs. PLoS One 2015; 10:e0128982. [PMID: 26068666 PMCID: PMC4465931 DOI: 10.1371/journal.pone.0128982] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/04/2015] [Indexed: 12/31/2022] Open
Abstract
One of the important lessons learned from the 2009 H1N1 pandemic is that a high yield influenza vaccine virus is essential for efficient and timely production of pandemic vaccines in eggs. The current seasonal and pre-pandemic vaccine viruses are generated either by classical reassortment or reverse genetics. Both approaches utilize a high growth virus, generally A/Puerto Rico/8/1934 (PR8), as the donor of all or most of the internal genes, and the wild type virus recommended for inclusion in the vaccine to contribute the hemagglutinin (HA) and neuraminidase (NA) genes encoding the surface glycoproteins. As a result of extensive adaptation through sequential egg passaging, PR8 viruses with different gene sequences and high growth properties have been selected at different laboratories in past decades. The effect of these related but distinct internal PR8 genes on the growth of vaccine viruses in eggs has not been examined previously. Here, we use reverse genetics to analyze systematically the growth and HA antigen yield of reassortant viruses with 3 different PR8 backbones. A panel of 9 different HA/NA gene pairs in combination with each of the 3 different lineages of PR8 internal genes (27 reassortant viruses) was generated to evaluate their performance. Virus and HA yield assays showed that the PR8 internal genes influence HA yields in most subtypes. Although no single PR8 internal gene set outperformed the others in all candidate vaccine viruses, a combination of specific PR8 backbone with individual HA/NA pairs demonstrated improved HA yield and consequently the speed of vaccine production. These findings may be important both for production of seasonal vaccines and for a rapid global vaccine response during a pandemic.
Collapse
Affiliation(s)
- Adam Johnson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Li-Mei Chen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail: (ROD); (LMC)
| | - Emily Winne
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Wanda Santana
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Maureen G. Metcalfe
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Guaniri Mateu-Petit
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Callie Ridenour
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - M. Jaber Hossain
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Julie Villanueva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sherif R. Zaki
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Tracie L. Williams
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nancy J. Cox
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John R. Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ruben O. Donis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail: (ROD); (LMC)
| |
Collapse
|
23
|
Thompson CM, Petiot E, Mullick A, Aucoin MG, Henry O, Kamen AA. Critical assessment of influenza VLP production in Sf9 and HEK293 expression systems. BMC Biotechnol 2015; 15:31. [PMID: 25981500 PMCID: PMC4432999 DOI: 10.1186/s12896-015-0152-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/22/2015] [Indexed: 12/22/2022] Open
Abstract
Background Each year, influenza is responsible for hundreds of thousand cases of illness and deaths worldwide. Due to the virus’ fast mutation rate, the World Health Organization (WHO) is constantly on alert to rapidly respond to emerging pandemic strains. Although anti-viral therapies exist, the most proficient way to stop the spread of disease is through vaccination. The majority of influenza vaccines on the market are produced in embryonic hen’s eggs and are composed of purified viral antigens from inactivated whole virus. This manufacturing system, however, is limited in its production capacity. Cell culture produced vaccines have been proposed for their potential to overcome the problems associated with egg-based production. Virus-like particles (VLPs) of influenza virus are promising candidate vaccines under consideration by both academic and industry researchers. Methods In this study, VLPs were produced in HEK293 suspension cells using the Bacmam transduction system and Sf9 cells using the baculovirus infection system. The proposed systems were assessed for their ability to produce influenza VLPs composed of Hemagglutinin (HA), Neuraminidase (NA) and Matrix Protein (M1) and compared through the lens of bioprocessing by highlighting baseline production yields and bioactivity. VLPs from both systems were characterized using available influenza quantification techniques, such as single radial immunodiffusion assay (SRID), HA assay, western blot and negative staining transmission electron microscopy (NSTEM) to quantify total particles. Results For the HEK293 production system, VLPs were found to be associated with the cell pellet in addition to those released in the supernatant. Sf9 cells produced 35 times more VLPs than HEK293 cells. Sf9-VLPs had higher total HA activity and were generally more homogeneous in morphology and size. However, Sf9 VLP samples contained 20 times more baculovirus than VLPs, whereas 293 VLPs were produced along with vesicles. Conclusions This study highlights key production hurdles that must be overcome in both expression platforms, namely the presence of contaminants and the ensuing quantification challenges, and brings up the question of what truly constitutes an influenza VLP candidate vaccine. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0152-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine M Thompson
- National Research Council Canada, Human Health Therapeutics, Montréal, Canada. .,Ecole Polytechnique de Montréal, Montréal, Canada.
