1
|
Hamiti M, Zhang XT, Zhu RM, Liu YP, Yin B, Shu PC, Peng XZ. Polypyrimidine Tract-Binding Protein Enhances Zika Virus Translation by Binding to the 5'UTR of Internal Ribosomal Entry Site. CHINESE MEDICAL SCIENCES JOURNAL = CHUNG-KUO I HSUEH K'O HSUEH TSA CHIH 2024; 39:162-170. [PMID: 39318276 DOI: 10.24920/004393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
OBJECTIVES To identify the 5' untranslated region of Zika virus (ZIKV 5'UTR) RNA-binding proteins and to investigate the impact of the binding protein on the activity of internal ribosomal entry site (IRES) located in ZIKV 5'UTR and virus production. METHODS Interacting proteins in U251 cells were captured using tRSA-tagged ZIKV 5'UTR RNA and tRSA-ZIKV 5'UTR RNA-binding proteins were visualized by SDS-PAGE silver staining. Subsequently, liquid chromatography-tandem mass spectrometry (LC-MS/MS), bioinformatics analysis, and Western blot were used to identify the candidate proteins binding to ZIKV 5'UTR. Dicistronic expression assay and plaque forming assay were performed to analyze the effect of the binding protein on ZIKV IRES activity and ZIKV production, respecitvely. RESULTS tRSA RNA pull-down assay, LC-MS/MS, and Western blot analysis showed that polypyrimidine tract-binding protein (PTB) bound to the ZIKV 5'UTR. Furthermore, dual luciferase reporter assay revealed that overexpression of PTB significantly enhanced the IRES activity of ZIKV (t = 10.220, P < 0.001), while PTB knockdown had the opposite effect (t = 4.897, P < 0.01). Additionally, virus plaque forming assay demonstrated that up-regulation of PTB expression significantly enhanced viral titer (t = 6.400, P < 0.01), whereas reducing PTB expression level weakened virus infectivity (t = 5.055, P < 0.01). CONCLUSIONS PTB positively interacts with the ZIKV 5'UTR and enhances IRES activity and virus production.
Collapse
Affiliation(s)
- Moliduer Hamiti
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xin-Tian Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, China
| | - Rui-Min Zhu
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yun-Peng Liu
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Bin Yin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Peng-Cheng Shu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiao-Zhong Peng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
2
|
Xu C, Jiang Y, Wang M, Cheng A, Zhang W, Ou X, Sun D, Yang Q, Wu Y, Tian B, He Y, Wu Z, Zhang S, Zhao X, Huang J, Zhu D, Chen S, Liu M, Jia R. Duck hepatitis A virus utilizes PCBP2 to facilitate viral translation and replication. Vet Res 2024; 55:110. [PMID: 39300570 PMCID: PMC11414061 DOI: 10.1186/s13567-024-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is an important member of the Picornaviridae family that causes highly fatal hepatitis in ducklings. Since picornaviruses have small genomes with limited coding capacity, they must utilize host proteins for viral cap-independent translation and RNA replication. Here, we report the role of duck poly(rC)-binding protein 2 (PCBP2) in regulating the replication and translation of DHAV-1. During DHAV-1 infection, PCBP2 expression was upregulated. A biotinylated RNA pull-down assay revealed that PCBP2 positively regulates DHAV-1 translation through specific interactions with structural domains II and III of the DHAV-1 internal ribosome entry site (IRES). Further studies revealed that PCBP2 promotes DHAV-1 replication via an interaction of its KH1 domain (aa 1-92) with DHAV-1 3Dpol. Thus, our studies demonstrated the specific role of PCBP2 in regulating DHAV-1 translation and replication, revealing a novel mechanism by which host‒virus interactions regulate viral translation and replication. These findings contribute to further understanding of the pathogenesis of picornavirus infections.
Collapse
Affiliation(s)
- Chenxia Xu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yurui Jiang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China.
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China.
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, 225100, China
| | - Xumin Ou
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Di Sun
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiao Yang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ying Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Tian
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhen Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shaqiu Zhang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinxin Zhao
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juan Huang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dekang Zhu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mafeng Liu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Renyong Jia
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
3
|
Arhab Y, Pestova TV, Hellen CUT. Translation of Overlapping Open Reading Frames Promoted by Type 2 IRESs in Avian Calicivirus Genomes. Viruses 2024; 16:1413. [PMID: 39339889 PMCID: PMC11436067 DOI: 10.3390/v16091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Caliciviruses have positive-sense RNA genomes, typically with short 5'-untranslated regions (5'UTRs) that precede the long open reading frame 1 (ORF1). Exceptionally, some avian caliciviruses have long 5'UTRs containing a picornavirus-like internal ribosomal entry site (IRES), which was likely acquired by horizontal gene transfer. Here, we identified numerous additional avian calicivirus genomes with IRESs, predominantly type 2, and determined that many of these genomes contain a ~200-300 codon-long ORF (designated ORF1*) that overlaps the 5'-terminal region of ORF1. The activity of representative type 2 IRESs from grey teal calicivirus (GTCV) and Caliciviridae sp. isolate yc-13 (RaCV1) was confirmed by in vitro translation. Toeprinting showed that in cell-free extracts and in vitro reconstituted reactions, ribosomal initiation complexes assembled on the ORF1* initiation codon and at one or two AUG codons in ORF1 at the 3'-border and/or downstream of the IRES. Initiation at all three sites required eIF4A and eIF4G, which bound to a conserved region of the IRES; initiation on the ORF1* and principal ORF1 initiation codons involved eIF1/eIF1A-dependent scanning from the IRES's 3'-border. Initiation on these IRESs was enhanced by the IRES trans-acting factors (ITAFs) Ebp1/ITAF45, which bound to the apical subdomain Id of the IRES, and PTB (GTCV) or PCBP2 (RaCV1).
