1
|
da S Santos FR, Valadão DF, Bambirra JL, Moreira TP, de Souza CDF, Passos IBS, Queiroz-Junior CM, Fagundes CT, Teixeira MM, Costa VV, Souza DG. Targeting PI3Kγ Pathway for Treating Dengue virus Infection. Microb Pathog 2024; 197:107060. [PMID: 39490942 DOI: 10.1016/j.micpath.2024.107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Dengue disease is a major problem worldwide, impacting millions of people annually with no specific approved treatments. The pathogenesis of dengue is a complex interplay of viral and host factors, driven in particular by an excessive inflammatory response triggered by the infection. While it has been observed that various viruses can modulate the PI3K/Akt signaling pathway to aid replication and theunderlying mechanisms remainunclear. The study aims to explore the impact of PI3Kγ inhibition during Dengue virus (DENV) infection in vivo. Experiments were performed using both wild-type (WT) and PI3Kγ knockout mice inoculated with DENV. Parameters, including survival rates, hematologic, virologic, histopathologic, and inflammatory analyzes, were evaluated. Additionally, the therapeutic potential of a selective PI3Kγ inhibitor (AS605240) was investigated in DENV-infected A129 mice. PI3Kγ deficiency resulted in lower lethality and provided protection against DENV-induced thrombocytopenia, decreased hemoconcentration, vascular permeability, and liver damage compared to DENV-infected WT littermates. In addition, PI3Kγ deficiency correlated with reduced viral replication in the blood, spleen and liver alongside decreased production of inflammatory mediators in plasma and spleen. Pharmacologic inhibition of PI3Kγ not only ameliorated DENV-induced thrombocytopenia and liver injury, but also reduced DENV replication in target organs. Treatment with AS605240 reduced the concentration of IL-6 in the spleen and plasma.This study sheds light on the significant pro-viral effects of the PI3Kγ signaling pathway during DENV infection and its central role in pathogenesis by curbing excessive DENV-induced inflammation. Inhibition of PI3Kγ shows promising host-directed target for developing novel Dengue disease therapies, offering substantial benefits to hosts.
Collapse
Affiliation(s)
- Felipe R da S Santos
- Departament of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departament of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Deborah F Valadão
- Departament of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jordana L Bambirra
- Departament of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thaiane P Moreira
- Departament of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carla D F de Souza
- Departament of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ingredy B S Passos
- Departament of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso M Queiroz-Junior
- Departament of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caio T Fagundes
- Departament of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro M Teixeira
- Departament of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian V Costa
- Departament of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Daniele G Souza
- Departament of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Pallarés H, González López Ledesma M, Oviedo-Rouco S, Castellano L, Costa Navarro G, Fernández-Alvarez A, D’Andreiz M, Aldas-Bulos V, Alvarez D, Bazzini A, Gamarnik A. Zika virus non-coding RNAs antagonize antiviral responses by PKR-mediated translational arrest. Nucleic Acids Res 2024; 52:11128-11147. [PMID: 38917323 PMCID: PMC11472168 DOI: 10.1093/nar/gkae507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that causes severe outbreaks in human populations. ZIKV infection leads to the accumulation of small non-coding viral RNAs (known as sfRNAs) that are crucial for evasion of antiviral responses and for viral pathogenesis. However, the mechanistic understanding of how sfRNAs function remains incomplete. Here, we use recombinant ZIKVs and ribosome profiling of infected human cells to show that sfRNAs block translation of antiviral genes. Mechanistically, we demonstrate that specific RNA structures present in sfRNAs trigger PKR activation, which instead of limiting viral replication, enhances viral particle production. Although ZIKV infection induces mRNA expression of antiviral genes, translation efficiency of type I interferon and interferon stimulated genes were significantly downregulated by PKR activation. Our results reveal a novel viral adaptation mechanism mediated by sfRNAs, where ZIKV increases its fitness by repurposing the antiviral role of PKR into a proviral factor.
Collapse
Affiliation(s)
- Horacio M Pallarés
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Mora González López Ledesma
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago Oviedo-Rouco
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Guadalupe S Costa Navarro
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana J Fernández-Alvarez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Josefina D’Andreiz
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Andrea V Gamarnik
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
3
|
Melo K, Dos Santos CR, Franco ECS, Martins Filho AJ, Casseb SMM, Vasconcelos PFDC. Exploring the interplay between miRNAs, apoptosis and viral load, in Dengue virus infection. Virology 2024; 596:110095. [PMID: 38761641 DOI: 10.1016/j.virol.2024.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
Dengue virus (DENV) is a major global health concern, causing millions of infections annually. Understanding the cellular response to DENV infection is crucial for developing effective therapies. This study provides an in-depth analysis of the cellular response to Dengue virus (DENV) infection, with a specific focus on the interplay between microRNAs (miRNAs), apoptosis, and viral load across different DENV serotypes. Utilizing a variety of cell lines infected with four DENV serotypes, the research methodically quantifies viral load, and the expression levels of miRNA-15, miRNA-16, and BCL2 protein, alongside measuring apoptosis markers. Methodologically, the study employs quantitative PCR for viral load and miRNA expression analysis, and Western blot for apoptosis and BCL2 detection, with a statistical framework that includes ANOVA and correlation analysis to discern significant differences and relationships. The findings reveal that despite similar viral loads across DENV serotypes, DENV-2 exhibits a marginally higher load. A notable upregulation of miRNA-15 and miRNA-16 correlates positively with increased viral load, suggesting their potential role in modulating viral replication. Concurrently, a marked activation of caspases 3 and 7, along with changes in BCL2 protein levels, underscores the role of apoptosis in the cellular response to DENV infection. Conclusively, the study enhances the understanding of miRNA involvement in DENV pathogenesis, highlighting miRNA-15 and miRNA-16 as potential regulatory agents in viral replication and apoptosis. These findings pave the way for further exploration into miRNA-based therapeutic strategies against DENV infection.
Collapse
Affiliation(s)
- Karla Melo
- Instituto Evandro Chagas, Brazil; Universidade Federal do Pará, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Doets K, Pijlman GP. Subgenomic flavivirus RNA as key target for live-attenuated vaccine development. J Virol 2024; 98:e0010023. [PMID: 38808973 PMCID: PMC11265276 DOI: 10.1128/jvi.00100-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Live-attenuated flavivirus vaccines confer long-term protection against disease, but the design of attenuated flaviviruses does not follow a general approach. The non-coding, subgenomic flavivirus RNA (sfRNA) is produced by all flaviviruses and is an essential factor in viral pathogenesis and transmission. We argue that modulating sfRNA expression is a promising, universal strategy to finetune flavivirus attenuation for developing effective flavivirus vaccines of the future.
Collapse
Affiliation(s)
- Kristel Doets
- Wageningen University and Research, Laboratory of Virology, Wageningen, the Netherlands
| | - Gorben P. Pijlman
- Wageningen University and Research, Laboratory of Virology, Wageningen, the Netherlands
| |
Collapse
|
5
|
Bampali M, Kouvela A, Kesesidis N, Kassela K, Dovrolis N, Karakasiliotis I. West Nile Virus Subgenomic RNAs Modulate Gene Expression in a Neuronal Cell Line. Viruses 2024; 16:812. [PMID: 38793693 PMCID: PMC11125720 DOI: 10.3390/v16050812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are small non-coding products of the incomplete degradation of viral genomic RNA. They accumulate during flaviviral infection and have been associated with many functional roles inside the host cell. Studies so far have demonstrated that sfRNA plays a crucial role in determining West Nile virus (WNV) pathogenicity. However, its modulatory role on neuronal homeostasis has not been studied in depth. In this study, we investigated the mechanism of sfRNA biosynthesis and its importance for WNV replication in neuronal cells. We found that sfRNA1 is functionally redundant for both replication and translation of WNV. However, the concurrent absence of sfRNA1 and sfRNA2 species is detrimental for the survival of the virus. Differential expression analysis on RNA-seq data from WT and ΔsfRNA replicon cell lines revealed transcriptional changes induced by sfRNA and identified a number of putative targets. Overall, it was shown that sfRNA contributes to the viral evasion by suppressing the interferon-mediated antiviral response. An additional differential expression analysis among replicon and control Neuro2A cells also clarified the transcriptional changes that support WNV replication in neuronal cells. Increased levels of translation and oxidative phosphorylation, post-translational modification processes, and activated DNA repair pathways were observed in replicon cell lines, while developmental processes such as axonal growth were deficient.
Collapse
Affiliation(s)
| | | | | | | | | | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.B.); (A.K.); (N.K.); (K.K.); (N.D.)
| |
Collapse
|
6
|
Bourgeois NM, Wei L, Ho NNT, Neal ML, Seferos D, Tongogara T, Mast FD, Aitchison JD, Kaushansky A. Multiple receptor tyrosine kinases regulate dengue infection of hepatocytes. Front Cell Infect Microbiol 2024; 14:1264525. [PMID: 38585651 PMCID: PMC10995305 DOI: 10.3389/fcimb.2024.1264525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Dengue is an arboviral disease causing severe illness in over 500,000 people each year. Currently, there is no way to constrain dengue in the clinic. Host kinase regulators of dengue virus (DENV) infection have the potential to be disrupted by existing therapeutics to prevent infection and/or disease progression. Methods To evaluate kinase regulation of DENV infection, we performed kinase regression (KiR), a machine learning approach that predicts kinase regulators of infection using existing drug-target information and a small drug screen. We infected hepatocytes with DENV in vitro in the presence of a panel of 38 kinase inhibitors then quantified the effect of each inhibitor on infection rate. We employed elastic net regularization on these data to obtain predictions of which of 291 kinases are regulating DENV infection. Results Thirty-six kinases were predicted to have a functional role. Intriguingly, seven of the predicted kinases - EPH receptor A4 (EPHA4), EPH receptor B3 (EPHB3), EPH receptor B4 (EPHB4), erb-b2 receptor tyrosine kinase 2 (ERBB2), fibroblast growth factor receptor 2 (FGFR2), Insulin like growth factor 1 receptor (IGF1R), and ret proto-oncogene (RET) - belong to the receptor tyrosine kinase (RTK) family, which are already therapeutic targets in the clinic. We demonstrate that predicted RTKs are expressed at higher levels in DENV infected cells. Knockdown of EPHB4, ERBB2, FGFR2, or IGF1R reduces DENV infection in hepatocytes. Finally, we observe differential temporal induction of ERBB2 and IGF1R following DENV infection, highlighting their unique roles in regulating DENV. Discussion Collectively, our findings underscore the significance of multiple RTKs in DENV infection and advocate further exploration of RTK-oriented interventions against dengue.
