1
|
Tilliole P, Fix S, Godin JD. hnRNPs: roles in neurodevelopment and implication for brain disorders. Front Mol Neurosci 2024; 17:1411639. [PMID: 39086926 PMCID: PMC11288931 DOI: 10.3389/fnmol.2024.1411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into mature mRNAs and regulate gene expression in multiple ways. They comprise at least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP U). Many of these proteins are components of the spliceosome complex and can modulate alternative splicing in a tissue-specific manner. Notably, while genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence associate these proteins to various neurodevelopmental and neurodegenerative disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic lateral sclerosis, or dementias, highlighting their crucial role in the central nervous system. This review explores the evolution of the hnRNPs family, highlighting the emergence of numerous new members within this family, and sheds light on their implications for brain development.
Collapse
Affiliation(s)
- Pierre Tilliole
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Simon Fix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Juliette D. Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Lambert GS, Rice BL, Maldonado RJK, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. Retrovirology 2024; 21:13. [PMID: 38898526 PMCID: PMC11186191 DOI: 10.1186/s12977-024-00645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Retroviruses exploit host proteins to assemble and release virions from infected cells. Previously, most studies focused on interacting partners of retroviral Gag proteins that localize to the cytoplasm or plasma membrane. Given that several full-length Gag proteins have been found in the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings involving previously unknown host processes. Here we systematically compared nuclear factors identified in published HIV-1 proteomic studies and performed our own mass spectrometry analysis using affinity-tagged HIV-1 and RSV Gag proteins mixed with nuclear extracts. We identified 57 nuclear proteins in common between HIV-1 and RSV Gag, and a set of nuclear proteins present in our analysis and ≥ 1 of the published HIV-1 datasets. Many proteins were associated with nuclear processes which could have functional consequences for viral replication, including transcription initiation/elongation/termination, RNA processing, splicing, and chromatin remodeling. Examples include facilitating chromatin remodeling to expose the integrated provirus, promoting expression of viral genes, repressing the transcription of antagonistic cellular genes, preventing splicing of viral RNA, altering splicing of cellular RNAs, or influencing viral or host RNA folding or RNA nuclear export. Many proteins in our pulldowns common to RSV and HIV-1 Gag are critical for transcription, including PolR2B, the second largest subunit of RNA polymerase II (RNAPII), and LEO1, a PAF1C complex member that regulates transcriptional elongation, supporting the possibility that Gag influences the host transcription profile to aid the virus. Through the interaction of RSV and HIV-1 Gag with splicing-related proteins CBLL1, HNRNPH3, TRA2B, PTBP1 and U2AF1, we speculate that Gag could enhance unspliced viral RNA production for translation and packaging. To validate one putative hit, we demonstrated an interaction of RSV Gag with Mediator complex member Med26, required for RNA polymerase II-mediated transcription. Although 57 host proteins interacted with both Gag proteins, unique host proteins belonging to each interactome dataset were identified. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Breanna L Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Rebecca J Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Leslie J Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
3
|
Roesmann F, Müller L, Klaassen K, Heß S, Widera M. Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication. Viruses 2024; 16:938. [PMID: 38932230 PMCID: PMC11209495 DOI: 10.3390/v16060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.
Collapse
Affiliation(s)
- Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katleen Klaassen
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Stefanie Heß
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Yi B, Tanaka YL, Cornish D, Kosako H, Butlertanaka EP, Sengupta P, Lippincott-Schwartz J, Hultquist JF, Saito A, Yoshimura SH. Host ZCCHC3 blocks HIV-1 infection and production through a dual mechanism. iScience 2024; 27:109107. [PMID: 38384847 PMCID: PMC10879702 DOI: 10.1016/j.isci.2024.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Most mammalian cells prevent viral infection and proliferation by expressing various restriction factors and sensors that activate the immune system. Several host restriction factors that inhibit human immunodeficiency virus type 1 (HIV-1) have been identified, but most of them are antagonized by viral proteins. Here, we describe CCHC-type zinc-finger-containing protein 3 (ZCCHC3) as a novel HIV-1 restriction factor that suppresses the production of HIV-1 and other retroviruses, but does not appear to be directly antagonized by viral proteins. It acts by binding to Gag nucleocapsid (GagNC) via zinc-finger motifs, which inhibits viral genome recruitment and results in genome-deficient virion production. ZCCHC3 also binds to the long terminal repeat on the viral genome via the middle-folded domain, sequestering the viral genome to P-bodies, which leads to decreased viral replication and production. This distinct, dual-acting antiviral mechanism makes upregulation of ZCCHC3 a novel potential therapeutic strategy.
Collapse
Affiliation(s)
- Binbin Yi
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuri L. Tanaka
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Daphne Cornish
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Erika P. Butlertanaka
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Prabuddha Sengupta
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | | | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki, Miyazaki 889-1692, Japan
| | - Shige H. Yoshimura
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for Living Systems Information Science (CeLiSIS), Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Lambert GS, Rice BL, Kaddis Maldonado RJ, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.575255. [PMID: 38293010 PMCID: PMC10827203 DOI: 10.1101/2024.01.18.575255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Retroviruses exploit a variety of host proteins to assemble and release virions from infected cells. To date, most studies that examined possible interacting partners of retroviral Gag proteins focused on host proteins that localize primarily to the cytoplasm or plasma membrane. Given the recent findings that several full-length Gag proteins localize to the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings that reveal previously unknown host processes. In this study, we systematically compared nuclear factors identified in published HIV-1 proteomic studies which had used a variety of experimental approaches. In addition, to contribute to this body of knowledge, we report results from a mass spectrometry approach using affinity-tagged (His6) HIV-1 and RSV Gag proteins mixed with nuclear extracts. Taken together, the previous studies-as well as our own-identified potential binding partners of HIV-1 and RSV Gag involved in several nuclear processes, including transcription, splicing, RNA modification, and chromatin remodeling. Although a subset of host proteins interacted with both Gag proteins, there were also unique host proteins belonging to each interactome dataset. To validate one of the novel findings, we demonstrated the interaction of RSV Gag with a member of the Mediator complex, Med26, which is required for RNA polymerase II-mediated transcription. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S. Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Breanna L. Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
6
|
Chang J, Parent LJ. HIV-1 Gag co-localizes with euchromatin histone marks at the nuclear periphery. J Virol 2023; 97:e0117923. [PMID: 37991367 PMCID: PMC10734548 DOI: 10.1128/jvi.01179-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE The traditional view of retrovirus assembly posits that packaging of gRNA by HIV-1 Gag occurs in the cytoplasm or at the plasma membrane. However, our previous studies showing that HIV-1 Gag enters the nucleus and binds to USvRNA at transcription sites suggest that gRNA selection may occur in the nucleus. In the present study, we observed that HIV-1 Gag trafficked to the nucleus and co-localized with USvRNA within 8 hours of expression. In infected T cells (J-Lat 10.6) reactivated from latency and in a HeLa cell line stably expressing an inducible Rev-dependent HIV-1 construct, we found that Gag preferentially localized with euchromatin histone marks associated with enhancer and promoter regions near the nuclear periphery, which is the favored site HIV-1 integration. These observations support the innovative hypothesis that HIV-1 Gag associates with euchromatin-associated histones to localize to active transcription sites, promoting capture of newly synthesized gRNA for packaging.
Collapse
Affiliation(s)
- Jordan Chang
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Leslie J. Parent
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
7
|
Tang Y, Behrens RT, St Gelais C, Wu S, Vivekanandan S, Razin E, Fang P, Wu L, Sherer N, Musier-Forsyth K. Human lysyl-tRNA synthetase phosphorylation promotes HIV-1 proviral DNA transcription. Nucleic Acids Res 2023; 51:12111-12123. [PMID: 37933844 PMCID: PMC10711549 DOI: 10.1093/nar/gkad941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 09/18/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023] Open
Abstract
Human lysyl-tRNA synthetase (LysRS) was previously shown to be re-localized from its normal cytoplasmic location in a multi-aminoacyl-tRNA synthetase complex (MSC) to the nucleus of HIV-1 infected cells. Nuclear localization depends on S207 phosphorylation but the nuclear function of pS207-LysRS in the HIV-1 lifecycle is unknown. Here, we show that HIV-1 replication was severely reduced in a S207A-LysRS knock-in cell line generated by CRISPR/Cas9; this effect was rescued by S207D-LysRS. LysRS phosphorylation up-regulated HIV-1 transcription, as did direct transfection of Ap4A, an upstream transcription factor 2 (USF2) activator that is synthesized by pS207-LysRS. Overexpressing an MSC-derived peptide known to stabilize LysRS MSC binding inhibited HIV-1 replication. Transcription of HIV-1 proviral DNA and other USF2 target genes was reduced in peptide-expressing cells. We propose that nuclear pS207-LysRS generates Ap4A, leading to activation of HIV-1 transcription. Our results suggest a new role for nuclear LysRS in facilitating HIV-1 replication and new avenues for antiviral therapy.
