1
|
Hakim MS, Gazali FM, Widyaningsih SA, Parvez MK. Driving forces of continuing evolution of rotaviruses. World J Virol 2024; 13:93774. [PMID: 38984077 PMCID: PMC11229848 DOI: 10.5501/wjv.v13.i2.93774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/24/2024] Open
Abstract
Rotaviruses are non-enveloped double-stranded RNA virus that causes acute diarrheal diseases in children (< 5 years). More than 90% of the global rotavirus infection in humans was caused by Rotavirus group A. Rotavirus infection has caused more than 200000 deaths annually and predominantly occurs in the low-income countries. Rotavirus evolution is indicated by the strain dynamics or the emergence of the unprecedented strain. The major factors that drive the rotavirus evolution include the genetic shift that is caused by the reassortment mechanism, either in the intra- or the inter-genogroup. However, other factors are also known to have an impact on rotavirus evolution. This review discusses the structure and types, epidemiology, and evolution of rotaviruses. This article also reviews other supplemental factors of rotavirus evolution, such as genetic reassortment, mutation rate, glycan specificity, vaccine introduction, the host immune responses, and antiviral drugs.
Collapse
Affiliation(s)
- Mohamad Saifudin Hakim
- Postgraduate School of Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam 3015GD, Netherlands
- Viral Infection Working Group, International Society of Antimicrobial Chemotherapy, London EC4R 9AN, United Kingdom
| | - Faris Muhammad Gazali
- Master Program in Biotechnology, Postgraduate School, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Suci Ardini Widyaningsih
- Master of Medical Sciences in Clinical Investigation, Harvard Medical School, Boston, MA 02115, United States
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Vetter J, Lee M, Eichwald C. The Role of the Host Cytoskeleton in the Formation and Dynamics of Rotavirus Viroplasms. Viruses 2024; 16:668. [PMID: 38793550 PMCID: PMC11125917 DOI: 10.3390/v16050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Rotavirus (RV) replicates within viroplasms, membraneless electron-dense globular cytosolic inclusions with liquid-liquid phase properties. In these structures occur the virus transcription, replication, and packaging of the virus genome in newly assembled double-layered particles. The viroplasms are composed of virus proteins (NSP2, NSP5, NSP4, VP1, VP2, VP3, and VP6), single- and double-stranded virus RNAs, and host components such as microtubules, perilipin-1, and chaperonins. The formation, coalescence, maintenance, and perinuclear localization of viroplasms rely on their association with the cytoskeleton. A stabilized microtubule network involving microtubules and kinesin Eg5 and dynein molecular motors is associated with NSP5, NSP2, and VP2, facilitating dynamic processes such as viroplasm coalescence and perinuclear localization. Key post-translation modifications, particularly phosphorylation events of RV proteins NSP5 and NSP2, play pivotal roles in orchestrating these interactions. Actin filaments also contribute, triggering the formation of the viroplasms through the association of soluble cytosolic VP4 with actin and the molecular motor myosin. This review explores the evolving understanding of RV replication, emphasizing the host requirements essential for viroplasm formation and highlighting their dynamic interplay within the host cell.
Collapse
Affiliation(s)
| | | | - Catherine Eichwald
- Institute of Virology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.L.)
| |
Collapse
|
3
|
Dai J, Agbemabiese CA, Griffin AN, Patton JT. Rotavirus capping enzyme VP3 inhibits interferon expression by inducing MAVS degradation during viral replication. mBio 2023; 14:e0225523. [PMID: 37905816 PMCID: PMC10746195 DOI: 10.1128/mbio.02255-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Rotavirus is an enteric RNA virus that causes severe dehydrating gastroenteritis in infants and young children through infection of enterocytes in the small intestine. Timely clearance of the virus demands a robust innate immune response by cells associated with the small intestine, including the expression of interferon (IFN). Previous studies have shown that some rotavirus strains suppress the production of interferon, by inducing the degradation of mitochondrial antiviral signaling (MAVS) protein and interferon regulatory factor-3 (IRF3). In this study, we have used reverse genetics to generate recombinant rotaviruses expressing compromised forms of VP3 or NSP1, or both, to explore the function of these viral proteins in the degradation of MAVS and IRF3. Our results demonstrate that VP3 is responsible for MAVS depletion in rotavirus-infected cells, and through this activity, helps to suppress IFN production. Thus, VP3 functions to support the activity of rotavirus NSP1, the major interferon antagonist of the virus.
Collapse
Affiliation(s)
- Jin Dai
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - Ashley N. Griffin
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - John T. Patton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
4
|
Rotavirus NSP1 Subverts the Antiviral Oligoadenylate Synthetase-RNase L Pathway by Inducing RNase L Degradation. mBio 2022; 13:e0299522. [PMID: 36413023 PMCID: PMC9765674 DOI: 10.1128/mbio.02995-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The interferon (IFN)-inducible 2',5'-oligoadenylate synthetase (OAS)-RNase L pathway plays a critical role in antiviral immunity. Group A rotaviruses, including the simian SA11 strain, inhibit this pathway through two activities: an E3-ligase related activity of NSP1 that degrades proteins necessary for IFN signaling, and a phosphodiesterase (PDE) activity of VP3 that hydrolyzes the RNase L-activator 2',5'-oligoadenylate. Unexpectedly, we found that a recombinant (r) SA11 double mutant virus deficient in both activities (rSA11-VP3H797R-NSP1ΔC17) retained the ability to prevent RNase L activation. Mass spectrometry led to the discovery that NSP1 interacts with RNase L in rSA11-infected HT29 cells. This interaction was confirmed through copulldown assay of cells transiently expressing NSP1 and RNase L. Immunoblot analysis showed that infection with wild-type rSA11 virus, rSA11-VP3H797R-NSP1ΔC17 double mutant virus, or single mutant forms of the latter virus all resulted in the depletion of endogenous RNase L. The loss of RNase L was reversed by addition of the neddylation inhibitor MLN4924, but not the proteasome inhibitor MG132. Analysis of additional mutant forms of rSA11 showed that RNase L degradation no longer occurred when either the N-terminal RING domain of NSP1 was mutated or the C-terminal 98 amino acids of NSP1 were deleted. The C-terminal RNase L degradation domain is positioned upstream and is functionally independent of the NSP1 domain necessary for inhibiting IFN expression. Our studies reveal a new role for NSP1 and its E3-ligase related activity as an antagonist of RNase L and uncover a novel virus-mediated strategy of inhibiting the OAS-RNase L pathway. IMPORTANCE For productive infection, rotavirus and other RNA viruses must suppress interferon (IFN) signaling and the expression of IFN-stimulated antiviral gene products. Particularly important is inhibiting the interferon (IFN)-inducible 2',5'-oligoadenylate synthetase (OAS)-RNase L pathway, as activated RNase L can direct the nonspecific degradation of viral and cellular RNAs, thereby blocking viral replication and triggering cell death pathways. In this study, we have discovered that the simian SA11 strain of rotavirus employs a novel strategy of inhibiting the OAS-RNase L pathway. This strategy is mediated by SA11 NSP1, a nonstructural protein that hijacks E3 cullin-RING ligases, causing the ubiquitination and degradation of host proteins essential for IFN induction. Our analysis shows that SA11 NSP1 also recognizes and causes the ubiquitination of RNase L, an activity resulting in depletion of endogenous RNase L. These data raise the possibility of using therapeutics targeting cellular E3 ligases to control rotavirus infections.
Collapse
|
5
|
Antia A, Pinski AN, Ding S. Re-Examining Rotavirus Innate Immune Evasion: Potential Applications of the Reverse Genetics System. mBio 2022; 13:e0130822. [PMID: 35699371 PMCID: PMC9426431 DOI: 10.1128/mbio.01308-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rotaviruses represent one of the most successful pathogens in the world, with high infectivity and efficient transmission between the young of many animal species, including humans. To overcome host defenses, rotaviruses have evolved a plethora of strategies to effectively evade the innate immune response, establish initial infection in the small intestine, produce progeny, and shed into the environment. Previously, studying the roles and relative contributions of specific rotaviral factors in innate immune evasion had been challenging without a plasmid-only reverse genetics system. Although still in its infancy, current reverse genetics technology will help address important research questions regarding rotavirus innate immune evasion, host range restriction, and viral pathogenesis. In this review, we summarize the current knowledge about the antiviral host innate immune defense mechanisms, countermeasures of rotavirus-encoded factors, and strategies to better understand these interactions using the rotavirus reverse genetics system.
