1
|
Schaunaman N, Nichols T, Cervantes D, Hartsoe P, Ferrington DA, Chu HW. The Effect of a TLR3 Agonist on Airway Allergic Inflammation and Viral Infection in Immunoproteasome-Deficient Mice. Viruses 2024; 16:1384. [PMID: 39339860 PMCID: PMC11437510 DOI: 10.3390/v16091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Allergic asthma is characterized by increased type 2 inflammation, including eosinophils. Subjects with allergic asthma have recurrent symptoms due to their constant exposure to environmental allergens, such as house dust mite (HDM), which can be further exacerbated by respiratory infections like rhinovirus. The immunoproteasome (IP) is a proteolytic machinery that is induced by inflammatory mediators during virus infection, but the role of the IP in airway allergic inflammation during rhinovirus infection remains unknown. Wild-type (WT) and IP knockout (KO) mice were challenged with HDM. At 48 h after the last HDM challenge, mice were infected with rhinovirus 1B (RV-A1B) for 24 h. After HDM and RV-A1B treatment, IP KO (vs. WT) mice had significantly more lung eosinophils and neutrophils, as well as a significantly higher viral load, but less IFN-beta expression, compared to WT mice. A TLR3 agonist polyinosinic-polycytidylic acid (Poly I:C) treatment after RV-A1B infection in HDM-challenged IP KO mice significantly increased IFN-beta expression and reduced viral load, with a minimal effect on the number of inflammatory cells. Our data suggest that immunoproteasome is an important mechanism functioning to prevent excessive inflammation and viral infection in allergen-exposed mice, and that Poly I:C could be therapeutically effective in enhancing the antiviral response and lessening the viral burden in lungs with IP deficiency.
Collapse
Affiliation(s)
| | - Taylor Nichols
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| | - Diana Cervantes
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| | - Paige Hartsoe
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| | | | - Hong Wei Chu
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| |
Collapse
|
2
|
Gheitasi H, Sabbaghian M, Fadaee M, Mohammadzadeh N, Shekarchi AA, Poortahmasebi V. The relationship between autophagy and respiratory viruses. Arch Microbiol 2024; 206:136. [PMID: 38436746 DOI: 10.1007/s00203-024-03838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 03/05/2024]
Abstract
Respiratory viruses have caused severe global health problems and posed essential challenges to the medical community. In recent years, the role of autophagy as a critical process in cells in viral respiratory diseases has been noticed. One of the vital catabolic biological processes in the body is autophagy. Autophagy contributes to energy recovery by targeting and selectively directing foreign microorganisms, organelles, and senescent intracellular proteins to the lysosome for degradation and phagocytosis. Activation or suppression of autophagy is often initiated when foreign pathogenic organisms such as viruses infect cells. Because of its antiviral properties, several viruses may escape or resist this process by encoding viral proteins. Viruses can also use autophagy to enhance their replication or prolong the persistence of latent infections. Here, we provide an overview of autophagy and respiratory viruses such as coronavirus, rhinovirus, parainfluenza, influenza, adenovirus, and respiratory syncytial virus, and examine the interactions between them and the role of autophagy in the virus-host interaction process and the resulting virus replication strategy.
Collapse
Affiliation(s)
- Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Mohammadzadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Daskou M, Fotooh Abadi L, Gain C, Wong M, Sharma E, Kombe Kombe AJ, Nanduri R, Kelesidis T. The Role of the NRF2 Pathway in the Pathogenesis of Viral Respiratory Infections. Pathogens 2023; 13:39. [PMID: 38251346 PMCID: PMC10819673 DOI: 10.3390/pathogens13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
In humans, acute and chronic respiratory infections caused by viruses are associated with considerable morbidity and mortality. Respiratory viruses infect airway epithelial cells and induce oxidative stress, yet the exact pathogenesis remains unclear. Oxidative stress activates the transcription factor NRF2, which plays a key role in alleviating redox-induced cellular injury. The transcriptional activation of NRF2 has been reported to affect both viral replication and associated inflammation pathways. There is complex bidirectional crosstalk between virus replication and the NRF2 pathway because virus replication directly or indirectly regulates NRF2 expression, and NRF2 activation can reversely hamper viral replication and viral spread across cells and tissues. In this review, we discuss the complex role of the NRF2 pathway in the regulation of the pathogenesis of the main respiratory viruses, including coronaviruses, influenza viruses, respiratory syncytial virus (RSV), and rhinoviruses. We also summarize the scientific evidence regarding the effects of the known NRF2 agonists that can be utilized to alter the NRF2 pathway.
Collapse
Affiliation(s)
- Maria Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leila Fotooh Abadi
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Chandrima Gain
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arnaud John Kombe Kombe
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Ravikanth Nanduri
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| |
Collapse
|
4
|
Rhinovirus and Cell Death. Viruses 2021; 13:v13040629. [PMID: 33916958 PMCID: PMC8067602 DOI: 10.3390/v13040629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/27/2022] Open
Abstract
Rhinoviruses (RVs) are the etiological agents of upper respiratory tract infections, particularly the common cold. Infections in the lower respiratory tract is shown to cause severe disease and exacerbations in asthma and COPD patients. Viruses being obligate parasites, hijack host cell pathways such as programmed cell death to suppress host antiviral responses and prolong viral replication and propagation. RVs are non-enveloped positive sense RNA viruses with a lifecycle fully contained within the cytoplasm. Despite decades of study, the details of how RVs exit the infected cell are still unclear. There are some diverse studies that suggest a possible role for programmed cell death. In this review, we aimed to consolidate current literature on the impact of RVs on cell death to inform future research on the topic. We searched peer reviewed English language literature in the past 21 years for studies on the interaction with and modulation of cell death pathways by RVs, placing it in the context of the broader knowledge of these interconnected pathways from other systems. Our review strongly suggests a role for necroptosis and/or autophagy in RV release, with the caveat that all the literature is based on RV-A and RV-B strains, with no studies to date examining the interaction of RV-C strains with cell death pathways.