Collapse
Affiliation(s)
- Yingke Tang
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Ryan T Behrens
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Corine St Gelais
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Center for RNA Biology, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | - Siqi Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China
| | - Saravanan Vivekanandan
- Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore and The Hebrew University of Jerusalem (NUS–HUJ), Singapore
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel
| | - Pengfei Fang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan Sherer
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Center for RNA Biology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Horns F, Martinez JA, Fan C, Haque M, Linton JM, Tobin V, Santat L, Maggiolo AO, Bjorkman PJ, Lois C, Elowitz MB. Engineering RNA export for measurement and manipulation of living cells. Cell 2023; 186:3642-3658.e32. [PMID: 37437570 PMCID: PMC10528933 DOI: 10.1016/j.cell.2023.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
A system for programmable export of RNA molecules from living cells would enable both non-destructive monitoring of cell dynamics and engineering of cells capable of delivering executable RNA programs to other cells. We developed genetically encoded cellular RNA exporters, inspired by viruses, that efficiently package and secrete cargo RNA molecules from mammalian cells within protective nanoparticles. Exporting and sequencing RNA barcodes enabled non-destructive monitoring of cell population dynamics with clonal resolution. Further, by incorporating fusogens into the nanoparticles, we demonstrated the delivery, expression, and functional activity of exported mRNA in recipient cells. We term these systems COURIER (controlled output and uptake of RNA for interrogation, expression, and regulation). COURIER enables measurement of cell dynamics and establishes a foundation for hybrid cell and gene therapies based on cell-to-cell delivery of RNA.
Collapse
Affiliation(s)
- Felix Horns
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Joe A Martinez
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mehernaz Haque
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - James M Linton
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Victoria Tobin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leah Santat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ailiena O Maggiolo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
9
|
Goodier JL, Wan H, Soares AO, Sanchez L, Selser JM, Pereira GC, Karma S, García-Pérez JL, Kazazian HH, García Cañadas MM. ZCCHC3 is a stress granule zinc knuckle protein that strongly suppresses LINE-1 retrotransposition. PLoS Genet 2023; 19:e1010795. [PMID: 37405998 DOI: 10.1371/journal.pgen.1010795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/23/2023] [Indexed: 07/07/2023] Open
Abstract
Retrotransposons have generated about half of the human genome and LINE-1s (L1s) are the only autonomously active retrotransposons. The cell has evolved an arsenal of defense mechanisms to protect against retrotransposition with factors we are only beginning to understand. In this study, we investigate Zinc Finger CCHC-Type Containing 3 (ZCCHC3), a gag-like zinc knuckle protein recently reported to function in the innate immune response to infecting viruses. We show that ZCCHC3 also severely restricts human retrotransposons and associates with the L1 ORF1p ribonucleoprotein particle. We identify ZCCHC3 as a bona fide stress granule protein, and its association with LINE-1 is further supported by colocalization with L1 ORF1 protein in stress granules, dense cytoplasmic aggregations of proteins and RNAs that contain stalled translation pre-initiation complexes and form when the cell is under stress. Our work also draws links between ZCCHC3 and the anti-viral and retrotransposon restriction factors Mov10 RISC Complex RNA Helicase (MOV10) and Zinc Finger CCCH-Type, Antiviral 1 (ZC3HAV1, also called ZAP). Furthermore, collective evidence from subcellular localization, co-immunoprecipitation, and velocity gradient centrifugation connects ZCCHC3 with the RNA exosome, a multi-subunit ribonuclease complex capable of degrading various species of RNA molecules and that has previously been linked with retrotransposon control.
Collapse
Affiliation(s)
- John L Goodier
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Han Wan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alisha O Soares
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Laura Sanchez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - John Michael Selser
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gavin C Pereira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sadik Karma
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jose Luis García-Pérez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Haig H Kazazian
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Marta M García Cañadas
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| |
Collapse
|
10
|
Chang J, Parent LJ. HIV-1 Gag colocalizes with euchromatin histone marks at the nuclear periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529990. [PMID: 36865288 PMCID: PMC9980143 DOI: 10.1101/2023.02.24.529990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The retroviral Gag protein of human immunodeficiency virus type 1 (HIV-1) plays a central role in the selection of unspliced viral genomic RNA for packaging into new virions. Previously, we demonstrated that full-length HIV-1 Gag undergoes nuclear trafficking where it associates with unspliced viral RNA (vRNA) at transcription sites. To further explore the kinetics of HIV-1 Gag nuclear localization, we used biochemical and imaging techniques to examine the timing of HIV-1 entry into the nucleus. We also aimed to determine more precisely Gag's subnuclear distribution to test the hypothesis that Gag would be associated with euchromatin, the transcriptionally active region of the nucleus. We observed that HIV-1 Gag localized to the nucleus shortly after its synthesis in the cytoplasm, suggesting that nuclear trafficking was not strictly concentration-dependent. Furthermore, we found that HIV-1 Gag preferentially localized to the transcriptionally active euchromatin fraction compared to the heterochromatin-rich region in a latently-infected CD4+ T cell line (J-Lat 10.6) treated with latency-reversal agents. Interestingly, HIV-1 Gag was more closely associated with transcriptionally-active histone markers near the nuclear periphery, where the HIV-1 provirus was previously shown to integrate. Although the precise function of Gag's association with histones in transcriptionally-active chromatin remains uncertain, together with previous reports, this finding is consistent with a potential role for euchromatin-associated Gag molecules to select newly transcribed unspliced vRNA during the initial stage of virion assembly. Importance The traditional view of retroviral assembly posits that HIV-1 Gag selection of unspliced vRNA begins in the cytoplasm. However, our previous studies demonstrated that HIV-1 Gag enters the nucleus and binds to unspliced HIV-1 RNA at transcription sites, suggesting that genomic RNA selection may occur in the nucleus. In the present study, we observed nuclear entry of HIV-1 Gag and co-localization with unspliced viral RNA within 8 hours post-expression. In CD4+ T cells (J-Lat 10.6) treated with latency reversal agents, as well as a HeLa cell line stably expressing an inducible Rev-dependent provirus, we found that HIV-1 Gag preferentially localized with histone marks associated with enhancer and promoter regions of transcriptionally active euchromatin near the nuclear periphery, which favors HIV-1 proviral integration sites. These observations support the hypothesis that HIV-1 Gag hijacks euchromatin-associated histones to localize to active transcription sites, promoting capture of newly synthesized genomic RNA for packaging.
Collapse
|
11
|
Jin D, Zhu Y, Schubert HL, Goff SP, Musier-Forsyth K. HIV-1 Gag Binds the Multi-Aminoacyl-tRNA Synthetase Complex via the EPRS Subunit. Viruses 2023; 15:474. [PMID: 36851687 PMCID: PMC9967848 DOI: 10.3390/v15020474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Host factor tRNAs facilitate the replication of retroviruses such as human immunodeficiency virus type 1 (HIV-1). HIV-1 uses human tRNALys3 as the primer for reverse transcription, and the assembly of HIV-1 structural protein Gag at the plasma membrane (PM) is regulated by matrix (MA) domain-tRNA interactions. A large, dynamic multi-aminoacyl-tRNA synthetase complex (MSC) exists in the cytosol and consists of eight aminoacyl-tRNA synthetases (ARSs) and three other cellular proteins. Proteomic studies to identify HIV-host interactions have identified the MSC as part of the HIV-1 Gag and MA interactomes. Here, we confirmed that the MA domain of HIV-1 Gag forms a stable complex with the MSC, mapped the primary interaction site to the linker domain of bi-functional human glutamyl-prolyl-tRNA synthetase (EPRS), and showed that the MA-EPRS interaction was RNA dependent. MA mutations that significantly reduced the EPRS interaction reduced viral infectivity and mapped to MA residues that also interact with phosphatidylinositol-(4,5)-bisphosphate. Overexpression of EPRS or EPRS fragments did not affect susceptibility to HIV-1 infection, and knockdown of EPRS reduced both a control reporter gene and HIV-1 protein translation. EPRS knockdown resulted in decreased progeny virion production, but the decrease could not be attributed to selective effects on virus gene expression, and the specific infectivity of the virions remained unchanged. While the precise function of the Gag-EPRS interaction remains uncertain, we discuss possible effects of the interaction on either virus or host activities.