Collapse
Affiliation(s)
- Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
4
|
Li Y, Zhang L, Wang L, Li J, Zhao Y, Liu F, Wang Q. Structure and function of type IV IRES in picornaviruses: a systematic review. Front Microbiol 2024; 15:1415698. [PMID: 38855772 PMCID: PMC11157119 DOI: 10.3389/fmicb.2024.1415698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
The Picornaviridae is a family of icosahedral viruses with single-stranded, highly diverse positive-sense RNA genomes. Virions consist of a capsid, without envelope, surrounding a core of RNA genome. A typical genome of picornavirus harbors a well-conserved and highly structured RNA element known as the internal ribosome entry site (IRES), functionally essential for viral replication and protein translation. Based on differences in their structures and mechanisms of action, picornaviral IRESs have been categorized into five types: type I, II, III, IV, and V. Compared with the type IV IRES, the others not only are structurally complicated, but also involve multiple initiation factors for triggering protein translation. The type IV IRES, often referred to as hepatitis C virus (HCV)-like IRES due to its structural resemblance to the HCV IRES, exhibits a simpler and more compact structure than those of the other four. The increasing identification of picornaviruses with the type IV IRES suggests that this IRES type seems to reveal strong retention and adaptation in terms of viral evolution. Here, we systematically reviewed structural features and biological functions of the type IV IRES in picornaviruses. A comprehensive understanding of the roles of type IV IRESs will contribute to elucidating the replication mechanism and pathogenesis of picornaviruses.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Lei Zhang
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao, China
| | - Jing Li
- Market Supervision Administration of Huangdao District, Qingdao, China
| | - Yanwei Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Abaeva IS, Pestova TV, Hellen CUT. Genetic mechanisms underlying the structural elaboration and dissemination of viral internal ribosomal entry sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.590008. [PMID: 38883778 PMCID: PMC11178006 DOI: 10.1101/2024.04.17.590008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Viral internal ribosomal entry sites (IRESs) form several classes that use distinct mechanisms to mediate end-independent initiation of translation. The origin of viral IRESs is a longstanding question. The simplest IRESs comprise tandem pseudoknots and occur in the intergenic region (IGR) of Dicistroviridae genomes (order Picornavirales ). Larger IGR IRESs contain additional elements that determine specific properties such as binding to the head of the ribosoma l 40S subunit. Metagenomic analyses reported here identified novel groups of structurally distinct IGR-like IRESs. The smallest of these (∼120nt long) comprise three pseudoknots and bind directly to the ribosomal P site. Others are up to 260nt long: insertions occurred at specific loci, possibly reflecting non-templated nucleotide insertion during replication. Various groups can be arranged in order, differing by the cumulative addition of single structural elements, suggesting an accretion mechanism for the structural elaboration of IRESs. Identification of chimeric IRESs implicates recombinational exchange of domains as a second mechanism for the diversification of IRES structure. Recombination likely also accounts for the presence of IGR-like IRESs at the 5'-end of some dicistrovirus-like genomes (e.g. Hangzhou dicistrovirus 3) and in the RNA genomes of Tombusviridae (order Tolivirales ), Marnaviridae (order Picornavirale s), and the 'Ripiresk' picorna-like clade (order Picornavirale s).
Collapse
|
6
|
Sherlock ME, Langeberg CJ, Segar KE, Kieft JS. A conserved class of viral RNA structures regulate translation reinitiation through dynamic ribosome interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560040. [PMID: 37808774 PMCID: PMC10557763 DOI: 10.1101/2023.09.29.560040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Certain viral RNAs encode proteins downstream of the main protein coding region, expressed through "termination-reinitiation" events, dependent on RNA structure. RNA elements located upstream of the first stop codon within these viral mRNAs bind the ribosome, preventing ribosome recycling and inducing reinitiation. We used bioinformatic methods to identify new examples of viral reinitiation-stimulating RNAs and experimentally verified their secondary structure and function. We determined the structure of a representative viral RNA-ribosome complex using cryoEM. 3D classification and variability analyses reveal that the viral RNA structure can sample a range of conformations while remaining tethered to the ribosome, which enabling the ribosome to find a reinitiation start site within a limited range of mRNA sequence. Evaluating the conserved features and constraints of this entire RNA class in the context of the cryoEM reconstruction provides insight into mechanisms enabling reinitiation, a translation regulation strategy employed by many other viral and eukaryotic systems.
Collapse
|
7
|
Abaeva IS, Young C, Warsaba R, Khan N, Tran L, Jan E, Pestova T, Hellen CT. The structure and mechanism of action of a distinct class of dicistrovirus intergenic region IRESs. Nucleic Acids Res 2023; 51:9294-9313. [PMID: 37427788 PMCID: PMC10516663 DOI: 10.1093/nar/gkad569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
Internal ribosomal entry sites (IRESs) engage with the eukaryotic translation apparatus to promote end-independent initiation. We identified a conserved class of ∼150 nt long intergenic region (IGR) IRESs in dicistrovirus genomes derived from members of the phyla Arthropoda, Bryozoa, Cnidaria, Echinodermata, Entoprocta, Mollusca and Porifera. These IRESs, exemplified by Wenling picorna-like virus 2, resemble the canonical cricket paralysis virus (CrPV) IGR IRES in comprising two nested pseudoknots (PKII/PKIII) and a 3'-terminal pseudoknot (PKI) that mimics a tRNA anticodon stem-loop base-paired to mRNA. However, they are ∼50 nt shorter than CrPV-like IRESs, and PKIII is an H-type pseudoknot that lacks the SLIV and SLV stem-loops that are primarily responsible for the affinity of CrPV-like IRESs for the 40S ribosomal subunit and that restrict initial binding of PKI to its aminoacyl (A) site. Wenling-class IRESs bound strongly to 80S ribosomes but only weakly to 40S subunits. Whereas CrPV-like IRESs must be translocated from the A site to the peptidyl (P) site by elongation factor 2 for elongation to commence, Wenling-class IRESs bound directly to the P site of 80S ribosomes, and decoding begins without a prior translocation step. A chimeric CrPV clone containing a Wenling-class IRES was infectious, confirming that the IRES functioned in cells.
Collapse
Affiliation(s)
- Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christina Young
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Reid Warsaba
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nadiyah Khan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lan Vy Tran
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
8
|
Abstract
Viruses lack the properties to replicate independently due to the limited resources encoded in their genome; therefore, they hijack the host cell machinery to replicate and survive. Picornaviruses get the prerequisite for effective protein synthesis through specific sequences known as internal ribosome entry sites (IRESs). In the past 2 decades, significant progress has been made in identifying different types of IRESs in picornaviruses. This review will discuss the past and current findings related to the five different types of IRESs and various internal ribosome entry site trans-acting factors (ITAFs) that either promote or suppress picornavirus translation and replication. Some IRESs are inefficient and thus require ITAFs. To achieve their full efficiency, they recruit various ITAFs, which enable them to translate more effectively and efficiently, except type IV IRES, which does not require any ITAFs. Although there are two kinds of ITAFs, one promotes viral IRES-dependent translation, and the second type restricts. Picornaviruses IRESs are classified into five types based on their use of sequence, ITAFs, and initiation factors. Some ITAFs regulate IRES activity by localizing to the viral replication factories in the cytoplasm. Also, some drugs, chemicals, and herbal extracts also regulate viral IRES-dependent translation and replication. Altogether, this review will elaborate on our understanding of the past and recent advancements in the IRES-dependent translation and replication of picornaviruses. IMPORTANCE The family Picornaviridae is divided into 68 genera and 158 species. The viruses belonging to this family range from public health importance, such as poliovirus, enterovirus A71, and hepatitis A virus, to animal viruses of great economic importance, such as foot-and-mouth disease virus. The genomes of picornaviruses contain 5' untranslated regions (5' UTRs), which possess crucial and highly structured stem-loops known as IRESs. IRES assemble the ribosomes and facilitate the cap-independent translation. Virus-host interaction is a hot spot for researchers, which warrants deep insight into understanding viral pathogenesis better and discovering new tools and ways for viral restriction to improve human and animal health. The cap-independent translation in the majority of picornaviruses is modulated by ITAFs, which bind to various IRES regions to initiate the translation. The discoveries of ITAFs substantially contributed to understanding viral replication behavior and enhanced our knowledge about virus-host interaction more effectively than ever before. This review discussed the various types of IRESs found in Picornaviridae, past and present discoveries regarding ITAFs, and their mechanism of action. The herbal extracts, drugs, and chemicals, which indicated their importance in controlling viruses, were also summarized. In addition, we discussed the movement of ITAFs from the nucleus to viral replication factories. We believe this review will stimulate researchers to search for more novel ITAFs, drugs, herbal extracts, and chemicals, enhancing the understanding of virus-host interaction.