Collapse
|
5
|
Zhu Q, Hu H, Liu H, Shen H, Yan Z, Gao L. A synthetic STING agonist inhibits the replication of human parainfluenza virus 3 and rhinovirus 16 through distinct mechanisms. Antiviral Res 2020; 183:104933. [PMID: 32949635 PMCID: PMC7494516 DOI: 10.1016/j.antiviral.2020.104933] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/06/2020] [Accepted: 09/12/2020] [Indexed: 02/09/2023]
Abstract
Stimulator of interferon genes (STING), as a signaling hub in innate immunity, plays a central role for the effective initiation of host defense mechanisms against microbial infections. Upon binding of its ligand cyclic dinucleotides (CDNs) produced by the cyclic GMP-AMP synthase (cGAS) or invading bacteria, STING is activated, leading to the induction of both type I interferon responses and autophagy, which are critical for the control of certain microbial infections. RNA viruses, such as Parainfluenza virus (PIV) and Rhinovirus (HRV), are among the leading causes of respiratory infections that affect human health without effective treatments. Activation of STING pathway may provide a new therapeutic approach fighting against these viruses. However, the role of STING in the control of RNA virus infection remains largely unexplored. In this study, using dimeric amidobenzimidazole (diABZI), a newly discovered synthetic small molecule STING receptor agonist with much higher potency than CDNs, we found that activation of STING elicits potent antiviral effects against parainfluenza virus type 3 (PIV3) and human rhinovirus 16 (HRV16), two representative respiratory viral pathogens. Notably, while anti-PIV3 activity was depend on the induction of type I interferon responses through TANK-binding kinase 1 (TBK1), anti-HRV16 activity required the induction of autophagy-related gene 5 (ATG5)-dependent autophagy, indicating that two distinct antiviral mechanisms are engaged upon STING activation. Antiviral activity and individual specific pathway was further confirmed in infected primary bronchial epithelial cells. Our findings thus demonstrate the distinct antiviral mechanisms triggered by STING agonist and uncover the potential of therapeutic effect against different viruses. The small molecule STING receptor agonist diABZI elicits potent antiviral effects against PIV3 and HRV16 in cell line model. IFN neutralizing Ab or BX795, but not autophagy inhibitor CQ or ATG5 knockdown, inhibited the anti-PIV3 activity of diABZI. Autophagy inhibitor CQ or ATG5 knockdown, but not IFN pathway blocker, reduced the anti-HRV16 activity of diABZI. In human primary bronchial epithelial cells model, diABZI show anti-PIV3 and anti-RHV16 activity via different pathways.
Collapse
Affiliation(s)
- Qingyuan Zhu
- Roche Innovation Center Shanghai, Shanghai, 201203, China.
| | - Hui Hu
- Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - Haixia Liu
- Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - Hong Shen
- Roche Innovation Center Shanghai, Shanghai, 201203, China
| | - Zhipeng Yan
- Roche Innovation Center Shanghai, Shanghai, 201203, China.
| | - Lu Gao
- Roche Innovation Center Shanghai, Shanghai, 201203, China.
| |
Collapse
|
6
|
Matsumoto K, Iikura K, Morita H, Saito H. Barrier dysfunction in the atopic march-how does atopic dermatitis lead to asthma in children? J Allergy Clin Immunol 2020; 145:1551-1553. [PMID: 32344057 DOI: 10.1016/j.jaci.2020.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/03/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Katsuhito Iikura
- Department of Pediatrics, National Hospital Organization Nishisaitama-chuo National Hospital, Saitama, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
7
|
Sun S, Yu X, Sun F, Tang Y, Zhao J, Zeng T. Dynamically characterizing individual clinical change by the steady state of disease-associated pathway. BMC Bioinformatics 2019; 20:697. [PMID: 31874621 PMCID: PMC6929545 DOI: 10.1186/s12859-019-3271-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Along with the development of precision medicine, individual heterogeneity is attracting more and more attentions in clinical research and application. Although the biomolecular reaction seems to be some various when different individuals suffer a same disease (e.g. virus infection), the final pathogen outcomes of individuals always can be mainly described by two categories in clinics, i.e. symptomatic and asymptomatic. Thus, it is still a great challenge to characterize the individual specific intrinsic regulatory convergence during dynamic gene regulation and expression. Except for individual heterogeneity, the sampling time also increase the expression diversity, so that, the capture of similar steady biological state is a key to characterize individual dynamic biological processes. Results Assuming the similar biological functions (e.g. pathways) should be suitable to detect consistent functions rather than chaotic genes, we design and implement a new computational framework (ABP: Attractor analysis of Boolean network of Pathway). ABP aims to identify the dynamic phenotype associated pathways in a state-transition manner, using the network attractor to model and quantify the steady pathway states characterizing the final steady biological sate of individuals (e.g. normal or disease). By analyzing multiple temporal gene expression datasets of virus infections, ABP has shown its effectiveness on identifying key pathways associated with phenotype change; inferring the consensus functional cascade among key pathways; and grouping pathway activity states corresponding to disease states. Conclusions Collectively, ABP can detect key pathways and infer their consensus functional cascade during dynamical process (e.g. virus infection), and can also categorize individuals with disease state well, which is helpful for disease classification and prediction.
Collapse
Affiliation(s)
- Shaoyan Sun
- School of Mathematics and Statistics Science, Ludong University, Yantai, 264025, China.
| | - Xiangtian Yu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Chinese Academy Science, Shanghai, 200031, China
| | - Fengnan Sun
- Medical Laboratory, Yantaishan Hospital, Yantai, 264001, China
| | - Ying Tang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Chinese Academy Science, Shanghai, 200031, China
| | - Juan Zhao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Chinese Academy Science, Shanghai, 200031, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Chinese Academy Science, Shanghai, 200031, China. .,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| |
Collapse
|
8
|
Wark PAB. Why are people with asthma more susceptible to influenza? Eur Respir J 2019; 54:54/4/1901748. [PMID: 31649149 DOI: 10.1183/13993003.01748-2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Peter A B Wark
- Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia
| |
Collapse
|
9
|
Interleukin 1 Receptor-Like 1 (IL1RL1) Promotes Airway Bacterial and Viral Infection and Inflammation. Infect Immun 2019; 87:IAI.00340-19. [PMID: 31061143 DOI: 10.1128/iai.00340-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 01/14/2023] Open
Abstract
Interleukin 1 receptor-like 1 (IL1RL1), also known as suppression of tumorigenicity 2 (ST2), is the receptor for interleukin 33 (IL-33) and has been increasingly studied in type 2 inflammation. An increase in airway IL-33/ST2 signaling in asthma has been associated with eosinophilic inflammation, but little is known about the role of ST2 in neutrophilic inflammation. Airway Mycoplasma pneumoniae and human rhinovirus (HRV) infections are linked to neutrophilic inflammation during acute exacerbations of asthma. However, whether ST2 contributes to M. pneumoniae- and HRV-mediated airway inflammation is poorly understood. The current study sought to determine the functions of ST2 during airway M. pneumoniae or HRV infection. In cultured normal human primary airway epithelial cells, ST2 overexpression (OE) increased the production of neutrophilic chemoattractant IL-8 in the absence or presence of M. pneumoniae or HRV1B infection. ST2 OE also enhanced HRV1B-induced IP-10, a chemokine involved in asthma exacerbations. In the M. pneumoniae-infected mouse model, ST2 deficiency, in contrast to sufficiency, significantly reduced the levels of neutrophils following acute (≤24 h) infection, while in the HRV1B-infected mouse model, ST2 deficiency significantly reduced the levels of proinflammatory cytokines KC, IP-10, and IL-33 in bronchoalveolar lavage (BAL) fluid. Overall, ST2 overexpression in human epithelial cells and ST2 sufficiency in mice increased the M. pneumoniae and HRV loads in cell supernatants and BAL fluid. After pathogen infection, ST2-deficient mice showed a higher level of the host defense protein lactotransferrin in BAL fluid. Our data suggest that ST2 promotes proinflammatory responses (e.g., neutrophils) to airway bacterial and viral infection and that blocking ST2 signaling may broadly attenuate airway infection and inflammation.
