1
|
Labutin A, Heckel G. Genome-wide support for incipient Tula hantavirus species within a single rodent host lineage. Virus Evol 2024; 10:veae002. [PMID: 38361825 PMCID: PMC10868551 DOI: 10.1093/ve/veae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/08/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Evolutionary divergence of viruses is most commonly driven by co-divergence with their hosts or through isolation of transmission after host shifts. It remains mostly unknown, however, whether divergent phylogenetic clades within named virus species represent functionally equivalent byproducts of high evolutionary rates or rather incipient virus species. Here, we test these alternatives with genomic data from two widespread phylogenetic clades in Tula orthohantavirus (TULV) within a single evolutionary lineage of their natural rodent host, the common vole Microtus arvalis. We examined voles from forty-two locations in the contact region between clades for TULV infection by reverse transcription (RT)-PCR. Sequencing yielded twenty-three TULV Central North and twenty-one TULV Central South genomes, which differed by 14.9-18.5 per cent at the nucleotide and 2.2-3.7 per cent at the amino acid (AA) level without evidence of recombination or reassortment between clades. Geographic cline analyses demonstrated an abrupt (<1 km wide) transition between the parapatric TULV clades in continuous landscape. This transition was located within the Central mitochondrial lineage of M. arvalis, and genomic single nucleotide polymorphisms showed gradual mixing of host populations across it. Genomic differentiation of hosts was much weaker across the TULV Central North to South transition than across the nearby hybrid zone between two evolutionary lineages in the host. We suggest that these parapatric TULV clades represent functionally distinct, incipient species, which are likely differently affected by genetic polymorphisms in the host. This highlights the potential of natural viral contact zones as systems for investigating the genetic and evolutionary factors enabling or restricting the transmission of RNA viruses.
Collapse
Affiliation(s)
- Anton Labutin
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| |
Collapse
|
2
|
Brunel S, Picarda G, Gupta A, Ghosh R, McDonald B, El Morabiti R, Jiang W, Greenbaum JA, Adler B, Seumois G, Croft M, Vijayanand P, Benedict CA. Late-rising CD4 T cells resolve mouse cytomegalovirus persistent replication in the salivary gland. PLoS Pathog 2024; 20:e1011852. [PMID: 38236791 PMCID: PMC10796040 DOI: 10.1371/journal.ppat.1011852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Conventional antiviral memory CD4 T cells typically arise during the first two weeks of acute infection. Unlike most viruses, cytomegalovirus (CMV) exhibits an extended persistent replication phase followed by lifelong latency accompanied with some gene expression. We show that during mouse CMV (MCMV) infection, CD4 T cells recognizing an epitope derived from the viral M09 protein only develop after conventional memory T cells have already peaked and contracted. Ablating these CD4 T cells by mutating the M09 genomic epitope in the MCMV Smith strain, or inducing them by introducing the epitope into the K181 strain, resulted in delayed or enhanced control of viral persistence, respectively. These cells were shown to be unique compared to their conventional memory counterparts; producing higher IFNγ and IL-2 and lower IL-10 levels. RNAseq analyses revealed them to express distinct subsets of effector genes as compared to classical CD4 T cells. Additionally, when M09 cells were induced by epitope vaccination they significantly enhanced protection when compared to conventional CD4 T cells alone. These data show that late-rising CD4 T cells are a unique memory subset with excellent protective capacities that display a development program strongly differing from the majority of memory T cells.
Collapse
Affiliation(s)
- Simon Brunel
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Gaelle Picarda
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Ankan Gupta
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Raima Ghosh
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Bryan McDonald
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Rachid El Morabiti
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Wenjin Jiang
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Jason A. Greenbaum
- LJI Bioinformatics Core, La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Barbara Adler
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Gregory Seumois
- Center for Cancer Immunotherapy, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Pandurangan Vijayanand
- Center for Cancer Immunotherapy, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Chris A. Benedict
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| |
Collapse
|
3
|
Onasanya AE, El-Hage C, Diaz-Méndez A, Vaz PK, Legione AR, Devlin JM, Hartley CA. Genomic diversity and natural recombination of equid gammaherpesvirus 5 isolates. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105517. [PMID: 37879385 DOI: 10.1016/j.meegid.2023.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Equid gammaherpesvirus 5 (EHV5) is closely related to equid gammaherpesvirus 2 (EHV2). Detection of EHV5 is frequent in horse populations worldwide, but it is often without a clear and significant clinical impact. Infection in horses can often present as subclinical disease; however, it has been associated with respiratory disease, including equine multinodular pulmonary fibrosis (EMPF). Genetic heterogeneity within small regions of the EHV5 glycoprotein B (gB) sequences have been reported and multiple genotypes of this virus have been identified within individual horses, but full genome sequence data for these viruses is limited. The primary focus of this study was to assess the genomic diversity and natural recombination among EHV5 isolates. RESULTS The genome size of EHV5 prototype strain and the five EHV5 isolates cultured for this study, including four isolates from the same horse, ranged from 181,929 to 183,428 base pairs (bp), with the sizes of terminal repeat regions varying from 0 to 10 bp. The nucleotide sequence identity between the six EHV5 genomes ranged from 95.5 to 99.1%, and the estimated average nucleotide diversity between isolates was 1%. Individual genes displayed varying levels of nucleotide diversity that ranged from 0 to 19%. The analysis of nonsynonymous substitution (Ka > 0.025) revealed high diversity in eight genes. Genome analysis using RDP4 and SplitsTree programs detected evidence of past recombination events between EHV5 isolates. CONCLUSION Genomic diversity and recombination hotspots were identified among EHV5 strains. Recombination can drive genetic diversity, particularly in viruses that have a low rate of nucleotide substitutions. Therefore, the results from this study suggest that recombination is an important contributing factor to EHV5 genomic diversity. The findings from this study provide additional insights into the genetic heterogeneity of the EHV5 genome.
Collapse
Affiliation(s)
- Adepeju E Onasanya
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles El-Hage
- Centre for Equine Infectious Disease, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrés Diaz-Méndez
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paola K Vaz
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alistair R Legione
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joanne M Devlin
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Carol A Hartley
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Centre for Equine Infectious Disease, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
4
|
Cordsmeier A, Bednar C, Kübel S, Bauer L, Ensser A. Re-Analysis of the Widely Used Recombinant Murine Cytomegalovirus MCMV-m157luc Derived from the Bacmid pSM3fr Confirms Its Hybrid Nature. Int J Mol Sci 2023; 24:14102. [PMID: 37762404 PMCID: PMC10531225 DOI: 10.3390/ijms241814102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Murine cytomegalovirus (MCMV), and, in particular, recombinant virus derived from MCMV-bacmid pSM3fr, is widely used as the small animal infection model for human cytomegalovirus (HCMV). We sequenced the complete genomes of MCMV strains and recombinants for quality control. However, we noticed deviances from the deposited reference sequences of MCMV-bacmid pSM3fr. This prompted us to re-analyze pSM3fr and reannotate the reference sequence, as well as that for the commonly used MCMV-m157luc reporter virus. A correct reference sequence for this frequently used pSM3fr, containing a repaired version of m129 (MCK-2) and the luciferase gene instead of ORF m157, was constructed. The new reference also contains the original bacmid sequence, and it has a hybrid origin from MCMV strains Smith and K181.