Collapse
Affiliation(s)
- Natasha M. Bourgeois
- Department of Global Health, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Nhi N. T. Ho
- Department of Global Health, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Denali Seferos
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Tinotenda Tongogara
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Alexis Kaushansky
- Department of Global Health, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Zhang X, Li Y, Cao Y, Wu Y, Cheng G. The Role of Noncoding RNA in the Transmission and Pathogenicity of Flaviviruses. Viruses 2024; 16:242. [PMID: 38400018 PMCID: PMC10892091 DOI: 10.3390/v16020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Noncoding RNAs (ncRNAs) constitute a class of RNA molecules that lack protein-coding capacity. ncRNAs frequently modulate gene expression through specific interactions with target proteins or messenger RNAs, thereby playing integral roles in a wide array of cellular processes. The Flavivirus genus comprises several significant members, such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV), which have caused global outbreaks, resulting in high morbidity and mortality in human populations. The life cycle of arthropod-borne flaviviruses encompasses their transmission between hematophagous insect vectors and mammalian hosts. During this process, a complex three-way interplay occurs among the pathogen, vector, and host, with ncRNAs exerting a critical regulatory influence. ncRNAs not only constitute a crucial regulatory mechanism that has emerged from the coevolution of viruses and their hosts but also hold potential as antiviral targets for controlling flavivirus epidemics. This review introduces the biogenesis of flavivirus-derived ncRNAs and summarizes the regulatory roles of ncRNAs in viral replication, vector-mediated viral transmission, antiviral innate immunity, and viral pathogenicity. A profound comprehension of the interplay between ncRNAs and flaviviruses will help formulate efficacious prophylactic and therapeutic strategies against flavivirus-related diseases.
Collapse
Affiliation(s)
- Xianwen Zhang
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen 518000, China
| | - Yuhan Li
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Yingyi Cao
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan 430072, China;
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
8
|
Fan L, Liang Z, Ren J, Chen Y, Zhu H, Chen Y, Xiang B, Lin Q, Ding C, Chen L, Ren T. Newcastle disease virus activates the PI3K/AKT signaling pathway by targeting PHLPP2 degradation to delay cell apoptosis and promote viral replication. Vet Microbiol 2024; 289:109949. [PMID: 38128444 DOI: 10.1016/j.vetmic.2023.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Newcastle disease (ND) is a highly pathogenic, contagious, and fatal infectious disease in poultry caused by the Newcastle disease virus (NDV). The PI3K/AKT signaling pathway is a phosphorylation cascade that participates in regulating several cellular functions. Viruses reportedly regulate the course of infection through the PI3K/AKT axis. Here, we aimed to analyze the pathogenesis of NDV infection mediated by the PI3K/AKT signaling pathway activation. We found that NDV infection can phosphorylate AKT to activate the PI3K/AKT axis both in vitro and in vivo. Flow cytometry and Caspase-3 activity assay showed that NDV infection could inhibit cell apoptosis. The activation or inhibition of the PI3K/AKT signaling pathway activity significantly inhibited or promoted NDV-mediated apoptosis. Furthermore, inhibition of cell apoptosis significantly promoted NDV replication. Overall, our results showed that NDV infection activates the PI3K/AKT signaling pathway and inhibits cell apoptosis, thus promoting viral replication. In this context, the reduced expression of PHLPP2 protein mediated by NDV infection could be inhibited by MG132. PHLPP2 expression reversely and positively regulated NDV replication and cell apoptosis, respectively. These results indicated that NDV infection-mediated activation of the PI3K/AKT signaling pathway and the inhibition of apoptosis depend on the ubiquitin-proteasome degradation of the PHLPP2 protein. Co-IP and indirect immunofluorescence results showed that NDV V protein could interact with PHLPP2 protein, indicating that NDV targeted PHLPP2 protein degradation through V protein to activate the PI3K/AKT signaling pathway. This study deepens our understanding of the molecular mechanisms of NDV infection, providing a theoretical basis for ND prevention and control.
Collapse
Affiliation(s)
- Lei Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinlian Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yichun Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - He Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yanan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201 Yunnan, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| |
Collapse
|
9
|
Nemes K, Gil JF, Liebe S, Mansi M, Poimenopoulou E, Lennefors BL, Varrelmann M, Savenkov EI. Intermolecular base-pairing interactions, a unique topology and exoribonuclease-resistant noncoding RNAs drive formation of viral chimeric RNAs in plants. THE NEW PHYTOLOGIST 2024; 241:861-877. [PMID: 37897070 DOI: 10.1111/nph.19346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
In plants, exoribonuclease-resistant RNAs (xrRNAs) are produced by many viruses. Whereas xrRNAs contribute to the pathogenicity of these viruses, the role of xrRNAs in the virus infectious cycle remains elusive. Here, we show that xrRNAs produced by a benyvirus (a multipartite RNA virus with four genomic segments) in plants are involved in the formation of monocistronic coat protein (CP)-encoding chimeric RNAs. Naturally occurring chimeric RNAs, we discovered, are composed of 5'-end of RNA 2 and 3'-end of either RNA 3 or RNA 4 bearing conservative exoribonuclease-resistant 'coremin' region. Using computational tools and site-directed mutagenesis, we show that de novo formation of chimeric RNAs requires intermolecular base-pairing interaction between 'coremin' and 3'-proximal part of the CP gene of RNA 2 as well as a stem-loop structure immediately adjacent to the CP gene. Moreover, knockdown of the expression of the XRN4 gene, encoding 5'→3' exoribonuclease, inhibits biogenesis of both xrRNAs and chimeric RNAs. Our findings suggest a novel mechanism involving a unique tropology of the intermolecular base-pairing complex between xrRNAs and RNA2 to promote formation of chimeric RNAs in plants. XrRNAs, essential for chimeric RNA biogenesis, are generated through the action of cytoplasmic Xrn 4 5'→3' exoribonuclease conserved in all plant species.
Collapse
Affiliation(s)
- Katalin Nemes
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| | - Jose F Gil
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
- VEDAS Corporación de Investigación e Innovación (VEDAS CII), Medellín, 050024, Colombia
| | - Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, 37079, Germany
| | - Mansi Mansi
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| | - Efstratia Poimenopoulou
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| | | | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, 37079, Germany
| | - Eugene I Savenkov
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| |
Collapse
|
10
|
Liu Y, Guan W, Liu H. Subgenomic Flaviviral RNAs of Dengue Viruses. Viruses 2023; 15:2306. [PMID: 38140548 PMCID: PMC10747610 DOI: 10.3390/v15122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are produced during flavivirus infections in both arthropod and vertebrate cells. They are undegraded products originating from the viral 3' untranslated region (3' UTR), a result of the action of the host 5'-3' exoribonuclease, Xrn1, when it encounters specific RNA structures known as Xrn1-resistant RNAs (xrRNAs) within the viral 3' UTR. Dengue viruses generate three to four distinct species of sfRNAs through the presence of two xrRNAs and two dumbbell structures (DBs). The tertiary structures of xrRNAs have been characterized to form a ringlike structure around the 5' end of the viral RNA, effectively inhibiting the activity of Xrn1. The most important role of DENV sfRNAs is to inhibit host antiviral responses by interacting with viral and host proteins, thereby influencing viral pathogenicity, replicative fitness, epidemiological fitness, and transmission. In this review, we aimed to summarize the biogenesis, structures, and functions of DENV sfRNAs, exploring their implications for viral interference.
Collapse
Affiliation(s)
- Yi Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Wuxiang Guan
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
| | - Haibin Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
| |
Collapse
|
11
|
Graham ME, Merrick C, Akiyama BM, Szucs MJ, Leach S, Kieft JS, Beckham JD. Zika virus dumbbell-1 structure is critical for sfRNA presence and cytopathic effect during infection. mBio 2023; 14:e0110823. [PMID: 37417764 PMCID: PMC10470596 DOI: 10.1128/mbio.01108-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
All flaviviruses contain conserved RNA structures in the 3' untranslated region (3' UTR) that are important for flavivirus RNA replication, translation, and pathogenesis. Flaviviruses like Zika virus (ZIKV) contain multiple conserved RNA structures in the viral 3' UTR, including the structure known as dumbbell-1 (DB-1). Previous research has shown that the DB-1 structure is important for flavivirus positive-strand genome replication, but the functional role of the flavivirus DB-1 structure and the mechanism by which it contributes to viral pathogenesis are not known. Using the recently solved flavivirus DB RNA structural data, we designed two DB-1 mutant ZIKV infectious clones, termed ZIKV-TL.PK and ZIKV-p.2.5', which disrupt DB-1 tertiary folding. We found that viral positive-strand genome replication of both ZIKV DB-1 mutant clones is similar to wild-type (WT) ZIKV, but ZIKV DB-1 mutants exhibit significantly decreased cytopathic effect due to reduced caspase-3 activation. We next show that ZIKV DB-1 mutants exhibit decreased levels of sfRNA species compared to ZIKV-WT during infection. However, ZIKV DB-1 mutant 3' UTRs exhibit unchanged sfRNA biogenesis following XRN1 degradation in vitro. We also found that ZIKV DB-1 mutant virus (ZIKV-p.2.5') exhibited enhanced sensitivity to type I interferon treatment, and both ZIKV-DB-1 mutants exhibit reduced morbidity and mortality due to tissue-specific attenuated viral replication in brain tissue of interferon type I/II receptor knockout mice. We propose that the flavivirus DB-1 RNA structure maintains sfRNA levels during infection despite maintained sfRNA biogenesis, and these results indicate that ZIKV DB-dependent maintenance of sfRNA levels support caspase-3-dependent, cytopathic effect, type I interferon resistance, and viral pathogenesis in mammalian cells and in a ZIKV murine model of disease. IMPORTANCE The group of viruses termed flaviviruses cause important disease throughout the world and include dengue virus, Zika virus, Japanese encephalitis virus, and many more. All of these flaviviruses have highly conserved RNA structures in the untranslated regions of the virus genome. One of the shared RNA structures, termed the dumbbell region, is not well studied, but mutations in this region are important for vaccine development. In this study, we made structure-informed targeted mutations in the Zika virus dumbbell region and studied the effect on the virus. We found that Zika virus dumbbell mutants are significantly weakened or attenuated due to a decreased ability to produce non-coding RNA that is needed to support infection, support virus-induced cell death, and support escape from the host immune system. These data show that targeted mutations in the flavivirus dumbbell RNA structure may be an important approach to develop future vaccine candidates.
Collapse
Affiliation(s)
- Monica E. Graham
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Camille Merrick
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Benjamin M. Akiyama
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Matthew J. Szucs
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sarah Leach
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jeffery S. Kieft
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J. David Beckham
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
12
|
Targeting EZH2 Promotes Chemosensitivity of BCL-2 Inhibitor through Suppressing PI3K and c-KIT Signaling in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms231911393. [PMID: 36232694 PMCID: PMC9569949 DOI: 10.3390/ijms231911393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematological malignancies with high heterogeneity, characterized by a differentiating block at the early progenitor stage. The selective BCL-2 inhibitor, Venetoclax (Ven), has shown exciting clinical results in a certain group of AML patients. However, Ven alone is insufficient to reach an enduringly complete response, which leads to the concern of Ven resistance. Alternative combined therapies with Ven are demanded in AML. Here, we reported the synergistic effect and molecular mechanism of the enhancer of zeste homolog 2 (EZH2) inhibitor DZNeP with Ven in AML cells. Results showed that the combination of DZNeP with Ven significantly induces cell proliferation arrest compared to single-drug control in AML cells and primary samples, and CalcuSyn analysis showed their significant synergy. The combination also significantly promotes apoptosis and increases the expression of pro-apoptotic proteins. The whole transcriptome analysis showed that phosphoinositide-3-kinase-interacting protein1 (PIK3IP1), the PI3K/AKT/mTOR signaling suppressor, is upregulated upon DZNeP treatment. Moreover, EZH2 is upregulated but PIK3IP1 is downregulated in 88 newly diagnosed AML cohorts compared to 70 healthy controls, and a higher expression of EZH2 is associated with poor outcomes in AML patients. Particularly, the combination of DZNeP with Ven dramatically eliminated CD117 (c-KIT) (+) AML blasts, suggesting the effect of the combination on tumor stem cells. In summary, our data indicated that DZNeP increases the sensitivity of Ven in AML by affecting PI3K and c-KIT signaling in AML. Our results also suggested that the therapeutic targeting of both EZH2 and BCL-2 provides a novel potential combined strategy against AML.
