1
|
Hossain I, Shila RA, Uddin MM, Chowdhury EH, Parvin R, Begum JA. Comparative analysis of innate immune responses in Sonali and broiler chickens infected with tribasic H9N2 low pathogenic avian influenza virus. BMC Vet Res 2024; 20:500. [PMID: 39482682 PMCID: PMC11529290 DOI: 10.1186/s12917-024-04346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND H9N2 avian influenza viruses have been circulating in Bangladesh since 2006, affecting multiple avian species and resulting in economic losses. The recent emergence of tribasic strains, along with co-infections, has increased the risk to poultry health. Therefore, the study aimed to compare the immune responses of Sonali (crossbred) and commercial broiler chickens infected with tribasic H9N2 low pathogenic avian influenza (LPAI) virus. METHODS Following H9N2 infection, proinflammatory (IL-6, IL-8, IL-1β and TNF-α) and antiviral (IFN-β and IFN-γ) cytokine expressions were observed in the trachea, lungs, intestine, and lymphoid tissues in Sonali and broiler chickens from 1 day post infection (dpi) to 10 dpi by qPCR. RESULTS Sonali chickens exhibited significantly higher proinflammatory and antiviral cytokine expressions in the trachea at 3-7 days post infection (dpi), while broiler chickens showed lower immune responses. Broiler chickens displayed prolonged IL-6, IL-8, and IL-1β expression in lungs at 3-10 dpi compared to Sonali chickens. In the intestine, broiler chickens showed higher IL-6 and IL-8 expression that peaks at 1-3 dpi, while in Sonali chickens only IL-1β elevated at 10 dpi. In response to the H9N2 viruses, broiler chickens exhibited a stronger early IFN-β responses and a delayed IFN-γ responses in their lymphoid organs compared to Sonali chickens. CONCLUSION This suggests distinct immune profiles between the chicken types in response to the H9N2 infection. The information sheds light on the function of innate immunity in the pathophysiology of currently circulating tribasic H9N2 virus and could assist in effective controlling of avian influenza virus spread in poultry and designing vaccines.
Collapse
Affiliation(s)
- Ismail Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Rupaida Akter Shila
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Mohi Uddin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
2
|
Liu Y, Zeng Q, Hu X, Xu Z, Pan C, Liu Q, Yu J, Wu S, Sun M, Liao M. Natural variant R246K in hemagglutinin increased zoonotic characteristics and renal inflammation in mice infected with H9N2 influenza virus. Vet Microbiol 2023; 279:109667. [PMID: 36804565 DOI: 10.1016/j.vetmic.2023.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
Considered a potential pandemic candidate, the widespread among poultry of H9N2 avian influenza viruses across Asia and North Africa pose an increasing threat to poultry and human health. The massive epidemic of H9N2 viruses has expanded the host range; however, the molecular basis and characteristic underlying the transmission to poultry and mammals remains unclear. Our previous study has proved that some natural mutations in the HA gene enhanced the binding ability of the H9N2 virus to α-2,6 SA receptors. Here, we systematically analyzed the impact of these natural mutations on zoonotic characteristics and the pathogenicity of H9N2 AIVs in poultry and mammals. Our study demonstrated that mutation R246K increased the replication in human lung epithelial cells in vitro. Mutation R246K increased the virus shedding of oropharyngeal swabs during early-stage infection in chickens. Moreover, mutation R246K displayed stronger pH stability and pathogenicity in mice. The strong renal tropism and inflammatory response may accelerate the pathogenicity. In summary, we found that natural variation R246K in HA of prevalent H9N2 in China promoted the transmissibility in chicken and accelerate the pathogenicity in mice, posing a great concern for zoonotic and pandemic emergence.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Qinghang Zeng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; College of Animal Science & Technology, Zhongkai University of Agricultural and Engineering, Guangzhou, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Xinyu Hu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; College of Animal Science & Technology, Zhongkai University of Agricultural and Engineering, Guangzhou, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Zhihong Xu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Chungen Pan
- Haid Research Institute, Guangdong HaidGroup Co., Ltd., Guangzhou, PR China
| | - Quan Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Jieshi Yu
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Siyu Wu
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China.