Collapse
Affiliation(s)
| | | | | | | | - Armin Ensser
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.C.); (C.B.); (S.K.); (L.B.)
| |
Collapse
|
5
|
Molteni C, Forni D, Cagliani R, Mozzi A, Clerici M, Sironi M. Evolution of the orthopoxvirus core genome. Virus Res 2023; 323:198975. [PMID: 36280003 PMCID: PMC9586335 DOI: 10.1016/j.virusres.2022.198975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Orthopoxviruses comprise several relevant pathogens, including the causative agent of smallpox and monkeypox virus. Analysis of orthopoxvirus genome evolution mainly focused on gene gains/losses. We instead analyzed core genes, which are conserved in all orthopoxviruses. We show that, despite their strong constraint, some genes involved in viral morphogenesis and transcription/replication were targets of pervasive positive selection, which was relatively uncommon in immunomodulatory genes. However at least three of the positively selected genes, E3L, A24R, and H3L, might have evolved in response to immune selection. Episodic positive selection was particularly common on the internal branches of the orthopox phylogeny and on the monkeypox virus lineage. The latter showed evidence of episodic positive selection at the D14L gene, which encodes a modulator of complement activation (MOPICE). Notably, two genes (B1R and A33R) targeted by episodic selection on more than one branch are involved in forms of intra-genomic conflict. Finally, we found that, in orthopoxvirus proteomes, intrinsically disordered regions (IDRs) tend to be less constrained and are common targets of positive selection. Extension of our analysis to all poxviruses showed no evidence that the IDR fraction differs with host range. Conversely, we found a strong effect of base composition, which was however not sufficient to explain IDR fraction. We thus suggest that, in poxviruses, the IDR fraction is maintained by modulating GC content to accommodate disorder-promoting codons. Overall, our data provide novel insight in orthopoxvirus evolution and provide a list of genes and sites that are expected to modulate viral phenotypes.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- University of Milan, Milan, Italy; Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
6
|
Agwati EO, Oduor CI, Ayieko C, Ong’echa JM, Moormann AM, Bailey JA. Profiling genome-wide recombination in Epstein Barr virus reveals type-specific patterns and associations with endemic-Burkitt lymphoma. Virol J 2022; 19:208. [PMID: 36482473 PMCID: PMC9733152 DOI: 10.1186/s12985-022-01942-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endemic Burkitt lymphoma (eBL) is potentiated through the interplay of Epstein Barr virus (EBV) and holoendemic Plasmodium falciparum malaria. To better understand EBV's biology and role in eBL, we characterized genome-wide recombination sites and patterns as a source of genetic diversity in EBV genomes in our well-defined population of eBL cases and controls from Western Kenya. METHODS EBV genomes representing 54 eBL cases and 32 healthy children from the same geographic region in Western Kenya that we previously sequenced were analyzed. Whole-genome multiple sequence alignment, recombination analyses, and phylogenetic inference were made using multiple alignment with fast Fourier transform, recombination detection program 4, and molecular evolutionary genetics analysis. RESULTS We identified 28 different recombination events and 71 (82.6%) of the 86 EBV genomes analyzed contained evidence of one or more recombinant segments. Associated recombination breakpoints were found to occur in a total of 42 different genes, with only 7 (16.67%) being latent genes. Recombination events were major drivers of clustering within genome-wide phylogenetic trees. The occurrence of recombination segments was comparable between genomes from male and female participants and across age groups. More recombinant segments were found in EBV type 1 genomes (p = 6.4e - 06) and the genomes from the eBLs (p = 0.037). Two recombination events were enriched in the eBLs; event 47 (OR = 4.07, p = 0.038) and event 50 (OR = 14.24, p = 0.012). CONCLUSIONS EBV genomes have extensive evidence of recombination likely acquired progressively and cumulatively over time. Recombination patterns display a heterogeneous occurrence rate across the genome with enrichment in lytic genes. Overall, recombination appears to be a major evolutionary force impacting EBV diversity and genome structure with evidence of the association of specific recombinants with eBL.
Collapse
Affiliation(s)
- Eddy O. Agwati
- grid.442486.80000 0001 0744 8172Department of Zoology, Maseno University, Maseno, Kenya ,grid.33058.3d0000 0001 0155 5938Center for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Cliff I. Oduor
- grid.40263.330000 0004 1936 9094Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903 USA
| | - Cyrus Ayieko
- grid.442486.80000 0001 0744 8172Department of Zoology, Maseno University, Maseno, Kenya
| | - John Michael Ong’echa
- grid.33058.3d0000 0001 0155 5938Center for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Ann M. Moormann
- grid.168645.80000 0001 0742 0364Program in Molecular Medicine and the Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Jeffrey A. Bailey
- grid.40263.330000 0004 1936 9094Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903 USA
| |
Collapse
|
7
|
Bruce K, Ma J, Lawler C, Xie W, Stevenson PG, Farrell HE. Recent Advancements in Understanding Primary Cytomegalovirus Infection in a Mouse Model. Viruses 2022; 14:v14091934. [PMID: 36146741 PMCID: PMC9505653 DOI: 10.3390/v14091934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Animal models that mimic human infections provide insights in virus–host interplay; knowledge that in vitro approaches cannot readily predict, nor easily reproduce. Human cytomegalovirus (HCMV) infections are acquired asymptomatically, and primary infections are difficult to capture. The gap in our knowledge of the early events of HCMV colonization and spread limits rational design of HCMV antivirals and vaccines. Studies of natural infection with mouse cytomegalovirus (MCMV) have demonstrated the olfactory epithelium as the site of natural colonization. Systemic spread from the olfactory epithelium is facilitated by infected dendritic cells (DC); tracking dissemination uncovered previously unappreciated DC trafficking pathways. The olfactory epithelium also provides a unique niche that supports efficient MCMV superinfection and virus recombination. In this review, we summarize recent advances to our understanding of MCMV infection and spread and the tissue-specific mechanisms utilized by MCMV to modulate DC trafficking. As these mechanisms are likely conserved with HCMV, they may inform new approaches for preventing HCMV infections in humans.
Collapse
|
8
|
Onasanya AE, El-Hage C, Diaz-Méndez A, Vaz PK, Legione AR, Browning GF, Devlin JM, Hartley CA. Whole genome sequence analysis of equid gammaherpesvirus -2 field isolates reveals high levels of genomic diversity and recombination. BMC Genomics 2022; 23:622. [PMID: 36042397 PMCID: PMC9426266 DOI: 10.1186/s12864-022-08789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Equid gammaherpesvirus 2 (EHV2) is a gammaherpesvirus with a widespread distribution in horse populations globally. Although its pathogenic significance can be unclear in most cases of infection, EHV2 infection can cause upper respiratory tract disease in foals. Co-infection of different strains of EHV2 in an individual horse is common. Small regions of the EHV2 genome have shown considerable genetic heterogeneity. This could suggest genomic recombination between different strains of EHV2, similar to the extensive recombination networks that have been demonstrated for some alphaherpesviruses. This study examined natural recombination and genome diversity of EHV2 field isolates. Results Whole genome sequencing analysis of 18 EHV2 isolates, along with analysis of two publicly available EHV2 genomes, revealed variation in genomes sizes (from 173.7 to 184.8 kbp), guanine plus cytosine content (from 56.7 to 57.8%) and the size of the terminal repeat regions (from 17,196 to 17,551 bp). The nucleotide sequence identity between the genomes ranged from 86.2 to 99.7%. The estimated average inter-strain nucleotide diversity between the 20 EHV2 genomes was 2.9%. Individual gene sequences showed varying levels of nucleotide diversity and ranged between 0 and 38.1%. The ratio of nonsynonymous substitutions, Ka, to synonymous substitutions, Ks, (Ka/Ks) suggests that over 50% of EHV2 genes are undergoing diversifying selection. Recombination analyses of the 20 EHV2 genome sequences using the recombination detection program (RDP4) and SplitsTree revealed evidence of viral recombination. Conclusions Analysis of the 18 new EHV2 genomes alongside the 2 previously sequenced genomes revealed a high degree of genetic diversity and extensive recombination networks. Herpesvirus genome diversification and virus evolution can be driven by recombination, and our findings are consistent with recombination being a key mechanism by which EHV2 genomes may vary and evolve.
Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08789-x.
Collapse
Affiliation(s)
- Adepeju E Onasanya
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Charles El-Hage
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia.,Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrés Diaz-Méndez
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paola K Vaz
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alistair R Legione
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Glenn F Browning
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joanne M Devlin
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Carol A Hartley
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
9
|
Host-Adapted Gene Families Involved in Murine Cytomegalovirus Immune Evasion. Viruses 2022; 14:v14010128. [PMID: 35062332 PMCID: PMC8781790 DOI: 10.3390/v14010128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Cytomegaloviruses (CMVs) are host species-specific and have adapted to their respective mammalian hosts during co-evolution. Host-adaptation is reflected by “private genes” that have specialized in mediating virus-host interplay and have no sequence homologs in other CMV species, although biological convergence has led to analogous protein functions. They are mostly organized in gene families evolved by gene duplications and subsequent mutations. The host immune response to infection, both the innate and the adaptive immune response, is a driver of viral evolution, resulting in the acquisition of viral immune evasion proteins encoded by private gene families. As the analysis of the medically relevant human cytomegalovirus by clinical investigation in the infected human host cannot make use of designed virus and host mutagenesis, the mouse model based on murine cytomegalovirus (mCMV) has become a versatile animal model to study basic principles of in vivo virus-host interplay. Focusing on the immune evasion of the adaptive immune response by CD8+ T cells, we review here what is known about proteins of two private gene families of mCMV, the m02 and the m145 families, specifically the role of m04, m06, and m152 in viral antigen presentation during acute and latent infection.