Collapse
|
13
|
Zhang QY, Liu SQ, Li XD, Li JQ, Zhang YN, Deng CL, Zhang HL, Li XF, Fang CX, Yang FX, Zhang B, Xu Y, Ye HQ. Sequence duplication in 3' UTR modulates virus replication and virulence of Japanese encephalitis virus. Emerg Microbes Infect 2021; 11:123-135. [PMID: 34877923 PMCID: PMC8725919 DOI: 10.1080/22221751.2021.2016354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Japanese encephalitis virus (JEV), an important neurotropic pathogen, belongs to the genus Flavivirus of the family Flaviviridae and has caused huge threat to public health. It is still obscure regarding the functions of stem-loop (SL) and dumbbell (DB) domains of JEV 3' UTR in viral replication and virulence. In the current study, using the infectious clone of JEV SA14 strain as a backbone, we constructed a series of deletion mutants of 3' UTR to investigate their effects on virus replication. The results showed that partial deletions within SL or DB domain had no apparent effects on virus replication in both mammalian (BHK-21) and mosquito (C6/36) cells, suggesting that they were not involved in viral host-specific replication. However, the entire SL domain deletion (ΔVR) significantly reduced virus replication in both cell lines, indicating the important role of the complete SL domain in virus replication. The revertant of ΔVR mutant virus was obtained by serial passage in BHK-21 cells that acquired a duplication of DB domain (DB-dup) in the 3' UTR, which greatly restored virus replication as well as the capability to produce the subgenomic flavivirus RNAs (sfRNAs). Interestingly, the DB-dup mutant virus was highly attenuated in C57BL/6 mice despite replicating similar to WT JEV. These findings demonstrate the significant roles of the duplicated structures in 3' UTR in JEV replication and provide a novel strategy for the design of live-attenuated vaccines.
Collapse
Affiliation(s)
- Qiu-Yan Zhang
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China.,The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Si-Qing Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Xiao-Dan Li
- School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| | - Jia-Qi Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Hong-Lei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xu-Fang Li
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | - Chun-Xiao Fang
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | - Feng-Xia Yang
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | - Bo Zhang
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China.,The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yi Xu
- The Joint Center of Translational Precision Medicine, Department of Infectious Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China.,The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
14
|
Rossi ÁD, Higa LM, Herlinger AL, Ribeiro-Alves M, de Menezes MT, Giannini ALM, Cardoso CC, Da Poian AT, Tanuri A, Aguiar RS. Differential Expression of Human MicroRNAs During Dengue Virus Infection in THP-1 Monocytes. Front Cell Infect Microbiol 2021; 11:714088. [PMID: 34568093 PMCID: PMC8455953 DOI: 10.3389/fcimb.2021.714088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/25/2021] [Indexed: 12/31/2022] Open
Abstract
Dengue virus (DENV) is the most widespread arbovirus, responsible for a wide range of clinical manifestations, varying from self-limited illness to severe hemorrhagic fever. Dengue severity is associated with host intense proinflammatory response and monocytes have been considered one of the key cell types involved in the early steps of DENV infection and immunopathogenesis. To better understand cellular mechanisms involved in monocyte infection by DENV, we analyzed the expression levels of 754 human microRNAs in DENV-infected THP-1 cells, a human monocytic cell line. Eleven human microRNAs showed differential expression after DENV infection and gene ontology and enrichment analysis revealed biological processes potentially affected by these molecules. Five downregulated microRNAs were significantly linked to cellular response to stress, four to cell death/apoptosis, two to innate immune responses and one upregulated to vesicle mediated, TGF-β signaling, phosphatidylinositol mediated signaling, lipid metabolism process and blood coagulation.
Collapse
Affiliation(s)
- Átila Duque Rossi
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Mendonça Higa
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Bioquímica de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alice Laschuk Herlinger
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST/AIDS, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Mariane Talon de Menezes
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Lucia Moraes Giannini
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cynthia Chester Cardoso
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea T Da Poian
- Laboratório de Bioquímica de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Santana Aguiar
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
15
|
Ramos-Lorente S, Romero-López C, Berzal-Herranz A. Information Encoded by the Flavivirus Genomes beyond the Nucleotide Sequence. Int J Mol Sci 2021; 22:3738. [PMID: 33916729 PMCID: PMC8038387 DOI: 10.3390/ijms22073738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/05/2023] Open
Abstract
The genus Flavivirus comprises numerous, small, single positive-stranded RNA viruses, many of which are important human pathogens. To store all the information required for their successful propagation, flaviviruses use discrete structural genomic RNA elements to code for functional information by the establishment of dynamic networks of long-range RNA-RNA interactions that promote specific folding. These structural elements behave as true cis-acting, non-coding RNAs (ncRNAs) and have essential regulatory roles in the viral cycle. These include the control of the formation of subgenomic RNAs, known as sfRNAs, via the prevention of the complete degradation of the RNA genome. These sfRNAs are important in ensuring viral fitness. This work summarizes our current knowledge of the functions performed by the genome conformations and the role of RNA-RNA interactions in these functions. It also reviews the role of RNA structure in the production of sfRNAs across the genus Flavivirus, and their existence in related viruses.
Collapse
Affiliation(s)
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain;
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain;
| |
Collapse
|
16
|
Pan Y, Cheng A, Wang M, Yin Z, Jia R. The Dual Regulation of Apoptosis by Flavivirus. Front Microbiol 2021; 12:654494. [PMID: 33841381 PMCID: PMC8024479 DOI: 10.3389/fmicb.2021.654494] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is a form of programmed cell death, which maintains cellular homeostasis by eliminating pathogen-infected cells. It contains three signaling pathways: death receptor pathway, mitochondria-mediated pathway, and endoplasmic reticulum pathway. Its importance in host defenses is highlighted by the observation that many viruses evade, hinder or destroy apoptosis, thereby weakening the host’s immune response. Flaviviruses such as Dengue virus, Japanese encephalitis virus, and West Nile virus utilize various strategies to activate or inhibit cell apoptosis. This article reviews the research progress of apoptosis mechanism during flaviviruses infection, including flaviviruses proteins and subgenomic flaviviral RNA to regulate apoptosis by interacting with host proteins, as well as various signaling pathways involved in flaviviruses-induced apoptosis, which provides a scientific basis for understanding the pathogenesis of flaviviruses and helps in developing an effective antiviral therapy.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
17
|
Ghildiyal R, Gabrani R. Computational approach to decipher cellular interactors and drug targets during co-infection of SARS-CoV-2, Dengue, and Chikungunya virus. Virusdisease 2021; 32:55-64. [PMID: 33723515 PMCID: PMC7945596 DOI: 10.1007/s13337-021-00665-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
The world is reeling under severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, and it will be frightening if compounded by other co-existing infections. The co-occurrence of the Dengue virus (DENV) and Chikungunya virus (CHIKV) has been into existence, but recently the co-infection of DENV and SARS-CoV-2 has been reported. Thus, the possibility of DENV, CHIKV, and SARS-CoV-2 co-infection could be predicted in the future with enhanced vulnerability. It is essential to elucidate the host interactors and the connected pathways to understand the biological insights. The in silico approach using Cytoscape was exploited to elucidate the common human proteins interacting with DENV, CHIKV, and SARS-CoV-2 during their probable co-infection. In total, 17 interacting host proteins were identified showing association with envelope, structural, non-structural, and accessory proteins. Investigating the functional and biological behaviour using PANTHER, UniProtKB, and KEGG databases uncovered their association with several cellular pathways including, signaling pathways, RNA processing and transport, cell cycle, ubiquitination, and protein trafficking. Withal, exploring the DrugBank and Therapeutic Target Database, total seven druggable host proteins were predicted. Among all integrin beta-1, histone deacetylase-2 (HDAC2) and microtubule affinity-regulating kinase-3 were targeted by FDA approved molecules/ drugs. Furthermore, HDAC2 was predicted to be the most significant target, and some approved drugs are available against it. The predicted druggable targets and approved drugs could be investigated to obliterate the identified interactions that could assist in inhibiting viral infection.
Collapse
Affiliation(s)
- Ritu Ghildiyal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| | - Reema Gabrani
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| |
Collapse
|
18
|
Akt Interacts with Usutu Virus Polymerase, and Its Activity Modulates Viral Replication. Pathogens 2021; 10:pathogens10020244. [PMID: 33672588 PMCID: PMC7924047 DOI: 10.3390/pathogens10020244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Usutu virus (USUV) is a flavivirus that mainly infects wild birds through the bite of Culex mosquitoes. Recent outbreaks have been associated with an increased number of cases in humans. Despite being a growing source of public health concerns, there is yet insufficient data on the virus or host cell targets for infection control. In this work we have investigated whether the cellular kinase Akt and USUV polymerase NS5 interact and co-localize in a cell. To this aim, we performed co-immunoprecipitation (Co-IP) assays, followed by confocal microscopy analyses. We further tested whether NS5 is a phosphorylation substrate of Akt in vitro. Finally, to examine its role in viral replication, we chemically silenced Akt with three inhibitors (MK-2206, honokiol and ipatasertib). We found that both proteins are localized (confocal) and pulled down (Co-IP) together when expressed in different cell lines, supporting the fact that they are interacting partners. This possibility was further sustained by data showing that NS5 is phosphorylated by Akt. Treatment of USUV-infected cells with Akt-specific inhibitors led to decreases in virus titers (>10-fold). Our results suggest an important role for Akt in virus replication and stimulate further investigations to examine the PI3K/Akt/mTOR pathway as an antiviral target.
Collapse
|
19
|
Mwaliko C, Nyaruaba R, Zhao L, Atoni E, Karungu S, Mwau M, Lavillette D, Xia H, Yuan Z. Zika virus pathogenesis and current therapeutic advances. Pathog Glob Health 2021; 115:21-39. [PMID: 33191867 PMCID: PMC7850325 DOI: 10.1080/20477724.2020.1845005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is an emerging arthropod-borne flavivirus that, upon infection, results in teratogenic effects and neurological disorders. ZIKV infections pose serious global public health concerns, prompting scientists to increase research on antivirals and vaccines against the virus. These efforts are still ongoing as the pathogenesis and immune evasion mechanisms of ZIKV have not yet been fully elaborated. Currently, no specific vaccines or drugs have been approved for ZIKV; however, some are undergoing clinical trials. Notably, several strategies have been used to develop antivirals, including drugs that target viral and host proteins. Additionally, drug repurposing is preferred since it is less costly and takes less time than other strategies because the drugs used have already been approved for human use. Likewise, different platforms have been evaluated for the design of vaccines, including DNA, mRNA, peptide, protein, viral vectors, virus-like particles (VLPSs), inactivated-virus, and live-attenuated virus vaccines. These vaccines have been shown to induce specific humoral and cellular immune responses and reduce viremia and viral RNA both in vitro and in vivo. Importantly, most of these vaccines have entered clinical trials. Understanding the viral disease mechanism will provide better strategies for developing therapeutic agents against ZIKV. This review provides a comprehensive summary of the viral pathogenesis of ZIKV and current advancements in the development of vaccines and drugs against this virus.