Collapse
Affiliation(s)
- Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amanda N. Pinski
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Mersinoglu B, Cristinelli S, Ciuffi A. The Impact of Epitranscriptomics on Antiviral Innate Immunity. Viruses 2022; 14:v14081666. [PMID: 36016289 PMCID: PMC9412694 DOI: 10.3390/v14081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Epitranscriptomics, i.e., chemical modifications of RNA molecules, has proven to be a new layer of modulation and regulation of protein expression, asking for the revisiting of some aspects of cellular biology. At the virological level, epitranscriptomics can thus directly impact the viral life cycle itself, acting on viral or cellular proteins promoting replication, or impacting the innate antiviral response of the host cell, the latter being the focus of the present review.
Collapse
|
7
|
Fujii Y, Hirayama M, Nishiyama S, Takahashi T, Okajima M, Izumi F, Takehara K, Masatani T, Sugiyama M, Ito N. Characterization of an avian rotavirus A strain isolated from a velvet scoter ( Melanitta fusca): implication for the role of migratory birds in global spread of avian rotaviruses. J Gen Virol 2022; 103. [PMID: 35175915 DOI: 10.1099/jgv.0.001722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian G18P[17] rotaviruses with similar complete genome constellation, including strains that showed pathogenicity in mammals, have been detected worldwide. However, it remains unclear how these strains spread geographically. In this study, to investigate the role of migratory birds in the dispersion of avian rotaviruses, we analysed whole genetic characters of the rotavirus strain RK1 that was isolated from a migratory species of birds [velvet scoter (Melanitta fusca)] in Japan in 1989. Genetic analyses revealed that the genotype constellation of the RK1 strain, G18-P[17]-I4-R4-C4-M4-A21-N4-T4-E4-H4, was highly consistent with those of other G18P[17] strains detected in various parts of the world, supporting the possibility that the G18P[17] strains spread via migratory birds that move over a wide area. Furthermore, the RK1 strain induced diarrhoea in suckling mice after oral gastric inoculation, indicating that at least some of the rotaviruses that originated from migratory birds are infectious to and pathogenic in mammals. In conclusion, it was demonstrated that migratory birds may contribute to the global spread of avian rotaviruses that are pathogenic in mammalian species.
Collapse
Affiliation(s)
- Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Mihoko Hirayama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Tatsuki Takahashi
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Misuzu Okajima
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Fumiki Izumi
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Kazuaki Takehara
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tatsunori Masatani
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Naoto Ito
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.,Gifu Center for Highly Advanced Integration of Nanosciences and Life Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| |
Collapse
|
8
|
Amimo JO, Raev SA, Chepngeno J, Mainga AO, Guo Y, Saif L, Vlasova AN. Rotavirus Interactions With Host Intestinal Epithelial Cells. Front Immunol 2021; 12:793841. [PMID: 35003114 PMCID: PMC8727603 DOI: 10.3389/fimmu.2021.793841] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Rotavirus (RV) is the foremost enteric pathogen associated with severe diarrheal illness in young children (<5years) and animals worldwide. RV primarily infects mature enterocytes in the intestinal epithelium causing villus atrophy, enhanced epithelial cell turnover and apoptosis. Intestinal epithelial cells (IECs) being the first physical barrier against RV infection employs a range of innate immune strategies to counteract RVs invasion, including mucus production, toll-like receptor signaling and cytokine/chemokine production. Conversely, RVs have evolved numerous mechanisms to escape/subvert host immunity, seizing translation machinery of the host for effective replication and transmission. RV cell entry process involve penetration through the outer mucus layer, interaction with cell surface molecules and intestinal microbiota before reaching the IECs. For successful cell attachment and entry, RVs use sialic acid, histo-blood group antigens, heat shock cognate protein 70 and cell-surface integrins as attachment factors and/or (co)-receptors. In this review, a comprehensive summary of the existing knowledge of mechanisms underlying RV-IECs interactions, including the role of gut microbiota, during RV infection is presented. Understanding these mechanisms is imperative for developing efficacious strategies to control RV infections, including development of antiviral therapies and vaccines that target specific immune system antagonists within IECs.
Collapse
Affiliation(s)
- Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Sergei Alekseevich Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Juliet Chepngeno
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Alfred Omwando Mainga
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Yusheng Guo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
9
|
Patra U, Mukhopadhyay U, Mukherjee A, Dutta S, Chawla-Sarkar M. Treading a HOSTile path: Mapping the dynamic landscape of host cell-rotavirus interactions to explore novel host-directed curative dimensions. Virulence 2021; 12:1022-1062. [PMID: 33818275 PMCID: PMC8023246 DOI: 10.1080/21505594.2021.1903198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Viruses are intracellular pathogens and are dependent on host cellular resources to carry out their cycles of perpetuation. Obtaining an integrative view of host-virus interaction is of utmost importance to understand the complex and dynamic interplay between viral components and host machineries. Besides its obvious scholarly significance, a comprehensive host-virus interaction profile also provides a platform where from host determinants of pro-viral and antiviral importance can be identified and further be subjected to therapeutic intervention. Therefore, adjunct to conventional methods of prophylactic vaccination and virus-directed antivirals, this host-targeted antiviral approach holds promising therapeutic potential. In this review, we present a comprehensive landscape of host cellular reprogramming in response to infection with rotavirus (RV) which causes profuse watery diarrhea in neonates and infants. In addition, an emphasis is given on how host determinants are either usurped or subverted by RV in course of infection and how therapeutic manipulation of specific host factors can effectively modulate the RV life cycle.
Collapse
Affiliation(s)
- Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Urbi Mukhopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| |
Collapse
|
10
|
Caddy S, Papa G, Borodavka A, Desselberger U. Rotavirus research: 2014-2020. Virus Res 2021; 304:198499. [PMID: 34224769 DOI: 10.1016/j.virusres.2021.198499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/09/2023]
Abstract
Rotaviruses are major causes of acute gastroenteritis in infants and young children worldwide and also cause disease in the young of many other mammalian and of avian species. During the recent 5-6 years rotavirus research has benefitted in a major way from the establishment of plasmid only-based reverse genetics systems, the creation of human and other mammalian intestinal enteroids, and from the wide application of structural biology (cryo-electron microscopy, cryo-EM tomography) and complementary biophysical approaches. All of these have permitted to gain new insights into structure-function relationships of rotaviruses and their interactions with the host. This review follows different stages of the viral replication cycle and summarizes highlights of structure-function studies of rotavirus-encoded proteins (both structural and non-structural), molecular mechanisms of viral replication including involvement of cellular proteins and lipids, the spectrum of viral genomic and antigenic diversity, progress in understanding of innate and acquired immune responses, and further developments of prevention of rotavirus-associated disease.
Collapse
Affiliation(s)
- Sarah Caddy
- Cambridge Institute for Therapeutic Immunology and Infectious Disease Jeffery Cheah Biomedical Centre, Cambridge, CB2 0AW, UK.
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
11
|
Li Y, Handley SA, Baldridge MT. The dark side of the gut: Virome-host interactions in intestinal homeostasis and disease. J Exp Med 2021; 218:e20201044. [PMID: 33760921 PMCID: PMC8006857 DOI: 10.1084/jem.20201044] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
The diverse enteric viral communities that infect microbes and the animal host collectively constitute the gut virome. Although recent advances in sequencing and analysis of metaviromes have revealed the complexity of the virome and facilitated discovery of new viruses, our understanding of the enteric virome is still incomplete. Recent studies have uncovered how virome-host interactions can contribute to beneficial or detrimental outcomes for the host. Understanding the complex interactions between enteric viruses and the intestinal immune system is a prerequisite for elucidating their role in intestinal diseases. In this review, we provide an overview of the enteric virome composition and summarize recent findings about how enteric viruses are sensed by and, in turn, modulate host immune responses during homeostasis and disease.