Collapse
|
10
|
Characterization of M116.1p, a murine cytomegalovirus protein required for efficient infection of mononuclear phagocytes. J Virol 2021; 96:e0087621. [PMID: 34705561 DOI: 10.1128/jvi.00876-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broad tissue tropism of cytomegaloviruses (CMVs) is facilitated by different glycoprotein entry complexes, which are conserved between human CMV (HCMV) and murine CMV (MCMV). Among the wide array of cell types susceptible to the infection, mononuclear phagocytes (MNPs) play a unique role in the pathogenesis of the infection as they contribute both to the virus spread and immune control. CMVs have dedicated numerous genes for the efficient infection and evasion of macrophages and dendritic cells. In this study, we have characterized the properties and function of M116, a previously poorly described but highly transcribed MCMV gene region which encodes M116.1p, a novel protein necessary for the efficient infection of MNPs and viral spread in vivo. Our study further revealed that M116.1p shares similarities with its positional homologs in HCMV and RCMV, UL116 and R116, respectively, such as late kinetics of expression, N-glycosylation, localization to the virion assembly compartment, and interaction with gH - a member of the CMVs fusion complex. This study, therefore, expands our knowledge about virally encoded glycoproteins that play important roles in viral infectivity and tropism. Importance Human cytomegalovirus (HCMV) is a species-specific herpesvirus that causes severe disease in immunocompromised individuals and immunologically immature neonates. Murine cytomegalovirus (MCMV) is biologically similar to HCMV, and it serves as a widely used model for studying the infection, pathogenesis, and immune responses to HCMV. In our previous work, we have identified the M116 ORF as one of the most extensively transcribed regions of the MCMV genome without an assigned function. This study shows that the M116 locus codes for a novel protein, M116.1p, which shares similarities with UL116 and R116 in HCMV and RCMV, respectively, and is required for the efficient infection of mononuclear phagocytes and virus spread in vivo. Furthermore, this study establishes the α-M116 monoclonal antibody and MCMV mutants lacking M116, generated in this work, as valuable tools for studying the role of macrophages and dendritic cells in limiting CMV infection following different MCMV administration routes.
Collapse
|
11
|
Chan B, Arapović M, Masters LL, Rwandamuiye F, Jonjić S, Smith LM, Redwood AJ. The m15 Locus of Murine Cytomegalovirus Modulates Natural Killer Cell Responses to Promote Dissemination to the Salivary Glands and Viral Shedding. Pathogens 2021; 10:pathogens10070866. [PMID: 34358016 PMCID: PMC8308470 DOI: 10.3390/pathogens10070866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
As the largest herpesviruses, the 230 kb genomes of cytomegaloviruses (CMVs) have increased our understanding of host immunity and viral escape mechanisms, although many of the annotated genes remain as yet uncharacterised. Here we identify the m15 locus of murine CMV (MCMV) as a viral modulator of natural killer (NK) cell immunity. We show that, rather than discrete transcripts from the m14, m15 and m16 genes as annotated, there are five 3′-coterminal transcripts expressed over this region, all utilising a consensus polyA tail at the end of the m16 gene. Functional inactivation of any one of these genes had no measurable impact on viral replication. However, disruption of all five transcripts led to significantly attenuated dissemination to, and replication in, the salivary glands of multiple strains of mice, but normal growth during acute infection. Disruption of the m15 locus was associated with heightened NK cell responses, including enhanced proliferation and IFNγ production. Depletion of NK cells, but not T cells, rescued salivary gland replication and viral shedding. These data demonstrate the identification of multiple transcripts expressed by a single locus which modulate, perhaps in a concerted fashion, the function of anti-viral NK cells.
Collapse
Affiliation(s)
- Baca Chan
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (B.C.); (L.L.M.); (F.R.); (L.M.S.)
- Institute of Respiratory Health, University of Western Australia, Nedlands, WA 6009, Australia
| | - Maja Arapović
- Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (M.A.); (S.J.)
| | - Laura L. Masters
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (B.C.); (L.L.M.); (F.R.); (L.M.S.)
| | - Francois Rwandamuiye
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (B.C.); (L.L.M.); (F.R.); (L.M.S.)
| | - Stipan Jonjić
- Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (M.A.); (S.J.)
| | - Lee M. Smith
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (B.C.); (L.L.M.); (F.R.); (L.M.S.)
| | - Alec J. Redwood
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (B.C.); (L.L.M.); (F.R.); (L.M.S.)
- Institute of Respiratory Health, University of Western Australia, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6151-0895
| |
Collapse
|
12
|
Repair of an Attenuated Low-Passage Murine Cytomegalovirus Bacterial Artificial Chromosome Identifies a Novel Spliced Gene Essential for Salivary Gland Tropism. J Virol 2020; 94:JVI.01456-20. [PMID: 32847854 DOI: 10.1128/jvi.01456-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/23/2020] [Indexed: 01/22/2023] Open
Abstract
The cloning of herpesviruses as bacterial artificial chromosomes (BACs) has revolutionized the study of herpesvirus biology, allowing rapid and precise manipulation of viral genomes. Several clinical strains of human cytomegalovirus (HCMV) have been cloned as BACs; however, no low-passage strains of murine CMV (MCMV), which provide a model mimicking these isolates, have been cloned. Here, the low-passage G4 strain of was BAC cloned. G4 carries an m157 gene that does not ligate the natural killer (NK) cell-activating receptor, Ly49H, meaning that unlike laboratory strains of MCMV, this virus replicates well in C57BL/6 mice. This BAC clone exhibited normal replication during acute infection in the spleen and liver but was attenuated for salivary gland tropism. Next-generation sequencing revealed a C-to-A mutation at nucleotide position 188422, located in the 3' untranslated region of sgg1, a spliced gene critical for salivary gland tropism. Repair of this mutation restored tropism for the salivary glands. Transcriptional analysis revealed a novel spliced gene within the sgg1 locus. This small open reading frame (ORF), sgg1.1, starts at the 3' end of the first exon of sgg1 and extends exon 2 of sgg1. This shorter spliced gene is prematurely terminated by the nonsense mutation at nt 188422. Sequence analysis of tissue culture-passaged virus demonstrated that sgg1.1 was stable, although other mutational hot spots were identified. The G4 BAC will allow in vivo studies in a broader range of mice, avoiding the strong NK cell responses seen in B6 mice with other MCMV BAC-derived MCMVs.IMPORTANCE Murine cytomegalovirus (MCMV) is widely used as a model of human CMV (HCMV) infection. However, this model relies on strains of MCMV that have been serially passaged in the laboratory for over four decades. These laboratory strains have been cloned as bacterial artificial chromosomes (BACs), which permits rapid and precise manipulation. Low-passage strains of MCMV add to the utility of the mouse model of HCMV infection but do not exist as cloned BACs. This study describes the first such low-passage MCMV BAC. This BAC-derived G4 was initially attenuated in vivo, with subsequent full genomic sequencing revealing a novel spliced transcript required for salivary gland tropism. These data suggest that MCMV, like HCMV, undergoes tissue culture adaptation that can limit in vivo growth and supports the use of BAC clones as a way of standardizing viral strains and minimizing interlaboratory strain variation.
Collapse
|
13
|
Lassalle F, Beale MA, Bharucha T, Williams CA, Williams RJ, Cudini J, Goldstein R, Haque T, Depledge DP, Breuer J. Whole genome sequencing of Herpes Simplex Virus 1 directly from human cerebrospinal fluid reveals selective constraints in neurotropic viruses. Virus Evol 2020; 6:veaa012. [PMID: 32099667 PMCID: PMC7031915 DOI: 10.1093/ve/veaa012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Herpes Simplex Virus type 1 (HSV-1) chronically infects over 70 per cent of the global population. Clinical manifestations are largely restricted to recurrent epidermal vesicles. However, HSV-1 also leads to encephalitis, the infection of the brain parenchyma, with high associated rates of mortality and morbidity. In this study, we performed target enrichment followed by direct sequencing of HSV-1 genomes, using target enrichment methods on the cerebrospinal fluid (CSF) of clinical encephalitis patients and from skin swabs of epidermal vesicles on non-encephalopathic patients. Phylogenetic analysis revealed high inter-host diversity and little population structure. In contrast, samples from different lesions in the same patient clustered with similar patterns of allelic variants. Comparison of consensus genome sequences shows HSV-1 has been freely recombining, except for distinct islands of linkage disequilibrium (LD). This suggests functional constraints prevent recombination between certain genes, notably those encoding pairs of interacting proteins. Distinct LD patterns characterised subsets of viruses recovered from CSF and skin lesions, which may reflect different evolutionary constraints in different body compartments. Functions of genes under differential constraint related to immunity or tropism and provide new hypotheses on tissue-specific mechanisms of viral infection and latency.