| |
Collapse
|
3
|
Inhibition of the antigen-presenting ability of dendritic cells by non-structural protein 2 of influenza A virus. Vet Microbiol 2022; 267:109392. [DOI: 10.1016/j.vetmic.2022.109392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/18/2022]
|
4
|
Silent Infection of B and CD8 + T Lymphocytes by Influenza A Virus in Children with Tonsillar Hypertrophy. J Virol 2020; 94:JVI.01969-19. [PMID: 32075928 DOI: 10.1128/jvi.01969-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Influenza A viruses (IAVs) cause more than 2 million annual episodes of seasonal acute respiratory infections (ARI) and approximately 500,000 deaths worldwide. Depending on virus strain and host immune status, acute infections by IAV may reach sites other than the respiratory tract. In the present study, IAV RNA and antigens were searched for in tissues of palatine tonsils and adenoids removed from patients without ARI symptoms. A real-time reverse transcriptase PCR (RT-PCR) screening revealed that 8 tissue samples from 7 patients out of 103 were positive for IAV. Positive samples were subjected to next-generation sequencing (NGS) and 3 of 8 tissues yielded complete IAV pH1N1 genomes, whereas in 5 samples, the PB1 gene was not fully assembled. Phylogenetic analysis placed tonsil-derived IAV in clusters clearly segregated from contemporaneous Brazilian viruses. Flow cytometry of dispersed tissue fragments and serial immunohistochemistry of paraffin-embedded sections of naturally infected biopsies indicated that CD20+ B lymphocytes, CD8+ T lymphocytes, and CD11c+ cells are susceptible to IAV infection. We sought to investigate whether these lymphoid tissues could be sites of viral replication and sources of viable virus particles. MDCK cells were inoculated with tissue lysates, enabling recovery of one IAV isolate confirmed by immunofluorescence, reverse transcriptase quantitative PCR (RT-qPCR), and NGS. The data indicate that lymphoid tissues not only harbor expression of IAV proteins but also contain infectious virus. Asymptomatic long-term infection raises the possibility of IAV shedding from tonsils, which may have an impact on host-to-host transmission.IMPORTANCE Influenza A virus (IAV) infections are important threats to human health worldwide. Although extensively studied, some aspects of virus pathogenesis and tissue tropism remain unclear. Here, by different strategies, we describe the asymptomatic infection of human lymphoid organs by IAV in children. Our results indicate that IAV was not only detected and isolated from human tonsils but displayed unique genetic features in comparison with those of contemporaneous IAVs circulating in Brazil and detected in swabs and nasal washes. Inside the tissue microenvironment, immune cells were shown to be carrying IAV antigens, especially B and T CD8+ lymphocytes. Taken together, these results suggest that human lymphoid tissues can be sites of silent IAV infections with possible impact on virus shedding to the population.
Collapse
|
5
|
Westenius V, Mäkelä SM, Julkunen I, Österlund P. Highly Pathogenic H5N1 Influenza A Virus Spreads Efficiently in Human Primary Monocyte-Derived Macrophages and Dendritic Cells. Front Immunol 2018; 9:1664. [PMID: 30065728 PMCID: PMC6056608 DOI: 10.3389/fimmu.2018.01664] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza A viruses cause recurrent epidemics and occasional global pandemics. Wild birds are the natural reservoir of influenza A virus from where the virus can be transmitted to poultry or to mammals including humans. Mortality among humans in the highly pathogenic avian influenza H5N1 virus infection is even 60%. Despite intense research, there are still open questions in the pathogenicity of the H5N1 virus in humans. To characterize the H5N1 virus infection in human monocyte-derived macrophages (Mɸs) and dendritic cells (DCs), we used human isolates of highly pathogenic H5N1/2004 and H5N1/1997 and low pathogenic H7N9/2013 avian influenza viruses in comparison with a seasonal H3N2/1989 virus. We noticed that the H5N1 viruses have an overwhelming ability to replicate and spread in primary human immune cell cultures, and even the addition of trypsin did not equalize the infectivity of H7N9 or H3N2 viruses to the level seen with H5N1 virus. H5N1 virus stocks contained more often propagation-competent viruses than the H7N9 or H3N2 viruses. The data also showed that human DCs and Mɸs maintain 1,000- and 10,000-fold increase in the production of infectious H5N1 virus, respectively. Both analyzed highly pathogenic H5N1 viruses showed multi-cycle infection in primary human DCs and Mɸs, whereas the H3N2 and H7N9 viruses were incapable of spreading in immune cells. Interestingly, H5N1 virus was able to spread extremely efficiently despite the strong induction of antiviral interferon gene expression, which may in part explain the high pathogenicity of H5N1 virus infection in humans.