Collapse
|
10
|
Christou EAA, Giardino G, Stefanaki E, Ladomenou F. Asthma: An Undermined State of Immunodeficiency. Int Rev Immunol 2019; 38:70-78. [PMID: 30939053 DOI: 10.1080/08830185.2019.1588267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Asthma is a heterogeneous chronic respiratory disease characterized by an increased burden of infections. Respiratory tract infections associated with an increased risk for asthma especially when occurring in the first months of life, also represent the most common cause of asthma exacerbations. The association between asthma and the increased frequency of infections and microbiota dysbiosis might be explained by a common mechanism, such as an underlying immune system defect. Apart from the well-established association between primary immunodeficiencies and asthma, several alterations in the immune response following infection have also been observed in asthmatic patients. An impairment in lung epithelial barrier integrity exists and is associated with both an increased susceptibility to infections and the development of asthma. Asthmatic patients are also found to have a deficient interferon (IFN) response upon infection. Additionally, defects in Toll-like receptor (TLR) signaling are observed in asthma and are correlated with both recurrent infections and asthma development. In this review, we summarize the common pathophysiological background of asthma and infections, highlighting the importance of an underlying immune system defect that predispose individuals to recurrent infections and asthma.
Collapse
Affiliation(s)
| | - Giuliana Giardino
- b Department of Translational Medical Sciences , University of Naples Federico II , Naples , Italy
| | - Evangelia Stefanaki
- c Department of Pediatrics , Venizeleion General Hospital , Heraklion , Greece
| | - Fani Ladomenou
- c Department of Pediatrics , Venizeleion General Hospital , Heraklion , Greece
| |
Collapse
|
11
|
Dakhama A, Al Mubarak R, Pavelka N, Voelker D, Seibold M, Ledford JG, Kraft M, Li L, Chu HW. Tollip Inhibits ST2 Signaling in Airway Epithelial Cells Exposed to Type 2 Cytokines and Rhinovirus. J Innate Immun 2019; 12:103-115. [PMID: 30928973 DOI: 10.1159/000497072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/07/2019] [Indexed: 01/08/2023] Open
Abstract
The negative immune regulator Tollip inhibits the proinflammatory response to rhinovirus (RV) infection, a contributor to airway neutrophilic inflammation and asthma exacerbations, but the underlying molecular mechanisms are poorly understood. Tollip may inhibit IRAK1, a signaling molecule downstream of ST2, the receptor of IL-33. This study was carried out to determine whether Tollip downregulates ST2 signaling via inhibition of IRAK1, but promotes soluble ST2 (sST2) production, thereby limiting excessive IL-8 production in human airway epithelial cells during RV infection in a type 2 cytokine milieu (e.g., IL-13 and IL-33 stimulation). Tollip- and IRAK1-deficient primary human tracheobronchial epithelial (HTBE) cells and Tollip knockout (KO) HTBE cells were generated using the shRNA knockdown and CRISPR/Cas9 approaches, respectively. Cells were stimulated with IL-13, IL-33, and/or RV16. sST2, activated IRAK1, and IL-8 were measured. A Tollip KO mouse model was utilized to test if Tollip regulates the airway inflammatory response to RV infection in vivo under IL-13 and IL-33 treatment. Following IL-13, IL-33, and RV treatment, Tollip-deficient (vs. -sufficient) HTBE cells produced excessive IL-8, accompanied by decreased sST2 production but increased IRAK1 activation. IL-8 production following IL-13/IL-33/RV exposure was markedly attenuated in IRAK1-deficient HTBE cells, as well as in Tollip KO HTBE cells treated with an IRAK1 inhibitor or a recombinant sST2 protein. Tollip KO (vs. wild-type) mice developed exaggerated airway neutrophilic responses to RV in the context of IL-13 and IL-33 treatment. Collectively, these data demonstrate that Tollip restricts excessive IL-8 production in type 2 cytokine-exposed human airways during RV infection by promoting sST2 production and inhibiting IRAK1 activation. sST2 and IRAK1 may be therapeutic targets for attenuating excessive neutrophilic airway inflammation in asthma, especially during RV infection.
Collapse
Affiliation(s)
- Azzeddine Dakhama
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Reem Al Mubarak
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Nicole Pavelka
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Dennis Voelker
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Max Seibold
- Center for Genes and Environmental Health, National Jewish Health, Denver, Colorado, USA
| | - Julie G Ledford
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Monica Kraft
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Hong Wei Chu
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA,
| |
Collapse
|
12
|
Liu Y, Zhang M, Lou L, Li L, Zhang Y, Chen W, Zhou W, Bai Y, Gao J. IRAK-M Associates with Susceptibility to Adult-Onset Asthma and Promotes Chronic Airway Inflammation. THE JOURNAL OF IMMUNOLOGY 2019; 202:899-911. [PMID: 30617222 DOI: 10.4049/jimmunol.1800712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/30/2018] [Indexed: 01/21/2023]
Abstract
IL-1R-associated kinase (IRAK)-M regulates lung immunity during asthmatic airway inflammation. However, the regulatory effect of IRAK-M differs when airway inflammation persists. A positive association between IRAK-M polymorphisms with childhood asthma has been reported. In this study, we investigated the role of IRAK-M in the susceptibility to adult-onset asthma and in chronic airway inflammation using an animal model. Through genetic analysis of IRAK-M polymorphisms in a cohort of adult-onset asthma patients of Chinese Han ethnicity, we identified two IRAK-M single nucleotide polymorphisms, rs1624395 and rs1370128, genetically associated with adult-onset asthma. Functionally, the top-associated rs1624395, with an enhanced affinity to the transcription factor c-Jun, was associated with a higher expression of IRAK-M mRNA in blood monocytes. In contrast to the protective effect of IRAK-M in acute asthmatic inflammation, we found a provoking impact of IRAK-M on chronic asthmatic inflammation. Following chronic OVA stimulation, IRAK-M knockout (KO) mice presented with significantly less inflammatory cells, a lower Th2 cytokine level, a higher IFN-γ concentration, and increased percentage of Th1 cells in the lung tissue than wild type mice. Moreover, lung dendritic cells (DC) from OVA-treated IRAK-M KO mice expressed a higher percentage of costimulatory molecules PD-L1 and PD-L2. Mechanistically, in vitro TLR ligation led to a greater IFN-γ production by IRAK-M KO DCs than wild type DCs. These findings demonstrated a distinctive role of IRAK-M in maintaining chronic Th2 airway inflammation via inhibiting the DC-mediated Th1 activation and indicated a complex role for IRAK-M in the initiation and progression of experimental allergic asthma.