Collapse
Affiliation(s)
- Danni Jin
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Yiping Zhu
- Departments of Biochemistry and Molecular Biophysics, and Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Heidi L. Schubert
- Department of Biochemistry, University of Utah, Salt Lake City, UT 841122, USA
| | - Stephen P. Goff
- Departments of Biochemistry and Molecular Biophysics, and Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Monette A, Niu M, Nijhoff Asser M, Gorelick RJ, Mouland AJ. Scaffolding viral protein NC nucleates phase separation of the HIV-1 biomolecular condensate. Cell Rep 2022; 40:111251. [PMID: 36001979 DOI: 10.1016/j.celrep.2022.111251] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Membraneless biomolecular condensates (BMCs) contribute to the replication of a growing number of viruses but remain to be functionally characterized. Previously, we demonstrated that pan-retroviral nucleocapsid (NC) proteins phase separated into condensates regulating virus assembly. Here we discover that intrinsically disordered human immunodeficiency virus-type 1 (HIV-1) core proteins condense with the viral genomic RNA (vRNA) to assemble as BMCs attaining a geometry characteristic of viral reverse transcription complexes. We explore the predisposition, mechanisms, and pharmacologic sensitivity of HIV-1 core BMCs in living cells. HIV-1 vRNA-interacting NC condensates were found to be scaffolds onto which client capsid, reverse transcriptase, and integrase condensates assemble. HIV-1 core BMCs exhibit fundamental characteristics of BMCs and are drug-sensitive. Lastly, protease-mediated maturation of Gag and Gag-Pol precursor proteins yield abundant and visible BMCs in cells. This study redefines HIV-1 core components as fluid BMCs and advances our understanding of the nature of viral cores during ingress.
Collapse
Affiliation(s)
- Anne Monette
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.
| | - Meijuan Niu
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Maya Nijhoff Asser
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
13
|
Mao S, Ying Y, Ma Z, Yang Y, Chen AK. A Background Assessable and Correctable Bimolecular Fluorescence Complementation System for Nanoscopic Single-Molecule Imaging of Intracellular Protein-Protein Interactions. ACS NANO 2021; 15:14338-14346. [PMID: 34427423 DOI: 10.1021/acsnano.1c03242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bimolecular Fluorescence Complementation (BiFC) is a versatile approach for intracellular analysis of protein-protein interactions (PPIs), but the tendency of the split fluorescent protein (FP) fragments to self-assemble when brought into close proximity of each other by random collision can lead to generation of false-positive signals that hamper high-definition imaging of PPIs occurring on the nanoscopic level. While it is thought that expressing the fusion proteins at a low level can remove false positives without impacting specific signals, there has been no effective strategy to test this possibility. Here, we present a system capable of assessing and removing BiFC false positives, termed Background Assessable and Correctable-BiFC (BAC-BiFC), in which one of the split FP fragments is fused with an optically distinct FP that serves as a reference marker, and the single-cell fluorescence ratio of the BiFC signal to the reference signal is used to gauge an optimal transfection condition. We showed that when BAC-BiFC is designed to image PPIs regulating Human Immunodeficiency Virus type 1 (HIV-1) assembly, the fluorescence ratio could decrease with decreasing probe quantity, and ratios approaching the limit of detection could allow physiologically relevant characterization of the assembly process on the nanoscale by single-molecule localization microscopy (SMLM). With much improved clarity, previously undescribed features of HIV-1 assembly were revealed.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhao Ma
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yantao Yang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Faoro C, Ataide SF. Noncanonical Functions and Cellular Dynamics of the Mammalian Signal Recognition Particle Components. Front Mol Biosci 2021; 8:679584. [PMID: 34113652 PMCID: PMC8185352 DOI: 10.3389/fmolb.2021.679584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein complex fundamental for co-translational delivery of proteins to their proper membrane localization and secretory pathways. Literature of the past two decades has suggested new roles for individual SRP components, 7SL RNA and proteins SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72, outside the SRP cycle. These noncanonical functions interconnect SRP with a multitude of cellular and molecular pathways, including virus-host interactions, stress response, transcriptional regulation and modulation of apoptosis in autoimmune diseases. Uncovered novel properties of the SRP components present a new perspective for the mammalian SRP as a biological modulator of multiple cellular processes. As a consequence of these findings, SRP components have been correlated with a growing list of diseases, such as cancer progression, myopathies and bone marrow genetic diseases, suggesting a potential for development of SRP-target therapies of each individual component. For the first time, here we present the current knowledge on the SRP noncanonical functions and raise the need of a deeper understanding of the molecular interactions between SRP and accessory cellular components. We examine diseases associated with SRP components and discuss the development and feasibility of therapeutics targeting individual SRP noncanonical functions.
Collapse
Affiliation(s)
- Camilla Faoro
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sandro F Ataide
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Zhuang S, Torbett BE. Interactions of HIV-1 Capsid with Host Factors and Their Implications for Developing Novel Therapeutics. Viruses 2021; 13:417. [PMID: 33807824 PMCID: PMC8001122 DOI: 10.3390/v13030417] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
The Human Immunodeficiency Virus type 1 (HIV-1) virion contains a conical shell, termed capsid, encasing the viral RNA genome. After cellular entry of the virion, the capsid is released and ensures the protection and delivery of the HIV-1 genome to the host nucleus for integration. The capsid relies on many virus-host factor interactions which are regulated spatiotemporally throughout the course of infection. In this paper, we will review the current understanding of the highly dynamic HIV-1 capsid-host interplay during the early stages of viral replication, namely intracellular capsid trafficking after viral fusion, nuclear import, uncoating, and integration of the viral genome into host chromatin. Conventional anti-retroviral therapies primarily target HIV-1 enzymes. Insights of capsid structure have resulted in a first-in-class, long-acting capsid-targeting inhibitor, GS-6207 (Lenacapavir). This inhibitor binds at the interface between capsid protein subunits, a site known to bind host factors, interferes with capsid nuclear import, HIV particle assembly, and ordered assembly. Our review will highlight capsid structure, the host factors that interact with capsid, and high-throughput screening techniques, specifically genomic and proteomic approaches, that have been and can be used to identify host factors that interact with capsid. Better structural and mechanistic insights into the capsid-host factor interactions will significantly inform the understanding of HIV-1 pathogenesis and the development of capsid-centric antiretroviral therapeutics.
Collapse
Affiliation(s)
- Shentian Zhuang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Bruce E. Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| |
Collapse
|
16
|
Dicker K, Järvelin AI, Garcia-Moreno M, Castello A. The importance of virion-incorporated cellular RNA-Binding Proteins in viral particle assembly and infectivity. Semin Cell Dev Biol 2021; 111:108-118. [PMID: 32921578 PMCID: PMC7482619 DOI: 10.1016/j.semcdb.2020.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
RNA is a central molecule in RNA virus biology due to its dual function as messenger and genome. However, the small number of proteins encoded by viral genomes is insufficient to enable virus infection. Hence, viruses hijack cellular RNA-binding proteins (RBPs) to aid replication and spread. In this review we discuss the 'knowns' and 'unknowns' regarding the contribution of host RBPs to the formation of viral particles and the initial steps of infection in the newly infected cell. Through comparison of the virion proteomes of ten different human RNA viruses, we confirm that a pool of cellular RBPs are typically incorporated into viral particles. We describe here illustrative examples supporting the important functions of these RBPs in viral particle formation and infectivity and we propose that the role of host RBPs in these steps can be broader than previously anticipated. Understanding how cellular RBPs regulate virus infection can lead to the discovery of novel therapeutic targets against viruses.
Collapse
Affiliation(s)
- Kate Dicker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK; MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
17
|
Grabowska K, Harwood E, Ciborowski P. HIV and Proteomics: What We Have Learned from High Throughput Studies. Proteomics Clin Appl 2021; 15:e2000040. [PMID: 32978881 PMCID: PMC7900993 DOI: 10.1002/prca.202000040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/04/2020] [Indexed: 12/17/2022]
Abstract
The accelerated development of technology over the last three decades has driven biological sciences to high-throughput profiling experiments, now broadly referred to as systems biology. The unprecedented improvement of analytical instrumentation has opened new avenues for more complex experimental designs and expands the knowledge in genomics, proteomics, and other omics fields. Despite the collective efforts of hundreds of researchers, gleaning all the expected information from omics experiments is still quite far. This paper summarizes what has been learned from high-throughput proteomics studies thus far, and what is believed should be done to reveal even more valuable information from such studies. It is drawn from the background in using proteomics to study human immunodeficiency virus 1 infection of macrophages and/or T cells, but it is believed that some conclusions will be more broadly applicable.