Collapse
|
9
|
Li Y, Wei L, Cheng A, Wang M, Ou X, Mao S, Tian B, Yang Q, Wu Y, Zhang S, Huang J, Gao Q, Sun D, Zhao X, Jia R, Liu M, Zhu D, Chen S, Yu Y, Zhang L, Pan L. Specific DNAzymes cleave the 300-618 nt of 5'UTR to inhibit DHAV-1 translation and replication. Front Microbiol 2022; 13:1064612. [PMID: 36578574 PMCID: PMC9791187 DOI: 10.3389/fmicb.2022.1064612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
DNAzymes effectively inhibit the expression of viral genes. Duck hepatitis A virus type-1 (DHAV-1) genomic RNA carries an internal ribosome entry site (IRES). The IRES initiates the translation of DHAV-1 via a mechanism that differs from that of cap-dependent translation. Therefore, it is an attractive target for the treatment of DHAV-1. In this study, we designed 6 DNAzymes (Dzs) specifically targeting 300-618 nt sequence in the DHAV-1 5'untranslated region (UTR; a predicted IRES-like element). In the presence of divalent metal ions, three designed DNAzymes (DZ369, DZ454, and DZ514) efficiently cleaved the 300-618 nt sequence of the DHAV-1 5'UTR RNA. The activity of the Dzs was particularly dependent on Mg2+ ions. Subsequently, the translation inhibitory activity of these Dzs was determined by western blotting experiments. The Dzs effectively inhibited the translation mediated by the 300-618 nt of DHAV-1 5'UTR in duck embryo fibroblasts (DEFs). Importantly, DZ454 showed the strongest inhibitory effect, and its inhibition was time and dose dependent. However, none of the Dzs showed significant inhibition of cap-dependent translation. These results suggest that these Dzs show specificity for target RNA. Moreover, DZ454 inhibited the replication of DHAV-1. In conclusion, the designed DNAzymes can be used as inhibitors of DHAV-1 RNA translation and replication, providing new insights useful for the development of anti-DHAV-1 drugs.
Collapse
Affiliation(s)
- Yanglin Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Wei
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,*Correspondence: Mingshu Wang,
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Francisco-Velilla R, Embarc-Buh A, Abellan S, Martinez-Salas E. Picornavirus translation strategies. FEBS Open Bio 2022; 12:1125-1141. [PMID: 35313388 PMCID: PMC9157412 DOI: 10.1002/2211-5463.13400] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
The genome of viruses classified as picornaviruses consists of a single monocistronic positive strand RNA. The coding capacity of these RNA viruses is rather limited, and thus, they rely on the cellular machinery for their viral replication cycle. Upon the entry of the virus into susceptible cells, the viral RNA initially competes with cellular mRNAs for access to the protein synthesis machinery. Not surprisingly, picornaviruses have evolved specialized strategies that successfully allow the expression of viral gene products, which we outline in this review. The main feature of all picornavirus genomes is the presence of a heavily structured RNA element on the 5´UTR, referred to as an internal ribosome entry site (IRES) element, which directs viral protein synthesis as well and, consequently, triggers the subsequent steps required for viral replication. Here, we will summarize recent studies showing that picornavirus IRES elements consist of a modular structure, providing sites of interaction for ribosome subunits, eIFs, and a selective group of RNA‐binding proteins.
Collapse
Affiliation(s)
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Salvador Abellan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | |
Collapse
|
11
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
12
|
Arhab Y, Miścicka A, Pestova TV, Hellen CUT. Horizontal gene transfer as a mechanism for the promiscuous acquisition of distinct classes of IRES by avian caliciviruses. Nucleic Acids Res 2021; 50:1052-1068. [PMID: 34928389 PMCID: PMC8789048 DOI: 10.1093/nar/gkab1243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023] Open
Abstract
In contrast to members of Picornaviridae which have long 5'-untranslated regions (5'UTRs) containing internal ribosomal entry sites (IRESs) that form five distinct classes, members of Caliciviridae typically have short 5'UTRs and initiation of translation on them is mediated by interaction of the viral 5'-terminal genome-linked protein (VPg) with subunits of eIF4F rather than by an IRES. The recent description of calicivirus genomes with 500-900nt long 5'UTRs was therefore unexpected and prompted us to examine them in detail. Sequence analysis and structural modelling of the atypically long 5'UTRs of Caliciviridae sp. isolate yc-13 and six other caliciviruses suggested that they contain picornavirus-like type 2 IRESs, whereas ruddy turnstone calicivirus (RTCV) and Caliciviridae sp. isolate hwf182cal1 calicivirus contain type 4 and type 5 IRESs, respectively. The suggestion that initiation on RTCV mRNA occurs by the type 4 IRES mechanism was confirmed experimentally using in vitro reconstitution. The high sequence identity between identified calicivirus IRESs and specific picornavirus IRESs suggests a common evolutionary origin. These calicivirus IRESs occur in a single phylogenetic branch of Caliciviridae and were likely acquired by horizontal gene transfer.