Collapse
Affiliation(s)
- Yi Liu
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Department of Respiratory Medicine, Civil Aviation General Hospital, Beijing 100123, China
| | - Mingqiang Zhang
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lili Lou
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lun Li
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Youming Zhang
- Genomics Medicine Section, National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Wei Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; and
| | - Yan Bai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Jinming Gao
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| |
Collapse
|
13
|
Li YW, Han R, Wang JL, Yang M, Dan XM, Li AX. Molecular identification and functional characterization of IRAK-3 from a teleost fish, the orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2018; 81:383-389. [PMID: 30010020 DOI: 10.1016/j.fsi.2018.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Interleukin-1 receptor-associated kinase-3 (IRAK-3) is a unique IRAK family member, which negatively regulates the TLR-mediated immune response in mammals. However, the function of IRAK-3 remains to be elucidated in fish. In the present study, an IRAK-3 cDNA sequence (EcIRAK-3) with an ORF of 1776 bp encoding 591 amino acids was identified in the orange-spotted grouper (Epinephelus coioides). Sequence analysis indicated that EcIRAK-3 shared the conserved structure characteristics and functional sites of vertebrate IRAK-3, and has a high sequence identity and phylogenetic relationship with that of other fish species. The genomic EcIRAK-3 ORF contained 13 exons and 12 introns, which was similar to that of most other fish species. In healthy grouper, EcIRAK-3 was ubiquitously expressed in seven tested tissues with the highest expression in the gills. Following Cryptocaryon irritans infection, the EcIRAK-3 transcript was up-regulated in the gills during the course of the experiment, but down-regulated in the spleen at an earlier point in time. EcIRAK-3 was localized in both the cytoplasm and nucleus in a condensed form, and its cellular distribution was affected by the death domain and ProST domain. In addition, EcIRAK-3 significantly increased MyD88-mediated NF-κB activity, and its function was ProST domain and kinase domain dependent. Taken together, the results obtained here have contributed to the understanding of the function of IRAK-3 in fish.
Collapse
Affiliation(s)
- Yan-Wei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, PR China; Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Rui Han
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jiu-Le Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Man Yang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| | - An-Xing Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, PR China.
| |
Collapse
|
14
|
Immunoproteasomes as a novel antiviral mechanism in rhinovirus-infected airways. Clin Sci (Lond) 2018; 132:1711-1723. [PMID: 29980604 DOI: 10.1042/cs20180337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/23/2022]
Abstract
Rhinovirus (RV) infection is involved in acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). RV primarily infects upper and lower airway epithelium. Immunoproteasomes (IP) are proteolytic machineries with multiple functions including the regulation of MHC class I antigen processing during viral infection. However, the role of IP in RV infection has not been explored. We sought to investigate the expression and function of IP during airway RV infection. Primary human tracheobronchial epithelial (HTBE) cells were cultured at air-liquid interface (ALI) and treated with RV16, RV1B, or interferon (IFN)-λ in the absence or presence of an IP inhibitor (ONX-0914). IP gene (i.e. LMP2) deficient mouse tracheal epithelial cells (mTECs) were cultured for the mechanistic studies. LMP2-deficient mouse model was used to define the in vivo role of IP in RV infection. IP subunits LMP2 and LMP7, antiviral genes MX1 and OAS1 and viral load were measured. Both RV16 and RV1B significantly increased the expression of LMP2 and LMP7 mRNA and proteins, and IFN-λ mRNA in HTBE cells. ONX-0914 down-regulated MX1 and OAS1, and increased RV16 load in HTBE cells. LMP2-deficient mTECs showed a significant increase in RV1B load compared with the wild-type (WT) cells. LMP2-deficient (compared with WT) mice increased viral load and neutrophils in bronchoalveolar lavage (BAL) fluid after 24 h of RV1B infection. Mechanistically, IFN-λ induction by RV infection contributed to LMP2 and LMP7 up-regulation in HTBE cells. Our data suggest that IP are induced during airway RV infection, which in turn may serve as an antiviral and anti-inflammatory mechanism.
Collapse
|
15
|
Rahtes A, Geng S, Lee C, Li L. Cellular and molecular mechanisms involved in the resolution of innate leukocyte inflammation. J Leukoc Biol 2018; 104:535-541. [PMID: 29688584 DOI: 10.1002/jlb.3ma0218-070r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a host response to infection or damage and is vital for clearing pathogens and host debris. When this resolution fails to occur, chronic inflammation ensues. Chronic inflammation is typically characterized as a low-grade, persistent inflammatory process that can last for months or even years. This differs from acute inflammation, which is typically a fast, robust response to a stimulus followed by resolution with return to homeostasis. Inflammation resolution occurs through a variety of cellular processes and signaling components that act as "brakes" to keep inflammation in check. In cases of chronic inflammation, these "brakes" are often dysfunctional. Due to its prevalent association with chronic diseases, there is growing interest in characterizing these negative regulators and their cellular effects in innate leukocytes. In this review, we aim to describe key cellular and molecular homeostatic regulators of innate leukocytes, with particular attention to the emerging regulatory processes of autophagy and lysosomal fusion during inflammation resolution.
Collapse
Affiliation(s)
- Allison Rahtes
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Christina Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
16
|
Wu Q, Jiang D, Schaefer NR, Harmacek L, O'Connor BP, Eling TE, Eickelberg O, Chu HW. Overproduction of growth differentiation factor 15 promotes human rhinovirus infection and virus-induced inflammation in the lung. Am J Physiol Lung Cell Mol Physiol 2017; 314:L514-L527. [PMID: 29192094 DOI: 10.1152/ajplung.00324.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human rhinovirus (HRV) is the most common virus contributing to acute exacerbations of chronic obstructive pulmonary disease (COPD) nearly year round, but the mechanisms have not been well elucidated. Recent clinical studies suggest that high levels of growth differentiation factor 15 (GDF15) protein in the blood are associated with an increased yearly rate of all-cause COPD exacerbations. Therefore, in the current study, we investigated whether GDF15 promotes HRV infection and virus-induced lung inflammation. We first examined the role of GDF15 in regulating host defense and HRV-induced inflammation using human GDF15 transgenic mice and cultured human GDF15 transgenic mouse tracheal epithelial cells. Next, we determined the effect of GDF15 on viral replication, antiviral responses, and inflammation in human airway epithelial cells with GDF15 knockdown and HRV infection. Finally, we explored the signaling pathways involved in airway epithelial responses to HRV infection in the context of GDF15. Human GDF15 protein overexpression in mice led to exaggerated inflammatory responses to HRV, increased infectious particle release, and decreased IFN-λ2/3 (IL-28A/B) mRNA expression in the lung. Moreover, GDF15 facilitated HRV replication and inflammation via inhibiting IFN-λ1/IL-29 protein production in human airway epithelial cells. Lastly, Smad1 cooperated with interferon regulatory factor 7 (IRF7) to regulate airway epithelial responses to HRV infection partly via GDF15 signaling. Our results reveal a novel function of GDF15 in promoting lung HRV infection and virus-induced inflammation, which may be a new mechanism for the increased susceptibility and severity of respiratory viral (i.e., HRV) infection in cigarette smoke-exposed airways with GDF15 overproduction.