Collapse
Affiliation(s)
- Veera Westenius
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare, Helsinki, Finland
| | - Sanna M Mäkelä
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare, Helsinki, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pamela Österlund
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
6
|
Genome-wide profiling of microRNAs reveals novel insights into the interactions between H9N2 avian influenza virus and avian dendritic cells. Oncogene 2018; 37:4562-4580. [DOI: 10.1038/s41388-018-0279-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/30/2017] [Accepted: 01/21/2018] [Indexed: 12/19/2022]
|
7
|
Kalaiyarasu S, Kumar M, Senthil Kumar D, Bhatia S, Dash SK, Bhat S, Khetan RK, Nagarajan S. Highly pathogenic avian influenza H5N1 virus induces cytokine dysregulation with suppressed maturation of chicken monocyte-derived dendritic cells. Microbiol Immunol 2017; 60:687-693. [PMID: 27730669 DOI: 10.1111/1348-0421.12443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023]
Abstract
One of the major causes of death in highly pathogenic avian influenza virus (HPAIV) infection in chickens is acute induction of pro-inflammatory cytokines (cytokine storm), which leads to severe pathology and acute mortality. DCs and respiratory tract macrophages are the major antigen presenting cells that are exposed to mucosal pathogens. We hypothesized that chicken DCs are a major target for induction of cytokine dysregulation by H5N1 HPAIV. It was found that infection of chicken peripheral blood monocyte-derived dendritic cells (chMoDCs) with H5N1 HPAIV produces high titers of progeny virus with more rounding and cytotoxicity than with H9N2 LPAIV. Expression of maturation markers (CD40, CD80 and CD83) was weaker in both H5N1 and H9N2 groups than in a LPS control group. INF-α, -β and -γ were significantly upregulated in the H5N1 group. Pro-inflammatory cytokines (IL-1β, TNF-α and IL-18) were highly upregulated in early mid (IL-1), and late (IL-6) phases of H5N1 virus infection. IL-8 (CXCLi2) mRNA expression was significantly stronger in the H5N1 group from 6 hr of infection. TLR3, 7, 15 and 21 were upregulated 24 hr after infection by H5N1 virus compared with H9N2 virus, with maximum expression of TLR 3 mRNA. Similarly, greater H5N1 virus-induced apoptotic cell death and cytotoxicity, as measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and lactate dehydrogenase assays, respectively, were found. Thus, both H5N1 and H9N2 viruses evade the host immune system by inducing impairment of chMoDCs maturation and enhancing cytokine dysregulation in H5N1 HPAIV-infected cells.
Collapse
Affiliation(s)
- Semmannan Kalaiyarasu
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India.
| | - Manoj Kumar
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India
| | - Dhanapal Senthil Kumar
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India
| | - Sandeep Bhatia
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India
| | - Sandeep Kumar Dash
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Sushant Bhat
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Rohit K Khetan
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India
| | - Shanmugasundaram Nagarajan
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India
| |
Collapse
|
8
|
Gao X, Huang L, Zhu L, Mou C, Hou Q, Yu Q. Inhibition of H9N2 Virus Invasion into Dendritic Cells by the S-Layer Protein from L. acidophilus ATCC 4356. Front Cell Infect Microbiol 2016; 6:137. [PMID: 27826541 PMCID: PMC5078685 DOI: 10.3389/fcimb.2016.00137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/07/2016] [Indexed: 01/10/2023] Open
Abstract
Probiotics are essential for the prevention of virus invasion and the maintenance of the immune balance. However, the mechanism of competition between probiotics and virus are unknown. The objectives of this study were to isolate the surface layer (S-layer) protein from L. acidophilus ATCC 4356 as a new antiviral material, to evaluate the stimulatory effects of the S-layer protein on mouse dendritic cells (DCs) and to verify its ability to inhibit the invasion of H9N2 avian influenza virus (AIV) in DCs. We found that the S-layer protein induced DCs activation and up-regulated the IL-10 secretion. The invasion and replication of the H9N2 virus in mouse DCs was successfully demonstrated. However, the invasion of H9N2 virus into DCs could be inhibited by treatment with the S-layer protein prior to infection, which was verified by the reduced hemagglutinin (HA) and neuraminidase (NA) mRNA expression, and nucleoprotein (NP) protein expression in the DCs. Furthermore, treatment with the S-layer protein increases the Mx1, Isg15, and Ddx58 mRNA expressions, and remits the inflammatory process to inhibit H9N2 AIV infection. In conclusion, the S-layer protein stimulates the activation of mouse DCs, inhibits H9N2 virus invasion of DCs, and stimulates the IFN-I signaling pathway. Thus, the S-layer protein from Lactobacillus is a promising biological antiviral material for AIV prevention.