Collapse
Affiliation(s)
- Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| |
Collapse
|
13
|
Liu F, Wang N, Wang Q, Shan H. Motif mutations in pseudoknot stem I upstream of start codon in Senecavirus A genome: Impacts on activity of viral IRES and on rescue of recombinant virus. Vet Microbiol 2021; 262:109223. [PMID: 34507016 DOI: 10.1016/j.vetmic.2021.109223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Senecavirus A (SVA), formerly known as Seneca Valley virus, is classified into the genus Senecavirus in the family Picornaviridae. Mature virion harbors an approximately 7 300-nt-long, positive-sense, and single-stranded RNA genome, which contains 5' and 3' untranslated regions (UTRs). Internal ribosome entry site (IRES) is identified in the SVA 5' UTR, and includes a RNA pseudoknot upstream of the start codon. This pseudoknot contains two stem structures, pseudoknot stem I and II (PKS-I and -II). The PKS-I is composed of two base-paired motifs (PKS-Ia and -Ib), between which there is an unpaired spacing (UpS). We reported previously that motif mutation in the PKS-II did not abolish the IRES activity, but interfered with SVA recovery from cDNA clone. In this study, we constructed five SVA minigenomes with point mutations in the PKS-I motif. Dual-luciferase reporter assay showed that motif mutations in PKS-I did not significantly interfere with the IRES activity to initiate protein expression. Correspondingly, we constructed five SVA cDNA clones with point mutations in the PKS-I motif. These genetically modified cDNA clones were separately transfected into BSR-T7/5 cells in attempting to rescue competent SVAs. However, only two viruses, namely PKS-Ia- and UpS-mutated recombinants, could be recovered from their individual cDNA clones. It can be concluded that the PKS-Ib is indispensable for viral growth.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ning Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qi Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
14
|
Siblings or doppelgängers? Deciphering the evolution of structured cis-regulatory RNAs beyond homology. Biochem Soc Trans 2021; 48:1941-1951. [PMID: 32869842 PMCID: PMC7609027 DOI: 10.1042/bst20191060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 11/21/2022]
Abstract
Structured cis-regulatory RNAs have evolved across all domains of life, highlighting the utility and plasticity of RNA as a regulatory molecule. Homologous RNA sequences and structures often have similar functions, but homology may also be deceiving. The challenges that derive from trying to assign function to structure and vice versa are not trivial. Bacterial riboswitches, viral and eukaryotic IRESes, CITEs, and 3′ UTR elements employ an array of mechanisms to exert their effects. Bioinformatic searches coupled with biochemical and functional validation have elucidated some shared and many unique ways cis-regulators are employed in mRNA transcripts. As cis-regulatory RNAs are resolved in greater detail, it is increasingly apparent that shared homology can mask the full spectrum of mRNA cis-regulator functional diversity. Furthermore, similar functions may be obscured by lack of obvious sequence similarity. Thus looking beyond homology is crucial for furthering our understanding of RNA-based regulation.
Collapse
|
15
|
Hayer J, Wille M, Font A, González-Aravena M, Norder H, Malmberg M. Four novel picornaviruses detected in Magellanic Penguins (Spheniscus magellanicus) in Chile. Virology 2021; 560:116-123. [PMID: 34058706 DOI: 10.1016/j.virol.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Members of the Picornaviridae family comprise a significant burden on the poultry industry, causing diseases such as gastroenteritis and hepatitis. However, with the advent of metagenomics, a number of picornaviruses have now been revealed in apparently healthy wild birds. In this study, we identified four novel viruses belonging to the family Picornaviridae in healthy Magellanic penguins, a near threatened species. All samples were subsequently screened by RT-PCR for these new viruses, and approximately 20% of the penguins were infected with at least one of these viruses. The viruses were distantly related to members of the genera Hepatovirus, Tremovirus, Gruhelivirus and Crahelvirus. Further, they had more than 60% amino acid divergence from other picornaviruses, and therefore likely constitute novel genera. Our results demonstrate the vast undersampling of wild birds for viruses, and we expect the discovery of numerous avian viruses that are related to hepatoviruses and tremoviruses in the future.
Collapse
Affiliation(s)
- Juliette Hayer
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Michelle Wille
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia; Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Alejandro Font
- nstituto Antártico Chileno, Plaza Muñoz Gamero, 1055, Punta Arenas, Chile
| | | | - Helene Norder
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Microbiology, Gothenburg, Sweden
| | - Maja Malmberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
16
|
Liu F, Wang N, Huang Y, Wang Q, Shan H. Stem II-disrupting pseudoknot does not abolish ability of Senecavirus A IRES to initiate protein expression, but inhibits recovery of virus from cDNA clone. Vet Microbiol 2021; 255:109024. [PMID: 33713975 DOI: 10.1016/j.vetmic.2021.109024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Senecavirus A (SVA) is classified into the genus Senecavirus in the family Picornaviridae. Its genome is a positive-sense, single-stranded and nonsegmented RNA, approximately 7300 nucleotides in length. A picornaviral genome is essentially an mRNA, which, albeit unmodified with 5' cap structure, can still initiate protein expression by the internal ribosome entry site (IRES). The SVA genome contains a hepatitis C virus-like IRES, in which a pseudoknot structure plays an important role in initiating protein expression. In this study, we constructed a set of SVA (CH-LX-01-2016 strain) minigenomes with all combinations of point mutations in its pseudoknot stem II (PKS-II). The results showed that any combination of point mutations could not significantly interfere with the IRES to initiate protein expression. Further, we constructed a full-length SVA cDNA clone, in which the PKS-II-forming cDNA motif was subjected to site-directed mutagenesis for totally disrupting the PKS-II formation in IRES. Such a modified SVA cDNA clone was transfected into BSR-T7/5 cells, consequently demonstrating that the PKS-II-disrupting IRES interfered neither with protein expression nor with antigenome replication, whereas a competent SVA could not be rescued from the cDNA clone. It was speculated that the mutated motif possibly disrupted a packaging signal for virion assembly, therefore causing the failure of SVA rescue.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ning Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yilan Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
17
|
László Z, Pankovics P, Reuter G, Cságola A, Bálint Á, Albert M, Boros Á. Multiple Types of Novel Enteric Bopiviruses ( Picornaviridae) with the Possibility of Interspecies Transmission Identified from Cloven-Hoofed Domestic Livestock (Ovine, Caprine and Bovine) in Hungary. Viruses 2021; 13:v13010066. [PMID: 33418939 PMCID: PMC7825084 DOI: 10.3390/v13010066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/27/2023] Open
Abstract
Most picornaviruses of the family Picornaviridae are relatively well known, but there are certain “neglected” genera like Bopivirus, containing a single uncharacterised sequence (bopivirus A1, KM589358) with very limited background information. In this study, three novel picornaviruses provisionally called ovipi-, gopi- and bopivirus/Hun (MW298057-MW298059) from enteric samples of asymptomatic ovine, caprine and bovine respectively, were determined using RT-PCR and dye-terminator sequencing techniques. These monophyletic viruses share the same type II-like IRES, NPGP-type 2A, similar genome layout (4-3-4) and cre-localisations. Culture attempts of the study viruses, using six different cell lines, yielded no evidence of viral growth in vitro. Genomic and phylogenetic analyses show that bopivirus/Hun of bovine belongs to the species Bopivirus A, while the closely related ovine-origin ovipi- and caprine-origin gopivirus could belong to a novel species “Bopivirus B” in the genus Bopivirus. Epidemiological investigation of N = 269 faecal samples of livestock (ovine, caprine, bovine, swine and rabbit) from different farms in Hungary showed that bopiviruses were most prevalent among <12-month-old ovine, caprine and bovine, but undetectable in swine and rabbit. VP1 capsid-based phylogenetic analyses revealed the presence of multiple lineages/genotypes, including closely related ovine/caprine strains, suggesting the possibility of ovine–caprine interspecies transmission of certain bopiviruses.