| | - Emma Petiot
- National Research Council Canada, Human Health Therapeutics, Montréal, Canada. .,Laboratoire Virologie et pathologies Humaine (VirPath), EA4610, Lyon, France.
| | - Alaka Mullick
- National Research Council Canada, Human Health Therapeutics, Montréal, Canada.
| | | | | | - Amine A Kamen
- National Research Council Canada, Human Health Therapeutics, Montréal, Canada. .,Department of Bioengineering, McGill University, 817 Sherbrooke St. W. Macdonald Engineering Building, Room 387, Montréal, Canada.
| |
Collapse
|
24
|
Transfiguracion J, Manceur AP, Petiot E, Thompson CM, Kamen AA. Particle quantification of influenza viruses by high performance liquid chromatography. Vaccine 2015; 33:78-84. [DOI: 10.1016/j.vaccine.2014.11.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/08/2014] [Accepted: 11/15/2014] [Indexed: 01/02/2023]
|
25
|
Relating influenza virus membrane fusion kinetics to stoichiometry of neutralizing antibodies at the single-particle level. Proc Natl Acad Sci U S A 2014; 111:E5143-8. [PMID: 25404330 DOI: 10.1073/pnas.1411755111] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ability of antibodies binding the influenza hemagglutinin (HA) protein to neutralize viral infectivity is of key importance in the design of next-generation vaccines and for prophylactic and therapeutic use. The two antibodies CR6261 and CR8020 have recently been shown to efficiently neutralize influenza A infection by binding to and inhibiting the influenza A HA protein that is responsible for membrane fusion in the early steps of viral infection. Here, we use single-particle fluorescence microscopy to correlate the number of antibodies or antibody fragments (Fab) bound to an individual virion with the capacity of the same virus particle to undergo membrane fusion. To this end, individual, infectious virus particles bound by fluorescently labeled antibodies/Fab are visualized as they fuse to a planar, supported lipid bilayer. The fluorescence intensity arising from the virus-bound antibodies/Fab is used to determine the number of molecules attached to viral HA while a fluorescent marker in the viral membrane is used to simultaneously obtain kinetic information on the fusion process. We experimentally determine that the stoichiometry required for fusion inhibition by both antibody and Fab leaves large numbers of unbound HA epitopes on the viral surface. Kinetic measurements of the fusion process reveal that those few particles capable of fusion at high antibody/Fab coverage display significantly slower hemifusion kinetics. Overall, our results support a membrane fusion mechanism requiring the stochastic, coordinated action of multiple HA trimers and a model of fusion inhibition by stem-binding antibodies through disruption of this coordinated action.
Collapse
|
26
|
Influenza A virus nucleoprotein selectively decreases neuraminidase gene-segment packaging while enhancing viral fitness and transmissibility. Proc Natl Acad Sci U S A 2014; 111:16854-9. [PMID: 25385602 DOI: 10.1073/pnas.1415396111] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The influenza A virus (IAV) genome is divided into eight distinct RNA segments believed to be copackaged into virions with nearly perfect efficiency. Here, we describe a mutation in IAV nucleoprotein (NP) that enhances replication and transmission in guinea pigs while selectively reducing neuraminidase (NA) gene segment packaging into virions. We show that incomplete IAV particles lacking gene segments contribute to the propagation of the viral population through multiplicity reactivation under conditions of widespread coinfection, which we demonstrate commonly occurs in the upper respiratory tract of guinea pigs. NP also dramatically altered the functional balance of the viral glycoproteins on particles by selectively decreasing NA expression. Our findings reveal novel functions for NP in selective control of IAV gene packaging and balancing glycoprotein expression and suggest a role for incomplete gene packaging during host adaptation and transmission.
Collapse
|
27
|
Terrier O, Carron C, Cartet G, Traversier A, Julien T, Valette M, Lina B, Moules V, Rosa-Calatrava M. Ultrastructural fingerprints of avian influenza A (H7N9) virus in infected human lung cells. Virology 2014; 456-457:39-42. [PMID: 24889223 DOI: 10.1016/j.virol.2014.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 11/16/2022]
Abstract
In this study, we investigated the ultrastructural modifications induced by influenza A (H7N9) virus in human lung epithelial cells. One particular characteristic of H7N9 viral infection is the formation of numerous M1-associated striated tubular structures within the nucleus and the cytoplasm, which have only previously been observed for a limited number of influenza A viruses, notably the 2009 pandemic (H1N1) virus.