Collapse
Affiliation(s)
- Xue Gao
- College of Veterinary Medicine, Histology and Embryology, Nanjing Agricultural University Nanjing, China
| | - Lulu Huang
- College of Veterinary Medicine, Histology and Embryology, Nanjing Agricultural University Nanjing, China
| | - Liqi Zhu
- College of Veterinary Medicine, Histology and Embryology, Nanjing Agricultural University Nanjing, China
| | - Chunxiao Mou
- College of Veterinary Medicine, Histology and Embryology, Nanjing Agricultural University Nanjing, China
| | - Qihang Hou
- College of Veterinary Medicine, Histology and Embryology, Nanjing Agricultural University Nanjing, China
| | - Qinghua Yu
- College of Veterinary Medicine, Histology and Embryology, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
9
|
Song L, Chen X, Liu X, Zhang F, Hu L, Yue Y, Li K, Li P. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides. Mar Drugs 2015; 14:4. [PMID: 26729137 PMCID: PMC4728501 DOI: 10.3390/md14010004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 01/06/2023] Open
Abstract
Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV.
Collapse
Affiliation(s)
- Lin Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaolin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| | - Xiaodong Liu
- College of Animal Science and Technology, Qingdao Agriculture University, No.700 Changcheng Road, Qingdao 266109, China.
| | - Fubo Zhang
- College of Animal Science and Technology, Qingdao Agriculture University, No.700 Changcheng Road, Qingdao 266109, China.
| | - Linfeng Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| | - Yang Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
10
|
Molecular characterization of H9N2 influenza virus isolated from mink and its pathogenesis in mink. Vet Microbiol 2015; 176:88-96. [PMID: 25655813 DOI: 10.1016/j.vetmic.2015.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/24/2014] [Accepted: 01/08/2015] [Indexed: 01/15/2023]
Abstract
In mid-August 2013, two H9N2 influenza viruses, named A/mink/Shandong/F6/2013 (Mk/SD/F6/13) and A/mink/Shandong/F10/2013 (Mk/SD/F10/13), were isolated from lung samples of 2 of 45 farmed mink exhibiting respiratory signs in mideastern Shandong province, China. The seroprevalence of antibodies to H9N2 in mink was 20% (53/265). Based on sequence analysis, the eight nucleotide sequences showed 99.7-100% identity between Mk/SD/F6/13 and Mk/SD/F10/13. The HA, NP and NS genes of Mk/SD/F6/13 and Mk/SD/F10/13 were close to A/chicken/Zhejiang/329/2011 (H9N2), the NA and PB1 genes to A/duck/Hunan/S4111/2011 (H9N2), the PA and M genes to A/chicken/Shanghai/C1/2012 (H9N2). However, the PB2 genes had a close relationship with A/Turkey/California/189/66 (H9N2). Based on Sialic acid (SA) receptor detection, a range tissues of the mink demonstrated staining for MAA and/or SNA, and mink could serve as an intermediate host for influenza viruses with pandemic potential for the other animals. Experimental infection of mink demonstrated that mink could be infected by H9N2 influenza viruses and presented mild clinical signs, virus shedding and seroconversion, but no animals died of the disease. It implied that mammalian host-adapted avian H9N2 strains infected mink.
Collapse
|