Collapse
Affiliation(s)
- Zoltán László
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.)
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.)
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.)
| | - Attila Cságola
- Ceva Phylaxia Ltd., H-1107 Budapest, Hungary; (A.C.); (M.A.)
| | - Ádám Bálint
- Department of Virology, National Food Chain Safety Office Veterinary Diagnostic Directorate, H-1143 Budapest, Hungary;
| | - Mihály Albert
- Ceva Phylaxia Ltd., H-1107 Budapest, Hungary; (A.C.); (M.A.)
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.)
- Correspondence: ; Tel.: +36-72-536-251
| |
Collapse
|
18
|
Abaeva IS, Vicens Q, Bochler A, Soufari H, Simonetti A, Pestova TV, Hashem Y, Hellen CUT. The Halastavi árva Virus Intergenic Region IRES Promotes Translation by the Simplest Possible Initiation Mechanism. Cell Rep 2020; 33:108476. [PMID: 33296660 DOI: 10.1016/j.celrep.2020.108476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/05/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
Dicistrovirus intergenic region internal ribosomal entry sites (IGR IRESs) do not require initiator tRNA, an AUG codon, or initiation factors and jumpstart translation from the middle of the elongation cycle via formation of IRES/80S complexes resembling the pre-translocation state. eEF2 then translocates the [codon-anticodon]-mimicking pseudoknot I (PKI) from ribosomal A sites to P sites, bringing the first sense codon into the decoding center. Halastavi árva virus (HalV) contains an IGR that is related to previously described IGR IRESs but lacks domain 2, which enables these IRESs to bind to individual 40S ribosomal subunits. By using in vitro reconstitution and cryoelectron microscopy (cryo-EM), we now report that the HalV IGR IRES functions by the simplest initiation mechanism that involves binding to 80S ribosomes such that PKI is placed in the P site, so that the A site contains the first codon that is directly accessible for decoding without prior eEF2-mediated translocation of PKI.
Collapse
Affiliation(s)
- Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| | - Quentin Vicens
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 15 rue René Descartes, 67000 Strasbourg, France
| | - Anthony Bochler
- INSERM U1212 Acides Nucléiques: Régulations Naturelle et Artificielle, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France; Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 15 rue René Descartes, 67000 Strasbourg, France
| | - Heddy Soufari
- INSERM U1212 Acides Nucléiques: Régulations Naturelle et Artificielle, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Angelita Simonetti
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 15 rue René Descartes, 67000 Strasbourg, France
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA.
| | - Yaser Hashem
- INSERM U1212 Acides Nucléiques: Régulations Naturelle et Artificielle, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France.
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA.
| |
Collapse
|
19
|
Nobuta R, Machida K, Sato M, Hashimoto S, Toriumi Y, Nakajima S, Suto D, Imataka H, Inada T. eIF4G-driven translation initiation of downstream ORFs in mammalian cells. Nucleic Acids Res 2020; 48:10441-10455. [PMID: 32941651 PMCID: PMC7544200 DOI: 10.1093/nar/gkaa728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Comprehensive genome-wide analysis has revealed the presence of translational elements in the 3′ untranslated regions (UTRs) of human transcripts. However, the mechanisms by which translation is initiated in 3′ UTRs and the physiological function of their products remain unclear. This study showed that eIF4G drives the translation of various downstream open reading frames (dORFs) in 3′ UTRs. The 3′ UTR of GCH1, which encodes GTP cyclohydrolase 1, contains an internal ribosome entry site (IRES) that initiates the translation of dORFs. An in vitro reconstituted translation system showed that the IRES in the 3′ UTR of GCH1 required eIF4G and conventional translation initiation factors, except eIF4E, for AUG-initiated translation of dORFs. The 3′ UTR of GCH1-mediated translation was resistant to the mTOR inhibitor Torin 1, which inhibits cap-dependent initiation by increasing eIF4E-unbound eIF4G. eIF4G was also required for the activity of various elements, including polyU and poliovirus type 2, a short element thought to recruit ribosomes by base-pairing with 18S rRNA. These findings indicate that eIF4G mediates translation initiation of various ORFs in mammalian cells, suggesting that the 3′ UTRs of mRNAs may encode various products.
Collapse
Affiliation(s)
- Risa Nobuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kodai Machida
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
| | - Misaki Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Satoshi Hashimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yasuhito Toriumi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Shizuka Nakajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Daiki Suto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroaki Imataka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
20
|
Miller CM, Selvam S, Fuchs G. Fatal attraction: The roles of ribosomal proteins in the viral life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1613. [PMID: 32657002 DOI: 10.1002/wrna.1613] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Upon viral infection of a host cell, each virus starts a program to generate many progeny viruses. Although viruses interact with the host cell in numerous ways, one critical step in the virus life cycle is the expression of viral proteins, which are synthesized by the host ribosomes in conjunction with host translation factors. Here we review different mechanisms viruses have evolved to effectively seize host cell ribosomes, the roles of specific ribosomal proteins and their posttranslational modifications on viral RNA translation, or the cellular response to infection. We further highlight ribosomal proteins with extra-ribosomal function during viral infection and put the knowledge of ribosomal proteins during viral infection into the larger context of ribosome-related diseases, known as ribosomopathies. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation.
Collapse
Affiliation(s)
- Clare M Miller
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Sangeetha Selvam
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Gabriele Fuchs
- Department of Biological Sciences, University at Albany, Albany, New York, USA.,The RNA Institute, University at Albany, Albany, New York, USA
| |
Collapse
|
21
|
Arhab Y, Bulakhov AG, Pestova TV, Hellen CU. Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer. Viruses 2020; 12:E612. [PMID: 32512856 PMCID: PMC7354566 DOI: 10.3390/v12060612] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Members of Picornaviridae and of the Hepacivirus, Pegivirus and Pestivirus genera of Flaviviridae all contain an internal ribosomal entry site (IRES) in the 5'-untranslated region (5'UTR) of their genomes. Each class of IRES has a conserved structure and promotes 5'-end-independent initiation of translation by a different mechanism. Picornavirus 5'UTRs, including the IRES, evolve independently of other parts of the genome and can move between genomes, most commonly by intratypic recombination. We review accumulating evidence that IRESs are genetic entities that can also move between members of different genera and even between families. Type IV IRESs, first identified in the Hepacivirus genus, have subsequently been identified in over 25 genera of Picornaviridae, juxtaposed against diverse coding sequences. In several genera, members have either type IV IRES or an IRES of type I, II or III. Similarly, in the genus Pegivirus, members contain either a type IV IRES or an unrelated type; both classes of IRES also occur in members of the genus Hepacivirus. IRESs utilize different mechanisms, have different factor requirements and contain determinants of viral growth, pathogenesis and cell type specificity. Their dissemination between viruses by horizontal gene transfer has unexpectedly emerged as an important facet of viral evolution.