Collapse
Affiliation(s)
- Kinga Grabowska
- Laboratory of Virus Molecular BiologyIntercollegiate Faculty of BiotechnologyUniversity of GdanskGdansk80‐307Poland
- Department of Pharmacology and Experimental NeuroscienceCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198‐5800USA
| | - Emma Harwood
- Department of Pharmacology and Experimental NeuroscienceCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198‐5800USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental NeuroscienceCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198‐5800USA
| |
Collapse
|
18
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) proteome is expressed from alternatively spliced and unspliced genomic RNAs. However, HIV-1 RNAs that are not fully spliced are perceived by the host machinery as defective and are retained in the nucleus. During late infection, HIV-1 bypasses this regulatory mechanism by expression of the Rev protein from a fully spliced mRNA. Once imported into the nucleus, Rev mediates the export of unprocessed HIV-1 RNAs to the cytoplasm, leading to the production of the viral progeny. While regarded as a canonical RNA export factor, Rev has also been linked to HIV-1 RNA translation, stabilization, splicing and packaging. However, Rev's functions beyond RNA export have remained poorly understood. Here, we revisit this paradigmatic protein, reviewing recent data investigating its structure and function. We conclude by asking: what remains unknown about this enigmatic viral protein?
Collapse
Affiliation(s)
| | - Aino Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
19
|
HIV-1 Gag Forms Ribonucleoprotein Complexes with Unspliced Viral RNA at Transcription Sites. Viruses 2020; 12:v12111281. [PMID: 33182496 PMCID: PMC7696413 DOI: 10.3390/v12111281] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023] Open
Abstract
The ability of the retroviral Gag protein of Rous sarcoma virus (RSV) to transiently traffic through the nucleus is well-established and has been implicated in genomic RNA (gRNA) packaging Although other retroviral Gag proteins (human immunodeficiency virus type 1, HIV-1; feline immunodeficiency virus, FIV; Mason-Pfizer monkey virus, MPMV; mouse mammary tumor virus, MMTV; murine leukemia virus, MLV; and prototype foamy virus, PFV) have also been observed in the nucleus, little is known about what, if any, role nuclear trafficking plays in those viruses. In the case of HIV-1, the Gag protein interacts in nucleoli with the regulatory protein Rev, which facilitates nuclear export of gRNA. Based on the knowledge that RSV Gag forms viral ribonucleoprotein (RNPs) complexes with unspliced viral RNA (USvRNA) in the nucleus, we hypothesized that the interaction of HIV-1 Gag with Rev could be mediated through vRNA to form HIV-1 RNPs. Using inducible HIV-1 proviral constructs, we visualized HIV-1 Gag and USvRNA in discrete foci in the nuclei of HeLa cells by confocal microscopy. Two-dimensional co-localization and RNA-immunoprecipitation of fractionated cells revealed that interaction of nuclear HIV-1 Gag with USvRNA was specific. Interestingly, treatment of cells with transcription inhibitors reduced the number of HIV-1 Gag and USvRNA nuclear foci, yet resulted in an increase in the degree of Gag co-localization with USvRNA, suggesting that Gag accumulates on newly synthesized viral transcripts. Three-dimensional imaging analysis revealed that HIV-1 Gag localized to the perichromatin space and associated with USvRNA and Rev in a tripartite RNP complex. To examine a more biologically relevant cell, latently infected CD4+ T cells were treated with prostratin to stimulate NF-κB mediated transcription, demonstrating striking localization of full-length Gag at HIV-1 transcriptional burst site, which was labelled with USvRNA-specific riboprobes. In addition, smaller HIV-1 RNPs were observed in the nuclei of these cells. These data suggest that HIV-1 Gag binds to unspliced viral transcripts produced at the proviral integration site, forming vRNPs in the nucleus.
Collapse
|
20
|
A Comprehensive Proteomics Analysis of the JC Virus (JCV) Large and Small Tumor Antigen Interacting Proteins: Large T Primarily Targets the Host Protein Complexes with V-ATPase and Ubiquitin Ligase Activities While Small t Mostly Associates with Those Having Phosphatase and Chromatin-Remodeling Functions. Viruses 2020; 12:v12101192. [PMID: 33092197 PMCID: PMC7594058 DOI: 10.3390/v12101192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The oncogenic potential of both the polyomavirus large (LT-Ag) and small (Sm t-Ag) tumor antigens has been previously demonstrated in both tissue culture and animal models. Even the contribution of the MCPyV tumor antigens to the development of an aggressive human skin cancer, Merkel cell carcinoma, has been recently established. To date, the known primary targets of these tumor antigens include several tumor suppressors such as pRb, p53, and PP2A. However, a comprehensive list of the host proteins targeted by these proteins remains largely unknown. Here, we report the first interactome of JCV LT-Ag and Sm t-Ag by employing two independent “affinity purification/mass spectroscopy” (AP/MS) assays. The proteomics data identified novel targets for both tumor antigens while confirming some of the previously reported interactions. LT-Ag was found to primarily target the protein complexes with ATPase (v-ATPase and Smc5/6 complex), phosphatase (PP4 and PP1), and ligase (E3-ubiquitin) activities. In contrast, the major targets of Sm t-Ag were identified as Smarca1/6, AIFM1, SdhA/B, PP2A, and p53. The interactions between “LT-Ag and SdhB”, “Sm t-Ag and Smarca5”, and “Sm t-Ag and SDH” were further validated by biochemical assays. Interestingly, perturbations in some of the LT-Ag and Sm t-Ag targets identified in this study were previously shown to be associated with oncogenesis, suggesting new roles for both tumor antigens in novel oncogenic pathways. This comprehensive data establishes new foundations to further unravel the new roles for JCV tumor antigens in oncogenesis and the viral life cycle.
Collapse
|
21
|
How HIV-1 Gag Manipulates Its Host Cell Proteins: A Focus on Interactors of the Nucleocapsid Domain. Viruses 2020; 12:v12080888. [PMID: 32823718 PMCID: PMC7471995 DOI: 10.3390/v12080888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) polyprotein Gag (Group-specific antigen) plays a central role in controlling the late phase of the viral lifecycle. Considered to be only a scaffolding protein for a long time, the structural protein Gag plays determinate and specific roles in HIV-1 replication. Indeed, via its different domains, Gag orchestrates the specific encapsidation of the genomic RNA, drives the formation of the viral particle by its auto-assembly (multimerization), binds multiple viral proteins, and interacts with a large number of cellular proteins that are needed for its functions from its translation location to the plasma membrane, where newly formed virions are released. Here, we review the interactions between HIV-1 Gag and 66 cellular proteins. Notably, we describe the techniques used to evidence these interactions, the different domains of Gag involved, and the implications of these interactions in the HIV-1 replication cycle. In the final part, we focus on the interactions involving the highly conserved nucleocapsid (NC) domain of Gag and detail the functions of the NC interactants along the viral lifecycle.
Collapse
|
22
|
Saribas AS, Datta PK, Safak M. A comprehensive proteomics analysis of JC virus Agnoprotein-interacting proteins: Agnoprotein primarily targets the host proteins with coiled-coil motifs. Virology 2019; 540:104-118. [PMID: 31765920 DOI: 10.1016/j.virol.2019.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022]
Abstract
JC virus (JCV) Agnoprotein (Agno) plays critical roles in successful completion of the viral replication cycle. Understanding its regulatory roles requires a complete map of JCV-host protein interactions. Here, we report the first Agno interactome with host cellular targets utilizing "Two-Strep-Tag" affinity purification system coupled with mass spectroscopy (AP/MS). Proteomics data revealed that Agno primarily targets 501 cellular proteins, most of which contain "coiled-coil" motifs. Agno-host interactions occur in several cellular networks including those involved in protein synthesis and degradation; and cellular transport; and in organelles, including mitochondria, nucleus and ER-Golgi network. Among the Agno interactions, Rab11B, Importin and Crm-1 were first validated biochemically and further characterization was done for Crm-1, using a HIV-1 Rev-M10-like Agno mutant (L33D + E34L), revealing the critical roles of L33 and E34 residues in Crm-1 interaction. This comprehensive proteomics data provides new foundations to unravel the critical regulatory roles of Agno during the JCV life cycle.