Collapse
Affiliation(s)
- Qun Wu
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado
| | - Di Jiang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado
| | - Niccolette R Schaefer
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado
| | - Laura Harmacek
- Center for Genes, Environment, and Health, National Jewish Health , Denver, Colorado
| | - Brian P O'Connor
- Center for Genes, Environment, and Health, National Jewish Health , Denver, Colorado
| | - Thomas E Eling
- The Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park, North Carolina
| | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Hong Wei Chu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health , Denver, Colorado
| |
Collapse
|
17
|
Loxham M, Davies DE. Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients. J Allergy Clin Immunol 2017; 139:1736-1751. [PMID: 28583446 PMCID: PMC5457128 DOI: 10.1016/j.jaci.2017.04.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
The bronchial epithelium is continuously exposed to a multitude of noxious challenges in inhaled air. Cellular contact with most damaging agents is reduced by the action of the mucociliary apparatus and by formation of a physical barrier that controls passage of ions and macromolecules. In conjunction with these defensive barrier functions, immunomodulatory cross-talk between the bronchial epithelium and tissue-resident immune cells controls the tissue microenvironment and barrier homeostasis. This is achieved by expression of an array of sensors that detect a wide variety of viral, bacterial, and nonmicrobial (toxins and irritants) agents, resulting in production of many different soluble and cell-surface molecules that signal to cells of the immune system. The ability of the bronchial epithelium to control the balance of inhibitory and activating signals is essential for orchestrating appropriate inflammatory and immune responses and for temporally modulating these responses to limit tissue injury and control the resolution of inflammation during tissue repair. In asthmatic patients abnormalities in many aspects of epithelial barrier function have been identified. We postulate that such abnormalities play a causal role in immune dysregulation in the airways by translating gene-environment interactions that underpin disease pathogenesis and exacerbation.
Collapse
Affiliation(s)
- Matthew Loxham
- Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton, United Kingdom
| | - Donna E Davies
- Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton, United Kingdom.
| |
Collapse
|
18
|
Effect of IRAK-M on Airway Inflammation Induced by Cigarette Smoking. Mediators Inflamm 2017; 2017:6506953. [PMID: 28951634 PMCID: PMC5603328 DOI: 10.1155/2017/6506953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 12/27/2022] Open
Abstract
Background IRAK-M, negatively regulating Toll-like receptor, is shown the dual properties in the varied disease contexts. We studied the effect of IRAK-M deficiency on cigarette smoking- (CS-) induced airway inflammation under acute or subacute conditions in a mouse model. Methods A number of cellular and molecular techniques were used to detect the differences between IRAK-M knockout (KO) and wild type (WT) mice exposed to 3-day or 7-week CS. Results Airway inflammation was comparable between IRAK-M KO and WT mice under 3-day CS exposure. Upon short-term CS exposure and lipopolysaccharide (LPS) inhalation, IRAK-M KO mice demonstrated worse airway inflammation, significantly higher percentage of Th17 cells and concentrations of proinflammatory cytokines in the lungs, and significantly elevated expression of costimulatory molecules CD40 and CD86 by lung dendritic cells (DCs) or macrophages. Conversely, 7-week CS exposed IRAK-M KO mice demonstrated significantly attenuated airway inflammation, significantly lower concentrations of proinflammatory cytokines in the lungs, significantly increased percentage of Tregs, and lower expression of CD11b and CD86 by lung DCs or macrophages. Conclusions IRAK-M plays distinctive effect on CS-induced airway inflammation, and influences Treg/Th17 balance and expression of costimulatory molecules by DCs and macrophages, depending on duration and intensity of stimulus.
Collapse
|
19
|
Baines KJ, Fu JJ, McDonald VM, Gibson PG. Airway gene expression of IL-1 pathway mediators predicts exacerbation risk in obstructive airway disease. Int J Chron Obstruct Pulmon Dis 2017; 12:541-550. [PMID: 28223794 PMCID: PMC5308595 DOI: 10.2147/copd.s119443] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Exacerbations of asthma and COPD are a major cause of morbidity and mortality and are responsible for significant health care costs. This study further investigates interleukin (IL)-1 pathway activation and its relationship with exacerbations of asthma and COPD. Methods In this prospective cohort study, 95 participants with stable asthma (n=35) or COPD (n=60) were recruited and exacerbations recorded over the following 12 months. Gene expressions of IL-1 pathway biomarkers, including the IL-1 receptors (IL1R1, IL1R2, and IL1RN), and signaling molecules (IRAK2, IRAK3, and PELI1), were measured in sputum using real-time quantitative polymerase chain reaction. Mediators were compared between the frequent (≥2 exacerbations in the 12 months) and infrequent exacerbators, and the predictive relationships investigated using receiver operating characteristic curves and area under the curve (AUC) values. Results Of the 95 participants, 89 completed the exacerbation follow-up, where 30 participants (n=22 COPD, n=8 asthma) had two or more exacerbations. At the baseline visit, expressions of IRAK2, IRAK3, PELI1, and IL1R1 were elevated in participants with frequent exacerbations of both asthma and COPD combined and separately. In the combined population, sputum gene expression of IRAK3 (AUC=75.4%; P<0.001) was the best predictor of future frequent exacerbations, followed by IL1R1 (AUC=72.8%; P<0.001), PELI1 (AUC=71.2%; P<0.001), and IRAK2 (AUC=68.6; P=0.004). High IL-1 pathway gene expression was associated with frequent prior year exacerbations and correlated with the number and severity of exacerbations. Conclusion The upregulation of IL-1 pathway mediators is associated with frequent exacerbations of obstructive airway disease. Further studies should investigate these mediators as both potential diagnostic biomarkers predicting at-risk patients and novel treatment targets.
Collapse
Affiliation(s)
- Katherine J Baines
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle; Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton, NSW, Australia
| | - Juan-Juan Fu
- Respiratory Group, Department of Integrated Traditional Chinese and West Medicine, West China Hospital, Sichuan University, People's Republic of China
| | - Vanessa M McDonald
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle; Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton, NSW, Australia
| | - Peter G Gibson
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle; Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton, NSW, Australia
| |
Collapse
|
20
|
Jiang D, Matsuda J, Berman R, Schaefer N, Stevenson C, Gross J, Zhang B, Sanchez A, Li L, Chu HW. A novel mouse model of conditional IRAK-M deficiency in myeloid cells: application in lung Pseudomonas aeruginosa infection. Innate Immun 2017; 23:206-215. [PMID: 28120642 DOI: 10.1177/1753425916684202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Myeloid cells such as macrophages are critical to innate defense against infection. IL-1 receptor-associated kinase M (IRAK-M) is a negative regulator of TLR signaling during bacterial infection, but the role of myeloid cell IRAK-M in bacterial infection is unclear. Our goal was to generate a novel conditional knockout mouse model to define the role of myeloid cell IRAK-M during bacterial infection. Myeloid cell-specific IRAK-M knockout mice were generated by crossing IRAK-M floxed mice with LysM-Cre knock-in mice. The resulting LysM-Cre+/IRAK-Mfl/wt and control (LysM-Cre-/IRAK-Mfl/wt) mice were intranasally infected with Pseudomonas aeruginosa (PA). IRAK-M deletion, inflammation, myeloperoxidase (MPO) activity and PA load were measured in leukocytes, bronchoalveolar lavage (BAL) fluid and lungs. PA killing assay with BAL fluid was performed to determine mechanisms of IRAK-M-mediated host defense. IRAK-M mRNA and protein levels in alveolar and lung macrophages were significantly reduced in LysM-Cre+/IRAK-Mfl/wt mice compared with control mice. Following PA infection, LysM-Cre+/IRAK-Mfl/wt mice have enhanced lung neutrophilic inflammation, including MPO activity, but reduced PA load. The increased lung MPO activity in LysM-Cre+/IRAK-Mfl/wt mouse BAL fluid reduced PA load. Generation of IRAK-M conditional knockout mice will enable investigators to determine precisely the function of IRAK-M in myeloid cells and other types of cells during infection and inflammation.