Collapse
Affiliation(s)
| | | | | | - Christopher U.T. Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (Y.A.); (A.G.B.); (T.V.P.)
| |
Collapse
|
22
|
Abstract
Viruses must co-opt the cellular translation machinery to produce progeny virions. Eukaryotic viruses have evolved a variety of ways to manipulate the cellular translation apparatus, in many cases using elegant RNA-centred strategies. Viral RNAs can alter or control every phase of protein synthesis and have diverse targets, mechanisms and structures. In addition, as cells attempt to limit infection by downregulating translation, some of these viral RNAs enable the virus to overcome this response or even take advantage of it to promote viral translation over cellular translation. In this Review, we present important examples of viral RNA-based strategies to exploit the cellular translation machinery. We describe what is understood of the structures and mechanisms of diverse viral RNA elements that alter or regulate translation, the advantages that are conferred to the virus and some of the major unknowns that provide motivation for further exploration. Eukaryotic viruses have evolved a variety of ways to manipulate the cellular translation apparatus. In this Review, Jaafar and Kieft present important examples of viral RNA-based strategies to exploit the cellular translation machinery.
Collapse
Affiliation(s)
- Zane A Jaafar
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA. .,RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, CO, USA.
| |
Collapse
|
23
|
Lattimer J, Stewart H, Locker N, Tuplin A, Stonehouse NJ, Harris M. Structure-function analysis of the equine hepacivirus 5' untranslated region highlights the conservation of translational mechanisms across the hepaciviruses. J Gen Virol 2019; 100:1501-1514. [PMID: 31490115 PMCID: PMC7615701 DOI: 10.1099/jgv.0.001316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Equine hepacivirus (EHcV) (now also classified as hepacivirus A) is the closest genetic relative to hepatitis C virus (HCV) and is proposed to have diverged from HCV within the last 1000 years. The 5' untranslated regions (UTRs) of both HCV and EHcV exhibit internal ribosome entry site (IRES) activity, allowing cap-independent translational initiation, yet only the HCV 5'UTR has been systematically analysed. Here, we report a detailed structural and functional analysis of the EHcV 5'UTR. The secondary structure was determined using selective 2' hydroxyl acylation analysed by primer extension (SHAPE), revealing four stem-loops, termed SLI, SLIA, SLII and SLIII, by analogy to HCV. This guided a mutational analysis of the EHcV 5'UTR, allowing us to investigate the roles of the stem-loops in IRES function. This approach revealed that SLI was not required for EHcV IRES-mediated translation. Conversely, SLIII was essential, specifically SLIIIb, SLIIId and a GGG motif that is conserved across the Hepaciviridae. Further SHAPE analysis provided evidence that this GGG motif mediated interaction with the 40S ribosomal subunit, whilst a CUU sequence in the apical loop of SLIIIb mediated an interaction with eIF3. In addition, we showed that a microRNA122 target sequence located between SLIA and SLII mediated an enhancement of translation in the context of a subgenomic replicon. Taken together, these results highlight the conservation of hepaciviral translation mechanisms, despite divergent primary sequences.
Collapse
Affiliation(s)
- Joseph Lattimer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Hazel Stewart
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, UK
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicola J. Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
24
|
Johnson AG, Petrov AN, Fuchs G, Majzoub K, Grosely R, Choi J, Puglisi JD. Fluorescently-tagged human eIF3 for single-molecule spectroscopy. Nucleic Acids Res 2019; 46:e8. [PMID: 29136179 PMCID: PMC5778468 DOI: 10.1093/nar/gkx1050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023] Open
Abstract
Human translation initiation relies on the combined activities of numerous ribosome-associated eukaryotic initiation factors (eIFs). The largest factor, eIF3, is an ∼800 kDa multiprotein complex that orchestrates a network of interactions with the small 40S ribosomal subunit, other eIFs, and mRNA, while participating in nearly every step of initiation. How these interactions take place during the time course of translation initiation remains unclear. Here, we describe a method for the expression and affinity purification of a fluorescently-tagged eIF3 from human cells. The tagged eIF3 dodecamer is structurally intact, functions in cell-based assays, and interacts with the HCV IRES mRNA and the 40S-IRES complex in vitro. By tracking the binding of single eIF3 molecules to the HCV IRES RNA with a zero-mode waveguides-based instrument, we show that eIF3 samples both wild-type IRES and an IRES that lacks the eIF3-binding region, and that the high-affinity eIF3-IRES interaction is largely determined by slow dissociation kinetics. The application of single-molecule methods to more complex systems involving eIF3 may unveil dynamics underlying mRNA selection and ribosome loading during human translation initiation.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexey N Petrov
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Gabriele Fuchs
- The RNA Institute, Department of Biological Sciences, University of Albany, Albany, NY 12222, USA
| | - Karim Majzoub
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Junhong Choi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
25
|
A novel picornavirus in feces of a rainbow lorikeet (Trichoglossus moluccanus) shows a close relationship to members of the genus Avihepatovirus. Arch Virol 2019; 164:1911-1914. [PMID: 30982088 DOI: 10.1007/s00705-019-04246-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
A novel picornavirus, named "lorikeet picornavirus 1" (LoPV-1), was detected in a fecal sample from rainbow lorikeets using viral metagenomic analysis, and its complete genome sequence was determined and analyzed. The genome of LoPV-1 is 7862 nt long, including a 617-nt 5' UTR, a type IV IRES 5'UTR with an '8-like' motif, a 7032-nt polyprotein ORF, and a 213-nt 3' UTR. Phylogenetic analysis and pairwise asequence comparisons based on the amino acid sequences of P1, P2, and P3 indicated that LoPV-1 showed the closest relationship to two picornaviruses that were isolated recently from red-crowned cranes and clustered together with members of the genus Avihepatovirus.