Collapse
Affiliation(s)
- Florent Lassalle
- Department of Infectious Disease Epidemiology, Imperial College London, St-Mary's Hospital campus, Praed Street, London W2 1NY, UK
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, St-Mary's Hospital campus, Praed Street, London W2 1NY, UK
| | - Mathew A Beale
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Saffron Walden CB10 1SA, UK
| | - Tehmina Bharucha
- Department of Virology, Royal Free Hospital, 10 Pond Street, Hampstead, London NW3 2PS, UK
| | - Charlotte A Williams
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Rachel J Williams
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Juliana Cudini
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Saffron Walden CB10 1SA, UK
| | - Richard Goldstein
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Tanzina Haque
- Department of Virology, Royal Free Hospital, 10 Pond Street, Hampstead, London NW3 2PS, UK
| | - Daniel P Depledge
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH
| |
Collapse
|
14
|
Wegner F, Lassalle F, Depledge DP, Balloux F, Breuer J. Co-evolution of sites under immune selection shapes Epstein-Barr Virus population structure. Mol Biol Evol 2019; 36:2512-2521. [PMID: 31273385 PMCID: PMC6805225 DOI: 10.1093/molbev/msz152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Epstein–Barr virus (EBV) is one of the most common viral infections in humans and persists within its host for life. EBV therefore represents an extremely successful virus that has evolved complex strategies to evade the host’s innate and adaptive immune response during both initial and persistent stages of infection. Here, we conducted a comparative genomics analysis on 223 whole genome sequences of worldwide EBV strains. We recover extensive genome-wide linkage disequilibrium (LD) despite pervasive genetic recombination. This pattern is explained by the global EBV population being subdivided into three main subpopulations, one primarily found in East Asia, one in Southeast Asia and Oceania, and the third including most of the other globally distributed genomes we analyzed. Additionally, sites in LD were overrepresented in immunogenic genes. Taken together, our results suggest that host immune selection and local adaptation to different human host populations has shaped the genome-wide patterns of genetic diversity in EBV.
Collapse
Affiliation(s)
- Fanny Wegner
- Division of Infection & Immunity, University College London, London, UK.,Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
| | - Florent Lassalle
- UCL Genetic Institute, University College London, London, UK.,MRC Centre for Outbreak Analysis and Modelling, Imperial College, London, UK
| | - Daniel P Depledge
- Division of Infection & Immunity, University College London, London, UK
| | | | - Judith Breuer
- Division of Infection & Immunity, University College London, London, UK
| |
Collapse
|
15
|
Železnjak J, Lisnić VJ, Popović B, Lisnić B, Babić M, Halenius A, L'Hernault A, Roviš TL, Hengel H, Erhard F, Redwood AJ, Vidal SM, Dölken L, Krmpotić A, Jonjić S. The complex of MCMV proteins and MHC class I evades NK cell control and drives the evolution of virus-specific activating Ly49 receptors. J Exp Med 2019; 216:1809-1827. [PMID: 31142589 PMCID: PMC6683999 DOI: 10.1084/jem.20182213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/04/2019] [Accepted: 05/07/2019] [Indexed: 11/05/2022] Open
Abstract
Železnjak et al. demonstrate that two MCMV-encoded proteins interact with MHC I molecules, forming an altered-self complex that prevents missing self recognition by increasing specificity for inhibitory Ly49 receptors. This led to the evolution of CMV-specific activating Ly49s. CMVs efficiently target MHC I molecules to avoid recognition by cytotoxic T cells. However, the lack of MHC I on the cell surface renders the infected cell susceptible to NK cell killing upon missing self recognition. To counter this, mouse CMV (MCMV) rescues some MHC I molecules to engage inhibitory Ly49 receptors. Here we identify a new viral protein, MATp1, that is essential for MHC I surface rescue. Rescued altered-self MHC I molecules show increased affinity to inhibitory Ly49 receptors, resulting in inhibition of NK cells despite substantially reduced MHC I surface levels. This enables the virus to evade recognition by licensed NK cells. During evolution, this novel viral immune evasion mechanism could have prompted the development of activating NK cell receptors that are specific for MATp1-modified altered-self MHC I molecules. Our study solves a long-standing conundrum of how MCMV avoids recognition by NK cells, unravels a fundamental new viral immune evasion mechanism, and demonstrates how this forced the evolution of virus-specific activating MHC I–restricted Ly49 receptors.
Collapse
Affiliation(s)
- Jelena Železnjak
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Branka Popović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Babić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,Innate Immunity, German Rheumatism Research Centre, a Leibniz Institute, Berlin, Germany
| | - Anne Halenius
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne L'Hernault
- Precision Medicine and Genomics, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Tihana Lenac Roviš
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Hartmut Hengel
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Erhard
- Institute of Virology and Immunobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Alec J Redwood
- Institute for Respiratory Health, University of Western Australia, Western Australia, Australia
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill Center for Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Lars Dölken
- Institute of Virology and Immunobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia .,Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
16
|
Čížková D, Baird SJE, Těšíková J, Voigt S, Ľudovít Ď, Piálek J, Goüy de Bellocq J. Host subspecific viral strains in European house mice: Murine cytomegalovirus in the Eastern (Mus musculus musculus) and Western house mouse (Mus musculus domesticus). Virology 2018; 521:92-98. [PMID: 29894896 DOI: 10.1016/j.virol.2018.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 01/14/2023]
Abstract
Murine cytomegalovirus (MCMV) has been reported from house mice (Mus musculus) worldwide, but only recently from Eastern house mice (M. m. musculus), of particular interest because they form a semi-permeable species barrier in Europe with Western house mice, M. m. domesticus. Here we report genome sequences of EastMCMV (from Eastern mice), and set these in the context of MCMV genomes from genus Mus hosts. We show EastMCMV and WestMCMV are genetically distinct. Phylogeny splitting analyses show a genome wide (94%) pattern consistent with no West-East introgression, the major exception (3.8%) being a genome-terminal region of duplicated genes involved in host immune system evasion. As expected from its function, this is a region of maintenance of ancestral polymorphism: The lack of clear splitting signal cannot be interpreted as evidence of introgression. The EastMCMV genome sequences reported here can therefore serve as a well-described resource for exploration of murid MCMV diversity.
Collapse
Affiliation(s)
- Dagmar Čížková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Stuart J E Baird
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Těšíková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sebastian Voigt
- Department of Pediatric Oncology/Hematology/Stem Cell Transplantation, Charité-Universitätsmedizin, Berlin, Germany; Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Ďureje Ľudovít
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jaroslav Piálek
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | | |
Collapse
|
17
|
Aguilar OA, Berry R, Rahim MMA, Reichel JJ, Popović B, Tanaka M, Fu Z, Balaji GR, Lau TNH, Tu MM, Kirkham CL, Mahmoud AB, Mesci A, Krmpotić A, Allan DSJ, Makrigiannis AP, Jonjić S, Rossjohn J, Carlyle JR. A Viral Immunoevasin Controls Innate Immunity by Targeting the Prototypical Natural Killer Cell Receptor Family. Cell 2017; 169:58-71.e14. [PMID: 28340350 DOI: 10.1016/j.cell.2017.03.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/09/2017] [Accepted: 02/27/2017] [Indexed: 11/20/2022]
Abstract
Natural killer (NK) cells play a key role in innate immunity by detecting alterations in self and non-self ligands via paired NK cell receptors (NKRs). Despite identification of numerous NKR-ligand interactions, physiological ligands for the prototypical NK1.1 orphan receptor remain elusive. Here, we identify a viral ligand for the inhibitory and activating NKR-P1 (NK1.1) receptors. This murine cytomegalovirus (MCMV)-encoded protein, m12, restrains NK cell effector function by directly engaging the inhibitory NKR-P1B receptor. However, m12 also interacts with the activating NKR-P1A/C receptors to counterbalance m12 decoy function. Structural analyses reveal that m12 sequesters a large NKR-P1 surface area via a "polar claw" mechanism. Polymorphisms in, and ablation of, the viral m12 protein and host NKR-P1B/C alleles impact NK cell responses in vivo. Thus, we identify the long-sought foreign ligand for this key immunoregulatory NKR family and reveal how it controls the evolutionary balance of immune recognition during host-pathogen interplay.