Collapse
Affiliation(s)
- Yuhao Li
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Scott A. Handley
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
12
|
Raheem A, Liang L, Zhang G, Cui S. Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Front Immunol 2021; 12:616713. [PMID: 33897683 PMCID: PMC8060567 DOI: 10.3389/fimmu.2021.616713] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
In order to inhibit pathogenic complications and to enhance animal and poultry growth, antibiotics have been extensively used for many years. Antibiotics applications not only affect target pathogens but also intestinal beneficially microbes, inducing long-lasting changes in intestinal microbiota associated with diseases. The application of antibiotics also has many other side effects like, intestinal barrier dysfunction, antibiotics residues in foodstuffs, nephropathy, allergy, bone marrow toxicity, mutagenicity, reproductive disorders, hepatotoxicity carcinogenicity, and antibiotic-resistant bacteria, which greatly compromise the efficacy of antibiotics. Thus, the development of new antibiotics is necessary, while the search for antibiotic alternatives continues. Probiotics are considered the ideal antibiotic substitute; in recent years, probiotic research concerning their application during pathogenic infections in humans, aquaculture, poultry, and livestock industry, with emphasis on modulating the immune system of the host, has been attracting considerable interest. Hence, the adverse effects of antibiotics and remedial effects of probiotics during infectious diseases have become central points of focus among researchers. Probiotics are live microorganisms, and when given in adequate quantities, confer good health effects to the host through different mechanisms. Among them, the regulation of host immune response during pathogenic infections is one of the most important mechanisms. A number of studies have investigated different aspects of probiotics. In this review, we mainly summarize recent discoveries and discuss two important aspects: (1) the application of probiotics during pathogenic infections; and (2) their modulatory effects on the immune response of the host during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
13
|
Wall GV, Wright IM, Barnardo C, Erasmus BJ, van Staden V, Potgieter AC. African horse sickness virus NS4 protein is an important virulence factor and interferes with JAK-STAT signaling during viral infection. Virus Res 2021; 298:198407. [PMID: 33812899 DOI: 10.1016/j.virusres.2021.198407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022]
Abstract
African horse sickness virus (AHSV) non-structural protein NS4 is a nucleocytoplasmic protein that is expressed in the heart, lung, and spleen of infected horses, binds dsDNA, and colocalizes with promyelocytic leukemia nuclear bodies (PML-NBs). The aim of this study was to investigate the role of AHSV NS4 in viral replication, virulence and the host immune response. Using a reverse genetics-derived virulent strain of AHSV-5 and NS4 deletion mutants, we showed that knockdown of NS4 expression has no impact in cell culture, but results in virus attenuation in infected horses. RNA sequencing (RNA-seq) was used to investigate the transcriptional response in these horses, to see how the lack of NS4 mediates the transition of the virus from virulent to attenuated. The presence of NS4 was shown to result in a 24 hour (h) delay in the transcriptional activation of several immune system processes compared to when the protein was absent. Included in these processes were the RIG-I-like, Toll-like receptor, and JAK-STAT signaling pathways, which are key pathways involved in innate immunity and the antiviral response. Thus, it was shown that AHSV NS4 suppresses the host innate immune transcriptional response in the early stages of the infection cycle. We investigated whether AHSV NS4 affects the innate immune response by impacting the JAK-STAT signaling pathway specifically. Using confocal laser scanning microscopy (CLSM) we showed that AHSV NS4 disrupts JAK-STAT signaling by interfering with the phosphorylation and/or translocation of STAT1 and pSTAT1 into the nucleus. Overall, these results showed that AHSV NS4 is a key virulence factor in horses and allows AHSV to overcome host antiviral responses in order to promote viral replication and spread.
Collapse
Affiliation(s)
- Gayle V Wall
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Isabella M Wright
- Deltamune (Pty) Ltd, Moraine House - The Braes, 193 Bryanston Drive, Bryanston, Gauteng, 2191, South Africa
| | - Carin Barnardo
- Deltamune (Pty) Ltd, Moraine House - The Braes, 193 Bryanston Drive, Bryanston, Gauteng, 2191, South Africa
| | - Baltus J Erasmus
- Deltamune (Pty) Ltd, Moraine House - The Braes, 193 Bryanston Drive, Bryanston, Gauteng, 2191, South Africa
| | - Vida van Staden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - A Christiaan Potgieter
- Deltamune (Pty) Ltd, Moraine House - The Braes, 193 Bryanston Drive, Bryanston, Gauteng, 2191, South Africa; Department of Biochemistry, Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
14
|
Faber E, Tshilwane SI, Kleef MV, Pretorius A. Virulent African horse sickness virus serotype 4 interferes with the innate immune response in horse peripheral blood mononuclear cells in vitro. INFECTION GENETICS AND EVOLUTION 2021; 91:104836. [PMID: 33798756 DOI: 10.1016/j.meegid.2021.104836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
African horse sickness (AHS) is caused by African horse sickness virus (AHSV), a double stranded RNA (dsRNA) virus of the genus Orbivirus, family Reoviridae. For the development of new generation AHS vaccines or antiviral treatments, it is crucial to understand the host immune response against the virus and the immune evasion strategies the virus employs. To achieve this, the current study used transcriptome analysis of RNA sequences to characterize and compare the innate immune responses activated during the attenuated AHSV serotype 4 (attAHSV4) (in vivo) and the virulent AHSV4 (virAHSV4) (in vitro) primary and secondary immune responses in horse peripheral blood mononuclear cells (PBMC) after 24 h. The pro-inflammatory cytokine and chemokine responses were negatively regulated by anti-inflammatory cytokines, whereas the parallel type I and type III IFN responses were maintained downstream of nucleic acid sensing pattern recognition receptor (PRR) signalling pathways during the attAHSV4 primary and secondary immune responses. It appeared that after translation, virAHSV4 proteins were able to interfere with the C-terminal IRF association domain (IAD)-type 1 (IAD1) containing IRFs, which inhibited the expression of type I and type III IFNs downstream of PRR signalling during the virAHSV4 primary and secondary immune responses. Viral interference resulted in an impaired innate immune response that was not able to eliminate virAHSV4-infected PBMC and gave rise to prolonged expression of pro-inflammatory cytokines and chemokines during the virAHSV4 induced primary immune response. Indicating that virAHSV4 interference with the innate immune response may give rise to an excessive inflammatory response that causes immunopathology, which could be a major contributing factor to the pathogenesis of AHS in a naïve horse. Viral interference was overcome by the fast kinetics and increased effector responses of innate immune cells due to trained innate immunity and memory T cells and B cells during the virAHSV4 secondary immune response.
Collapse
Affiliation(s)
- Erika Faber
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa; Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| | - Selaelo Ivy Tshilwane
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Mirinda Van Kleef
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa; Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Alri Pretorius
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa; Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
15
|
Villena J, Li C, Vizoso-Pinto MG, Sacur J, Ren L, Kitazawa H. Lactiplantibacillus plantarum as a Potential Adjuvant and Delivery System for the Development of SARS-CoV-2 Oral Vaccines. Microorganisms 2021; 9:683. [PMID: 33810287 PMCID: PMC8067309 DOI: 10.3390/microorganisms9040683] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
The most important characteristics regarding the mucosal infection and immune responses against the Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) as well as the current vaccines against coronavirus disease 2019 (COVID-19) in development or use are revised to emphasize the opportunity for lactic acid bacteria (LAB)-based vaccines to offer a valid alternative in the fight against this disease. In addition, this article revises the knowledge on: (a) the cellular and molecular mechanisms involved in the improvement of mucosal antiviral defenses by beneficial Lactiplantibacillus plantarum strains, (b) the systems for the expression of heterologous proteins in L. plantarum and (c) the successful expressions of viral antigens in L. plantarum that were capable of inducing protective immune responses in the gut and the respiratory tract after their oral administration. The ability of L. plantarum to express viral antigens, including the spike protein of SARS-CoV-2 and its capacity to differentially modulate the innate and adaptive immune responses in both the intestinal and respiratory mucosa after its oral administration, indicates the potential of this LAB to be used in the development of a mucosal COVID-19 vaccine.
Collapse
Affiliation(s)
- Julio Villena
- Reference Centre for Lactobacilli (CERELA-CONICET), Laboratory of Immunobiotechnology, Tucuman CP4000, Argentina
- Laboratory of Animal Products Chemistry, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China;
| | - Maria Guadalupe Vizoso-Pinto
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucuman CP4000, Argentina; (M.G.V.-P.); (J.S.)
| | - Jacinto Sacur
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucuman CP4000, Argentina; (M.G.V.-P.); (J.S.)