Collapse
Affiliation(s)
- A Sami Saribas
- Department of Neuroscience, Laboratory of Molecular Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Prasun K Datta
- Department of Neuroscience, Laboratory of Molecular Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Mahmut Safak
- Department of Neuroscience, Laboratory of Molecular Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
23
|
Li CW, Chen BS. Investigating HIV-Human Interaction Networks to Unravel Pathogenic Mechanism for Drug Discovery: A Systems Biology Approach. Curr HIV Res 2019; 16:77-95. [PMID: 29468972 DOI: 10.2174/1570162x16666180219155324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/18/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Two big issues in the study of pathogens are determining how pathogens infect hosts and how the host defends itself against infection. Therefore, investigating host-pathogen interactions is important for understanding pathogenicity and host defensive mechanisms and treating infections. METHODS In this study, we used omics data, including time-course data from high-throughput sequencing, real-time polymerase chain reaction, and human microRNA (miRNA) and protein-protein interaction to construct an interspecies protein-protein and miRNA interaction (PPMI) network of human CD4+ T cells during HIV-1 infection through system modeling and identification. RESULTS By applying a functional annotation tool to the identified PPMI network at each stage of HIV infection, we found that repressions of three miRNAs, miR-140-5p, miR-320a, and miR-941, are involved in the development of autoimmune disorders, tumor proliferation, and the pathogenesis of T cells at the reverse transcription stage. Repressions of miR-331-3p and miR-320a are involved in HIV-1 replication, replicative spread, anti-apoptosis, cell proliferation, and dysregulation of cell cycle control at the integration/replication stage. Repression of miR-341-5p is involved in carcinogenesis at the late stage of HIV-1 infection. CONCLUSION By investigating the common core proteins and changes in specific proteins in the PPMI network between the stages of HIV-1 infection, we obtained pathogenic insights into the functional core modules and identified potential drug combinations for treating patients with HIV-1 infection, including thalidomide, oxaprozin, and metformin, at the reverse transcription stage; quercetin, nifedipine, and fenbendazole, at the integration/replication stage; and staurosporine, quercetin, prednisolone, and flufenamic acid, at the late stage.
Collapse
Affiliation(s)
- Cheng-Wei Li
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
24
|
Jin D, Musier-Forsyth K. Role of host tRNAs and aminoacyl-tRNA synthetases in retroviral replication. J Biol Chem 2019; 294:5352-5364. [PMID: 30700559 DOI: 10.1074/jbc.rev118.002957] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The lifecycle of retroviruses and retrotransposons includes a reverse transcription step, wherein dsDNA is synthesized from genomic RNA for subsequent insertion into the host genome. Retroviruses and retrotransposons commonly appropriate major components of the host cell translational machinery, including cellular tRNAs, which are exploited as reverse transcription primers. Nonpriming functions of tRNAs have also been proposed, such as in HIV-1 virion assembly, and tRNA-derived fragments may also be involved in retrovirus and retrotransposon replication. Moreover, host cellular proteins regulate retroviral replication by binding to tRNAs and thereby affecting various steps in the viral lifecycle. For example, in some cases, tRNA primer selection is facilitated by cognate aminoacyl-tRNA synthetases (ARSs), which bind tRNAs and ligate them to their corresponding amino acids, but also have many known nontranslational functions. Multi-omic studies have revealed that ARSs interact with both viral proteins and RNAs and potentially regulate retroviral replication. Here, we review the currently known roles of tRNAs and their derivatives in retroviral and retrotransposon replication and shed light on the roles of tRNA-binding proteins such as ARSs in this process.
Collapse
Affiliation(s)
- Danni Jin
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - Karin Musier-Forsyth
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
25
|
Saxena R, Vekariya U, Tripathi R. HIV-1 Nef and host proteome analysis: Current perspective. Life Sci 2019; 219:322-328. [PMID: 30664855 DOI: 10.1016/j.lfs.2019.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/23/2023]
Abstract
Proteome represents the set of proteins being produced by an organism at a given time. Comparative proteomic profiling of a healthy and diseased state is likely to reflect the dynamics of a disease process. Proteomic techniques are widely used to discover novel biomarkers and decipher mechanisms of HIV-1 pathogenesis. Proteomics is thus emerging as an indispensable tool of monitoring a disease process and intense interactions between HIV-1 and host. Nef is known to regulate various functions in the host to establish the state of infection. This review gives an overview of all proteomic studies done on HIV infection and HIV associated disorders including recent developments in Nef-host proteomic profiling. Here, we propose an emphasis on Nef based proteomic studies. We also discuss the future prospects and the technical and biological challenges involved in proteomic studies. Future studies with Nef related proteomic investigation are likely to identify more targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Reshu Saxena
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Umeshkumar Vekariya
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Rajkamal Tripathi
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India.
| |
Collapse
|
26
|
Smyth RP, Smith MR, Jousset AC, Despons L, Laumond G, Decoville T, Cattenoz P, Moog C, Jossinet F, Mougel M, Paillart JC, von Kleist M, Marquet R. In cell mutational interference mapping experiment (in cell MIME) identifies the 5' polyadenylation signal as a dual regulator of HIV-1 genomic RNA production and packaging. Nucleic Acids Res 2018; 46:e57. [PMID: 29514260 PMCID: PMC5961354 DOI: 10.1093/nar/gky152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Accepted: 03/01/2018] [Indexed: 12/28/2022] Open
Abstract
Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5' region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5' PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production.
Collapse
Affiliation(s)
- Redmond P Smyth
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Maureen R Smith
- Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany
| | - Anne-Caroline Jousset
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Laurence Despons
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Géraldine Laumond
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Thomas Decoville
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Pierre Cattenoz
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Fabrice Jossinet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Marylène Mougel
- IRIM CNRS UMR9004, Université de Montpellier, Montpellier, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Max von Kleist
- Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| |
Collapse
|
27
|
Reed JC, Westergreen N, Barajas BC, Ressler DTB, Phuong DJ, Swain JV, Lingappa VR, Lingappa JR. Formation of RNA Granule-Derived Capsid Assembly Intermediates Appears To Be Conserved between Human Immunodeficiency Virus Type 1 and the Nonprimate Lentivirus Feline Immunodeficiency Virus. J Virol 2018; 92:e01761-17. [PMID: 29467316 PMCID: PMC5899207 DOI: 10.1128/jvi.01761-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/14/2018] [Indexed: 01/18/2023] Open
Abstract
During immature capsid assembly in cells, human immunodeficiency virus type 1 (HIV-1) Gag co-opts a host RNA granule, forming a pathway of intracellular assembly intermediates containing host components, including two cellular facilitators of assembly, ABCE1 and DDX6. A similar assembly pathway has been observed for other primate lentiviruses. Here we asked whether feline immunodeficiency virus (FIV), a nonprimate lentivirus, also forms RNA granule-derived capsid assembly intermediates. First, we showed that the released FIV immature capsid and a large FIV Gag-containing intracellular complex are unstable during analysis, unlike for HIV-1. We identified harvest conditions, including in situ cross-linking, that overcame this problem, revealing a series of FIV Gag-containing complexes corresponding in size to HIV-1 assembly intermediates. Previously, we showed that assembly-defective HIV-1 Gag mutants are arrested at specific assembly intermediates; here we identified four assembly-defective FIV Gag mutants, including three not previously studied, and demonstrated that they appear to be arrested at the same intermediate as the cognate HIV-1 mutants. Further evidence that these FIV Gag-containing complexes correspond to assembly intermediates came from coimmunoprecipitations demonstrating that endogenous ABCE1 and the RNA granule protein DDX6 are associated with FIV Gag, as shown previously for HIV-1 Gag, but are not associated with a ribosomal protein, at steady state. Additionally, we showed that FIV Gag associates with another RNA granule protein, DCP2. Finally, we validated the FIV Gag-ABCE1 and FIV Gag-DCP2 interactions with proximity ligation assays demonstrating colocalization in situ Together, these data support a model in which primate and nonprimate lentiviruses form intracellular capsid assembly intermediates derived from nontranslating host RNA granules.IMPORTANCE Like HIV-1 Gag, FIV Gag assembles into immature capsids; however, it is not known whether FIV Gag progresses through a pathway of immature capsid assembly intermediates derived from host RNA granules, as shown for HIV-1 Gag. Here we showed that FIV Gag forms complexes that resemble HIV-1 capsid assembly intermediates in size and in their association with ABCE1 and DDX6, two host facilitators of HIV-1 immature capsid assembly that are found in HIV-1 assembly intermediates. Our studies also showed that known and novel assembly-defective FIV Gag mutants fail to progress past putative intermediates in a pattern resembling that observed for HIV-1 Gag mutants. Finally, we used imaging to demonstrate colocalization of FIV Gag with ABCE1 and with the RNA granule protein DCP2. Thus, we conclude that formation of assembly intermediates derived from host RNA granules is likely conserved between primate and nonprimate lentiviruses and could provide targets for future antiviral strategies.