Collapse
Affiliation(s)
- Oscar A Aguilar
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Richard Berry
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Mir Munir A Rahim
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Johanna J Reichel
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Branka Popović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Miho Tanaka
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Zhihui Fu
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Gautham R Balaji
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Timothy N H Lau
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Megan M Tu
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Christina L Kirkham
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ahmad Bakur Mahmoud
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; College of Applied Medical Sciences, Taibah University, 30001 Madinah Munawwarah, Kingdom of Saudi Arabia
| | - Aruz Mesci
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - David S J Allan
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Andrew P Makrigiannis
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia.
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - James R Carlyle
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
18
|
Importance of Highly Conserved Peptide Sites of Human Cytomegalovirus gO for Formation of the gH/gL/gO Complex. J Virol 2016; 91:JVI.01339-16. [PMID: 27795411 DOI: 10.1128/jvi.01339-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/04/2016] [Indexed: 11/20/2022] Open
Abstract
The glycoprotein O (gO) is betaherpesvirus specific. Together with the viral glycoproteins H and L, gO forms a covalent trimeric complex that is part of the viral envelope. This trimer is crucial for cell-free infectivity of human cytomegalovirus (HCMV) but dispensable for cell-associated spread. We hypothesized that the amino acids that are conserved among gOs of different cytomegaloviruses are important for the formation of the trimeric complex and hence for efficient virus spread. In a mutational approach, nine peptide sites, containing all 13 highly conserved amino acids, were analyzed in the context of HCMV strain TB40-BAC4 with regard to infection efficiency and formation of the gH/gL/gO complex. Mutation of amino acids (aa) 181 to 186 or aa 193 to 198 resulted in the loss of the trimer and a complete small-plaque phenotype, whereas mutation of aa 108 or aa 249 to 254 caused an intermediate phenotype. While individual mutations of the five conserved cysteines had little impact, their relevance was revealed in a combined mutation, which abrogated both complex formation and cell-free infectivity. C343 was unique, as it was sufficient and necessary for covalent binding of gO to gH/gL. Remarkably, however, C218 together with C167 rescued infectivity in the absence of detectable covalent complex formation. We conclude that all highly conserved amino acids contribute to the function of gO to some extent but that aa 181 to 198 and cysteines 343, 218, and 167 are particularly relevant. Surprisingly, covalent binding of gO to gH/gL is required neither for its incorporation into virions nor for proper function in cell-free infection. IMPORTANCE Like all herpesviruses, the widespread human pathogen HCMV depends on glycoproteins gB, gH, and gL for entry into target cells. Additionally, gH and gL have to bind gO in a trimeric complex for efficient cell-free infection. Homologs of gO are shared by all cytomegaloviruses, with 13 amino acids being highly conserved. In a mutational approach we analyzed these amino acids to elucidate their role in the function of gO. All conserved amino acids contributed either to formation of the trimeric complex or to cell-free infection. Notably, these two phenotypes were not inevitably linked as the mutation of a charged cluster in the center of gO abrogated cell-free infection while trimeric complexes were still being formed. Cysteine 343 was essential for covalent binding of gO to gH/gL; however, noncovalent complex formation in the absence of cysteine 343 also allowed for cell-free infectivity.
Collapse
|
19
|
Mengual-Chuliá B, Bedhomme S, Lafforgue G, Elena SF, Bravo IG. Assessing parallel gene histories in viral genomes. BMC Evol Biol 2016; 16:32. [PMID: 26847371 PMCID: PMC4743424 DOI: 10.1186/s12862-016-0605-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/29/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The increasing abundance of sequence data has exacerbated a long known problem: gene trees and species trees for the same terminal taxa are often incongruent. Indeed, genes within a genome have not all followed the same evolutionary path due to events such as incomplete lineage sorting, horizontal gene transfer, gene duplication and deletion, or recombination. Considering conflicts between gene trees as an obstacle, numerous methods have been developed to deal with these incongruences and to reconstruct consensus evolutionary histories of species despite the heterogeneity in the history of their genes. However, inconsistencies can also be seen as a source of information about the specific evolutionary processes that have shaped genomes. RESULTS The goal of the approach here proposed is to exploit this conflicting information: we have compiled eleven variables describing phylogenetic relationships and evolutionary pressures and submitted them to dimensionality reduction techniques to identify genes with similar evolutionary histories. To illustrate the applicability of the method, we have chosen two viral datasets, namely papillomaviruses and Turnip mosaic virus (TuMV) isolates, largely dissimilar in genome, evolutionary distance and biology. Our method pinpoints viral genes with common evolutionary patterns. In the case of papillomaviruses, gene clusters match well our knowledge on viral biology and life cycle, illustrating the potential of our approach. For the less known TuMV, our results trigger new hypotheses about viral evolution and gene interaction. CONCLUSIONS The approach here presented allows turning phylogenetic inconsistencies into evolutionary information, detecting gene assemblies with similar histories, and could be a powerful tool for comparative pathogenomics.
Collapse
Affiliation(s)
- Beatriz Mengual-Chuliá
- Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain.,Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain
| | - Stéphanie Bedhomme
- Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain.,Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain.,Centre d'Ecologie Fonctionnelle et Evolutive, UMR CNRS 5175, Montpellier, France
| | - Guillaume Lafforgue
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR CNRS 5175, Montpellier, France.,Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain.,I2SysBio, Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain.,The Santa Fe Institute, Santa Fe, NM, USA
| | - Ignacio G Bravo
- Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain. .,MIVEGEC (UMR CNRS 5290, IRD 224, UM), National Center for Scientific Research (CNRS), Montpellier, France. .,National Center for Scientific Research (CNRS), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR CNRS 5290, IRD 224, UM, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, Cedex 5, France.
| |
Collapse
|
20
|
Lassalle F, Depledge DP, Reeves MB, Brown AC, Christiansen MT, Tutill HJ, Williams RJ, Einer-Jensen K, Holdstock J, Atkinson C, Brown JR, van Loenen FB, Clark DA, Griffiths PD, Verjans GM, Schutten M, Milne RS, Balloux F, Breuer J. Islands of linkage in an ocean of pervasive recombination reveals two-speed evolution of human cytomegalovirus genomes. Virus Evol 2016; 2:vew017. [PMID: 30288299 PMCID: PMC6167919 DOI: 10.1093/ve/vew017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human cytomegalovirus (HCMV) infects most of the population worldwide, persisting throughout the host's life in a latent state with periodic episodes of reactivation. While typically asymptomatic, HCMV can cause fatal disease among congenitally infected infants and immunocompromised patients. These clinical issues are compounded by the emergence of antiviral resistance and the absence of an effective vaccine, the development of which is likely complicated by the numerous immune evasins encoded by HCMV to counter the host's adaptive immune responses, a feature that facilitates frequent super-infections. Understanding the evolutionary dynamics of HCMV is essential for the development of effective new drugs and vaccines. By comparing viral genomes from uncultivated or low-passaged clinical samples of diverse origins, we observe evidence of frequent homologous recombination events, both recent and ancient, and no structure of HCMV genetic diversity at the whole-genome scale. Analysis of individual gene-scale loci reveals a striking dichotomy: while most of the genome is highly conserved, recombines essentially freely and has evolved under purifying selection, 21 genes display extreme diversity, structured into distinct genotypes that do not recombine with each other. Most of these hyper-variable genes encode glycoproteins involved in cell entry or escape of host immunity. Evidence that half of them have diverged through episodes of intense positive selection suggests that rapid evolution of hyper-variable loci is likely driven by interactions with host immunity. It appears that this process is enabled by recombination unlinking hyper-variable loci from strongly constrained neighboring sites. It is conceivable that viral mechanisms facilitating super-infection have evolved to promote recombination between diverged genotypes, allowing the virus to continuously diversify at key loci to escape immune detection, while maintaining a genome optimally adapted to its asymptomatic infectious lifecycle.