Collapse
|
26
|
Altan E, Kubiski SV, Boros Á, Reuter G, Sadeghi M, Deng X, Creighton EK, Crim MJ, Delwart E. A Highly Divergent Picornavirus Infecting the Gut Epithelia of Zebrafish ( Danio rerio) in Research Institutions Worldwide. Zebrafish 2019; 16:291-299. [PMID: 30939077 DOI: 10.1089/zeb.2018.1710] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Zebrafish have been extensively used as a model system for research in vertebrate development and pathogen-host interactions. We describe the complete genome of a novel picornavirus identified during a viral metagenomics analysis of zebrafish gut tissue. The closest relatives of this virus showed identity of <20% in their P1 capsids and <36% in their RdRp qualifying zebrafish picornavirus-1 (ZfPV-1) as member of a novel genus with a proposed name of Cyprivirus. Reverse transcription (RT)-PCR testing of zebrafish from North America, Europe, and Asia showed ZfPV-1 to be globally distributed, being detected in 23 of 41 (56%) institutions tested. In situ hybridization of whole zebrafish showed viral RNA was restricted to a subset of enterocytes and cells in the subjacent lamina propria of the intestine and the intestinal mucosa. This naturally occurring and apparently asymptomatic infection (in wild-type zebrafish lineage AB) provides a natural infection system to study picornavirus-host interactions in an advanced vertebrate model organism. Whether ZfPV-1 infection affects any immunological, developmental, or other biological processes in wild-type or mutant zebrafish lineages remains to be determined.
Collapse
Affiliation(s)
- Eda Altan
- 1 Vitalant Research Institute, San Francisco, California.,2 Department of Laboratory Medicine, University of California, San Francisco, California
| | - Steven V Kubiski
- 3 Institute for Conservation Research, San Diego Zoo Global, San Diego, California
| | - Ákos Boros
- 4 Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,5 Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Reuter
- 5 Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Mohammadreza Sadeghi
- 1 Vitalant Research Institute, San Francisco, California.,6 Department of Virology, University of Helsinki, Helsinki, Finland
| | - Xutao Deng
- 1 Vitalant Research Institute, San Francisco, California.,2 Department of Laboratory Medicine, University of California, San Francisco, California
| | | | | | - Eric Delwart
- 1 Vitalant Research Institute, San Francisco, California.,2 Department of Laboratory Medicine, University of California, San Francisco, California
| |
Collapse
|
27
|
|
28
|
Wang H, Zhang W, Yang S, Kong N, Yu H, Zheng H, Gao F, Tong W, Li L, Wang X, Deng X, Delwart E, Shan T. Asian black bear (Ursus thibetanus) picornavirus related to seal aquamavirus A. Arch Virol 2018; 164:653-656. [PMID: 30569277 DOI: 10.1007/s00705-018-4101-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/24/2018] [Indexed: 11/25/2022]
Abstract
The complete genome of a bear picornavirus 1 (BePV-1) in the viscera of an Asian black bear (Ursus thibetanus) from China was characterized using viral metagenomics and RT-PCR/Sanger sequencing. The genome of BePV1 is 6703 nt long, contains a type-IV IRES 5'UTR with the '8-like' motif, encodes a 2053-aa-long polyprotein showing a 3-4-4 organization pattern and two 2A genes. BePV-1 showed the highest overall genome nucleotide sequence identity of 71.7% to a picornavirus genome from an Arctic ringed seal (Phoca hispida) from Canada, classified as a member of the species Aquamavirus A, currently the only one in the genus Aquamavirus. Phylogenetic and genetic distance analyses of P1 and 3D indicated that Asian bear picornavirus (aquamavirus B) represents the second sequenced member of the genus Aquamavirus.
Collapse
Affiliation(s)
- Haoning Wang
- College of Wildlife Resource, Northeast Forestry University, Harbin, Heilongjiang, China
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Shixiing Yang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ning Kong
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hai Yu
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Zheng
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fei Gao
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Liwei Li
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiaolong Wang
- College of Wildlife Resource, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, USA
| | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
29
|
Lozano G, Francisco-Velilla R, Martinez-Salas E. Deconstructing internal ribosome entry site elements: an update of structural motifs and functional divergences. Open Biol 2018; 8:rsob.180155. [PMID: 30487301 PMCID: PMC6282068 DOI: 10.1098/rsob.180155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
Beyond the general cap-dependent translation initiation, eukaryotic organisms use alternative mechanisms to initiate protein synthesis. Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of translation using a cap-independent mechanism. However, their lack of primary sequence and secondary RNA structure conservation, as well as the diversity of host factor requirement to recruit the ribosomal subunits, suggest distinct types of IRES elements. In spite of this heterogeneity, conserved motifs preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES-driven translation. This conservation brings the question of whether IRES elements could consist of basic building blocks, which upon evolutionary selection result in functional elements with different properties. Although RNA-binding proteins (RBPs) perform a crucial role in the assembly of ribonucleoprotein complexes, the versatility and plasticity of RNA molecules, together with their high flexibility and dynamism, determines formation of macromolecular complexes in response to different signals. These properties rely on the presence of short RNA motifs, which operate as modular entities, and suggest that decomposition of IRES elements in short modules could help to understand the different mechanisms driven by these regulatory elements. Here we will review evidence suggesting that model IRES elements consist of the combination of short modules, providing sites of interaction for ribosome subunits, eIFs and RBPs, with implications for definition of criteria to identify novel IRES-like elements genome wide.
Collapse
Affiliation(s)
- Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
30
|
Chen JH, Zhang RH, Lin SL, Li PF, Lan JJ, Song SS, Gao JM, Wang Y, Xie ZJ, Li FC, Jiang SJ. The Functional Role of the 3' Untranslated Region and Poly(A) Tail of Duck Hepatitis A Virus Type 1 in Viral Replication and Regulation of IRES-Mediated Translation. Front Microbiol 2018; 9:2250. [PMID: 30319572 PMCID: PMC6167517 DOI: 10.3389/fmicb.2018.02250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 09/04/2018] [Indexed: 01/04/2023] Open
Abstract
The duck hepatitis A virus type 1 (DHAV-1) is a member of Picornaviridae family, the genome of the virus contains a 5′ untranslated region (5′ UTR), a large open reading frame that encodes a polyprotein precursor and a 3′ UTR followed by a poly(A) tail. The translation initiation of virus proteins depends on the internal ribosome-entry site (IRES) element within the 5′ UTR. So far, little information is known about the role of the 3′ UTR and poly(A) tail during the virus proliferation. In this study, the function of the 3′ UTR and poly(A) tail of DHAV-1 in viral replication and IRES-mediated translation was investigated. The results showed that both 3′ UTR and poly(A) tail are important for maintaining viral genome RNA stability and viral genome replication. During DHAV-1 proliferation, at least 20 adenines were required for the optimal genome replication and the virus replication could be severely impaired when the poly (A) tail was curtailed to 10 adenines. In addition to facilitating viral genome replication, the presence of 3′ UTR and poly(A) tail significantly enhance IRES-mediated translation efficiency. Furthermore, 3′ UTR or poly(A) tail could function as an individual element to enhance the DHAV-1 IRES-mediated translation, during which process, the 3′ UTR exerts a greater initiation efficiency than the poly(A)25 tail.