Collapse
Affiliation(s)
- Di Jiang
- 1 Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Jennifer Matsuda
- 2 Office of Academic Affairs and Department of Biomedical Research, National Jewish Health, Denver, CO, USA
| | - Reena Berman
- 1 Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | - Connor Stevenson
- 1 Department of Medicine, National Jewish Health, Denver, CO, USA
| | - James Gross
- 2 Office of Academic Affairs and Department of Biomedical Research, National Jewish Health, Denver, CO, USA
| | - Bicheng Zhang
- 2 Office of Academic Affairs and Department of Biomedical Research, National Jewish Health, Denver, CO, USA
| | - Amelia Sanchez
- 1 Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Liwu Li
- 3 Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Hong Wei Chu
- 1 Department of Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
21
|
Airway Epithelial Orchestration of Innate Immune Function in Response to Virus Infection. A Focus on Asthma. Ann Am Thorac Soc 2017; 13 Suppl 1:S55-63. [PMID: 27027954 DOI: 10.1513/annalsats.201507-421mg] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Asthma is a very common respiratory condition with a worldwide prevalence predicted to increase. There are significant differences in airway epithelial responses in asthma that are of particular interest during exacerbations. Preventing exacerbations is a primary aim when treating asthma because they often necessitate unscheduled healthcare visits and hospitalizations and are a significant cause of morbidity and mortality. The most common cause of asthma exacerbations is a respiratory virus infection, of which the most likely type is rhinovirus infection. This article focuses on the role played by the epithelium in orchestrating the innate immune responses to respiratory virus infection. Recent studies show impaired bronchial epithelial cell innate antiviral immune responses, as well as augmentation of a pro-Th2 response characterized by the epithelial-derived cytokines IL-25 and IL-33, crucial in maintaining the Th2 cytokine response to virus infection in asthma. A better understanding of the mechanisms of these abnormal immune responses has the potential to lead to the development of novel therapeutic targets for virus-induced exacerbations. The aim of this article is to highlight current knowledge regarding the role of viruses and immune modulation in the asthmatic epithelium and to discuss exciting areas for future research and novel treatments.
Collapse
|
22
|
Jiang D, Berman R, Wu Q, Stevenson C, Chu HW. The Anti-inflammatory Effect of Alpha-1 Antitrypsin in Rhinovirus-infected Human Airway Epithelial Cells. ACTA ACUST UNITED AC 2016; 7. [PMID: 28191362 DOI: 10.4172/2155-9899.1000475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Excessive airway inflammation is seen in chronic obstructive pulmonary disease (COPD) patients experiencing acute exacerbations, which are often associated with human rhinovirus (HRV) infection. Alpha-1 antitrypsin (A1AT) has anti-inflammatory function in endothelial cells and monocytes, but its anti-inflammatory effect has not been investigated in COPD airway epithelial cells. We determined A1AT's anti-inflammatory function in COPD airway epithelial cells and the underlying mechanisms such as the role of caspase-1. METHODS Brushed bronchial epithelial cells from COPD and normal subjects were cultured at air-liquid interface and treated with A1AT or bovine serum albumin (BSA, control) two hours prior to whole cigarette smoke (WCS) or air exposure, followed by HRV-16 infection. After 24 hours of viral infection, cell supernatants were collected for measuring IL-8, and cells were examined for caspase-1. The in vivo anti-inflammatory function of A1AT was determined by infecting mice intranasally with HRV-1B followed by aerosolized A1AT or BSA. RESULTS A1AT significantly reduced WCS and HRV-16-induced IL-8 production in normal and COPD airway epithelial cells. COPD cells are less sensitive to A1AT's anti-inflammatory effect than normal cells. A1AT exerted the anti-inflammatory function in part via reducing caspase-1 in normal cells, but not in COPD cells. In mice, A1AT significantly reduced HRV-1B induced lung neutrophilic inflammation. CONCLUSIONS A1AT exerts an anti-inflammatory effect in cigarette smoke-exposed and HRV-infected human airway epithelial cells, which may be related to its inhibitory effect on caspase-1 activity.
Collapse
Affiliation(s)
- Di Jiang
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Reena Berman
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Qun Wu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| |
Collapse
|
23
|
Berman R, Jiang D, Wu Q, Stevenson CR, Schaefer NR, Chu HW. MUC18 Regulates Lung Rhinovirus Infection and Inflammation. PLoS One 2016; 11:e0163927. [PMID: 27701461 PMCID: PMC5049769 DOI: 10.1371/journal.pone.0163927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/17/2016] [Indexed: 02/04/2023] Open
Abstract
Background MUC18 is upregulated in the lungs of asthma and COPD patients. It has been shown to have pro-inflammatory functions in cultured human airway epithelial cells during viral infections and in mice during lung bacterial infections. However, the in vivo role of MUC18 in the context of viral infections remains poorly understood. The goal of this study is to define the in vivo function of MUC18 during respiratory rhinovirus infection. Methods Muc18 wild-type (WT) and knockout (KO) mice were infected with human rhinovirus 1B (HRV-1B) and sacrificed after 1 day to determine the inflammatory and antiviral responses. To examine the direct effects of Muc18 on viral infection, tracheal epithelial cells isolated from WT and KO mice were grown under air-liquid interface and infected with HRV-1B. Finally, siRNA mediated knockdown of MUC18 was performed in human airway epithelial cells (AECs) to define the impact of MUC18 on human airway response to HRV-1B. Results Both viral load and neutrophilic inflammation were significantly decreased in Muc18 KO mice compared to WT mice. In the in vitro setting, viral load was significantly lower and antiviral gene expression was higher in airway epithelial cells of Muc18 KO mice than the WT mice. Furthermore, in MUC18 knockdown human AECs, viral load was decreased and antiviral gene expression was increased compared to controls. Conclusions Our study is the first to demonstrate MUC18’s pro-inflammatory and pro-viral function in an in vivo mouse model of rhinovirus infection.