Collapse
Affiliation(s)
- Florent Lassalle
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Daniel P. Depledge
- Division of Infection and Immunity, University College London, London, United
Kingdom
| | - Matthew B. Reeves
- Division of Infection and Immunity, University College London, London, United
Kingdom
| | | | - Mette T. Christiansen
- Division of Infection and Immunity, University College London, London, United
Kingdom
| | - Helena J. Tutill
- Division of Infection and Immunity, University College London, London, United
Kingdom
| | - Rachel J. Williams
- Division of Infection and Immunity, University College London, London, United
Kingdom
| | | | | | - Claire Atkinson
- Department of Virology, Royal Free Hospital, London, United Kingdom
| | - Julianne R. Brown
- Microbiology, Virology and Infection Prevention and Control, Camelia Botnar
Laboratories, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United
Kingdom
| | | | - Duncan A. Clark
- Department of Virology, Barts Health NHS Trust, London, United Kingdom
| | - Paul D. Griffiths
- Division of Infection and Immunity, University College London, London, United
Kingdom
| | | | - Martin Schutten
- Department of Viroscience, Erasmus, MC Rotterdam, the Netherlands
| | - Richard S.B. Milne
- Division of Infection and Immunity, University College London, London, United
Kingdom
| | - Francois Balloux
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, United
Kingdom
| |
Collapse
|
21
|
Geyer H, Ettinger J, Möller L, Schmolz E, Nitsche A, Brune W, Heaggans S, Sandford GR, Hayward GS, Voigt S. Rat cytomegalovirus (RCMV) English isolate and a newly identified Berlin isolate share similarities with but are separate as an anciently diverged clade from Mouse CMV and the Maastricht isolate of RCMV. J Gen Virol 2015. [PMID: 26209537 DOI: 10.1099/vir.0.000109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genome of the rat cytomegalovirus (RCMV) English isolate (MuHV-8) differs significantly from the RCMV Maastricht isolate (MuHV-2) and other cytomegaloviruses (CMVs) in its size, base composition and genomic content. Analysis of the RCMV-Berlin isolate, MuHV-8, revealed that the two MuHV-8 isolates are highly similar in genome size and content, indicating that the smaller genome size (202 946 bp) compared to other known CMVs was not the result of an accidental deletion during passage in tissue culture. Surprisingly, the proteins encoded in MuHV-8 shared more overall similarity with their orthologues from mouse CMV (MuHV-1) compared to their orthologues in rat CMV (MuHV-2). Phylogenetic analyses of conserved viral genes showed that the two MuHV-8 isolates are from the same species and represent a unique clade that is distinct from other rodent CMVs.
Collapse
|
22
|
Sgourakis NG, May NA, Boyd LF, Ying J, Bax A, Margulies DH. A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR. J Biol Chem 2015; 290:28857-68. [PMID: 26463211 DOI: 10.1074/jbc.m115.689661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 12/21/2022] Open
Abstract
As part of its strategy to evade detection by the host immune system, murine cytomegalovirus (MCMV) encodes three proteins that modulate cell surface expression of major histocompatibility complex class I (MHC-I) molecules: the MHC-I homolog m152/gp40 as well as the m02-m16 family members m04/gp34 and m06/gp48. Previous studies of the m04 protein revealed a divergent Ig-like fold that is unique to immunoevasins of the m02-m16 family. Here, we engineer and characterize recombinant m06 and investigate its interactions with full-length and truncated forms of the MHC-I molecule H2-L(d) by several techniques. Furthermore, we employ solution NMR to map the interaction footprint of the m06 protein on MHC-I, taking advantage of a truncated H2-L(d), "mini-H2-L(d)," consisting of only the α1α2 platform domain. Mini-H2-L(d) refolded in vitro with a high affinity peptide yields a molecule that shows outstanding NMR spectral features, permitting complete backbone assignments. These NMR-based studies reveal that m06 binds tightly to a discrete site located under the peptide-binding platform that partially overlaps with the β2-microglobulin interface on the MHC-I heavy chain, consistent with in vitro binding experiments showing significantly reduced complex formation between m06 and β2-microglobulin-associated MHC-I. Moreover, we carry out NMR relaxation experiments to characterize the picosecond-nanosecond dynamics of the free mini-H2-L(d) MHC-I molecule, revealing that the site of interaction is highly ordered. This study provides insight into the mechanism of the interaction of m06 with MHC-I, suggesting a structural manipulation of the target MHC-I molecule at an early stage of the peptide-loading pathway.
Collapse
Affiliation(s)
| | - Nathan A May
- the Molecular Biology Section, Laboratory of Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Lisa F Boyd
- the Molecular Biology Section, Laboratory of Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Jinfa Ying
- From the Laboratory of Chemical Physics, NIDDK, and
| | - Ad Bax
- From the Laboratory of Chemical Physics, NIDDK, and
| | - David H Margulies
- the Molecular Biology Section, Laboratory of Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
23
|
High-throughput analysis of human cytomegalovirus genome diversity highlights the widespread occurrence of gene-disrupting mutations and pervasive recombination. J Virol 2015; 89:7673-7695. [PMID: 25972543 DOI: 10.1128/jvi.00578-15] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human cytomegalovirus is a widespread pathogen of major medical importance. It causes significant morbidity and mortality in the immunocompromised and congenital infections can result in severe disabilities or stillbirth. Development of a vaccine is prioritized, but no candidate is close to release. Although correlations of viral genetic variability with pathogenicity are suspected, knowledge about strain diversity of the 235kb genome is still limited. In this study, 96 full-length human cytomegalovirus genomes from clinical isolates were characterized, quadrupling the available information for full-genome analysis. These data provide the first high-resolution map of human cytomegalovirus interhost diversity and evolution. We show that cytomegalovirus is significantly more divergent than all other human herpesviruses and highlight hotspots of diversity in the genome. Importantly, 75% of strains are not genetically intact, but contain disruptive mutations in a diverse set of 26 genes, including immunomodulative genes UL40 and UL111A. These mutants are independent from culture passaging artifacts and circulate in natural populations. Pervasive recombination, which is linked to the widespread occurrence of multiple infections, was found throughout the genome. Recombination density was significantly higher than in other human herpesviruses and correlated with strain diversity. While the overall effects of strong purifying selection on virus evolution are apparent, evidence of diversifying selection was found in several genes encoding proteins that interact with the host immune system, including UL18, UL40, UL142 and UL147. These residues may present phylogenetic signatures of past and ongoing virus-host interactions. IMPORTANCE Human cytomegalovirus has the largest genome of all viruses that infect humans. Currently, there is a great interest in establishing associations between genetic variants and strain pathogenicity of this herpesvirus. Since the number of publicly available full-genome sequences is limited, knowledge about strain diversity is highly fragmented and biased towards a small set of loci. Combined with our previous work, we have now contributed 101 complete genome sequences. We have used these data to conduct the first high-resolution analysis of interhost genome diversity, providing an unbiased and comprehensive overview of cytomegalovirus variability. These data are of major value to the development of novel antivirals and a vaccine and to identify potential targets for genotype-phenotype experiments. Furthermore, they have enabled a thorough study of the evolutionary processes that have shaped cytomegalovirus diversity.
Collapse
|
24
|
McWhorter AR, Smith LM, Shellam GR, Redwood AJ. Murine cytomegalovirus strains co-replicate at multiple tissue sites and establish co-persistence in salivary glands in the absence of Ly49H-mediated competition. J Gen Virol 2015; 96:1127-1137. [PMID: 25575707 DOI: 10.1099/vir.0.000047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 11/18/2022] Open
Abstract
Infection with multiple genetically distinct strains of pathogen is common and can lead to positive (complementation) or negative (competitive) within-host interactions. These interactions can alter aspects of the disease process and help shape pathogen evolution. Infection of the host with multiple strains of cytomegalovirus (CMV) occurs frequently in humans and mice. Profound, NK-cell-mediated (apparent) competition has been identified in C57BL/6 mice, and prevented the replication and shedding of certain co-infecting CMV strains. However, the frequency of such strong competition has not been established. Other within-host interactions such as complementation or alternative forms of competition remain possible. Moreover, high rates of recombination in both human CMV and murine CMV (MCMV) suggest prolonged periods of viral co-replication, rather than strong competitive suppression. An established model was employed to investigate the different possible outcomes of multi-strain infection in other mouse strains. In this study, co-replication of up to four strains of MCMV in the spleen, liver and salivary glands was observed in both MCMV-susceptible and MCMV-resistant mice. In the absence of apparent competition, no other forms of competition were unmasked. In addition, no evidence of complementation between viral strains was observed. Importantly, co-replication of MCMV strains was apparent for up to 90 days in the salivary glands. These data indicated that competition was not the default outcome of multi-strain CMV infection. Prolonged, essentially neutral, co-replication may be the norm, allowing for multi-strain transmission and prolonged opportunities for recombination.