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Haruki Kitazawa
- Laboratory of Animal Products Chemistry, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- International Education and Research Center for Food Agricultural Immunology, Livestock Immunology Unit, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
16
|
Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway. Cell Mol Life Sci 2020; 78:1423-1444. [PMID: 33084946 PMCID: PMC7576986 DOI: 10.1007/s00018-020-03671-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Antiviral responses of interferons (IFNs) are crucial in the host immune response, playing a relevant role in controlling viralw infections. Three types of IFNs, type I (IFN-α, IFN-β), II (IFN-γ) and III (IFN-λ), are classified according to their receptor usage, mode of induction, biological activity and amino acid sequence. Here, we provide a comprehensive review of type I IFN responses and different mechanisms that viruses employ to circumvent this response. In the first part, we will give an overview of the different induction and signaling cascades induced in the cell by IFN-I after virus encounter. Next, highlights of some of the mechanisms used by viruses to counteract the IFN induction will be described. And finally, we will address different mechanism used by viruses to interference with the IFN signaling cascade and the blockade of IFN induced antiviral activities.
Collapse
|
17
|
Human norovirus exhibits strain-specific sensitivity to host interferon pathways in human intestinal enteroids. Proc Natl Acad Sci U S A 2020; 117:23782-23793. [PMID: 32907944 DOI: 10.1073/pnas.2010834117] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human noroviruses (HuNoVs) are the leading cause of viral gastroenteritis worldwide; yet currently, no vaccines or FDA-approved antiviral drugs are available to counter these pathogens. To understand HuNoV biology and the epithelial response to infection, we performed transcriptomic analyses, RT-qPCR, CRISPR-Cas9 modification of human intestinal enteroid (HIE) cultures, and functional studies with two virus strains (a pandemic GII.4 and a bile acid-dependent GII.3 strain). We identified a predominant type III interferon (IFN)-mediated innate response to HuNoV infection. Replication of both strains is sensitive to exogenous addition of IFNs, suggesting the potential of IFNs as therapeutics. To obtain insight into IFN pathway genes that play a role in the antiviral response to HuNoVs, we developed knockout (KO) HIE lines for IFN alpha and lambda receptors and the signaling molecules, MAVS, STAT1, and STAT2 An unexpected differential response of enhanced replication and virus spread was observed for GII.3, but not the globally dominant GII.4 HuNoV in STAT1-knockout HIEs compared to parental HIEs. These results indicate cellular IFN responses restrict GII.3 but not GII.4 replication. The strain-specific sensitivities of innate responses against HuNoV replication provide one explanation for why GII.4 infections are more widespread and highlight strain specificity as an important factor in HuNoV biology. Genetically modified HIEs for innate immune genes are useful tools for studying immune responses to viral or microbial pathogens.
Collapse
|
18
|
Patzina-Mehling C, Falkenhagen A, Trojnar E, Gadicherla AK, Johne R. Potential of avian and mammalian species A rotaviruses to reassort as explored by plasmid only-based reverse genetics. Virus Res 2020; 286:198027. [DOI: 10.1016/j.virusres.2020.198027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
|
19
|
Progressive Rotavirus Infection Downregulates Redox-Sensitive Transcription Factor Nrf2 and Nrf2-Driven Transcription Units. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7289120. [PMID: 32322337 PMCID: PMC7165344 DOI: 10.1155/2020/7289120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells adopt highly tuned stress response physiology under threats of exogenous stressors including viruses to maintain cellular homeostasis. Not surprisingly, avoidance of cellular stress response pathways is an essential facet of virus-induced obligatory host reprogramming to invoke a cellular environment conducive to viral perpetuation. Adaptive cellular responses to oxidative and electrophilic stress are usually taken care of by an antioxidant defense system, core to which lies the redox-responsive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-driven transcriptional cascade. Deregulation of host redox balance and redox stress-sensitive Nrf2 antioxidant defense have been reported for many viruses. In the current study, we aimed to study the modulation of the Nrf2-based host cellular redox defense system in response to Rotavirus (RV) infection in vitro. Interestingly, we found that Nrf2 protein levels decline sharply with progression of RV infection beyond an initial upsurge. Moreover, Nrf2 decrease as a whole was found to be accompanied by active nuclear vacuity of Nrf2, resulting in lowered expression of stress-responsive Nrf2 target genes heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1, and superoxide dismutase 1 both in the presence and absence of Nrf2-driven transcriptional inducers. Initial induction of Nrf2 concurred with RV-induced early burst of oxidative stress and therefore was sensitive to treatments with antioxidants. Reduction of Nrf2 levels beyond initial hours, however, was found to be independent of the cellular redox status. Furthermore, increasing the half-life of Nrf2 through inhibition of the Kelch-like erythroid cell-derived protein with CNC homology- (ECH-) associated protein 1/Cullin3-RING Box1-based canonical Nrf2 turnover pathway could not restore Nrf2 levels post RV-SA11 infection. Depletion of the Nrf2/HO-1 axis was subsequently found to be sensitive to proteasome inhibition with concurrent observation of increased K48-linked ubiquitination associated with Nrf2. Together, the present study describes robust downregulation of Nrf2-dependent cellular redox defense beyond initial hours of RV infection, justifying our previous observation of potent antirotaviral implications of Nrf2 agonists.
Collapse
|
20
|
Kumar D, Singh A, Kumar P, Uversky VN, Rao CD, Giri R. Understanding the penetrance of intrinsic protein disorder in rotavirus proteome. Int J Biol Macromol 2020; 144:892-908. [PMID: 31739058 PMCID: PMC7112477 DOI: 10.1016/j.ijbiomac.2019.09.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023]
Abstract
Rotavirus is a major cause of severe acute gastroenteritis in the infants and young children. The past decade has evidenced the role of intrinsically disordered proteins/regions (IDPs)/(IDPRs) in viral and other diseases. In general, (IDPs)/(IDPRs) are considered as dynamic conformational ensembles that devoid of a specific 3D structure, being associated with various important biological phenomena. Viruses utilize IDPs/IDPRs to survive in harsh environments, to evade the host immune system, and to highjack and manipulate host cellular proteins. The role of IDPs/IDPRs in Rotavirus biology and pathogenicity are not assessed so far, therefore, we have designed this study to deeply look at the penetrance of intrinsic disorder in rotavirus proteome consisting 12 proteins encoded by 11 segments of viral genome. Also, for all human rotaviral proteins, we have deciphered molecular recognition features (MoRFs), which are disorder based binding sites in proteins. Our study shows the wide spread of intrinsic disorder in several rotavirus proteins, primarily the nonstructural proteins NSP3, NSP4, and NSP5 that are involved in viral replication, translation, viroplasm formation and/or maturation. This study may serve as a primer for understanding the role of IDPs/MoRFs in rotavirus biology, design of alternative therapeutic strategies, and development of disorder-based drugs.
Collapse
Affiliation(s)
- Deepak Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Ankur Singh
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Prateek Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - C Durga Rao
- SRM University, AP - Amaravati, Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522502, India.
| | - Rajanish Giri
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; BioX Center, Indian Institute of Technology Mandi, Himachal Pradesh, India.