Collapse
Affiliation(s)
- Reena Berman
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States of America
| | - Di Jiang
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States of America
| | - Qun Wu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States of America
| | - Connor R. Stevenson
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States of America
| | - Niccolette R. Schaefer
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States of America
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States of America
- * E-mail:
| |
Collapse
|
24
|
Huang C, Jiang D, Francisco D, Berman R, Wu Q, Ledford JG, Moore CM, Ito Y, Stevenson C, Munson D, Li L, Kraft M, Chu HW. Tollip SNP rs5743899 modulates human airway epithelial responses to rhinovirus infection. Clin Exp Allergy 2016; 46:1549-1563. [PMID: 27513438 DOI: 10.1111/cea.12793] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Rhinovirus (RV) infection in asthma induces varying degrees of airway inflammation (e.g. neutrophils), but the underlying mechanisms remain unclear. OBJECTIVE The major goal was to determine the role of genetic variation [e.g. single nucleotide polymorphisms (SNPs)] of Toll-interacting protein (Tollip) in airway epithelial responses to RV in a type 2 cytokine milieu. METHODS DNA from blood of asthmatic and normal subjects was genotyped for Tollip SNP rs5743899 AA, AG and GG genotypes. Human tracheobronchial epithelial (HTBE) cells from donors without lung disease were cultured to determine pro-inflammatory and antiviral responses to IL-13 and RV16. Tollip knockout and wild-type mice were challenged with house dust mite (HDM) and infected with RV1B to determine lung inflammation and antiviral response. RESULTS Asthmatic subjects carrying the AG or GG genotype (AG/GG) compared with the AA genotype demonstrated greater airflow limitation. HTBE cells with AG/GG expressed less Tollip. Upon IL-13 and RV16 treatment, cells with AG/GG (vs. AA) produced more IL-8 and expressed less antiviral genes, which was coupled with increased NF-κB activity and decreased expression of LC3, a hallmark of the autophagic pathway. Tollip co-localized and interacted with LC3. Inhibition of autophagy decreased antiviral genes in IL-13- and RV16-treated cells. Upon HDM and RV1B, Tollip knockout (vs. wild-type) mice demonstrated higher levels of lung neutrophilic inflammation and viral load, but lower levels of antiviral gene expression. CONCLUSIONS AND CLINICAL RELEVANCE Our data suggest that Tollip SNP rs5743899 may predict varying airway response to RV infection in asthma.
Collapse
Affiliation(s)
- C Huang
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - D Jiang
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - D Francisco
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - R Berman
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Q Wu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - J G Ledford
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - C M Moore
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Y Ito
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - C Stevenson
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - D Munson
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - L Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M Kraft
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - H W Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
25
|
Abstract
Chronic airway diseases are a significant cause of morbidity and mortality worldwide, and their prevalence is predicted to increase in the future. Respiratory viruses are the most common cause of acute pulmonary infection, and there is clear evidence of their role in acute exacerbations of inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease. Studies have reported impaired host responses to virus infection in these diseases, and a better understanding of the mechanisms of these abnormal immune responses has the potential to lead to the development of novel therapeutic targets for virus-induced exacerbations. The aim of this article is to review the current knowledge regarding the role of viruses and immune modulation in acute exacerbations of chronic pulmonary diseases and to discuss exciting areas for future research and novel treatments.
Collapse
|
26
|
Berman R, Jiang D, Wu Q, Chu HW. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke. Int J Chron Obstruct Pulmon Dis 2016; 11:1279-86. [PMID: 27354786 PMCID: PMC4910614 DOI: 10.2147/copd.s105717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human rhinovirus (HRV) infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS) increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT) reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air–liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS) with or without HRV-16 (5×104 50% Tissue Culture Infective Dose [TCID50]/transwell) infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection.
Collapse
Affiliation(s)
- Reena Berman
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Di Jiang
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Qun Wu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
27
|
Kadiyala V, Sasse SK, Altonsy MO, Berman R, Chu HW, Phang TL, Gerber AN. Cistrome-based Cooperation between Airway Epithelial Glucocorticoid Receptor and NF-κB Orchestrates Anti-inflammatory Effects. J Biol Chem 2016; 291:12673-12687. [PMID: 27076634 DOI: 10.1074/jbc.m116.721217] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 12/11/2022] Open
Abstract
Antagonism of pro-inflammatory transcription factors by monomeric glucocorticoid receptor (GR) has long been viewed as central to glucocorticoid (GC) efficacy. However, the mechanisms and targets through which GCs exert therapeutic effects in diseases such as asthma remain incompletely understood. We previously defined a surprising cooperative interaction between GR and NF-κB that enhanced expression of A20 (TNFAIP3), a potent inhibitor of NF-κB. Here we extend this observation to establish that A20 is required for maximal cytokine repression by GCs. To ascertain the global extent of GR and NF-κB cooperation, we determined genome-wide occupancy of GR, the p65 subunit of NF-κB, and RNA polymerase II in airway epithelial cells treated with dexamethasone, TNF, or both using chromatin immunoprecipitation followed by deep sequencing. We found that GR recruits p65 to dimeric GR binding sites across the genome and discovered additional regulatory elements in which GR-p65 cooperation augments gene expression. GR targets regulated by this mechanism include key anti-inflammatory and injury response genes such as SERPINA1, which encodes α1 antitrypsin, and FOXP4, an inhibitor of mucus production. Although dexamethasone treatment reduced RNA polymerase II occupancy of TNF targets such as IL8 and TNFAIP2, we were unable to correlate specific binding sequences for GR or occupancy patterns with repressive effects on transcription. Our results suggest that cooperative anti-inflammatory gene regulation by GR and p65 contributes to GC efficacy, whereas tethering interactions between GR and p65 are not universally required for GC-based gene repression.
Collapse
Affiliation(s)
- Vineela Kadiyala
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Sarah K Sasse
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Mohammed O Altonsy
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206,; Department of Zoology, Sohag University, Sohag 825224, Egypt, and
| | - Reena Berman
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Hong W Chu
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Tzu L Phang
- Department of Medicine, University of Colorado, Denver, Colorado 80045
| | - Anthony N Gerber
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206,; Department of Medicine, University of Colorado, Denver, Colorado 80045.
| |
Collapse
|
28
|
Endothelial cell tolerance to lipopolysaccharide challenge is induced by monophosphoryl lipid A. Clin Sci (Lond) 2015; 130:451-61. [PMID: 26669797 DOI: 10.1042/cs20150592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/15/2015] [Indexed: 01/18/2023]
Abstract
Prior exposure to lipopolysaccharide (LPS) produces a reduced or "tolerant" inflammatory response to subsequent challenges with LPS, however the potent pro-inflammatory effects of LPS limit its clinical benefit. The adjuvant monophosphoryl lipid A (MPLA) is a weak toll-like receptor 4 (TLR4) agonist that induces negligible inflammation but retains potent immunomodulatory properties. We postulated that pre-treatment with MPLA would inhibit the inflammatory response of endothelial cells to secondary LPS challenge. Human umbilical vein endothelial cells (HUVECs), were exposed to MPLA (10 μg/ml), LPS (100 ng/ml) or vehicle control. HUVECs were then washed and maintained in culture for 24 h before being challenged with LPS (100 ng/ml). Supernatants were collected and examined for cytokine production in the presence or absence of siRNA inhibitors of critical TLR4 signalling proteins. Pre-treatment with MPLA attenuated interleukin (IL)-6 production to secondary LPS challenge to a similar degree as LPS. The application of myeloid differentiation primary response gene 88 (MyD88) siRNA dramatically reduced MPLA-induced tolerance while TIR-domain-containing adapter-inducing interferon-β (TRIF) siRNA had no effect. The tolerant phenotype in endothelial cells was associated with reduced IκB kinase (IKK), p38 and c-Jun N-terminal kinase (JNK) phosphorylation and enhanced IL-1 receptor associated kinase-M (IRAK-M) expression for LPS-primed HUVECs, but less so in MPLA primed cells. Instead, MPLA-primed HUVECs demonstrated enhanced p-extracellular-signal-regulated kinase (ERK) phosphorylation. In contrast with leucocytes in which tolerance is largely TRIF-dependent, MyD88 signalling mediated endotoxin tolerance in endothelial cells. Most importantly, MPLA, a vaccine adjuvant with a wide therapeutic window, induced tolerance to LPS in endothelial cells.