Collapse
Affiliation(s)
- Olivier Terrier
- Virologie et Pathologie Humaine VirPath, EA 4610, Université Claude Bernard Lyon 1-Hospices Civils de Lyon, Lyon, France.
| | - Coralie Carron
- Virologie et Pathologie Humaine VirPath, EA 4610, Université Claude Bernard Lyon 1-Hospices Civils de Lyon, Lyon, France
| | - Gaelle Cartet
- Virologie et Pathologie Humaine VirPath, EA 4610, Université Claude Bernard Lyon 1-Hospices Civils de Lyon, Lyon, France
| | - Aurélien Traversier
- Virologie et Pathologie Humaine VirPath, EA 4610, Université Claude Bernard Lyon 1-Hospices Civils de Lyon, Lyon, France
| | - Thomas Julien
- Virologie et Pathologie Humaine VirPath, EA 4610, Université Claude Bernard Lyon 1-Hospices Civils de Lyon, Lyon, France
| | - Martine Valette
- Centre national de référence des virus influenza (région Sud), Laboratoire de Virologie Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Bruno Lina
- Virologie et Pathologie Humaine VirPath, EA 4610, Université Claude Bernard Lyon 1-Hospices Civils de Lyon, Lyon, France; Centre national de référence des virus influenza (région Sud), Laboratoire de Virologie Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Vincent Moules
- Virologie et Pathologie Humaine VirPath, EA 4610, Université Claude Bernard Lyon 1-Hospices Civils de Lyon, Lyon, France; VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine VirPath, EA 4610, Université Claude Bernard Lyon 1-Hospices Civils de Lyon, Lyon, France; VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France.
| |
Collapse
|
28
|
Berri F, Lê VB, Jandrot-Perrus M, Lina B, Riteau B. Switch from protective to adverse inflammation during influenza: viral determinants and hemostasis are caught as culprits. Cell Mol Life Sci 2014; 71:885-98. [PMID: 24091817 PMCID: PMC11114008 DOI: 10.1007/s00018-013-1479-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/21/2013] [Accepted: 09/16/2013] [Indexed: 01/27/2023]
Abstract
Influenza viruses cause acute respiratory infections, which are highly contagious and occur as seasonal epidemic and sporadic pandemic outbreaks. Innate immune response is activated shortly after infection with influenza A viruses (IAV), affording effective protection of the host. However, this response should be tightly regulated, as insufficient inflammation may result in virus escape from immunosurveillance. In contrast, excessive inflammation may result in bystander lung tissue damage, loss of respiratory capacity, and deterioration of the clinical outcome of IAV infections. In this review, we give a comprehensive overview of the innate immune response to IAV infection and summarize the most important findings on how the host can inappropriately respond to influenza.
Collapse
Affiliation(s)
- Fatma Berri
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Vuong Ba Lê
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Martine Jandrot-Perrus
- Inserm, U698, Paris, France
- Université Paris 7, Paris, France
- AP-HP, Hôpital Xavier Bichat, Paris, France
| | - Bruno Lina
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Béatrice Riteau
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- INRA, Nouzilly, France
| |
Collapse
|
29
|
Critical role of segment-specific packaging signals in genetic reassortment of influenza A viruses. Proc Natl Acad Sci U S A 2013; 110:E3840-8. [PMID: 24043788 DOI: 10.1073/pnas.1308649110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fragmented nature of the influenza A genome allows the exchange of gene segments when two or more influenza viruses infect the same cell, but little is known about the rules underlying this process. Here, we studied genetic reassortment between the A/Moscow/10/99 (H3N2, MO) virus originally isolated from human and the avian A/Finch/England/2051/91 (H5N2, EN) virus and found that this process is strongly biased. Importantly, the avian HA segment never entered the MO genetic background alone but always was accompanied by the avian PA and M fragments. Introduction of the 5' and 3' packaging sequences of HA(MO) into an otherwise HA(EN) backbone allowed efficient incorporation of the chimerical viral RNA (vRNA) into the MO genetic background. Furthermore, forcing the incorporation of the avian M segment or introducing five silent mutations into the human M segment was sufficient to drive coincorporation of the avian HA segment into the MO genetic background. These silent mutations also strongly affected the genotype of reassortant viruses. Taken together, our results indicate that packaging signals are crucial for genetic reassortment and that suboptimal compatibility between the vRNA packaging signals, which are detected only when vRNAs compete for packaging, limit this process.