| |
Collapse
|
21
|
Reverse Genetics System for a Human Group A Rotavirus. J Virol 2020; 94:JVI.00963-19. [PMID: 31645445 DOI: 10.1128/jvi.00963-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/14/2019] [Indexed: 12/23/2022] Open
Abstract
Group A rotavirus (RV) is a major cause of acute gastroenteritis in infants and young children worldwide. Recently, we established an entirely plasmid-based reverse genetics system for simian RV strain SA11. Although that system was robust enough to generate reassortant RVs, including human RV gene segments, and enabled better understanding of the biological differences between animal and human RV strains, a complete reverse genetics system for human RV strains is desirable. Here, we established a plasmid-based reverse genetics system for G4P[8] human RV strain Odelia. This technology was used to generate a panel of monoreassortant viruses between human and simian RV strains for all of the 11 gene segments demonstrating full compatibility between human and simian RV strains. Furthermore, we generated recombinant viruses lacking the C-terminal region of the viral nonstructural protein NSP1 and used it to define the biological function of the interaction between NSP1 and its target protein β-transducin repeat-containing protein (β-TrCP) during viral replication. While the NSP1 truncation mutant lacking the C-terminal 13 amino acids displayed lower β-TrCP degradation activity, it replicated as efficiently as the wild-type virus. In contrast, the truncation mutant lacking the C-terminal 166 amino acids of NSP1 replicated poorly, suggesting that the C-terminal region of NSP1 plays critical roles in viral replication. The system reported here will allow generation of engineered recombinant virus harboring desired mutations, increase our understanding of the molecular biology of human RV, and facilitate development of novel therapeutics and vaccines.IMPORTANCE Reverse genetics, an approach used to generate viruses from cloned cDNA, has increased our understanding of virus biology. Worldwide research led to the development of an entirely plasmid-based reverse genetics system for the simian RV laboratory strain. Although the technique allows generation of gene-modified recombinant RVs, biological differences between animal and human RVs mean that reverse genetics systems for human RV strains are still needed. Here, we describe a reverse genetics system for the high-yield human RV strain Odelia, which replicates efficiently and is suitable for in vitro molecular studies. Monoreassortant viruses between simian and human RV strains and NSP1 mutant viruses generated by the rescue system enabled study of the biological functions of viral gene segments. This human RV reverse genetics system will facilitate study of RV biology and development of vaccines and vectors.
Collapse
|
22
|
Sen A, Ding S, Greenberg HB. The Role of Innate Immunity in Regulating Rotavirus Replication, Pathogenesis, and Host Range Restriction and the Implications for Live Rotaviral Vaccine Development. MUCOSAL VACCINES 2020. [PMCID: PMC7148637 DOI: 10.1016/b978-0-12-811924-2.00041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rotaviruses (RVs) are important causative agents of viral gastroenteritis in the young of most mammalian species studied, including humans, in which they are the most important cause of severe gastroenteritis worldwide despite the availability of several safe and effective vaccines. Replication of RVs is restricted in a host species-specific manner, and this barrier is determined predominantly by the host interferon (IFN) signaling and the ability of different RV strains to successfully negate IFN activation and amplification pathways. In addition, viral attachment to the target intestinal epithelial cells also regulates host range restriction. Several studies have focused on the role of the innate immune response in regulating RV replication and pathogenesis. The knowledge accrued from these efforts is likely to result in rational attenuation of RV vaccines to closely match circulating (and host species-matched) virus strains. In this chapter, we review prevalent models of RV interactions with innate immune factors, viral strategies employed to regulate their function, and the implications of these findings for improved RV vaccine development.
Collapse
|
23
|
Rotavirus Species B Encodes a Functional Fusion-Associated Small Transmembrane Protein. J Virol 2019; 93:JVI.00813-19. [PMID: 31375572 DOI: 10.1128/jvi.00813-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Rotavirus is an important cause of diarrheal disease in young mammals. Rotavirus species A (RVA) causes most human rotavirus diarrheal disease and primarily affects infants and young children. Rotavirus species B (RVB) has been associated with sporadic outbreaks of human adult diarrheal disease. RVA and RVB are predicted to encode mostly homologous proteins but differ significantly in the proteins encoded by the NSP1 gene. In the case of RVB, the NSP1 gene encodes two putative protein products of unknown function, NSP1-1 and NSP1-2. We demonstrate that human RVB NSP1-1 mediates syncytium formation in cultured human cells. Based on sequence alignment, NSP1-1 proteins from species B, G, and I contain features consistent with fusion-associated small transmembrane (FAST) proteins, which have previously been identified in other genera of the Reoviridae family. Like some other FAST proteins, RVB NSP1-1 is predicted to have an N-terminal myristoyl modification. Addition of an N-terminal FLAG peptide disrupts NSP1-1-mediated fusion. NSP1-1 from a human RVB mediates fusion of human cells but not hamster cells and, thus, may serve as a species tropism determinant. NSP1-1 also can enhance RVA replication in human cells, both in single-cycle infection studies and during a multicycle time course in the presence of fetal bovine serum, which inhibits rotavirus spread. These findings suggest potential yet untested roles for NSP1-1 in RVB species tropism, immune evasion, and pathogenesis.IMPORTANCE While species A rotavirus is commonly associated with diarrheal disease in young children, species B rotavirus has caused sporadic outbreaks of adult diarrheal disease. A major genetic difference between species A and B rotaviruses is the NSP1 gene, which encodes two proteins for species B rotavirus. We demonstrate that the smaller of these proteins, NSP1-1, can mediate fusion of cultured human cells. Comparison with viral proteins of similar function provides insight into NSP1-1 domain organization and fusion mechanism. These comparisons suggest that there is a fatty acid modification at the amino terminus of the protein, and our results show that an intact amino terminus is required for NSP1-1-mediated fusion. NSP1-1 from a human virus mediates fusion of human cells, but not hamster cells, and enhances species A rotavirus replication in culture. These findings suggest potential, but currently untested, roles for NSP1-1 in RVB host species tropism, immune evasion, and pathogenesis.
Collapse
|
24
|
Mukhopadhyay U, Chanda S, Patra U, Mukherjee A, Komoto S, Chawla-Sarkar M. Biphasic regulation of RNA interference during rotavirus infection by modulation of Argonaute2. Cell Microbiol 2019; 21:e13101. [PMID: 31424151 PMCID: PMC7162324 DOI: 10.1111/cmi.13101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/29/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) is an evolutionary ancient innate immune response in plants, nematodes, and arthropods providing natural protection against viral infection. Viruses have also gained counter‐defensive measures by producing virulence determinants called viral‐suppressors‐of‐RNAi (VSRs). Interestingly, in spite of dominance of interferon‐based immunity over RNAi in somatic cells of higher vertebrates, recent reports are accumulating in favour of retention of the antiviral nature of RNAi in mammalian cells. The present study focuses on the modulation of intracellular RNAi during infection with rotavirus (RV), an enteric virus with double‐stranded RNA genome. Intriguingly, a time point‐dependent bimodal regulation of RNAi was observed in RV‐infected cells, where short interfering RNA (siRNA)‐based RNAi was rendered non‐functional during early hours of infection only to be reinstated fully beyond that early infection stage. Subsequent investigations revealed RV nonstructural protein 1 to serve as a putative VSR by associating with and triggering degradation of Argonaute2 (AGO2), the prime effector of siRNA‐mediated RNAi, via ubiquitin–proteasome pathway. The proviral significance of AGO2 degradation was further confirmed when ectopic overexpression of AGO2 significantly reduced RV infection. Cumulatively, the current study presents a unique modulation of host RNAi during RV infection, highlighting the importance of antiviral RNAi in mammalian cells.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shampa Chanda
- Department of Biotechnology, GITAM Institute of Science, Visakhapatnam, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anupam Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Satoshi Komoto
- Department of Virology and Parasitology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
25
|
Development of Stable Rotavirus Reporter Expression Systems. J Virol 2019; 93:JVI.01774-18. [PMID: 30541830 DOI: 10.1128/jvi.01774-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/27/2018] [Indexed: 01/22/2023] Open
Abstract
Engineered recombinant viruses expressing reporter genes have been developed for real-time monitoring of replication and for mass screening of antiviral inhibitors. Recently, we reported using a reverse genetics system to develop the first recombinant reporter rotaviruses (RVs) that expressed NanoLuc (NLuc) luciferase. Here, we describe a strategy for developing stable reporter RVs expressing luciferase and green or red fluorescent proteins. The reporter genes were inserted into the open reading frame of NSP1 and expressed as a fusion with an NSP1 peptide consisting of amino acids 1 to 27. The stability of foreign genes within the reporter RV strains harboring a shorter chimeric NSP1-reporter gene was greater than that of those in the original reporter RV strain, independent of the transgene inserted. The improved reporter RV was used to screen for neutralizing monoclonal antibodies (MAbs). Sequence analysis of escape mutants from one MAb clone (clone 29) identified an amino acid substitution (arginine to glycine) at position 441 in the VP4 protein, which resides within neutralizing epitope 5-1 in the VP5* fragment. Furthermore, to express a native reporter protein lacking NSP1 amino acids 1 to 27, the 5'- and 3'-terminal region sequences were modified to restore the predicted secondary RNA structure of the NSP1-reporter chimeric gene. These data demonstrate the utility of reporter RVs for live monitoring of RV infections and also suggest further applications (e.g., RV vaccine vectors, which can induce mucosal immunity against intestinal pathogens).IMPORTANCE Development of reporter RVs has been hampered by the lack of comprehensive reverse genetics systems. Recently, we developed a plasmid-based reverse genetics system that enables generation of reporter RVs expressing NLuc luciferase. The prototype reporter RV had some disadvantages (i.e., the transgene was unstable and was expressed as a fusion protein with a partial NSP1 peptide); however, the improved reporter RV overcomes these problems through modification of the untranslated region of the reporter-NSP1 chimeric gene. This strategy for generating stable reporter RVs could be expanded to diverse transgenes and be used to develop RV transduction vectors. Also, the data improve our understanding of the importance of 5'- and 3'-terminal sequences in terms of genome replication, assembly, and packaging.