Collapse
Affiliation(s)
- Andrea R McWhorter
- School of Pathology and Laboratory Medicine, M504, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Lee M Smith
- School of Pathology and Laboratory Medicine, M504, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Geoffrey R Shellam
- School of Pathology and Laboratory Medicine, M504, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Alec J Redwood
- The Institute for Immunology and Infectious Diseases, Murdoch University, Building 390, Discovery Way, Murdoch, Western Australia 6150, Australia.,School of Pathology and Laboratory Medicine, M504, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
25
|
Goüy de Bellocq J, Baird SJE, Albrechtová J, Sobeková K, Piálek J. Murine cytomegalovirus is not restricted to the house mouse Mus musculus domesticus: prevalence and genetic diversity in the European house mouse hybrid zone. J Virol 2015; 89:406-14. [PMID: 25320317 PMCID: PMC4301121 DOI: 10.1128/jvi.02466-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/08/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Murine cytomegalovirus (MCMV) is a betaherpesvirus of the house mouse, Mus musculus domesticus. It is a common infectious agent of wild mice and a highly studied pathogen of the laboratory mouse. Betaherpesviruses are specific to their hosts, and it is not known if other Mus taxa carry MCMV or if it is restricted to M. m. domesticus. We sampled mice over a 145-km transect of Bavaria-Bohemia crossing a hybrid zone between M. m. domesticus and Mus musculus musculus in order to investigate the occurrence of MCMV in two Mus subspecies and to test the limits of the specificity of the virus for its host. We hypothesized that if the two subspecies carry MCMV and if the virus is highly specific to its host, divergent MCMV lineages would have codiverged with their hosts and would have a geographical distribution constrained by the host genetic background. A total of 520 mice were tested by enzyme-linked immunosorbent assay (ELISA) and/or nested PCR targeting the M94 gene. Seropositive and PCR-positive individuals were found in both Mus subspecies. Seroprevalence was high, at 79.4%, but viral DNA was detected in only 41.7% of mice. Sequencing revealed 20 haplotypes clustering in 3 clades that match the host genetic structure in the hybrid zone, showing 1 and 2 MCMV lineages in M. m. domesticus and M. m. musculus, respectively. The estimated time to the most recent common ancestor (1.1 million years ago [Mya]) of the MCMVs matches that of their hosts. In conclusion, MCMV has coevolved with these hosts, suggesting that its diversity in nature may be underappreciated, since other members of the subgenus Mus likely carry different MCMVs. IMPORTANCE Murine cytomegalovirus (MCMV) is a betaherpesvirus of the house mouse, Mus musculus domesticus, an important lab model for human cytomegalovirus (HCMV) infection. The majority of lab studies are based on only two strains of MCMVs isolated from M. m. domesticus, Smith and K181, the latter derived from repeated passage of Smith in mouse submaxillary glands. The presence of MCMV in other members of the Mus subgenus had not even been investigated. By screening mouse samples collected in the European house mouse hybrid zone between M. m. domesticus and M. m. musculus, we show that MCMV is not restricted to the M. m. domesticus subspecies and that MCMVs likely codiverged with their Mus hosts. Thus, the diversity of MCMV in nature may be seriously underappreciated, since other members of the subgenus Mus likely carry their own MCMV lineages.
Collapse
Affiliation(s)
- Joëlle Goüy de Bellocq
- Research Facility Studenec, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Stuart J E Baird
- Research Facility Studenec, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jana Albrechtová
- Research Facility Studenec, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Karolína Sobeková
- Research Facility Studenec, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic Comenius University in Bratislava, Faculty of Natural Sciences, Department of Zoology, Bratislava, Slovakia
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
26
|
Sgourakis NG, Natarajan K, Ying J, Vogeli B, Boyd LF, Margulies DH, Bax A. The structure of mouse cytomegalovirus m04 protein obtained from sparse NMR data reveals a conserved fold of the m02-m06 viral immune modulator family. Structure 2014; 22:1263-1273. [PMID: 25126960 DOI: 10.1016/j.str.2014.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/19/2022]
Abstract
Immunoevasins are key proteins used by viruses to subvert host immune responses. Determining their high-resolution structures is key to understanding virus-host interactions toward the design of vaccines and other antiviral therapies. Mouse cytomegalovirus encodes a unique set of immunoevasins, the m02-m06 family, that modulates major histocompatibility complex class I (MHC-I) antigen presentation to CD8+ T cells and natural killer cells. Notwithstanding the large number of genetic and functional studies, the structural biology of immunoevasins remains incompletely understood, largely because of crystallization bottlenecks. Here we implement a technology using sparse nuclear magnetic resonance data and integrative Rosetta modeling to determine the structure of the m04/gp34 immunoevasin extracellular domain. The structure reveals a β fold that is representative of the m02-m06 family of viral proteins, several of which are known to bind MHC-I molecules and interfere with antigen presentation, suggesting its role as a diversified immune regulation module.
Collapse
Affiliation(s)
- Nikolaos G Sgourakis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beat Vogeli
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Černý J, Černá Bolfíková B, Valdés JJ, Grubhoffer L, Růžek D. Evolution of tertiary structure of viral RNA dependent polymerases. PLoS One 2014; 9:e96070. [PMID: 24816789 PMCID: PMC4015915 DOI: 10.1371/journal.pone.0096070] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/02/2014] [Indexed: 11/18/2022] Open
Abstract
Viral RNA dependent polymerases (vRdPs) are present in all RNA viruses; unfortunately, their sequence similarity is too low for phylogenetic studies. Nevertheless, vRdP protein structures are remarkably conserved. In this study, we used the structural similarity of vRdPs to reconstruct their evolutionary history. The major strength of this work is in unifying sequence and structural data into a single quantitative phylogenetic analysis, using powerful a Bayesian approach. The resulting phylogram of vRdPs demonstrates that RNA-dependent DNA polymerases (RdDPs) of viruses within Retroviridae family cluster in a clearly separated group of vRdPs, while RNA-dependent RNA polymerases (RdRPs) of dsRNA and +ssRNA viruses are mixed together. This evidence supports the hypothesis that RdRPs replicating +ssRNA viruses evolved multiple times from RdRPs replicating +dsRNA viruses, and vice versa. Moreover, our phylogram may be presented as a scheme for RNA virus evolution. The results are in concordance with the actual concept of RNA virus evolution. Finally, the methods used in our work provide a new direction for studying ancient virus evolution.
Collapse
Affiliation(s)
- Jiří Černý
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- * E-mail:
| | - Barbora Černá Bolfíková
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - James J. Valdés
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
28
|
Arenas M, Posada D. Simulation of genome-wide evolution under heterogeneous substitution models and complex multispecies coalescent histories. Mol Biol Evol 2014; 31:1295-301. [PMID: 24557445 PMCID: PMC3995339 DOI: 10.1093/molbev/msu078] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Genomic evolution can be highly heterogeneous. Here, we introduce a new framework to simulate genome-wide sequence evolution under a variety of substitution models that may change along the genome and the phylogeny, following complex multispecies coalescent histories that can include recombination, demographics, longitudinal sampling, population subdivision/species history, and migration. A key aspect of our simulation strategy is that the heterogeneity of the whole evolutionary process can be parameterized according to statistical prior distributions specified by the user. We used this framework to carry out a study of the impact of variable codon frequencies across genomic regions on the estimation of the genome-wide nonsynonymous/synonymous ratio. We found that both variable codon frequencies across genes and rate variation among sites and regions can lead to severe underestimation of the global dN/dS values. The program SGWE—Simulation of Genome-Wide Evolution—is freely available from http://code.google.com/p/sgwe-project/, including extensive documentation and detailed examples.