Collapse
|
30
|
The source of the PB1 gene in influenza vaccine reassortants selectively alters the hemagglutinin content of the resulting seed virus. J Virol 2013; 87:5577-85. [PMID: 23468502 DOI: 10.1128/jvi.02856-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yields of egg-grown influenza vaccines are maximized by the production of a seed strain using a reassortment of the seasonal influenza virus isolate with a highly egg-adapted strain. The seed virus is selected based on high yields of viral hemagglutinin (HA) and expression of the surface antigens from the seasonal isolate. The remaining proteins are usually derived from the high-growth parent. However, a retrospective analysis of vaccine seeds revealed that the seasonal PB1 gene was selected in more than 50% of reassortment events. Using the model seasonal H3N2 virus A/Udorn/307/72 (Udorn) virus and the high-growth A/Puerto Rico/8/34 (PR8) virus, we assessed the influence of the source of the PB1 gene on virus growth and vaccine yield. Classical reassortment of these two strains led to the selection of viruses that predominantly had the Udorn PB1 gene. The presence of Udorn PB1 in the seed virus, however, did not result in higher yields of virus or HA compared to the yields in the corresponding seed virus with PR8 PB1. The 8-fold-fewer virions produced with the seed virus containing the Udorn PB1 were somewhat compensated for by a 4-fold increase in HA per virion. A higher HA/nucleoprotein (NP) ratio was found in past vaccine preparations when the seasonal PB1 was present, also indicative of a higher HA density in these vaccine viruses. As the HA viral RNA (vRNA) and mRNA levels in infected cells were similar, we propose that PB1 selectively alters the translation of viral mRNA. This study helps to explain the variability of vaccine seeds with respect to HA yield.
Collapse
|
31
|
Wasilewski S, Calder LJ, Grant T, Rosenthal PB. Distribution of surface glycoproteins on influenza A virus determined by electron cryotomography. Vaccine 2012; 30:7368-73. [PMID: 23063838 PMCID: PMC3532595 DOI: 10.1016/j.vaccine.2012.09.082] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/27/2012] [Accepted: 09/28/2012] [Indexed: 11/28/2022]
Abstract
We use electron cryotomography to reconstruct virions of two influenza A H3N2 virus strains. The maps reveal the structure of the viral envelope containing hemagglutinin (HA) and neuraminidase (NA) glycoproteins and the virus interior containing a matrix layer and an assembly of ribonucleoprotein particles (RNPs) that package the genome. We build a structural model for the viral surface by locating copies of the X-ray structure of the HA ectodomain into density peaks on the virus surface. We calculate inter-glycoprotein distances and the fractional volume occupied by glycoproteins. The models suggest that for typical HA densities on virus, Fabs can bind to epitopes on the HA stem domain. The models also show how membrane curvature may influence the number of glycoproteins that can simultaneously interact with a target surface of receptors.
Collapse
Affiliation(s)
- Sebastian Wasilewski
- Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|
32
|
Terrier O, Moules V, Carron C, Cartet G, Frobert E, Yver M, Traversier A, Wolff T, Riteau B, Naffakh N, Lina B, Diaz JJ, Rosa-Calatrava M. The influenza fingerprints: NS1 and M1 proteins contribute to specific host cell ultrastructure signatures upon infection by different influenza A viruses. Virology 2012; 432:204-18. [PMID: 22770924 DOI: 10.1016/j.virol.2012.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 12/22/2022]
Abstract
Influenza A are nuclear replicating viruses which hijack host machineries in order to achieve optimal infection. Numerous functional virus-host interactions have now been characterized, but little information has been gathered concerning their link to the virally induced remodeling of the host cellular architecture. In this study, we infected cells with several human and avian influenza viruses and we have analyzed their ultrastructural modifications by using electron and confocal microscopy. We discovered that infections lead to a major and systematic disruption of nucleoli and the formation of a large number of diverse viral structures showing specificity that depended on the subtype origin and genomic composition of viruses. We identified NS1 and M1 proteins as the main actors in the remodeling of the host ultra-structure and our results suggest that each influenza A virus strain could be associated with a specific cellular fingerprint, possibly correlated to the functional properties of their viral components.
Collapse
Affiliation(s)
- Olivier Terrier
- Equipe VirCell, Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610, Université de Lyon, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Influenza A viruses control expression of proviral human p53 isoforms p53β and Delta133p53α. J Virol 2012; 86:8452-60. [PMID: 22647703 DOI: 10.1128/jvi.07143-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previous studies have described the role of p53 isoforms, including p53β and Δ133p53α, in the modulation of the activity of full-length p53, which regulates cell fate. In the context of influenza virus infection, an interplay between influenza viruses and p53 has been described, with p53 being involved in the antiviral response. However, the role of physiological p53 isoforms has never been explored in this context. Here, we demonstrate that p53 isoforms play a role in influenza A virus infection by using silencing and transient expression strategies in human lung epithelial cells. In addition, with the help of a panel of different influenza viruses from different subtypes, we also show that infection differentially regulates the expressions of p53β and Δ133p53α. Altogether, our results highlight the role of p53 isoforms in the viral cycle of influenza A viruses, with p53β and Δ133p53α acting as regulators of viral production in a p53-dependent manner.
Collapse
|