Collapse
|
26
|
Mori K, Nakazawa H, Hase S, Nagano M, Kimoto K, Oda M, Somura Y, Akiba T, Hayashi Y, Shinkai T, Sadamasu K. Whole genomic analysis of human G8P[14] group A rotavirus detected from community gastroenteritis outbreak. J Med Virol 2018; 90:1411-1417. [PMID: 29667207 DOI: 10.1002/jmv.25194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/25/2018] [Indexed: 01/01/2023]
Abstract
Several suspected cases of zoonotic transmission of group A rotavirus (RVA)-related gastroenteritis were reported previously. In August 2012, G8P[14] RVA was detected in fecal specimens from a community gastroenteritis outbreak occurring during a school trip. In this study, additional analyses were performed and it was found that this strain had the G8-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3 sequence, similar to bovine-like RVA strains. Some contamination by emesis and diarrheic feces was observed near a rest room in the lodging area. Contact history with animals was unknown in members of this school trip, and this case implied that the strain may have acquired the ability for person-to-person transmission.
Collapse
Affiliation(s)
- Kohji Mori
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | | | | | - Miyuki Nagano
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Kana Kimoto
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Mayuko Oda
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Yoshiko Somura
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Tetsuya Akiba
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Yukinao Hayashi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Takayuki Shinkai
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
27
|
Ingle H, Peterson ST, Baldridge MT. Distinct Effects of Type I and III Interferons on Enteric Viruses. Viruses 2018; 10:E46. [PMID: 29361691 PMCID: PMC5795459 DOI: 10.3390/v10010046] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are key host cytokines in the innate immune response to viral infection, and recent work has identified unique roles for IFN subtypes in regulating different aspects of infection. Currently emerging is a common theme that type III IFNs are critical in localized control of infection at mucosal barrier sites, while type I IFNs are important for broad systemic control of infections. The intestine is a particular site of interest for exploring these effects, as in addition to being the port of entry for a multitude of pathogens, it is a complex tissue with a variety of cell types as well as the presence of the intestinal microbiota. Here we focus on the roles of type I and III IFNs in control of enteric viruses, discussing what is known about signaling downstream from these cytokines, including induction of specific IFN-stimulated genes. We review viral strategies to evade IFN responses, effects of IFNs on the intestine, interactions between IFNs and the microbiota, and briefly discuss the role of IFNs in controlling viral infections at other barrier sites. Enhanced understanding of the coordinate roles of IFNs in control of viral infections may facilitate development of antiviral therapeutic strategies; here we highlight potential avenues for future exploration.
Collapse
Affiliation(s)
- Harshad Ingle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Stefan T Peterson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Megan T Baldridge
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Activation of PI3K, Akt, and ERK during early rotavirus infection leads to V-ATPase-dependent endosomal acidification required for uncoating. PLoS Pathog 2018; 14:e1006820. [PMID: 29352319 PMCID: PMC5792019 DOI: 10.1371/journal.ppat.1006820] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/31/2018] [Accepted: 12/15/2017] [Indexed: 11/19/2022] Open
Abstract
The cellular PI3K/Akt and/or MEK/ERK signaling pathways mediate the entry process or endosomal acidification during infection of many viruses. However, their roles in the early infection events of group A rotaviruses (RVAs) have remained elusive. Here, we show that late-penetration (L-P) human DS-1 and bovine NCDV RVA strains stimulate these signaling pathways very early in the infection. Inhibition of both signaling pathways significantly reduced production of viral progeny due to blockage of virus particles in the late endosome, indicating that neither of the two signaling pathways is involved in virus trafficking. However, immunoprecipitation assays using antibodies specific for pPI3K, pAkt, pERK and the subunit E of the V-ATPase co-immunoprecipitated the V-ATPase in complex with pPI3K, pAkt, and pERK. Moreover, Duolink proximity ligation assay revealed direct association of the subunit E of the V-ATPase with the molecules pPI3K, pAkt, and pERK, indicating that both signaling pathways are involved in V-ATPase-dependent endosomal acidification. Acidic replenishment of the medium restored uncoating of the RVA strains in cells pretreated with inhibitors specific for both signaling pathways, confirming the above results. Isolated components of the outer capsid proteins, expressed as VP4-VP8* and VP4-VP5* domains, and VP7, activated the PI3K/Akt and MEK/ERK pathways. Furthermore, psoralen-UV-inactivated RVA and CsCl-purified RVA triple-layered particles triggered activation of the PI3K/Akt and MEK/ERK pathways, confirming the above results. Our data demonstrate that multistep binding of outer capsid proteins of L-P RVA strains with cell surface receptors phosphorylates PI3K, Akt, and ERK, which in turn directly interact with the subunit E of the V-ATPase to acidify the late endosome for uncoating of RVAs. This study provides a better understanding of the RVA-host interaction during viral uncoating, which is of importance for the development of strategies aiming at controlling or preventing RVA infections. Viral particles must transport their genome into the cytoplasm or the nucleus of host cells to initiate successful infection. Knowledge of how viruses may pirate host cell signaling cascades or molecules to promote their own replication can facilitate the development of antiviral drugs. Group A rotavirus (RVA) is a major etiological agent of acute gastroenteritis in young children and the young of various mammals. RVA enters cells by a complex multistep process. However, the cellular signaling cascades or molecules that facilitate these processes are incompletely understood. Here, we demonstrate that infection with late-penetration RVA strains results in phosphorylation of PI3K, Akt, and ERK signaling molecules at an early stage of infection, a process mediated by the multistep binding of RVAs outer capsid proteins. Specific inhibitors for PI3K/Akt and MEK/ERK signaling pathways trap the viral particles in late endosome, and acidic replenishment restores and releases them. Moreover, the RVA-induced phosphorylated PI3K, Akt, and ERK directly interact with the subunit E of the V-ATPase proton pump, required for endosomal acidification and RVA uncoating. Understanding how RVA-induced early activation of cellular signaling molecules mediates the V-ATPase-dependent endosomal acidification required for uncoating of viral particles opens up opportunities for targeted interventions against rotavirus entry.
Collapse
|
29
|
González-Parra G, Dobrovolny HM, Aranda DF, Chen-Charpentier B, Guerrero Rojas RA. Quantifying rotavirus kinetics in the REH tumor cell line using in vitro data. Virus Res 2017; 244:53-63. [PMID: 29109019 DOI: 10.1016/j.virusres.2017.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 09/05/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
Globally, rotavirus is the most common cause of diarrhea in children younger than 5 years of age, however, a quantitative understanding of the infection dynamics is still lacking. In this paper, we present the first study to extract viral kinetic parameters for in vitro rotavirus infections in the REH cell tumor line. We use a mathematical model of viral kinetics to extract parameter values by fitting the model to data from rotavirus infection of REH cells. While accurate results for some of the parameters of the mathematical model were not achievable due to its global non-identifiability, we are able to quantify approximately the time course of the infection for the first time. We also find that the basic reproductive number of rotavirus, which gives the number of secondary infections from a single infected cell, is much greater than one. Quantifying the kinetics of rotavirus leads not only to a better understanding of the infection process, but also provides a method for quantitative comparison of kinetics of different strains or for quantifying the effectiveness of antiviral treatment.