Collapse
Affiliation(s)
| | | | - Brook C Barajas
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | | | - Daryl J Phuong
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - John V Swain
- Prosetta Biosciences, San Francisco, California, USA
| | | | - Jaisri R Lingappa
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
Taylor MS, Altukhov I, Molloy KR, Mita P, Jiang H, Adney EM, Wudzinska A, Badri S, Ischenko D, Eng G, Burns KH, Fenyö D, Chait BT, Alexeev D, Rout MP, Boeke JD, LaCava J. Dissection of affinity captured LINE-1 macromolecular complexes. eLife 2018; 7:30094. [PMID: 29309035 PMCID: PMC5821459 DOI: 10.7554/elife.30094] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Long Interspersed Nuclear Element-1 (LINE-1, L1) is a mobile genetic element active in human genomes. L1-encoded ORF1 and ORF2 proteins bind L1 RNAs, forming ribonucleoproteins (RNPs). These RNPs interact with diverse host proteins, some repressive and others required for the L1 lifecycle. Using differential affinity purifications, quantitative mass spectrometry, and next generation RNA sequencing, we have characterized the proteins and nucleic acids associated with distinctive, enzymatically active L1 macromolecular complexes. Among them, we describe a cytoplasmic intermediate that we hypothesize to be the canonical ORF1p/ORF2p/L1-RNA-containing RNP, and we describe a nuclear population containing ORF2p, but lacking ORF1p, which likely contains host factors participating in target-primed reverse transcription.
Collapse
Affiliation(s)
- Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Boston, United States
| | - Ilya Altukhov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
| | - Paolo Mita
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics, NYU Langone Health, New York, United States
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, United States
| | - Emily M Adney
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics, NYU Langone Health, New York, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Aleksandra Wudzinska
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sana Badri
- Department of Pathology, NYU Langone Health, New York, United States
| | - Dmitry Ischenko
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - George Eng
- Department of Pathology, Massachusetts General Hospital, Boston, United States
| | - Kathleen H Burns
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, United States.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics, NYU Langone Health, New York, United States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
| | | | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, United States
| | - Jef D Boeke
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics, NYU Langone Health, New York, United States
| | - John LaCava
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics, NYU Langone Health, New York, United States.,Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, United States
| |
Collapse
|
29
|
Elucidating the in vivo interactome of HIV-1 RNA by hybridization capture and mass spectrometry. Sci Rep 2017; 7:16965. [PMID: 29208937 PMCID: PMC5717263 DOI: 10.1038/s41598-017-16793-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/17/2017] [Indexed: 02/05/2023] Open
Abstract
HIV-1 replication requires myriad interactions between cellular proteins and the viral unspliced RNA. These interactions are important in archetypal RNA processes such as transcription and translation as well as for more specialized functions including alternative splicing and packaging of unspliced genomic RNA into virions. We present here a hybridization capture strategy for purification of unspliced full-length HIV RNA-protein complexes preserved in vivo by formaldehyde crosslinking, and coupled with mass spectrometry to identify HIV RNA-protein interactors in HIV-1 infected cells. One hundred eighty-nine proteins were identified to interact with unspliced HIV RNA including Rev and Gag/Gag-Pol, 24 host proteins previously shown to bind segments of HIV RNA, and over 90 proteins previously shown to impact HIV replication. Further analysis using siRNA knockdown techniques against several of these proteins revealed significant changes to HIV expression. These results demonstrate the utility of the approach for the discovery of host proteins involved in HIV replication. Additionally, because this strategy only requires availability of 30 nucleotides of the HIV-RNA for hybridization with a capture oligonucleotide, it is readily applicable to any HIV system of interest regardless of cell type, HIV-1 virus strain, or experimental perturbation.
Collapse
|
30
|
HIV-1 Exploits a Dynamic Multi-aminoacyl-tRNA Synthetase Complex To Enhance Viral Replication. J Virol 2017; 91:JVI.01240-17. [PMID: 28814526 DOI: 10.1128/jvi.01240-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022] Open
Abstract
A hallmark of retroviruses such as human immunodeficiency virus type 1 (HIV-1) is reverse transcription of genomic RNA to DNA, a process that is primed by cellular tRNAs. HIV-1 recruits human tRNALys3 to serve as the reverse transcription primer via an interaction between lysyl-tRNA synthetase (LysRS) and the HIV-1 Gag polyprotein. LysRS is normally sequestered in a multi-aminoacyl-tRNA synthetase complex (MSC). Previous studies demonstrated that components of the MSC can be mobilized in response to certain cellular stimuli, but how LysRS is redirected from the MSC to viral particles for packaging is unknown. Here, we show that upon HIV-1 infection, a free pool of non-MSC-associated LysRS is observed and partially relocalized to the nucleus. Heat inactivation of HIV-1 blocks nuclear localization of LysRS, but treatment with a reverse transcriptase inhibitor does not, suggesting that the trigger for relocalization occurs prior to reverse transcription. A reduction in HIV-1 infection is observed upon treatment with an inhibitor to mitogen-activated protein kinase that prevents phosphorylation of LysRS on Ser207, release of LysRS from the MSC, and nuclear localization. A phosphomimetic mutant of LysRS (S207D) that lacked the capability to aminoacylate tRNALys3 localized to the nucleus, rescued HIV-1 infectivity, and was packaged into virions. In contrast, a phosphoablative mutant (S207A) remained cytosolic and maintained full aminoacylation activity but failed to rescue infectivity and was not packaged. These findings suggest that HIV-1 takes advantage of the dynamic nature of the MSC to redirect and coopt cellular translation factors to enhance viral replication.IMPORTANCE Human tRNALys3, the primer for reverse transcription, and LysRS are essential host factors packaged into HIV-1 virions. Previous studies found that tRNALys3 packaging depends on interactions between LysRS and HIV-1 Gag; however, many details regarding the mechanism of tRNALys3 and LysRS packaging remain unknown. LysRS is normally sequestered in a high-molecular-weight multi-aminoacyl-tRNA synthetase complex (MSC), restricting the pool of free LysRS-tRNALys Mounting evidence suggests that LysRS is released under a variety of stimuli to perform alternative functions within the cell. Here, we show that HIV-1 infection results in a free pool of LysRS that is relocalized to the nucleus of target cells. Blocking this pathway in HIV-1-producing cells resulted in less infectious progeny virions. Understanding the mechanism by which LysRS is recruited into the viral assembly pathway can be exploited for the development of specific and effective therapeutics targeting this nontranslational function.
Collapse
|
31
|
Zhang L, Jia X, Jin JO, Lu H, Tan Z. Recent 5-year Findings and Technological Advances in the Proteomic Study of HIV-associated Disorders. GENOMICS, PROTEOMICS & BIOINFORMATICS 2017; 15:110-120. [PMID: 28391008 PMCID: PMC5415375 DOI: 10.1016/j.gpb.2016.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 12/24/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) mainly relies on host factors to complete its life cycle. Hence, it is very important to identify HIV-regulated host proteins. Proteomics is an excellent technique for this purpose because of its high throughput and sensitivity. In this review, we summarized current technological advances in proteomics, including general isobaric tags for relative and absolute quantitation (iTRAQ) and stable isotope labeling by amino acids in cell culture (SILAC), as well as subcellular proteomics and investigation of posttranslational modifications. Furthermore, we reviewed the applications of proteomics in the discovery of HIV-related diseases and HIV infection mechanisms. Proteins identified by proteomic studies might offer new avenues for the diagnosis and treatment of HIV infection and the related diseases.