Collapse
Affiliation(s)
- Miguel Arenas
- Centre for Molecular Biology "Severo Ochoa," Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | |
Collapse
|
29
|
Traesel CK, Sá e Silva M, Weiss M, Spilki FR, Weiblen R, Flores EF. Genetic diversity of 3' region of glycoprotein D gene of bovine herpesvirus 1 and 5. Virus Genes 2014; 48:438-47. [PMID: 24482291 DOI: 10.1007/s11262-014-1040-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/12/2014] [Indexed: 11/28/2022]
Abstract
Bovine herpesviruses 1 (BoHV-1) and 5 (BoHV-5) are closely related alphaherpesviruses of cattle. While BoHV-1 is mainly associated with respiratory/genital disease and rarely associated with neurological disease, BoHV-5 is the primary agent of meningoencephalitis in cattle. The envelope glycoprotein D of alphaherpesviruses (BoHV-1/gD1 and BoHV-5/gD5) is involved in the early steps of virus infection and may influence virus tropism and neuropathogenesis. This study performed a sequence analysis of the 3' region of gD gene (gD3') of BoHV-1 isolates recovered from respiratory/genital disease (n = 6 and reference strain Cooper) or from neurological disease (n = 7); and from seven typical neurological BoHV-5 isolates. After PCR amplification, nucleotide (nt) sequencing, and aminoacid (aa) sequence prediction; gD3' sequences were compared, identity levels were calculated, and selective pressure was analyzed. The phylogenetic reconstruction based on nt and aa sequences allowed for a clear differentiation of BoHV-1 (n = 14) and BoHV-5 (n = 7) clusters. The seven BoHV-1 isolates from neurological disease are grouped within the BoHV-1 branch. A consistent alignment of 346 nt revealed a high similarity within each viral species (gD1 = 98.3 % nt and aa; gD5 = 97.8 % nt and 85.8 % aa) and an expected lower similarity between gD1 and gD5 (73.7 and 64.1 %, nt and aa, respectively). The analysis of molecular evolution revealed an average negative selection at gD3'. Thus, the phylogeny and similarity levels allowed for differentiation of BoHV-1 and BoHV-5 species, but not further division in subspecies. Sequence analysis did not allow for the identification of genetic differences in gD3' potentially associated with the respective clinical/pathological phenotypes, yet revealed a lower level of gD3' conservation than previously reported.
Collapse
Affiliation(s)
- Carolina Kist Traesel
- Laboratoire des Maladies Infectieuses Virales Vétérinaires (LMIVV), Département de Pathologie et Microbiologie, Faculté de Médicine Vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint Hyacinthe, QC, J2S 7C6, Canada,
| | | | | | | | | | | |
Collapse
|
30
|
Anthony SJ, Epstein JH, Murray KA, Navarrete-Macias I, Zambrana-Torrelio CM, Solovyov A, Ojeda-Flores R, Arrigo NC, Islam A, Ali Khan S, Hosseini P, Bogich TL, Olival KJ, Sanchez-Leon MD, Karesh WB, Goldstein T, Luby SP, Morse SS, Mazet JAK, Daszak P, Lipkin WI. A strategy to estimate unknown viral diversity in mammals. mBio 2013; 4:e00598-13. [PMID: 24003179 PMCID: PMC3760253 DOI: 10.1128/mbio.00598-13] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED The majority of emerging zoonoses originate in wildlife, and many are caused by viruses. However, there are no rigorous estimates of total viral diversity (here termed "virodiversity") for any wildlife species, despite the utility of this to future surveillance and control of emerging zoonoses. In this case study, we repeatedly sampled a mammalian wildlife host known to harbor emerging zoonotic pathogens (the Indian Flying Fox, Pteropus giganteus) and used PCR with degenerate viral family-level primers to discover and analyze the occurrence patterns of 55 viruses from nine viral families. We then adapted statistical techniques used to estimate biodiversity in vertebrates and plants and estimated the total viral richness of these nine families in P. giganteus to be 58 viruses. Our analyses demonstrate proof-of-concept of a strategy for estimating viral richness and provide the first statistically supported estimate of the number of undiscovered viruses in a mammalian host. We used a simple extrapolation to estimate that there are a minimum of 320,000 mammalian viruses awaiting discovery within these nine families, assuming all species harbor a similar number of viruses, with minimal turnover between host species. We estimate the cost of discovering these viruses to be ~$6.3 billion (or ~$1.4 billion for 85% of the total diversity), which if annualized over a 10-year study time frame would represent a small fraction of the cost of many pandemic zoonoses. IMPORTANCE Recent years have seen a dramatic increase in viral discovery efforts. However, most lack rigorous systematic design, which limits our ability to understand viral diversity and its ecological drivers and reduces their value to public health intervention. Here, we present a new framework for the discovery of novel viruses in wildlife and use it to make the first-ever estimate of the number of viruses that exist in a mammalian host. As pathogens continue to emerge from wildlife, this estimate allows us to put preliminary bounds around the potential size of the total zoonotic pool and facilitates a better understanding of where best to allocate resources for the subsequent discovery of global viral diversity.
Collapse
Affiliation(s)
| | | | | | - Isamara Navarrete-Macias
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | - Alexander Solovyov
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Rafael Ojeda-Flores
- Facultad de Medicina Veterinaria and Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Distrito Federal, Mexico
| | - Nicole C. Arrigo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | - Shahneaz Ali Khan
- Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | | | | | | | | | | | - Tracey Goldstein
- One Health Institute & Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Stephen P. Luby
- International Center for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Jonna A. K. Mazet
- One Health Institute & Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | | | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
31
|
Natural killer cell dependent within-host competition arises during multiple MCMV infection: consequences for viral transmission and evolution. PLoS Pathog 2013; 9:e1003111. [PMID: 23300458 PMCID: PMC3536701 DOI: 10.1371/journal.ppat.1003111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/18/2012] [Indexed: 11/18/2022] Open
Abstract
It is becoming increasingly clear that many diseases are the result of infection from multiple genetically distinct strains of a pathogen. Such multi-strain infections have the capacity to alter both disease and pathogen dynamics. Infection with multiple strains of human cytomegalovirus (HCMV) is common and has been linked to enhanced disease. Suggestions that disease enhancement in multi-strain infected patients is due to complementation have been supported by trans-complementation studies in mice during co-infection of wild type and gene knockout strains of murine CMV (MCMV). Complementation between naturally circulating strains of CMV has, however, not been assessed. In addition, many models of multi-strain infection predict that co-infecting strains will compete with each other and that this competition may contribute to selective transmission of more virulent pathogen strains. To assess the outcome of multi-strain infection, C57BL/6 mice were infected with up to four naturally circulating strains of MCMV. In this study, profound within-host competition was observed between co-infecting strains of MCMV. This competition was MCMV strain specific and resulted in the complete exclusion of certain strains of MCMV from the salivary glands of multi-strain infected mice. Competition was dependent on Ly49H+ natural killer (NK) cells as well as the expression of the ligand for Ly49H, the MCMV encoded product, m157. Strains of MCMV which expressed an m157 gene product capable of ligating Ly49H were outcompeted by strains of MCMV expressing variant m157 genes. Importantly, within-host competition prevented the shedding of the less virulent strains of MCMV, those recognized by Ly49H, into the saliva of multi-strain infected mice. These data demonstrate that NK cells have the strain specific recognition capacity required to meditate within-host competition between strains of MCMV. Furthermore, this within-host competition has the capacity to shape the dynamics of viral shedding and potentially select for the transmission of more virulent virus strains. Infection of the host with multiple strains of a pathogen is common and occurs with the herpesvirus, human cytomegalovirus (HCMV). However the effects of multi-strain infection on the host and the pathogen remain poorly studied. Here we show, in a mouse model, that infection of C57BL/6 mice with multiple strains of murine CMV (MCMV) results in profound within-host competition. Competition between the strains of MCMV is dependent on Ly49H+ natural killer (NK) cells. The NK cell activation receptor Ly49H receptor targets certain genotypes of the viral protein, m157. During multi-strain infection, strains of MCMV encoding an m157 capable of binding Ly49H are excluded from the salivary gland and the saliva of C57BL/6 mice, allowing for the shedding of only non-Ly49H binding strains of MCMV in the saliva. This within-host competition could therefore have significant impacts on the circulation of MCMV strains, as only the most virulent MCMV strains were present in the saliva.
Collapse
|