Collapse
Affiliation(s)
- Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Samuel Karungu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,CONTACT Han Xia ; Zhiming Yuan Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
20
|
Evaluation in Swine of a Recombinant African Swine Fever Virus Lacking the MGF-360-1L Gene. Viruses 2020; 12:v12101193. [PMID: 33092258 PMCID: PMC7589680 DOI: 10.3390/v12101193] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
The African swine fever (ASF) pandemic is currently affecting pigs throughout Eurasia, resulting in significant swine production losses. The causative agent, ASF virus (ASFV), is a large, structurally complex virus with a genome encoding more than 160 genes. The function of most of those genes remains unknown. Here, we presented the previously uncharacterized ASFV gene MGF360-1L, the first gene in the genome. The kinetic studies of virus RNA transcription demonstrated that the MGF360-1L gene was transcribed as a late virus protein. The essentiality of MGF360-1L to virus replication was evaluated by developing a recombinant ASFV lacking the gene (ASFV-G-ΔMGF360-1L). In primary swine macrophage cell cultures, ASFV-G-ΔMGF360-1L showed similar replication kinetics as the parental highly virulent field isolate Georgia2007 (ASFV-G). Domestic pigs experimentally infected with ASFV-G-ΔMGF360-1L presented with a clinical disease indistinguishable from that caused by ASFV-G, demonstrating that MGF360-1L was not involved in virulence in swine, the natural host of ASFV.
Collapse
|
21
|
Sparks H, Monogue B, Akiyama B, Kieft J, Beckham JD. Disruption of Zika Virus xrRNA1-Dependent sfRNA1 Production Results in Tissue-Specific Attenuated Viral Replication. Viruses 2020; 12:v12101177. [PMID: 33080971 PMCID: PMC7589627 DOI: 10.3390/v12101177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/30/2022] Open
Abstract
The Zika virus (ZIKV), like other flaviviruses, produces several species of sub-genomic RNAs (sfRNAs) during infection, corresponding to noncoding RNA fragments of different lengths that result from the exonuclease degradation of the viral 3′ untranslated region (UTR). Over the course of infection, these sfRNAs accumulate in the cell as a result of an incomplete viral genome degradation of the 3′ UTR by the host 5′ to 3′ exoribonuclease, Xrn1. The halting of Xrn1 in the 3′ UTR is due to two RNA pseudoknot structures in the 3′ UTR, termed exoribonuclease-resistant RNA1 and 2 (xrRNA1&2). Studies with related flaviviruses have shown that sfRNAs are important for pathogenicity and inhibiting both mosquito and mammalian host defense mechanisms. However, these investigations have not included ZIKV and there is very limited data addressing how sfRNAs impact infection in a whole animal model or specific tissues. In this study, we generate a sfRNA1-deficient ZIKV (X1) by targeted mutation in the xrRNA1 3′ UTR structure. We find that the X1 virus lacks the production of the largest ZIKV sfRNA species, sfRNA1. Using the X1 virus to infect adult Ifnar1−/− mice, we find that while the lack of sfRNA1 does not alter ZIKV replication in the spleen, there is a significant reduction of ZIKV genome replication in the brain and placenta compared to wild-type ZIKV infection. Despite the attenuated phenotype of the X1 ZIKV, mice develop a robust neutralizing antibody response. We conclude that the targeted disruption of xrRNA1 results in tissue-specific attenuation while still supporting robust neutralizing antibody responses. Future studies will need to investigate the tissue-specific mechanisms by which ZIKV sfRNAs influence infection and may utilize targeted xrRNA mutations to develop novel attenuated flavivirus vaccine approaches.
Collapse
Affiliation(s)
- Hadrian Sparks
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.S.); (B.M.)
| | - Brendan Monogue
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.S.); (B.M.)
| | - Benjamin Akiyama
- Department of Biochemistry and Molecular Genetics and 4RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; (B.A.); (J.K.)
| | - Jeffrey Kieft
- Department of Biochemistry and Molecular Genetics and 4RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; (B.A.); (J.K.)
| | - J. David Beckham
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.S.); (B.M.)
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Correspondence:
| |
Collapse
|
22
|
Zika Virus Subgenomic Flavivirus RNA Generation Requires Cooperativity between Duplicated RNA Structures That Are Essential for Productive Infection in Human Cells. J Virol 2020; 94:JVI.00343-20. [PMID: 32581095 DOI: 10.1128/jvi.00343-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) is an emerging flavivirus, mainly transmitted by mosquitoes, which represents a global health threat. A common feature of flavivirus-infected cells is the accumulation of viral noncoding subgenomic RNAs by partial degradation of the viral genome, known as sfRNAs, involved in immune evasion and pathogenesis. Although great effort is being made to understand the mechanism by which these sfRNAs function during infection, the picture of how they work is still incomplete. In this study, we developed new genetic tools to dissect the functions of ZIKV RNA structures for viral replication and sfRNA production in mosquito and human hosts. ZIKV infections mostly accumulate two kinds of sfRNAs, sfRNA1 and sfRNA2, by stalling genome degradation upstream of duplicated stem loops (SLI and SLII) of the viral 3' untranslated region (UTR). Although the two SLs share conserved sequences and structures, different functions have been found for ZIKV replication in human and mosquito cells. While both SLs are enhancers for viral infection in human cells, they play opposite roles in the mosquito host. The dissection of determinants for sfRNA formation indicated a strong cooperativity between SLI and SLII, supporting a high-order organization of this region of the 3' UTR. Using recombinant ZIKV with different SLI and SLII arrangements, which produce different types of sfRNAs or lack the ability to generate these molecules, revealed that at least one sfRNA was necessary for efficient infection and transmission in Aedes aegypti mosquitoes. Importantly, we demonstrate an absolute requirement of sfRNAs for ZIKV propagation in human cells. In this regard, viruses lacking sfRNAs, constructed by deletion of the region containing SLI and SLII, were able to infect human cells but the infection was rapidly cleared by antiviral responses. Our findings are unique for ZIKV, since in previous studies, other flaviviruses with deletions of analogous regions of the genome, including dengue and West Nile viruses, accumulated distinct species of sfRNAs and were infectious in human cells. We conclude that flaviviruses share common strategies for sfRNA generation, but they have evolved mechanisms to produce different kinds of these RNAs to accomplish virus-specific functions.IMPORTANCE Flaviviruses are important emerging and reemerging human pathogens. Understanding the molecular mechanisms for viral replication and evasion of host antiviral responses is relevant to development of control strategies. Flavivirus infections produce viral noncoding RNAs, known as sfRNAs, involved in viral replication and pathogenesis. In this study, we dissected molecular determinants for Zika virus sfRNA generation in the two natural hosts, human cells and mosquitoes. We found that two RNA structures of the viral 3' UTR operate in a cooperative manner to produce two species of sfRNAs and that the deletion of these elements has a profoundly different impact on viral replication in the two hosts. Generation of at least one sfRNA was necessary for efficient Zika virus infection of Aedes aegypti mosquitoes. Moreover, recombinant viruses with different 3' UTR arrangements revealed an essential role of sfRNAs for productive infection in human cells. In summary, we define molecular requirements for Zika virus sfRNA accumulation and provide new ideas of how flavivirus RNA structures have evolved to succeed in different hosts.
Collapse
|
23
|
The Interplay between Dengue Virus and the Human Innate Immune System: A Game of Hide and Seek. Vaccines (Basel) 2019; 7:vaccines7040145. [PMID: 31658677 PMCID: PMC6963221 DOI: 10.3390/vaccines7040145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
With 40% of the world population at risk, infections with dengue virus (DENV) constitute a serious threat to public health. While there is no antiviral therapy available against this potentially lethal disease, the efficacy of the only approved vaccine is not optimal and its safety has been recently questioned. In order to develop better vaccines based on attenuated and/or chimeric viruses, one must consider how the human immune system is engaged during DENV infection. The activation of the innate immunity through the detection of viruses by cellular sensors is the first line of defence against those pathogens. This triggers a cascade of events which establishes an antiviral state at the cell level and leads to a global immunological response. However, DENV has evolved to interfere with the innate immune signalling at multiple levels, hence dampening antiviral responses and favouring viral replication and dissemination. This review elaborates on the interplay between DENV and the innate immune system. A special focus is given on the viral countermeasure mechanisms reported over the last decade which should be taken into consideration during vaccine development.
Collapse
|
24
|
Abstract
Arthropod-borne viral diseases caused by dengue virus (DENV) are major re-emerging public health problem worldwide. In spite of intense research, DENV pathogenesis is not fully understood and remains enigmatic; however, current evidence suggests that dengue progression is associated with an inflammatory response, mainly in patients suffering from a second DENV infection. Monocytes are one of the main target cells of DENV infection and play an important role in pathogenesis since they are known to produce several inflammatory cytokines that can lead to endothelial dysfunction and therefore vascular leak. In addition, monocytes play an important role in antibody dependent enhancement, infection with consequences in viral load and immune response. Despite the physiological functions of monocytes in immune response, their life span in the bloodstream is very short, and activation of monocytes by DENV infection can trigger different types of cell death. For example, DENV can induce apoptosis in monocytes related with the production of Tumor necrosis factor alpha (TNF-α). Additionally, recent studies have shown that DENV-infected monocytes also exhibit a cell death process mediated by caspase-1 activation together with IL-1 production, referred to as pyroptosis. Taken together, the aforementioned studies strongly depict that multiple cell death pathways may be occurring in monocytes upon DENV-2 infection. This review provides insight into mechanisms of DENV-induced death of both monocytes and other cell types for a better understanding of this process. Further knowledge in cell death induced by DENV will help in the developing novel strategies to prevent disease progression.
Collapse
|
25
|
Emerging Role of l-Dopa Decarboxylase in Flaviviridae Virus Infections. Cells 2019; 8:cells8080837. [PMID: 31387309 PMCID: PMC6721762 DOI: 10.3390/cells8080837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022] Open
Abstract
l-dopa decarboxylase (DDC) that catalyzes the biosynthesis of bioactive amines, such as dopamine and serotonin, is expressed in the nervous system and peripheral tissues, including the liver, where its physiological role remains unknown. Recently, we reported a physical and functional interaction of DDC with the major signaling regulator phosphoinosite-3-kinase (PI3K). Here, we provide compelling evidence for the involvement of DDC in viral infections. Studying dengue (DENV) and hepatitis C (HCV) virus infection in hepatocytes and HCV replication in liver samples of infected patients, we observed a negative association between DDC and viral replication. Specifically, replication of both viruses reduced the levels of DDC mRNA and the ~120 kDa SDS-resistant DDC immunoreactive functional complex, concomitant with a PI3K-dependent accumulation of the ~50 kDa DDC monomer. Moreover, viral infection inhibited PI3K-DDC association, while DDC did not colocalize with viral replication sites. DDC overexpression suppressed DENV and HCV RNA replication, while DDC enzymatic inhibition enhanced viral replication and infectivity and affected DENV-induced cell death. Consistently, we observed an inverse correlation between DDC mRNA and HCV RNA levels in liver biopsies from chronically infected patients. These data reveal a novel relationship between DDC and Flaviviridae replication cycle and the role of PI3K in this process.