Collapse
Affiliation(s)
- Gilberto González-Parra
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA; Department of Mathematics, New Mexico Tech, Socorro, NM, USA
| | | | - Diego F Aranda
- Facultad de Ciencias, Departamento de Matemáticas, Universidad El Bosque, Bogotá D.C., Colombia
| | | | | |
Collapse
|
30
|
Reverse Genetics System Demonstrates that Rotavirus Nonstructural Protein NSP6 Is Not Essential for Viral Replication in Cell Culture. J Virol 2017; 91:JVI.00695-17. [PMID: 28794037 DOI: 10.1128/jvi.00695-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
The use of overlapping open reading frames (ORFs) to synthesize more than one unique protein from a single mRNA has been described for several viruses. Segment 11 of the rotavirus genome encodes two nonstructural proteins, NSP5 and NSP6. The NSP6 ORF is present in the vast majority of rotavirus strains, and therefore the NSP6 protein would be expected to have a function in viral replication. However, there is no direct evidence of its function or requirement in the viral replication cycle yet. Here, taking advantage of a recently established plasmid-only-based reverse genetics system that allows rescue of recombinant rotaviruses entirely from cloned cDNAs, we generated NSP6-deficient viruses to directly address its significance in the viral replication cycle. Viable recombinant NSP6-deficient viruses could be engineered. Single-step growth curves and plaque formation of the NSP6-deficient viruses confirmed that NSP6 expression is of limited significance for RVA replication in cell culture, although the NSP6 protein seemed to promote efficient virus growth.IMPORTANCE Rotavirus is one of the most important pathogens of severe diarrhea in young children worldwide. The rotavirus genome, consisting of 11 segments of double-stranded RNA, encodes six structural proteins (VP1 to VP4, VP6, and VP7) and six nonstructural proteins (NSP1 to NSP6). Although specific functions have been ascribed to each of the 12 viral proteins, the role of NSP6 in the viral replication cycle remains unknown. In this study, we demonstrated that the NSP6 protein is not essential for viral replication in cell culture by using a recently developed plasmid-only-based reverse genetics system. This reverse genetics approach will be successfully applied to answer questions of great interest regarding the roles of rotaviral proteins in replication and pathogenicity, which can hardly be addressed by conventional approaches.
Collapse
|
31
|
Rotavirus NSP1 Requires Casein Kinase II-Mediated Phosphorylation for Hijacking of Cullin-RING Ligases. mBio 2017; 8:mBio.01213-17. [PMID: 28851847 PMCID: PMC5574712 DOI: 10.1128/mbio.01213-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rotavirus nonstructural protein NSP1 repurposes cullin-RING E3 ubiquitin ligases (CRLs) to antagonize innate immune responses. By functioning as substrate adaptors of hijacked CRLs, NSP1 causes ubiquitination and proteasomal degradation of host proteins that are essential for expression of interferon (IFN) and IFN-stimulated gene products. The target of most human and porcine rotaviruses is the β-transducin repeat-containing protein (β-TrCP), a regulator of NF-κB activation. β-TrCP recognizes a phosphorylated degron (DSGΦXS) present in the inhibitor of NF-κB (IκB); phosphorylation of the IκB degron is mediated by IκB kinase (IKK). Because NSP1 contains a C-terminal IκB-like degron (ILD; DSGXS) that recruits β-TrCP, we investigated whether the NSP1 ILD is similarly activated by phosphorylation and whether this modification is required to trigger the incorporation of NSP1 into CRLs. Based on mutagenesis and phosphatase treatment studies, we found that both serine residues of the NSP1 ILD are phosphorylated, a pattern mimicking phosphorylation of IκB. A three-pronged approach using small-molecule inhibitors, small interfering RNAs, and mutagenesis demonstrated that NSP1 phosphorylation is mediated by the constitutively active casein kinase II (CKII), rather than IKK. In coimmunoprecipitation assays, we found that this modification was essential for NSP1 recruitment of β-TrCP and induced changes involving the NSP1 N-terminal RING motif that allowed formation of Cul3-NSP1 complexes. Taken together, our results indicate a highly regulated stepwise process in the formation of NSP1-Cul3 CRLs that is initiated by CKII phosphorylation of NSP1, followed by NSP1 recruitment of β-TrCP and ending with incorporation of the NSP1–β-TrCP complex into the CRL via interactions dependent on the highly conserved NSP1 RING motif. Rotavirus is a segmented double-stranded RNA virus that causes severe diarrhea in young children. A primary mechanism used by the virus to inhibit host innate immune responses is to hijack cellular cullin-RING E3 ubiquitin ligases (CRLs) and redirect their targeting activity to the degradation of cellular proteins crucial for interferon expression. This task is accomplished through the rotavirus nonstructural protein NSP1, which incorporates itself into a CRL and serves as a substrate recognition subunit. The substrate recognized by the NSP1 of many human and porcine rotaviruses is β-TrCP, a protein that regulates the transcription factor NF-κB. In this study, we show that formation of NSP1 CRLs is a highly regulated stepwise process initiated by CKII phosphorylation of the β-TrCP recognition motif in NSP1. This modification triggers recruitment of the β-TrCP substrate and induces subsequent changes in a highly conserved NSP1 RING domain that allow anchoring of the NSP1–β-TrCP complex to a cullin scaffold.
Collapse
|
32
|
Villena J, Vizoso-Pinto MG, Kitazawa H. Intestinal Innate Antiviral Immunity and Immunobiotics: Beneficial Effects against Rotavirus Infection. Front Immunol 2016; 7:563. [PMID: 27994593 PMCID: PMC5136547 DOI: 10.3389/fimmu.2016.00563] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022] Open
Abstract
The mucosal tissues of the gastrointestinal tract are the main portal entry of pathogens such as rotavirus (RV), which is a leading cause of death due to diarrhea among young children across the globe and a major cause of severe acute intestinal infection in livestock animals. The interactions between intestinal epithelial cells (IECs) and immune cells with RVs have been studied for several years, and now, it is known that the innate immune responses triggered by this virus can have both beneficial and detrimental effects for the host. It was demonstrated that natural RV infection in infants and experimental challenges in mice result in the intestinal activation of pattern recognition receptors (PRRs) such as toll-like receptor 3 (TLR3) and striking secretion of proinflammatory mediators that can lead to increased local tissue damage and immunopathology. Therefore, modulating desregulated intestinal immune responses triggered by PRRs activation are a significant promise for reducing the burden of RV diseases. The ability of immunoregulatory probiotic microorganisms (immunobiotics) to protect against intestinal infections, such as those caused by RVs, is among the oldest effects studied for these important group of beneficial microbes. In this review, we provide an update of the current status on the modulation of intestinal antiviral innate immunity by immunobiotics and their beneficial impact on RV infection. In addition, we describe the research of our group that demonstrated the capacity of immunobiotic strains to beneficially modulated TLR3-triggered immune response in IECs, reduce the disruption of intestinal homeostasis caused by intraepithelial lymphocytes, and improve the resistance to RV infections.
Collapse
Affiliation(s)
- Julio Villena
- Immunobiotics Research Group, Tucuman, Argentina; Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina; Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Maria Guadalupe Vizoso-Pinto
- Immunobiotics Research Group, Tucuman, Argentina; Faculty of Medicine, INSIBIO (UNT-CONICET), National University of Tucuman, Tucuman, Argentina
| | - Haruki Kitazawa
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina; Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
33
|
Abstract
"Rotaviruses represent the most important etiological agents of acute, severe gastroenteritis in the young of many animal species, including humans." This statement, variations of which are a common beginning in articles about rotaviruses, reflects the fact that these viruses have evolved efficient strategies for evading the innate immune response of the host and for successfully replicating in the population. In this review, we summarize what is known about the defense mechanisms that host cells employ to prevent rotavirus invasion and the countermeasures that these viruses have successfully developed to surpass cellular defenses. Rotaviruses use at least two viral multifunctional proteins to directly interact with, and prevent the activation of, the interferon system, and they use at least one other protein to halt the protein synthesis machinery and prevent the expression of most of the transcriptional antiviral program of the cell. Characterization of the confrontation between rotaviruses and their host cells has allowed us to learn about the virus-host coevolution that prevents the damaging effects of the innate immune response.