Collapse
|
29
|
Wen X, Cheng A, Wang M, Jia R, Zhu D, Chen S, Liu M, Sun K, Yang Q, Wu Y, Chen X. Recent advances from studies on the role of structural proteins in enterovirus infection. Future Microbiol 2015; 10:1529-42. [DOI: 10.2217/fmb.15.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Enteroviruses are a large group of small nonenveloped viruses that cause common and debilitating illnesses affecting humans and animals worldwide. The capsid composed by viral structural proteins packs the RNA genome. It is becoming apparent that structural proteins of enteroviruses play versatile roles in the virus–host interaction in the viral life cycle, more than just a shell. Furthermore, structural proteins to some extent may be associated with viral virulence and pathogenesis. Better understanding the roles of structural proteins in enterovirus infection may lead to the development of potential antiviral strategies. Here, we discuss recent advances from studies on the role of structural proteins in enterovirus infection and antiviral therapeutics targeted structural proteins.
Collapse
Affiliation(s)
- Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Engineering & Technology Center for Laboratory Animals of Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| |
Collapse
|
30
|
Srivastav S, Saha A, Barua J, Ukil A, Das PK. IRAK-M regulates the inhibition of TLR-mediated macrophage immune response during late in vitro Leishmania donovani infection. Eur J Immunol 2015; 45:2787-97. [PMID: 26140693 DOI: 10.1002/eji.201445336] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 06/19/2015] [Accepted: 06/30/2015] [Indexed: 12/18/2022]
Abstract
Intramacrophage protozoan parasite Leishmania donovani, causative agent of visceral leishmaniasis, escapes Toll-like receptor (TLR) dependent early host immune response by inducing the deubiquitinating enzyme A20, which is sustained up to 6 h postinfection only. Therefore, Leishmania must apply other means to deactivate late host responses. Here, we elucidated the role of IL-1 receptor-associated kinase M (IRAK-M), a negative regulator of TLR signaling, in downregulating macrophage proinflammatory response during late hours of in vitro infection. Our data reveal a sharp decline in IRAK1 and IRAK4 phosphorylation at 24 h postinfection along with markedly reduced association of IRAK1-TNF receptor associated factor 6, which is mandatory for TLR activation. In contrast, IRAK-M was induced after A20 levels decreased and reached a maximum at 24 h postinfection. IRAK-M induction coincided with increased stimulation of TGF-β, a hallmark cytokine of visceral infection. TGF-β-dependent signaling-mediated induction of SMAD family of proteins, 2, 3, and 4 plays important roles in transcriptional upregulation of IRAK-M. In infected macrophages, siRNA-mediated silencing of IRAK-M displayed enhanced IRAK1 and IRAK4 phosphorylation with a concomitant increase in downstream NF-κB activity and reduced parasite survival. Taken together, the results suggest that IRAK-M may be targeted by L. donovani to inhibit TLR-mediated proinflammatory response late during in vitro infection.
Collapse
Affiliation(s)
- Supriya Srivastav
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Amrita Saha
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Jayita Barua
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
31
|
Wu Q, Jiang D, Huang C, van Dyk LF, Li L, Chu HW. Trehalose-mediated autophagy impairs the anti-viral function of human primary airway epithelial cells. PLoS One 2015; 10:e0124524. [PMID: 25879848 PMCID: PMC4400043 DOI: 10.1371/journal.pone.0124524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/16/2015] [Indexed: 01/17/2023] Open
Abstract
Human rhinovirus (HRV) is the most common cause of acute exacerbations of chronic lung diseases including asthma. Impaired anti-viral IFN-λ1 production and increased HRV replication in human asthmatic airway epithelial cells may be one of the underlying mechanisms leading to asthma exacerbations. Increased autophagy has been shown in asthmatic airway epithelium, but the role of autophagy in anti-HRV response remains uncertain. Trehalose, a natural glucose disaccharide, has been recognized as an effective autophagy inducer in mammalian cells. In the current study, we used trehalose to induce autophagy in normal human primary airway epithelial cells in order to determine if autophagy directly regulates the anti-viral response against HRV. We found that trehalose-induced autophagy significantly impaired IFN-λ1 expression and increased HRV-16 load. Inhibition of autophagy via knockdown of autophagy-related gene 5 (ATG5) effectively rescued the impaired IFN-λ1 expression by trehalose and subsequently reduced HRV-16 load. Mechanistically, ATG5 protein interacted with retinoic acid-inducible gene I (RIG-I) and IFN-β promoter stimulator 1 (IPS-1), two critical molecules involved in the expression of anti-viral interferons. Our results suggest that induction of autophagy in human primary airway epithelial cells inhibits the anti-viral IFN-λ1 expression and facilitates HRV infection. Intervention of excessive autophagy in chronic lung diseases may provide a novel approach to attenuate viral infections and associated disease exacerbations.
Collapse
Affiliation(s)
- Qun Wu
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Di Jiang
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Chunjian Huang
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Linda F. van Dyk
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
32
|
Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells. PLoS One 2014; 9:e108342. [PMID: 25244293 PMCID: PMC4171526 DOI: 10.1371/journal.pone.0108342] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/27/2014] [Indexed: 11/19/2022] Open
Abstract
Background/Objective The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection. Methodology/Main Results We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.
Collapse
|
33
|
Berman R, Huang C, Jiang D, Finigan JH, Wu Q, Chu HW. MUC18 Differentially Regulates Pro-Inflammatory and Anti-Viral Responses in Human Airway Epithelial Cells. ACTA ACUST UNITED AC 2014; 5. [PMID: 25478290 DOI: 10.4172/2155-9899.1000257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE MUC18 or CD146, a transmembrane glycoprotein, is mainly expressed by endothelial cells and smooth muscle cells where it serves as a cell-cell adhesion molecule. We have found MUC18 up-regulation in airway epithelial cells of patients with asthma and chronic obstructive pulmonary disease (COPD). However, the function of MUC18 in airway epithelial cells remains unclear. In the present study, we tested the hypothesis that MUC18 exerts a pro-inflammatory function during stimulation with a viral mimic polyI:C or human rhinovirus infection. METHODS Normal human primary airway epithelial cells were transduced with lentivirus encoding MUC18 cDNA to over-express MUC18 or with GFP (control), and treated with polyI:C or HRV for detection of pro-inflammatory cytokine IL-8 and anti-viral gene IFN-β. Additionally, we performed cell culture of human lung epithelial cell line NCIH292 cells to determine the mechanisms of MUC18 function. RESULTS We found that MUC18 over-expression promoted IL-8 production, while it inhibited IFN-β expression following polyI:C stimulation or HRV infection. Increased phosphorylation of MUC18 serines was observed in MUC18 over-expressing cells. Reduction of MUC18 serine phosphorylation by inhibiting ERK activity was associated with less production of IL-8 following polyI:C stimulation. CONCLUSIONS Our results for the first time demonstrate MUC18's pro-inflammatory and anti-viral function in human airway epithelial cells.
Collapse
Affiliation(s)
- Reena Berman
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Chunjian Huang
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Di Jiang
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - James H Finigan
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Qun Wu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|