Collapse
|
26
|
Liu Y, Yi Y, Wu W, Wu K, Zhang W. Bioinformatics prediction and analysis of hub genes and pathways of three types of gynecological cancer. Oncol Lett 2019; 18:617-628. [PMID: 31289534 PMCID: PMC6539991 DOI: 10.3892/ol.2019.10371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cervical, endometrial and vulvar cancer are three common types of gynecological tumor that threaten the health of females worldwide. Since their underlying mechanisms and associations remain unclear, a comprehensive and systematic bioinformatics analysis is required. The present study downloaded GSE63678 from the GEO database and then performed functional enrichment analyses, including gene ontology and pathway analysis. To further investigate the molecular mechanisms underlying the three types of gynecological cancer, protein-protein interaction (PPI) analysis was performed. A biological network was generated with the guidance of the Kyoto Encyclopedia of Genes and Genomes database and was presented in Cytoscape. A total of 1,219 DEGs were identified for the three types of cancer, and 25 hub genes were revealed. Pathway analysis and the PPI network indicated that four main types of pathway participate in the mechanism of gynecological cancer, including viral infections and cancer formation, tumorigenesis and development, signal transduction, and endocrinology and metabolism. A preliminary gynecological cancer biological network was constructed. Notably, following all analysis, the phosphoinositide 3-kinase (PI3K)/Akt pathway was identified as a potential biomarker pathway. Seven pivotal hub genes (CCNA2, CDK1, CCND1, FGF2, IGF1, BCL2 and VEGFA) of the three gynecological cancer types were proposed. The seven hub genes may serve as targets in gynecological cancer for prevention and early intervention. The PI3K/Akt pathway was identified as a critical biomarker of the three types of gynecological cancer, which may serve a role in the pathogenesis. In summary, the present study provided evidence that could support the treatment of gynecologic tumors in the future.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yuexiong Yi
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wanrong Wu
- The First Department of Gynecology, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Kejia Wu
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Zhang
- Department of Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
27
|
Pong LY, Parkkinen S, Dhanoa A, Gan HM, Wickremesinghe IAC, Syed Hassan S. MicroRNA profiling of mouse liver in response to DENV-1 infection by deep sequencing. PeerJ 2019; 7:e6697. [PMID: 31065454 PMCID: PMC6482938 DOI: 10.7717/peerj.6697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/28/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Dengue caused by dengue virus (DENV) serotypes -1 to -4 is the most important mosquito-borne viral disease in the tropical and sub-tropical countries worldwide. Yet many of the pathophysiological mechanisms of host responses during DENV infection remain largely unknown and incompletely understood. METHODS Using a mouse model, the miRNA expressions in liver during DENV-1 infection was investigated using high throughput miRNA sequencing. The differential expressions of miRNAs were then validated by qPCR, followed by target genes prediction. The identified miRNA targets were subjected to gene ontology (GO) annotation and pathway enrichment analysis to elucidate the potential biological pathways and molecular mechanisms associated with DENV-1 infection. RESULTS A total of 224 and 372 miRNAs out of 433 known mouse miRNAs were detected in the livers of DENV-1-infected and uninfected mice, respectively; of these, 207 miRNAs were present in both libraries. The miR-148a-3p and miR-122-5p were the two most abundant miRNAs in both groups. Thirty-one miRNAs were found to have at least 2-fold change in upregulation or downregulation, in which seven miRNAs were upregulated and 24 miRNAs were downregulated in the DENV-1-infected mouse livers. The miR-1a-3p was found to be the most downregulated miRNA in the DENV-1-infected mouse livers, with a significant fold change of 0.10. To validate the miRNA sequencing result, the expression pattern of 12 miRNAs, which were highly differentially expressed or most abundant, were assessed by qPCR and nine of them correlated positively with the one observed in deep sequencing. In silico functional analysis revealed that the adaptive immune responses involving TGF-beta, MAPK, PI3K-Akt, Rap1, Wnt and Ras signalling pathways were modulated collectively by 23 highly differentially expressed miRNAs during DENV-1 infection. CONCLUSION This study provides the first insight into the global miRNA expressions of mouse livers in response to DENV-1 infection in vivo and the possible roles of miRNAs in modulating the adaptive immune responses during DENV-1 infection.
Collapse
Affiliation(s)
- Lian Yih Pong
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Sinikka Parkkinen
- Department of Biology, University of Eastern Finland, Joensuu, North Karelia, Finland
| | - Amreeta Dhanoa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Han Ming Gan
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | | | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
28
|
Nanbo A, Kawaoka Y. Molecular Mechanism of Externalization of Phosphatidylserine on the Surface of Ebola Virus Particles. DNA Cell Biol 2019; 38:115-120. [PMID: 30615471 DOI: 10.1089/dna.2018.4485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ebola virus (EBOV) is an enveloped filamentous virus that causes severe hemorrhagic fever in humans and nonhuman primates with up to 90% fatality. Accumulating evidence indicates that various viruses, including EBOV, exploit the host apoptotic clearance machinery to enhance their entry into host cells by externalizing phosphatidylserine (PS) in the viral envelope. PS is typically distributed in the inner layer of the plasma membrane (PM) in normal cells. Progeny EBOV virions bud from the PM of infected cells, suggesting that PS is likely flipped to the outer leaflet of the envelope of Ebola virions. Currently, the intracellular dynamics of PS during EBOV infection are poorly understood. This review summarizes recent progress in determining the molecular mechanism of externalization of PS in the envelope of EBOV particles. We also discuss future directions and how viral apoptotic mimicry could be targeted for therapeutics.
Collapse
Affiliation(s)
- Asuka Nanbo
- 1 Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshihiro Kawaoka
- 2 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,3 Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin.,4 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Mazeaud C, Freppel W, Chatel-Chaix L. The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Front Genet 2018. [PMID: 30564270 DOI: 10.3389/fgene.2018.00595/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
The Flavivirus genus comprises many viruses (including dengue, Zika, West Nile and yellow fever viruses) which constitute important public health concerns worldwide. For several of these pathogens, neither antivirals nor vaccines are currently available. In addition to this unmet medical need, flaviviruses are of particular interest since they constitute an excellent model for the study of spatiotemporal regulation of RNA metabolism. Indeed, with no DNA intermediate or nuclear step, the flaviviral life cycle entirely relies on the cytoplasmic fate of a single RNA species, namely the genomic viral RNA (vRNA) which contains all the genetic information necessary for optimal viral replication. From a single open reading frame, the vRNA encodes a polyprotein which is processed to generate the mature viral proteins. In addition to coding for the viral polyprotein, the vRNA serves as a template for RNA synthesis and is also selectively packaged into newly assembled viral particles. Notably, vRNA translation, replication and encapsidation must be tightly coordinated in time and space via a fine-tuned equilibrium as these processes cannot occur simultaneously and hence, are mutually exclusive. As such, these dynamic processes involve several vRNA secondary and tertiary structures as well as RNA modifications. Finally, the vRNA can be detected as a foreign molecule by cytosolic sensors which trigger upon activation antiviral signaling pathways and the production of antiviral factors such as interferons and interferon-stimulated genes. However, to create an environment favorable to infection, flaviviruses have evolved mechanisms to dampen these antiviral processes, notably through the production of a specific vRNA degradation product termed subgenomic flavivirus RNA (sfRNA). In this review, we discuss the current understanding of the fates of flavivirus vRNA and how this is regulated at the molecular level to achieve an optimal replication within infected cells.
Collapse
Affiliation(s)
- Clément Mazeaud
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Wesley Freppel
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Laurent Chatel-Chaix
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
30
|
Abstract
During infection, viruses often produce subgenomic RNAs (sgRNAs) that either serve as the template for protein synthesis or act as “riboregulators” that interact with and influence the viral and cellular machinery. Recently, a mechanism for producing sgRNAs was found that depends on the presence of specifically structured RNA elements (xrRNAs). However, the degree to which this mechanism is used, where the elements are found, their structural diversity, and what types of sgRNAs are produced by this pathway were unclear. This article describes the discovery of these structured RNA elements in two large families of plant viruses and shows that they are used to produce both protein-coding sgRNAs and “riboregulatory” RNAs. These discoveries provide evidence that xrRNA-based RNA maturation pathways may be more widespread than previously anticipated and that they are involved in producing a variety of RNAs of diverse functions. Many viruses produce protein-coding and noncoding subgenomic RNAs (sgRNAs) that are critical for infection. A recently discovered pathway for viral sgRNA production uses exoribonuclease-resistant RNAs (xrRNAs), discrete folded RNA elements that block the processive exoribonucleolytic degradation of RNA. xrRNAs are widespread in animal-infecting flaviviruses but had been found only in three members of the plant virus genus Dianthovirus. Also, xrRNAs had been found only in the 3′ untranslated regions (3′UTRs) of viral RNAs, where they produce noncoding sgRNAs. The degree to which xrRNA elements exist in other viruses, the conservation of their ring-like fold, and the ability of xrRNAs to operate in diverse contexts were unknown. Using computational tools and biochemical assays, we discovered xrRNA elements pervading two large families of plant-infecting RNA viruses, demonstrating their importance and widespread utility. Comparison of the sequences and functional requirements suggests that all adopt the characteristic ring-like fold. Unexpectedly, many of these newly discovered xrRNAs are located in intergenic regions rather than 3´UTRs, and some are associated with the 5′ ends of subgenomic RNAs that encode viral proteins. This suggests that xrRNAs are involved in the production of both coding and noncoding subgenomic RNAs and can operate as part of broader mechanisms to regulate RNA levels and protein expression. These discoveries expand the potential roles for xrRNAs and suggest that xrRNAs may represent a more general strategy for RNA maturation and maintenance than previously known.