Collapse
Affiliation(s)
- Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Xiaofang Jia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhimi Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
32
|
Kienle N, Kloepper TH, Fasshauer D. Shedding light on the expansion and diversification of the Cdc48 protein family during the rise of the eukaryotic cell. BMC Evol Biol 2016; 16:215. [PMID: 27756227 PMCID: PMC5070193 DOI: 10.1186/s12862-016-0790-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/04/2016] [Indexed: 11/22/2022] Open
Abstract
Background A defining feature of eukaryotic cells is the presence of various distinct membrane-bound compartments with different metabolic roles. Material exchange between most compartments occurs via a sophisticated vesicle trafficking system. This intricate cellular architecture of eukaryotes appears to have emerged suddenly, about 2 billion years ago, from much less complex ancestors. How the eukaryotic cell acquired its internal complexity is poorly understood, partly because no prokaryotic precursors have been found for many key factors involved in compartmentalization. One exception is the Cdc48 protein family, which consists of several distinct classical ATPases associated with various cellular activities (AAA+) proteins with two consecutive AAA domains. Results Here, we have classified the Cdc48 family through iterative use of hidden Markov models and tree building. We found only one type, Cdc48, in prokaryotes, although a set of eight diverged members that function at distinct subcellular compartments were retrieved from eukaryotes and were probably present in the last eukaryotic common ancestor (LECA). Pronounced changes in sequence and domain structure during the radiation into the LECA set are delineated. Moreover, our analysis brings to light lineage-specific losses and duplications that often reflect important biological changes. Remarkably, we also found evidence for internal duplications within the LECA set that probably occurred during the rise of the eukaryotic cell. Conclusions Our analysis corroborates the idea that the diversification of the Cdc48 family is closely intertwined with the development of the compartments of the eukaryotic cell. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0790-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nickias Kienle
- Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Tobias H Kloepper
- Sir William Dunn School of Pathology, Research Group Cell Biology of Intercellular Signaling, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Dirk Fasshauer
- Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
33
|
Dong S, Liu L, Wu W, Armstrong SD, Xia D, Nan H, Hiscox JA, Chen H. Determination of the interactome of non-structural protein12 from highly pathogenic porcine reproductive and respiratory syndrome virus with host cellular proteins using high throughput proteomics and identification of HSP70 as a cellular factor for virus replication. J Proteomics 2016; 146:58-69. [DOI: 10.1016/j.jprot.2016.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022]
|
34
|
Telesnitsky A, Wolin SL. The Host RNAs in Retroviral Particles. Viruses 2016; 8:v8080235. [PMID: 27548206 PMCID: PMC4997597 DOI: 10.3390/v8080235] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
As they assemble, retroviruses encapsidate both their genomic RNAs and several types of host RNA. Whereas limited amounts of messenger RNA (mRNA) are detectable within virion populations, the predominant classes of encapsidated host RNAs do not encode proteins, but instead include endogenous retroelements and several classes of non-coding RNA (ncRNA), some of which are packaged in significant molar excess to the viral genome. Surprisingly, although the most abundant host RNAs in retroviruses are also abundant in cells, unusual forms of these RNAs are packaged preferentially, suggesting that these RNAs are recruited early in their biogenesis: before associating with their cognate protein partners, and/or from transient or rare RNA populations. These RNAs' packaging determinants differ from the viral genome's, and several of the abundantly packaged host ncRNAs serve cells as the scaffolds of ribonucleoprotein particles. Because virion assembly is equally efficient whether or not genomic RNA is available, yet RNA appears critical to the structural integrity of retroviral particles, it seems possible that the selectively encapsidated host ncRNAs might play roles in assembly. Indeed, some host ncRNAs appear to act during replication, as some transfer RNA (tRNA) species may contribute to nuclear import of human immunodeficiency virus 1 (HIV-1) reverse transcription complexes, and other tRNA interactions with the viral Gag protein aid correct trafficking to plasma membrane assembly sites. However, despite high conservation of packaging for certain host RNAs, replication roles for most of these selectively encapsidated RNAs-if any-have remained elusive.
Collapse
Affiliation(s)
- Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sandra L Wolin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
35
|
Biochemical and proteomic characterization of retrovirus Gag based microparticles carrying melanoma antigens. Sci Rep 2016; 6:29425. [PMID: 27403717 PMCID: PMC4941533 DOI: 10.1038/srep29425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/17/2016] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles are membraneous particles released by a variety of cells into the extracellular microenvironment. Retroviruses utilize the cellular vesiculation pathway for virus budding/assembly and the retrovirus Gag protein induces the spontaneous formation of microvesicles or virus-like particles (VLPs) when expressed in the mammalian cells. In this study, five different melanoma antigens, MAGEA4, MAGEA10, MART1, TRP1 and MCAM, were incorporated into the VLPs and their localization within the particles was determined. Our data show that the MAGEA4 and MAGEA10 proteins as well as MCAM are expressed on the surface of VLPs. The compartmentalization of exogenously expressed cancer antigens within the VLPs did not depend on the localization of the protein within the cell. Comparison of the protein content of VLPs by LC-MS/MS-based label-free quantitative proteomics showed that VLPs carrying different cancer antigens are very similar to each other, but differ to some extent from VLPs without recombinant antigen. We suggest that retrovirus Gag based virus-like particles carrying recombinant antigens have a potential to be used in cancer immunotherapy.
Collapse
|
36
|
Li Y, Frederick KM, Haverland NA, Ciborowski P, Belshan M. Investigation of the HIV-1 matrix interactome during virus replication. Proteomics Clin Appl 2015; 10:156-63. [PMID: 26360636 DOI: 10.1002/prca.201400189] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 07/15/2015] [Accepted: 09/07/2015] [Indexed: 12/18/2022]
Abstract
PURPOSE Like all viruses, human immunodeficiency virus type 1 (HIV-1) requires host cellular factors for productive replication. Identification of these factors may lead to the development of novel cell-based inhibitors. EXPERIMENTAL DESIGN A Strep-tag was inserted into the C-terminus of the matrix (MA) region of the HIV-1 gag gene. The resultant virus was replication competent and used to infect Jurkat T-cells. MA complexes were affinity purified with Strep-Tactin agarose. Protein quantification was performed using sequential window acquisition of all theoretical fragment ion spectra (SWATH) MS, data were log2 -transformed, and Student t-tests with Bonferroni correction used to determine statistical significance. Several candidate proteins were validated by immunoblot and investigated for their role in virus infection by siRNA knockdown assays. RESULTS A total of 17 proteins were found to be statistically different between the infected versus uninfected and untagged control samples. X-ray repair cross-complementing protein 6 (Ku70), X-ray repair cross-complementing protein 5 (Ku80), and Y-box binding protein 1 (YB-1) were confirmed to interact with MA by immunoblot. Knockdown of two candidates, EZRIN and Y-box binding protein 1, enhanced HIV infection in vitro. CONCLUSIONS AND CLINICAL RELEVANCE The Strep-tag allowed for the capture of viral protein complexes in the context of virus replication. Several previously described factors were identified and at least two candidate proteins were found to play a role in HIV-1 infection. These data further increase our understanding of HIV host -cell interactions.
Collapse
Affiliation(s)
- Yan Li
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Kristin M Frederick
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicole A Haverland
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.,The Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA.,The Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
37
|
Stake M, Singh D, Singh G, Marcela Hernandez J, Kaddis Maldonado R, Parent LJ, Boris-Lawrie K. HIV-1 and two avian retroviral 5' untranslated regions bind orthologous human and chicken RNA binding proteins. Virology 2015; 486:307-20. [PMID: 26584240 DOI: 10.1016/j.virol.2015.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 01/12/2023]
Abstract
Essential host cofactors in retrovirus replication bind cis-acting sequences in the 5'untranslated region (UTR). Although host RBPs are crucial to all aspects of virus biology, elucidating their roles in replication remains a challenge to the field. Here RNA affinity-coupled-proteomics generated a comprehensive, unbiased inventory of human and avian RNA binding proteins (RBPs) co-isolating with 5'UTRs of HIV-1, spleen necrosis virus and Rous sarcoma virus. Applying stringent biochemical and statistical criteria, we identified 185 RBP; 122 were previously implicated in retrovirus biology and 63 are new to the 5'UTR proteome. RNA electrophoretic mobility assays investigated paralogs present in the common ancestor of vertebrates and one hnRNP was identified as a central node to the biological process-anchored networks of HIV-1, SNV, and RSV 5' UTR-proteomes. This comprehensive view of the host constituents of retroviral RNPs is broadly applicable to investigation of viral replication and antiviral response in both human and avian cell lineages.
Collapse
Affiliation(s)
- Matthew Stake
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Deepali Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201312, India.
| | - Gatikrushna Singh
- Department Veterinary & Biomedical Sciences, University of Minnesota, 205 VSB, 1971 Commonwealth Avenue, Saint Paul, MN 55108.
| | - J Marcela Hernandez
- Department of Veterinary Biosciences, Center for Retrovirus Research, Center for RNA Biology, Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.
| | - Rebecca Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Leslie J Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Department Microbiology & Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Kathleen Boris-Lawrie
- Department Veterinary & Biomedical Sciences, University of Minnesota, 205 VSB, 1971 Commonwealth Avenue, Saint Paul, MN 55108.
| |
Collapse
|
38
|
Rice BL, Kaddis RJ, Stake MS, Lochmann TL, Parent LJ. Interplay between the alpharetroviral Gag protein and SR proteins SF2 and SC35 in the nucleus. Front Microbiol 2015; 6:925. [PMID: 26441864 PMCID: PMC4562304 DOI: 10.3389/fmicb.2015.00925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/21/2015] [Indexed: 01/27/2023] Open
Abstract
Retroviruses are positive-sense, single-stranded RNA viruses that reverse transcribe their RNA genomes into double-stranded DNA for integration into the host cell chromosome. The integrated provirus is used as a template for the transcription of viral RNA. The full-length viral RNA can be used for the translation of the Gag and Gag-Pol structural proteins or as the genomic RNA (gRNA) for encapsidation into new virions by the Gag protein. The mechanism by which Gag selectively incorporates unspliced gRNA into virus particles is poorly understood. Although Gag was previously thought to localize exclusively to the cytoplasm and plasma membrane where particles are released, we found that the Gag protein of Rous sarcoma virus, an alpharetrovirus, undergoes transient nuclear trafficking. When the nuclear export signal of RSV Gag is mutated (Gag.L219A), the protein accumulates in discrete subnuclear foci reminiscent of nuclear bodies such as splicing speckles, paraspeckles, and PML bodies. In this report, we observed that RSV Gag.L219A foci appeared to be tethered in the nucleus, partially co-localizing with the splicing speckle components SC35 and SF2. Overexpression of SC35 increased the number of Gag.L219A nucleoplasmic foci, suggesting that SC35 may facilitate the formation of Gag foci. We previously reported that RSV Gag nuclear trafficking is required for efficient gRNA packaging. Together with the data presented herein, our findings raise the intriguing hypothesis that RSV Gag may co-opt splicing factors to localize near transcription sites. Because splicing occurs co-transcriptionally, we speculate that this mechanism could allow Gag to associate with unspliced viral RNA shortly after its transcription initiation in the nucleus, before the viral RNA can be spliced or exported from the nucleus as an mRNA template.