Collapse
Affiliation(s)
- Susana López
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México;
| | - Liliana Sánchez-Tacuba
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México;
| | - Joaquin Moreno
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México;
| | - Carlos F Arias
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México;
| |
Collapse
|
34
|
Abstract
Rotavirus is a leading cause of death due to diarrhea among young children across the globe. Despite the limited coding capacity that is characteristic of RNA viruses, rotavirus dedicates substantial resources to avoiding the host innate immune response. Among these strategies is use of the interferon antagonist protein NSP1, which targets cellular proteins required for interferon production to be degraded by the proteasome. Although numerous cellular targets have been described, there remain many questions about the mechanism of NSP1 activity and its role in promoting replication in specific host species.
Collapse
|
35
|
Silva FDF, Gregori F, McDonald SM. Distinguishing the genotype 1 genes and proteins of human Wa-like rotaviruses vs. porcine rotaviruses. INFECTION GENETICS AND EVOLUTION 2016; 43:6-14. [PMID: 27180895 DOI: 10.1016/j.meegid.2016.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022]
Abstract
Group A rotaviruses (RVAs) are 11-segmented, double-stranded RNA viruses and important causes of gastroenteritis in the young of many animal species. Previous studies have suggested that human Wa-like RVAs share a close evolutionary relationship with porcine RVAs. Specifically, the VP1-VP3 and NSP2-5/6 genes of these viruses are usually classified as genotype 1 with >81% nucleotide sequence identity. Yet, it remains unknown whether the genotype 1 genes and proteins of human Wa-like strains are distinguishable from those of porcine strains. To investigate this, we performed comprehensive bioinformatic analyses using all known genotype 1 gene sequences. The RVAs analyzed represent wildtype strains isolated from humans or pigs at various geographical locations during the years of 2004-2013, including 11 newly-sequenced porcine RVAs from Brazil. We also analyzed archival strains that were isolated during the years of 1977-1992 as well as atypical strains involved in inter-species transmission between humans and pigs. We found that, in general, the genotype 1 genes of typical modern human Wa-like RVAs clustered together in phylogenetic trees and were separate from those of typical modern porcine RVAs. The only exception was for the NSP5/6 gene, which showed no host-specific phylogenetic clustering. Using amino acid sequence alignments, we identified 34 positions that differentiated the VP1-VP3, NSP2, and NSP3 genotype 1 proteins of typical modern human Wa-like RVAs versus typical modern porcine RVAs and documented how these positions vary in the archival/unusual isolates. No host-specific amino acid positions were identified for NSP4, NSP5, or NSP6. Altogether, the results of this study support the notion that human Wa-like RVAs and porcine RVAs are evolutionarily related, but indicate that some of their genotype 1 genes and proteins have diverged over time possibly as a reflection of sequestered replication and protein co-adaptation in their respective hosts.
Collapse
Affiliation(s)
- Fernanda D F Silva
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, Brazil
| | - F Gregori
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, Brazil
| | - Sarah M McDonald
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA.
| |
Collapse
|
36
|
Ishizuka T, Kanmani P, Kobayashi H, Miyazaki A, Soma J, Suda Y, Aso H, Nochi T, Iwabuchi N, Xiao JZ, Saito T, Villena J, Kitazawa H. Immunobiotic Bifidobacteria Strains Modulate Rotavirus Immune Response in Porcine Intestinal Epitheliocytes via Pattern Recognition Receptor Signaling. PLoS One 2016; 11:e0152416. [PMID: 27023883 PMCID: PMC4811565 DOI: 10.1371/journal.pone.0152416] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/14/2016] [Indexed: 12/26/2022] Open
Abstract
In this work, we aimed to characterize the antiviral response of an originally established porcine intestinal epithelial cell line (PIE cells) by evaluating the molecular innate immune response to rotavirus (RVs). In addition, we aimed to select immunomodulatory bacteria with antiviral capabilities. PIE cells were inoculated with RVs isolated from different host species and the infective titers and the molecular innate immune response were evaluated. In addition, the protection against RVs infection and the modulation of immune response by different lactic acid bacteria (LAB) strains was studied. The RVs strains OSU (porcine) and UK (bovine) effectively infected PIE cells. Our results also showed that RVs infection in PIE cells triggered TLR3-, RIG-I- and MDA-5-mediated immune responses with activation of IRF3 and NF-κB, induction of IFN-β and up-regulation of the interferon stimulated genes MxA and RNase L. Among the LAB strains tested, Bifidobacterium infantis MCC12 and B. breve MCC1274 significantly reduced RVs titers in infected PIE cells. The beneficial effects of both bifidobacteria were associated with reduction of A20 expression, and improvements of IRF-3 activation, IFN-β production, and MxA and RNase L expressions. These results indicate the value of PIE cells for studying RVs molecular innate immune response in pigs and for the selection of beneficial bacteria with antiviral capabilities.
Collapse
Affiliation(s)
- Takamasa Ishizuka
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Paulraj Kanmani
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hisakazu Kobayashi
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ayako Miyazaki
- Viral Diseases and Epidemiology Research Division, National Institute of Animal Health, NARO, Tsukuba, Japan
| | - Junichi Soma
- Research and Development Section, Institute of Animal Health, JA Zen-noh (National Federation of Agricultural Cooperative Associations), Chiba, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai, Japan
| | - Hisashi Aso
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomonori Nochi
- Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Infection Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Noriyuki Iwabuchi
- Food Science and Technology Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa, Japan
| | - Jin-zhong Xiao
- Food Science and Technology Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa, Japan
| | - Tadao Saito
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
- * E-mail: (HK); (JV)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- * E-mail: (HK); (JV)
| |
Collapse
|
37
|
Structural basis for 2'-5'-oligoadenylate binding and enzyme activity of a viral RNase L antagonist. J Virol 2015; 89:6633-45. [PMID: 25878106 DOI: 10.1128/jvi.00701-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Synthesis of 2'-5'-oligoadenylates (2-5A) by oligoadenylate synthetase (OAS) is an important innate cellular response that limits viral replication by activating the latent cellular RNase, RNase L, to degrade single-stranded RNA. Some rotaviruses and coronaviruses antagonize the OAS/RNase L pathway through the activity of an encoded 2H phosphoesterase domain that cleaves 2-5A. These viral 2H phosphoesterases are phylogenetically related to the cellular A kinase anchoring protein 7 (AKAP7) and share a core structure and an active site that contains two well-defined HΦ(S/T)Φ (where Φ is a hydrophobic residue) motifs, but their mechanism of substrate binding is unknown. Here, we report the structures of a viral 2H phosphoesterase, the C-terminal domain (CTD) of the group A rotavirus (RVA) VP3 protein, both alone and in complex with 2-5A. The domain forms a compact fold, with a concave β-sheet that contains the catalytic cleft, but it lacks two α-helical regions and two β-strands observed in AKAP7 and other 2H phosphoesterases. The cocrystal structure shows significant conformational changes in the R loop upon ligand binding. Bioinformatics and biochemical analyses reveal that conserved residues and residues required for catalytic activity and substrate binding comprise the catalytic motifs and a region on one side of the binding cleft. We demonstrate that the VP3 CTD of group B rotavirus, but not that of group G, cleaves 2-5A. These findings suggest that the VP3 CTD is a streamlined version of a 2H phosphoesterase with a ligand-binding mechanism that is shared among 2H phosphodiesterases that cleave 2-5A. IMPORTANCE The C-terminal domain (CTD) of rotavirus VP3 is a 2H phosphoesterase that cleaves 2'-5'-oligoadenylates (2-5A), potent activators of an important innate cellular antiviral pathway. 2H phosphoesterase superfamily proteins contain two conserved catalytic motifs and a proposed core structure. Here, we present structures of a viral 2H phosphoesterase, the rotavirus VP3 CTD, alone and in complex with its substrate, 2-5A. The domain lacks two α-helical regions and β-strands present in other 2H phosphoesterases. A loop of the protein undergoes significant structural changes upon substrate binding. Together with our bioinformatics and biochemical findings, the crystal structures suggest that the RVA VP3 CTD domain is a streamlined version of a cellular enzyme that shares a ligand-binding mechanism with other 2H phosphodiesterases that cleave 2-5A but differs from those of 2H phosphodiesterases that cleave other substrates. These findings may aid in the future design of antivirals targeting viral phosphodiesterases with cleavage specificity for 2-5A.
Collapse
|