Collapse
|
31
|
Mazeaud C, Freppel W, Chatel-Chaix L. The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Front Genet 2018; 9:595. [PMID: 30564270 PMCID: PMC6288177 DOI: 10.3389/fgene.2018.00595] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
The Flavivirus genus comprises many viruses (including dengue, Zika, West Nile and yellow fever viruses) which constitute important public health concerns worldwide. For several of these pathogens, neither antivirals nor vaccines are currently available. In addition to this unmet medical need, flaviviruses are of particular interest since they constitute an excellent model for the study of spatiotemporal regulation of RNA metabolism. Indeed, with no DNA intermediate or nuclear step, the flaviviral life cycle entirely relies on the cytoplasmic fate of a single RNA species, namely the genomic viral RNA (vRNA) which contains all the genetic information necessary for optimal viral replication. From a single open reading frame, the vRNA encodes a polyprotein which is processed to generate the mature viral proteins. In addition to coding for the viral polyprotein, the vRNA serves as a template for RNA synthesis and is also selectively packaged into newly assembled viral particles. Notably, vRNA translation, replication and encapsidation must be tightly coordinated in time and space via a fine-tuned equilibrium as these processes cannot occur simultaneously and hence, are mutually exclusive. As such, these dynamic processes involve several vRNA secondary and tertiary structures as well as RNA modifications. Finally, the vRNA can be detected as a foreign molecule by cytosolic sensors which trigger upon activation antiviral signaling pathways and the production of antiviral factors such as interferons and interferon-stimulated genes. However, to create an environment favorable to infection, flaviviruses have evolved mechanisms to dampen these antiviral processes, notably through the production of a specific vRNA degradation product termed subgenomic flavivirus RNA (sfRNA). In this review, we discuss the current understanding of the fates of flavivirus vRNA and how this is regulated at the molecular level to achieve an optimal replication within infected cells.
Collapse
Affiliation(s)
- Clément Mazeaud
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Wesley Freppel
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Laurent Chatel-Chaix
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
32
|
Frakolaki E, Kaimou P, Moraiti M, Kalliampakou KI, Karampetsou K, Dotsika E, Liakos P, Vassilacopoulou D, Mavromara P, Bartenschlager R, Vassilaki N. The Role of Tissue Oxygen Tension in Dengue Virus Replication. Cells 2018; 7:cells7120241. [PMID: 30513781 PMCID: PMC6316080 DOI: 10.3390/cells7120241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022] Open
Abstract
Low oxygen tension exerts a profound effect on the replication of several DNA and RNA viruses. In vitro propagation of Dengue virus (DENV) has been conventionally studied under atmospheric oxygen levels despite that in vivo, the tissue microenvironment is hypoxic. Here, we compared the efficiency of DENV replication in liver cells, monocytes, and epithelial cells under hypoxic and normoxic conditions, investigated the ability of DENV to induce a hypoxia response and metabolic reprogramming and determined the underlying molecular mechanism. In DENV-infected cells, hypoxia had no effect on virus entry and RNA translation, but enhanced RNA replication. Overexpression and silencing approaches as well as chemical inhibition and energy substrate exchanging experiments showed that hypoxia-mediated enhancement of DENV replication depends on the activation of the key metabolic regulators hypoxia-inducible factors 1α/2α (HIF-1α/2α) and the serine/threonine kinase AKT. Enhanced RNA replication correlates directly with an increase in anaerobic glycolysis producing elevated ATP levels. Additionally, DENV activates HIF and anaerobic glycolysis markers. Finally, reactive oxygen species were shown to contribute, at least in part through HIF, both to the hypoxia-mediated increase of DENV replication and to virus-induced hypoxic reprogramming. These suggest that DENV manipulates hypoxia response and oxygen-dependent metabolic reprogramming for efficient viral replication.
Collapse
Affiliation(s)
- Efseveia Frakolaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece.
| | - Panagiota Kaimou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece.
| | - Maria Moraiti
- Laboratory of Molecular Virology, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece.
| | | | - Kalliopi Karampetsou
- Laboratory of Cellular Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece.
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece.
| | - Panagiotis Liakos
- Laboratory of Biochemistry, School of Medicine, University of Thessaly, 41500 Larissa, Greece.
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Penelope Mavromara
- Laboratory of Biochemistry and Molecular Virology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Thrace, Greece.
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany.
- German Center for Infection Research, Heidelberg partner site, 69120 Heidelberg, Germany.
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece.
| |
Collapse
|
33
|
Liu X, Liu Y, Zhang Q, Zhang B, Xia H, Yuan Z. Homologous RNA secondary structure duplications in 3′ untranslated region influence subgenomic RNA production and replication of dengue virus. Virology 2018; 524:114-126. [DOI: 10.1016/j.virol.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
|
34
|
Slonchak A, Khromykh AA. Subgenomic flaviviral RNAs: What do we know after the first decade of research. Antiviral Res 2018; 159:13-25. [PMID: 30217649 DOI: 10.1016/j.antiviral.2018.09.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
The common feature of flaviviral infection is the accumulation of abundant virus-derived noncoding RNA, named flaviviral subgenomic RNA (sfRNA) in infected cells. This RNA represents a product of incomplete degradation of viral genomic RNA by the cellular 5'-3' exoribonuclease XRN1 that stalls at the conserved highly structured elements in the 3' untranslated region (UTR). This mechanism of sfRNA generation was discovered a decade ago and since then sfRNA has been a focus of intense research. The ability of flaviviruses to produce sfRNA was shown to be evolutionary conserved in all members of Flavivirus genus. Mutations in the 3'UTR that affect production of sfRNAs and their interactions with host factors showed that sfRNAs are responsible for viral pathogenicity, host adaptation, and emergence of new pathogenic strains. RNA structural elements required for XRN1 stalling have been elucidated and the role of sfRNAs in inhibiting host antiviral responses in arthropod and vertebrate hosts has been demonstrated. Some molecular mechanisms determining these properties of sfRNA have been recently characterized, while other aspects of sfRNA functions remain an open avenue for future research. In this review we summarise the current state of knowledge on the mechanisms of generation and functional roles of sfRNAs in the life cycle of flaviviruses and highlight the gaps in our knowledge to be addressed in the future.
Collapse
Affiliation(s)
- Andrii Slonchak
- The Australian Infectious Disease Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alexander A Khromykh
- The Australian Infectious Disease Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
35
|
Cuartas-López AM, Hernández-Cuellar CE, Gallego-Gómez JC. Disentangling the role of PI3K/Akt, Rho GTPase and the actin cytoskeleton on dengue virus infection. Virus Res 2018; 256:153-165. [DOI: 10.1016/j.virusres.2018.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022]
|
36
|
Chen YS, Fan YH, Tien CF, Yueh A, Chang RY. The conserved stem-loop II structure at the 3' untranslated region of Japanese encephalitis virus genome is required for the formation of subgenomic flaviviral RNA. PLoS One 2018; 13:e0201250. [PMID: 30048535 PMCID: PMC6062100 DOI: 10.1371/journal.pone.0201250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/11/2018] [Indexed: 01/02/2023] Open
Abstract
Flaviviruses accumulate abundant subgenomic RNA (sfRNA) in infected cells. It has been reported that sfRNA results from stalling of host 5’-to-3’ exoribonuclease XRN1 at the highly structured RNA of the 3’ untranslated region (UTR). Although XRN1 digestion of a 3’-terminal 800-nt RNA could stall at a position to generate the sfRNA in vitro, we found that knocking out XRN1 had no effect on the accumulation of sfRNA in Japanese encephalitis virus (JEV) infected cells. Mutagenesis studies revealed that the stemloop II (SLII) at the 3’ UTR is required for the accumulation of sfRNA. According to the results of an in vitro RNA-dependent RNA polymerase (RdRp) assay, the (-)10431-10566 RNA fragment, containing the putative promoter on the antigenome for the sfRNA transcription, binds to RdRp protein and exhibits a strong promoter activity. Taken together, our results indicate that the JEV sfRNA could be transcribed initially and then be trimmed by XRN1 or other unidentified exoribonucleases.
Collapse
Affiliation(s)
- Yi-Shiuan Chen
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan, ROC
| | - Yi-Hsin Fan
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan, ROC
| | - Chih-Feng Tien
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan, ROC
| | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Ruey-Yi Chang
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan, ROC
- * E-mail:
| |
Collapse
|
37
|
Chen TT, Tan LR, Hu N, Dong ZQ, Hu ZG, Jiang YM, Chen P, Pan MH, Lu C. C-lysozyme contributes to antiviral immunity in Bombyx mori against nucleopolyhedrovirus infection. JOURNAL OF INSECT PHYSIOLOGY 2018; 108:54-60. [PMID: 29778904 DOI: 10.1016/j.jinsphys.2018.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Lysozymes is a ubiquitous immune effector that is widely distributed in both vertebrates and invertebrates. Previous reports have shown that lysozymes significantly inhibit viral infections in vertebrates. However, the antiviral effects of lysozymes in invertebrates remain unclear. Here, we investigated the role of lysozymes in Bombyx mori (B. mori) response to viral infection by overexpressing B. mori C-lysozyme (BmC-LZM) in larvae and cells. We found that BmC-LZM was up-regulated in cells in response to viral infection. Indeed, the overexpressing of BmC-LZM significantly inhibited viral replication in cells during late-stage infection. However, this effect was reversed by BmC-LZM mRNA. BmC-LZM was successfully overexpressed in B. mori strain 871 using Baculovirus Expression Vector System (BEVS). This overexpression markedly reduced viral proliferation and increased larval survival percentage. Thus, BmC-LZM inhibited viral replication both in vivo and in vitro, indicating that BmC-LZM is involved in the insect immune response to viral infection. Our results provide a basis for further applications of lysozymes.
Collapse
Affiliation(s)
- Ting-Ting Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Li-Rong Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Nan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhi-Gang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ya-Ming Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
38
|
Salomão NG, Rabelo K, Póvoa TF, Alves AMB, da Costa SM, Gonçalves AJS, Amorim JF, Azevedo AS, Nunes PCG, Basílio-de-Oliveira CA, Basílio-de-Oliveira RP, Geraldo LHM, Fonseca CG, Lima FRS, Mohana-Borges R, Silva EM, Dos Santos FB, Oliveira ERA, Paes MV. BALB/c mice infected with DENV-2 strain 66985 by the intravenous route display injury in the central nervous system. Sci Rep 2018; 8:9754. [PMID: 29950590 PMCID: PMC6021404 DOI: 10.1038/s41598-018-28137-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023] Open
Abstract
Dengue is a mild flu-like arboviral illness caused by dengue virus (DENV) that occurs in tropical and subtropical countries. An increasing number of reports have been indicating that dengue is also associated to neurological manifestations, however, little is known regarding the neuropathogenesis of the disease. Here, using BALB/c mice intravenously infected with DENV-2 strain 66985, we demonstrated that the virus is capable of invading and damaging the host’s central nervous system (CNS). Brain and cerebellum of infected animals revealed histological alterations such as the presence of inflammatory infiltrates, thickening of pia matter and disorganization of white matter. Additionally, it was also seen that infection lead to altered morphology of neuroglial cells and apoptotic cell death. Such observations highlighted possible alterations that DENV may promote in the host’s CNS during a natural infection, hence, helping us to better understand the neuropathological component of the disease.