Collapse
Affiliation(s)
- Breanna L Rice
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA
| | - Rebecca J Kaddis
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA
| | - Matthew S Stake
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA
| | - Timothy L Lochmann
- Department of Microbiology and Immunology, Penn State College of Medicine Hershey, PA, USA
| | - Leslie J Parent
- Division of Infectious Diseases and Epidemiology, Department of Medicine, Penn State College of Medicine Hershey, PA, USA ; Department of Microbiology and Immunology, Penn State College of Medicine Hershey, PA, USA
| |
Collapse
|
39
|
Abstract
UNLABELLED We have examined the interactions of wild-type (WT) and matrix protein-deleted (ΔMA) HIV-1 precursor Gag (PrGag) proteins in virus-producing cells using a biotin ligase-tagging approach. To do so, WT and ΔMA PrGag proteins were tagged with the Escherichia coli promiscuous biotin ligase (BirA*), expressed in cells, and examined. Localization patterns of PrGag proteins and biotinylated proteins overlapped, consistent with observations that BirA*-tagged proteins biotinylate neighbor proteins that are in close proximity. Results indicate that BirA*-tagged PrGag proteins biotinylated themselves as well as WT PrGag proteins in trans. Previous data have shown that the HIV-1 Envelope (Env) protein requires an interaction with MA for assembly into virions. Unexpectedly, ΔMA proteins biotinylated Env, whereas WT BirA*-tagged proteins did not, suggesting that the presence of MA made Env inaccessible to biotinylation. We also identified over 50 cellular proteins that were biotinylated by BirA*-tagged PrGag proteins. These included membrane proteins, cytoskeleton-associated proteins, nuclear transport factors, lipid metabolism regulators, translation factors, and RNA-processing proteins. The identification of these biotinylated proteins offers new insights into HIV-1 Gag protein trafficking and activities and provides new potential targets for antiviral interference. IMPORTANCE We have employed a novel strategy to analyze the interactions of the HIV-1 structural Gag proteins, which involved tagging wild-type and mutant Gag proteins with a biotin ligase. Expression of the tagged proteins in cells allowed us to analyze proteins that came in close proximity to the Gag proteins as they were synthesized, transported, assembled, and released from cells. The tagged proteins biotinylated proteins encoded by the HIV-1 pol gene and neighbor Gag proteins, but, surprisingly, only the mutant Gag protein biotinylated the HIV-1 Envelope protein. We also identified over 50 cellular proteins that were biotinylated, including membrane and cytoskeletal proteins and proteins involved in lipid metabolism, nuclear import, translation, and RNA processing. Our results offer new insights into HIV-1 Gag protein trafficking and activities and provide new potential targets for antiviral interference.
Collapse
|
40
|
Li M. Proteomics in the investigation of HIV-1 interactions with host proteins. Proteomics Clin Appl 2015; 9:221-34. [PMID: 25523935 DOI: 10.1002/prca.201400101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/30/2014] [Accepted: 12/16/2014] [Indexed: 01/09/2023]
Abstract
Productive HIV-1 infection depends on host machinery, including a broad array of cellular proteins. Proteomics has played a significant role in the discovery of HIV-1 host proteins. In this review, after a brief survey of the HIV-1 host proteins that were discovered by proteomic analyses, I focus on analyzing the interactions between the virion and host proteins, as well as the technologies and strategies used in those proteomic studies. With the help of proteomics, the identification and characterization of HIV-1 host proteins can be translated into novel antiretroviral therapeutics.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Retrovirology, Division of Infectious Diseases, Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
41
|
de Chassey B, Meyniel-Schicklin L, Vonderscher J, André P, Lotteau V. Virus-host interactomics: new insights and opportunities for antiviral drug discovery. Genome Med 2014; 6:115. [PMID: 25593595 PMCID: PMC4295275 DOI: 10.1186/s13073-014-0115-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The current therapeutic arsenal against viral infections remains limited, with often poor efficacy and incomplete coverage, and appears inadequate to face the emergence of drug resistance. Our understanding of viral biology and pathophysiology and our ability to develop a more effective antiviral arsenal would greatly benefit from a more comprehensive picture of the events that lead to viral replication and associated symptoms. Towards this goal, the construction of virus-host interactomes is instrumental, mainly relying on the assumption that a viral infection at the cellular level can be viewed as a number of perturbations introduced into the host protein network when viral proteins make new connections and disrupt existing ones. Here, we review advances in interactomic approaches for viral infections, focusing on high-throughput screening (HTS) technologies and on the generation of high-quality datasets. We show how these are already beginning to offer intriguing perspectives in terms of virus-host cell biology and the control of cellular functions, and we conclude by offering a summary of the current situation regarding the potential development of host-oriented antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Patrice André
- />Hospices Civils de Lyon, Lyon, France
- />CIRI, Université de Lyon, Lyon, 69365 France
- />Inserm, U1111, Lyon, 69365 France
| | - Vincent Lotteau
- />CIRI, Université de Lyon, Lyon, 69365 France
- />Inserm, U1111, Lyon, 69365 France
| |
Collapse
|
42
|
Luo Y, Muesing MA. Mass spectrometry-based proteomic approaches for discovery of HIV-host interactions. Future Virol 2014; 9:979-992. [PMID: 25544858 DOI: 10.2217/fvl.14.86] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A molecular understanding of viral infection requires a multi-disciplinary approach. Mass spectrometry has emerged as an indispensable tool to investigate the complex and dynamic interactions between HIV-1 and its host. It has been employed to study protein associations, changes in protein abundance and post-translational modifications occurring after viral infection. Here, we review and provide examples of mass spectrometry-based proteomic approaches currently used to explore virus-host interaction. Efforts in this area are certain to accelerate the discovery of the unique molecular strategies utilized by the virus to commandeer the cell as well as mechanisms of host defense.
Collapse
Affiliation(s)
- Yang Luo
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue 7th Floor, New York, NY 10016, USA
| | - Mark A Muesing
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue 7th Floor, New York, NY 10016, USA
| |
Collapse
|
43
|
DeBoer J, Jagadish T, Haverland NA, Madson CJ, Ciborowski P, Belshan M. Alterations in the nuclear proteome of HIV-1 infected T-cells. Virology 2014; 468-470:409-420. [PMID: 25240327 DOI: 10.1016/j.virol.2014.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/19/2014] [Accepted: 08/27/2014] [Indexed: 01/17/2023]
Abstract
Virus infection of a cell involves the appropriation of host factors and the innate defensive response of the cell. The identification of proteins critical for virus replication may lead to the development of novel, cell-based inhibitors. In this study we mapped the changes in T-cell nuclei during human immunodeficiency virus type 1 (HIV-1) at 20 hpi. Using a stringent data threshold, a total of 13 and 38 unique proteins were identified in infected and uninfected cells, respectively, across all biological replicates. An additional 15 proteins were found to be differentially regulated between infected and control nuclei. STRING analysis identified four clusters of protein-protein interactions in the data set related to nuclear architecture, RNA regulation, cell division, and cell homeostasis. Immunoblot analysis confirmed the differential expression of several proteins in both C8166-45 and Jurkat E6-1 T-cells. These data provide a map of the response in host cell nuclei upon HIV-1 infection.
Collapse
Affiliation(s)
- Jason DeBoer
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Teena Jagadish
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nicole A Haverland
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christian J Madson
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; The Nebraska Center for Virology, University of Nebraska, Lincoln 68583, USA
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; The Nebraska Center for Virology, University of Nebraska, Lincoln 68583, USA.
| |
Collapse
|