Collapse
Affiliation(s)
- Natália G Salomão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Kíssila Rabelo
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ada M B Alves
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Simone M da Costa
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Antônio J S Gonçalves
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Juliana F Amorim
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fundacão Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Adriana S Azevedo
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fundacão Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Priscilla C G Nunes
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carlos A Basílio-de-Oliveira
- Anatomia Patológica, Hospital Gaffrée Guinle, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Basílio-de-Oliveira
- Anatomia Patológica, Hospital Gaffrée Guinle, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz H M Geraldo
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celina G Fonseca
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia R S Lima
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emiliana M Silva
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia B Dos Santos
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Edson R A Oliveira
- Laboratório de Modelagem Molecular, Instituto de Química Orgânica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marciano V Paes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
39
|
A folded viral noncoding RNA blocks host cell exoribonucleases through a conformationally dynamic RNA structure. Proc Natl Acad Sci U S A 2018; 115:6404-6409. [PMID: 29866852 DOI: 10.1073/pnas.1802429115] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Folded RNA elements that block processive 5' → 3' cellular exoribonucleases (xrRNAs) to produce biologically active viral noncoding RNAs have been discovered in flaviviruses, potentially revealing a new mode of RNA maturation. However, whether this RNA structure-dependent mechanism exists elsewhere and, if so, whether a singular RNA fold is required, have been unclear. Here we demonstrate the existence of authentic RNA structure-dependent xrRNAs in dianthoviruses, plant-infecting viruses unrelated to animal-infecting flaviviruses. These xrRNAs have no sequence similarity to known xrRNAs; thus, we used a combination of biochemistry and virology to characterize their sequence requirements and mechanism of stopping exoribonucleases. By solving the structure of a dianthovirus xrRNA by X-ray crystallography, we reveal a complex fold that is very different from that of the flavivirus xrRNAs. However, both versions of xrRNAs contain a unique topological feature, a pseudoknot that creates a protective ring around the 5' end of the RNA structure; this may be a defining structural feature of xrRNAs. Single-molecule FRET experiments reveal that the dianthovirus xrRNAs undergo conformational changes and can use "codegradational remodeling," exploiting the exoribonucleases' degradation-linked helicase activity to help form their resistant structure; such a mechanism has not previously been reported. Convergent evolution has created RNA structure-dependent exoribonuclease resistance in different contexts, which establishes it as a general RNA maturation mechanism and defines xrRNAs as an authentic functional class of RNAs.
Collapse
|
40
|
Decreased accumulation of subgenomic RNA in human cells infected with vaccine candidate DEN4Δ30 increases viral susceptibility to type I interferon. Vaccine 2018; 36:3460-3467. [PMID: 29752023 DOI: 10.1016/j.vaccine.2018.04.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 11/20/2022]
Abstract
The NIH has developed live attenuated dengue virus (DENV) vaccine candidates by deletion of 30 nucleotides (Δ30) from the untranslated region of the viral genome. Although this attenuation strategy has proven to be effective in generating safe and immunogenic vaccine strains, the molecular mechanism of attenuation is largely unknown. To examine the mediators of the observed attenuation phenotype, differences in translation efficiency, genome replication, cytotoxicity, and type I interferon susceptibility were compared between wild type parental DENV and DENVΔ30 attenuated vaccine candidates. We observed that decreased accumulation of subgenomic RNA (sfRNA) from the vaccine candidates in infected human cells causes increased type I IFN susceptibility and propose this as one of the of attenuation mechanisms produced by the 3' UTR Δ30 mutation.
Collapse
|
41
|
Zhang H, Yao X, Ding Y, Xu Z, Liang R, Zhang Y, Wu Y, Li B, Guan B. PI3K signaling pathways modulated white spot syndrome virus (WSSV) replication in Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2018; 76:279-286. [PMID: 29496475 DOI: 10.1016/j.fsi.2018.02.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/19/2018] [Accepted: 02/24/2018] [Indexed: 06/08/2023]
Abstract
The PI3K/AKT signaling pathway is commonly exploited to regulate viral replication and affect the fate of infected cells. In the present study, a PI3K-specific inhibitor (LY294002) was employed to pretreat crayfish to evaluate the effects of PI3K/AKT signaling pathway in WSSV replication. The results showed that the WSSV copy numbers in crayfish pretreated with LY294002 were significantly lower than those in Tris-HCl pretreatment crayfish on the sixth and tenth day after WSSV infection. In semigranular cells, the apoptosis rates were up-regulated on the third day post-WSSV infection, and a significantly lower proportion of apoptosis cells were observed in LY294002-pretreatment group. The expression level of Bax, Bax inhibitor-1 and lectin mRNA in haemocytes of crayfish were increased after WSSV infection. After the secondary stimulation with Tris-HCl, the Bax expression level in LY294002-pretreatment crayfish was significantly higher than that of crayfish pretreated with Tris-HCl on the third or sixth day, but the Toll and lectin mRNA expression decreased significantly on the third, sixth and tenth day. The Bax mRNA expression levels in LY294002-WSSV group were significantly higher than those in Tris-HCl-WSSV group on the third and tenth day. The Bax inhibitor-1 mRNA expression levels in LY294002-WSSV group were significantly lower than those in Tris-HCl-WSSV crayfish on the third day. These results together indicated that the hosts PI3K/AKT signaling pathway play positive roles in WSSV replication through the balance between host cell apoptois and innate immune responses. This information is helpful to further understand the role of PI3K/AKT signaling pathway on WSSV replication in Decapoda crustaceans.
Collapse
Affiliation(s)
- Huijing Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, Shandong, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, Hainan, China
| | - Xuemei Yao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, Hainan, China
| | - Yunfei Ding
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Zheng Xu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Rongning Liang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, Shandong, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, Shandong, China.
| | - Yulong Wu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Boqing Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Bo Guan
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, Shandong, China.
| |
Collapse
|
42
|
Nanbo A, Maruyama J, Imai M, Ujie M, Fujioka Y, Nishide S, Takada A, Ohba Y, Kawaoka Y. Ebola virus requires a host scramblase for externalization of phosphatidylserine on the surface of viral particles. PLoS Pathog 2018; 14:e1006848. [PMID: 29338048 PMCID: PMC5786336 DOI: 10.1371/journal.ppat.1006848] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/26/2018] [Accepted: 01/02/2018] [Indexed: 11/30/2022] Open
Abstract
Cell surface receptors for phosphatidylserine contribute to the entry of Ebola virus (EBOV) particles, indicating that the presence of phosphatidylserine in the envelope of EBOV is important for the internalization of EBOV particles. Phosphatidylserine is typically distributed in the inner layer of the plasma membrane in normal cells. Progeny virions bud from the plasma membrane of infected cells, suggesting that phosphatidylserine is likely flipped to the outer leaflet of the plasma membrane in infected cells for EBOV virions to acquire it. Currently, the intracellular dynamics of phosphatidylserine during EBOV infection are poorly understood. Here, we explored the role of XK-related protein (Xkr) 8, which is a scramblase responsible for exposure of phosphatidylserine in the plasma membrane of apoptotic cells, to understand its significance in phosphatidylserine-dependent entry of EBOV. We found that Xkr8 and transiently expressed EBOV glycoprotein GP often co-localized in intracellular vesicles and the plasma membrane. We also found that co-expression of GP and viral major matrix protein VP40 promoted incorporation of Xkr8 into ebolavirus-like particles (VLPs) and exposure of phosphatidylserine on their surface, although only a limited amount of phosphatidylserine was exposed on the surface of the cells expressing GP and/or VP40. Downregulating Xkr8 or blocking caspase-mediated Xkr8 activation did not affect VLP production, but they reduced the amount of phosphatidylserine on the VLPs and their uptake in recipient cells. Taken together, our findings indicate that Xkr8 is trafficked to budding sites via GP-containing vesicles, is incorporated into VLPs, and then promote the entry of the released EBOV to cells in a phosphatidylserine-dependent manner. Although Ebola virus causes severe hemorrhagic fever with a high mortality rate, there are no approved therapeutics. The viral entry process is one of the targets for antiviral development. Previous studies suggest that binding of phosphatidylserine, a component of the viral envelop, to the receptors promotes the entry of Ebola virus. Ebola virus is released from the surface membrane of infected cells. However, phosphatidylserine normally distributes in the inner layer of the cell surface membrane, suggesting that phosphatidylserine is likely flipped to the outer leaflet of the membrane in infected cells for Ebola virus to acquire it. Because the mechanism by which phosphatidylserine changes its orientation in Ebola virus-infected cells is poorly understood, we studied and identified a cellular enzyme, XK-related protein 8 (Xkr8), as a responsible factor involved in this process. We demonstrated that the Ebola virus glycoprotein promoted the incorporation of Xkr8 in viral particles, which flips phosphatidylserine on their surface, enhancing their entry to cells. Our findings provide new insights into the mechanism of Ebola virus infection, which may be exploited for the development of therapeutics against Ebola virus infection.
Collapse
Affiliation(s)
- Asuka Nanbo
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail: (AN); (YK)
| | - Junki Maruyama
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Michiko Ujie
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shinya Nishide
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ayato Takada
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- * E-mail: (AN); (YK)
| |
Collapse
|
43
|
Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs. Nat Commun 2018; 9:119. [PMID: 29317714 PMCID: PMC5760640 DOI: 10.1038/s41467-017-02604-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/12/2017] [Indexed: 01/21/2023] Open
Abstract
Flaviviruses such as Yellow fever, Dengue, West Nile, and Zika generate disease-linked viral noncoding RNAs called subgenomic flavivirus RNAs. Subgenomic flavivirus RNAs result when the 5'-3' progression of cellular exoribonuclease Xrn1 is blocked by RNA elements called Xrn1-resistant RNAs located within the viral genome's 3'-untranslated region that operate without protein co-factors. Here, we show that Xrn1-resistant RNAs can halt diverse exoribonucleases, revealing a mechanism in which they act as general mechanical blocks that 'brace' against an enzyme's surface, presenting an unfolding problem that confounds further enzyme progression. Further, we directly demonstrate that Xrn1-resistant RNAs exist in a diverse set of flaviviruses, including some specific to insects or with no known arthropod vector. These Xrn1-resistant RNAs comprise two secondary structural classes that mirror previously reported phylogenic analysis. Our discoveries have implications for the evolution of exoribonuclease resistance, the use of Xrn1-resistant RNAs in synthetic biology, and the development of new therapies.
Collapse
|
44
|
Flaviviral RNA Structures and Their Role in Replication and Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:45-62. [PMID: 29845524 DOI: 10.1007/978-981-10-8727-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More than simple vectors of genetic information, flaviviral RNAs have emerged as critical regulators of the virus life cycle. Viral RNAs regulate interactions with viral and cellular proteins in both, mosquito and mammalian hosts to ultimately influence processes as diverse as RNA replication, translation, packaging or pathogenicity. In this chapter, we will review the current knowledge of the role of sequence and structures in the flaviviral RNA in viral propagation and interaction with the host cell. We will also cover the increasing body of evidence linking viral non-coding RNAs with pathogenicity, host immunity and epidemic potential.
Collapse
|
45
|
Tian Q, Wang Y, Zhang Q, Luo J, Jiang H, Zhang B, Mei M, Wu F, Wu Y, Peng J, Long T, Luo Y, Guo X. Phosphoprotein Gene Contributes to the Enhanced Apoptosis Induced by Wild-Type Rabies Virus GD-SH-01 In Vitro. Front Microbiol 2017; 8:1697. [PMID: 28928726 PMCID: PMC5591860 DOI: 10.3389/fmicb.2017.01697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
Previous research demonstrated that the matrix protein (M) and glycoprotein (G) of attenuated rabies virus (RABV) strains are involved in the induction of host cell apoptosis. In this work, we show that wild-type (wt) RABV GD-SH-01 induces significantly greater apoptosis than the attenuated strain HEP-Flury. In order to identify the gene(s) accounting for this phenotype, five recombinant RABVs (rRABVs) were constructed by replacing each single gene of HEP-Flury with the corresponding gene of GD-SH-01. By using these rRABVs, we found that not only M and G, but also the phosphoprotein (P) plays an important role in inducing apoptosis. In order to figure out the different role of P gene in inducing apoptosis from the highly divergent background, another rRABV rGDSH-P, which carries the P gene of HEP-Flury in the background of the GD-SH-01 was generated. It was found that infection of NA cells with GD-SH-01 or the recombinant strain rHEP-shP, which carries P gene of GD-SH-01, induced significantly greater apoptosis than HEP-Flury or rGDSH-P in a caspase-dependent pathway that ultimately leads to the activation of the intrinsic apoptotic pathway, which is well characterized with the downregulation of bcl-2, the decrease of mitochondrial membrane potential, the release of mitochondrial cytochrome c, the activation of caspase-9 and caspase-3, and finally the cleavage of poly (ADP-ribose) polymerase. Our results imply that wt P from GD-SH-01 mediates this effect may partly by facilitating viral RNA synthesis but not by viral replication. In sum, we demonstrate a wt RABV strain GD-SH-01 to induce stronger apoptosis than an attenuated RABV HEP-Flury and propose that wt P from GD-SH-01 is involved in this process.
Collapse
Affiliation(s)
- Qin Tian
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Yifei Wang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Qiong Zhang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - He Jiang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Boyue Zhang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Mingzhu Mei
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Fan Wu
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Yuting Wu
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Jiaojiao Peng
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Teng Long
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| |
Collapse
|
46
|
Merfeld E, Ben‐Avi L, Kennon M, Cerveny KL. Potential mechanisms of Zika-linked microcephaly. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:e273. [PMID: 28383800 PMCID: PMC5516183 DOI: 10.1002/wdev.273] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 01/01/2023]
Abstract
A recent outbreak of Zika virus (ZIKV) in Brazil is associated with microcephaly in infants born of infected mothers. As this pandemic spreads, rapid scientific investigation is shedding new light on how prenatal infection with ZIKV causes microcephaly. In this analysis we provide an overview of both microcephaly and ZIKV, explore the connection between prenatal ZIKV infection and microcephaly, and highlight recent insights into how prenatal ZIKV infection depletes the pool of neural progenitors in the developing brain. WIREs Dev Biol 2017, 6:e273. doi: 10.1002/wdev.273 For further resources related to this article, please visit the WIREs website.
Collapse
|
47
|
Fernández-Sanlés A, Ríos-Marco P, Romero-López C, Berzal-Herranz A. Functional Information Stored in the Conserved Structural RNA Domains of Flavivirus Genomes. Front Microbiol 2017; 8:546. [PMID: 28421048 PMCID: PMC5376627 DOI: 10.3389/fmicb.2017.00546] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023] Open
Abstract
The genus Flavivirus comprises a large number of small, positive-sense single-stranded, RNA viruses able to replicate in the cytoplasm of certain arthropod and/or vertebrate host cells. The genus, which has some 70 member species, includes a number of emerging and re-emerging pathogens responsible for outbreaks of human disease around the world, such as the West Nile, dengue, Zika, yellow fever, Japanese encephalitis, St. Louis encephalitis, and tick-borne encephalitis viruses. Like other RNA viruses, flaviviruses have a compact RNA genome that efficiently stores all the information required for the completion of the infectious cycle. The efficiency of this storage system is attributable to supracoding elements, i.e., discrete, structural units with essential functions. This information storage system overlaps and complements the protein coding sequence and is highly conserved across the genus. It therefore offers interesting potential targets for novel therapeutic strategies. This review summarizes our knowledge of the features of flavivirus genome functional RNA domains. It also provides a brief overview of the main achievements reported in the design of antiviral nucleic acid-based drugs targeting functional genomic RNA elements.
Collapse
Affiliation(s)
- Alba Fernández-Sanlés
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas (IPBLN-CSIC)Granada, Spain
| | - Pablo Ríos-Marco
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas (IPBLN-CSIC)Granada, Spain
| | - Cristina Romero-López
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas (IPBLN-CSIC)Granada, Spain
| | - Alfredo Berzal-Herranz
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas (IPBLN-CSIC)Granada, Spain
| |
Collapse
|
48
|
Abstract
Zika virus (ZIKV) is a previously little-known flavivirus closely related to Japanese encephalitis, West Nile, dengue, and yellow fever viruses, all of which are primarily transmitted by blood-sucking mosquitoes. Since its discovery in Uganda in 1947, ZIKV has continued to expand its geographic range, from equatorial Africa and Asia to the Pacific Islands, then further afield to South and Central America and the Caribbean. Currently, ZIKV is actively circulating not only in much of Latin America and its neighbors but also in parts of the Pacific Islands and Southeast Asia. Although ZIKV infection generally causes only mild symptoms in some infected individuals, it is associated with a range of neuroimmunological disorders, including Guillain-Barré syndrome, meningoencephalitis, and myelitis. Recently, maternal ZIKV infection during pregnancy has been linked to neonatal malformations, resulting in various degrees of congenital abnormalities, microcephaly, and even abortion. Despite its emergence as an important public health problem, however, little is known about ZIKV biology, and neither vaccine nor drug is available to control ZIKV infection. This article provides a brief introduction to ZIKV with a major emphasis on its molecular virology, in order to help facilitate the development of diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322-4815, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322-4815, USA.
- Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322-4815, USA.
| |
Collapse
|
49
|
Bavia L, Mosimann ALP, Aoki MN, Duarte Dos Santos CN. A glance at subgenomic flavivirus RNAs and microRNAs in flavivirus infections. Virol J 2016; 13:84. [PMID: 27233361 PMCID: PMC4884392 DOI: 10.1186/s12985-016-0541-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/17/2016] [Indexed: 11/10/2022] Open
Abstract
The family Flaviviridae comprises a wide variety of viruses that are distributed worldwide, some of which are associated with high rates of morbidity and mortality. There are neither vaccines nor antivirals for most flavivirus infections, reinforcing the importance of research on different aspects of the viral life cycle. During infection, cytoplasmic accumulation of RNA fragments mainly originating from the 3' UTRs, which have been designated subgenomic flavivirus RNAs (sfRNAs), has been detected. It has been shown that eukaryotic exoribonucleases are involved in viral sfRNA production. Additionally, viral and human small RNAs (sRNAs) have also been found in flavivirus-infected cells, especially microRNAs (miRNAs). miRNAs were first described in eukaryotic cells and in a mature and functional state present as single-stranded 18-24 nt RNA fragments. Their main function is the repression of translation through base pairing with cellular mRNAs, besides other functions, such as mRNA degradation. Canonical miRNA biogenesis involves Drosha and Dicer, however miRNA can also be generated by alternative pathways. In the case of flaviviruses, alternative pathways have been suggested. Both sfRNAs and miRNAs are involved in viral infection and host cell response modulation, representing interesting targets of antiviral strategies. In this review, we focus on the generation and function of viral sfRNAs, sRNAs and miRNAs in West Nile, dengue, Japanese encephalitis, Murray Valley encephalitis and yellow fever infections, as well as their roles in viral replication, translation and cell immune response evasion. We also give an overview regarding other flaviviruses and the generation of cellular miRNAs during infection.
Collapse
Affiliation(s)
- Lorena Bavia
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/FIOCRUZ-PR), Rua Prof. Algacyr Munhoz Mader 3775, CIC, CEP: 81350-010, Curitiba, Paraná, Brazil
| | - Ana Luiza Pamplona Mosimann
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/FIOCRUZ-PR), Rua Prof. Algacyr Munhoz Mader 3775, CIC, CEP: 81350-010, Curitiba, Paraná, Brazil
| | - Mateus Nóbrega Aoki
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/FIOCRUZ-PR), Rua Prof. Algacyr Munhoz Mader 3775, CIC, CEP: 81350-010, Curitiba, Paraná, Brazil
| | - Claudia Nunes Duarte Dos Santos
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/FIOCRUZ-PR), Rua Prof. Algacyr Munhoz Mader 3775, CIC, CEP: 81350-010, Curitiba, Paraná, Brazil.
| |
Collapse
|
50
|
Teixeira M, Sela N, Ng J, Casteel CL, Peng HC, Bekal S, Girke T, Ghanim M, Kaloshian I. A novel virus from Macrosiphum euphorbiae with similarities to members of the family Flaviviridae. J Gen Virol 2016; 97:1261-1271. [PMID: 26822322 DOI: 10.1099/jgv.0.000414] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A virus with a large genome was identified in the transcriptome of the potato aphid (Macrosiphum euphorbiae) and was named Macrosiphum euphorbiae virus 1 (MeV-1). The MeV-1 genome is 22 780 nt in size, including 3' and 5' non-coding regions, with a single large ORF encoding a putative polyprotein of 7333 aa. The C-terminal region of the predicted MeV-1 polyprotein contained sequences with similarities to helicase, methyltransferase and RNA-dependent RNA polymerase (RdRp) motifs, while the N-terminal region lacked any motifs including structural proteins. Phylogenetic analysis of the helicase placed MeV-1 close to pestiviruses, while the RdRp region placed it close to pestiviruses and flaviviruses, suggesting MeV-1 has a positive-polarity ssRNA genome and is a member of the family Flaviviridae. Since the MeV-1 genome is predicted to contain a methyltransferase, a gene present typically in flaviviruses but not pestiviruses, MeV-1 is likely a member of the genus Flavivirus. MeV-1 was present in nymphal and adult stages of the aphid, aphid saliva and plant tissues fed upon by aphids. However, the virus was unable to multiply and spread in tomato plants. In addition, dsRNA, the replication intermediate of RNA viruses, was isolated from virus-infected M. euphorbiae and not from tomato plants infested with the aphid. Furthermore, nymphs laid without exposure to infected plants harboured the virus, indicating that MeV-1 is an aphid-infecting virus likely transmitted transovarially. The virus was present in M. euphorbiae populations from Europe but not from North America and was absent in all other aphid species tested.
Collapse
Affiliation(s)
- Marcella Teixeira
- Department of Nematology,University of California, Riverside, California,USA
| | - Noa Sela
- Department of Plant Pathology and Weed Research,Volcani Center, Bet Dagan,Israel
| | - James Ng
- Plant Pathology and Microbiology,University of California, Riverside, California,USA.,Institute of Integrative Genome Biology,University of California, Riverside, California,USA
| | - Clare L Casteel
- Department of Plant Pathology,University of California, Davis, California,USA
| | - Hsuan-Chieh Peng
- Plant Pathology and Microbiology,University of California, Riverside, California,USA
| | - Sadia Bekal
- Department of Agricultural and Biological Engineering,University of Illinois, Urbana, IL,USA
| | - Thomas Girke
- Institute of Integrative Genome Biology,University of California, Riverside, California,USA.,Department of Botany and Plant Sciences,University of California, Riverside, California,USA
| | - Murad Ghanim
- Department of Entomology,Volcani Center, Bet Dagan,Israel
| | - Isgouhi Kaloshian
- Institute of Integrative Genome Biology,University of California, Riverside, California,USA.,Department of Nematology,University of California, Riverside, California,USA
| |
Collapse
|