Collapse
Affiliation(s)
- Jun-Hao Chen
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Rui-Hua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Shao-Li Lin
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Peng-Fei Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Jing-Jing Lan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Sha-Sha Song
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Ji-Ming Gao
- Department of Basic Medical Sciences, Taishan Medical College, Tai'an, China
| | - Yu Wang
- Department of Basic Medical Sciences, Taishan Medical College, Tai'an, China
| | - Zhi-Jing Xie
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Fu-Chang Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Shi-Jin Jiang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| |
Collapse
|
31
|
Shatsky IN, Terenin IM, Smirnova VV, Andreev DE. Cap-Independent Translation: What's in a Name? Trends Biochem Sci 2018; 43:882-895. [PMID: 29789219 DOI: 10.1016/j.tibs.2018.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 02/05/2023]
Abstract
Eukaryotic translation initiation relies on the m7G cap present at the 5' end of all mRNAs. Some viral mRNAs employ alternative mechanisms of initiation based on internal ribosome entry. The 'IRES ideology' was adopted by researchers to explain the differential translation of cellular mRNAs when the cap recognition is suppressed. However, some cellular IRESs have already been challenged and others are awaiting their validation. As an alternative cap-independent mechanism, we propose adopting the concept of cap-independent translation enhancers (CITEs) for mammalian mRNAs. Unlike IRESs, CITEs can be located both within 5' and 3' UTRs and bind mRNA-recruiting translational components. The respective 5' UTRs are then inspected by the scanning machinery essentially in the same way as under cap-dependent translation.
Collapse
Affiliation(s)
- Ivan N Shatsky
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia.
| | - Ilya M Terenin
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Str. 8-2, 119991, Moscow, Russia
| | - Victoria V Smirnova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia
| | - Dmitri E Andreev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia
| |
Collapse
|
32
|
Battling for Ribosomes: Translational Control at the Forefront of the Antiviral Response. J Mol Biol 2018; 430:1965-1992. [PMID: 29746850 DOI: 10.1016/j.jmb.2018.04.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/05/2023]
Abstract
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus-host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.
Collapse
|
33
|
Mailliot J, Martin F. Viral internal ribosomal entry sites: four classes for one goal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9. [PMID: 29193740 DOI: 10.1002/wrna.1458] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
To ensure efficient propagation, viruses need to rapidly produce viral proteins after cell entrance. Since viral genomes do not encode any components of the protein biosynthesis machinery, viral proteins must be produced by the host cell. To hi-jack the host cellular translation, viruses use a great variety of distinct strategies. Many single-stranded positive-sensed RNA viruses contain so-called internal ribosome entry sites (IRESs). IRESs are structural RNA motifs that have evolved to specific folds that recruit the host ribosomes on the viral coding sequences in order to synthesize viral proteins. In host canonical translation, recruitment of the translation machinery components is essentially guided by the 5' cap (m7 G) of mRNA. In contrast, IRESs are able to promote efficient ribosome assembly internally and in cap-independent manner. IRESs have been categorized into four classes, based on their length, nucleotide sequence, secondary and tertiary structures, as well as their mode of action. Classes I and II require the assistance of cellular auxiliary factors, the eukaryotic intiation factors (eIF), for efficient ribosome assembly. Class III IRESs require only a subset of eIFs whereas Class IV, which are the more compact, can promote translation without any eIFs. Extensive functional and structural investigations of IRESs over the past decades have allowed a better understanding of their mode of action for viral translation. Because viral translation has a pivotal role in the infectious program, IRESs are therefore attractive targets for therapeutic purposes. WIREs RNA 2018, 9:e1458. doi: 10.1002/wrna.1458 This article is categorized under: Translation > Ribosome Structure/Function Translation > Translation Mechanisms RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Justine Mailliot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Illkirch-Graffenstaden, France
| | - Franck Martin
- Institut de Biologie Moléculaire et Cellulaire, "Architecture et Réactivité de l'ARN" CNRS UPR9002, Université De Strasbourg, Strasbourg, France
| |
Collapse
|
34
|
Willcocks MM, Zaini S, Chamond N, Ulryck N, Allouche D, Rajagopalan N, Davids NA, Fahnøe U, Hadsbjerg J, Rasmussen TB, Roberts LO, Sargueil B, Belsham GJ, Locker N. Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites. Nucleic Acids Res 2018; 45:13016-13028. [PMID: 29069411 PMCID: PMC5727462 DOI: 10.1093/nar/gkx991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/12/2017] [Indexed: 01/23/2023] Open
Abstract
Viral internal ribosomes entry site (IRES) elements coordinate the recruitment of the host translation machinery to direct the initiation of viral protein synthesis. Within hepatitis C virus (HCV)-like IRES elements, the sub-domain IIId(1) is crucial for recruiting the 40S ribosomal subunit. However, some HCV-like IRES elements possess an additional sub-domain, termed IIId2, whose function remains unclear. Herein, we show that IIId2 sub-domains from divergent viruses have different functions. The IIId2 sub-domain present in Seneca valley virus (SVV), a picornavirus, is dispensable for IRES activity, while the IIId2 sub-domains of two pestiviruses, classical swine fever virus (CSFV) and border disease virus (BDV), are required for 80S ribosomes assembly and IRES activity. Unlike in SVV, the deletion of IIId2 from the CSFV and BDV IRES elements impairs initiation of translation by inhibiting the assembly of 80S ribosomes. Consequently, this negatively affects the replication of CSFV and BDV. Finally, we show that the SVV IIId2 sub-domain is required for efficient viral RNA synthesis and growth of SVV, but not for IRES function. This study sheds light on the molecular evolution of viruses by clearly demonstrating that conserved RNA structures, within distantly related RNA viruses, have acquired different roles in the virus life cycles.
Collapse
Affiliation(s)
- Margaret M Willcocks
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Salmah Zaini
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Nathalie Chamond
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Nathalie Ulryck
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Delphine Allouche
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Noemie Rajagopalan
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Nana A Davids
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Ulrik Fahnøe
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Johanne Hadsbjerg
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Thomas Bruun Rasmussen
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Lisa O Roberts
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Bruno Sargueil
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Graham J Belsham
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
35
|
Pankovics P, Boros Á, Phan TG, Delwart E, Reuter G. A novel passerivirus (family Picornaviridae) in an outbreak of enteritis with high mortality in estrildid finches (Uraeginthus sp.). Arch Virol 2018; 163:1063-1071. [PMID: 29322272 DOI: 10.1007/s00705-017-3699-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/17/2017] [Indexed: 11/30/2022]
Abstract
An enteric outbreak with high mortality (34/52, 65.4%) was recorded in 2014 in home-reared estrildid finches (Estrildidae) in Hungary. A novel passerivirus was identified in a diseased violet-eared waxbill using viral metagenomics and confirmed by RT-(q)PCR. The complete genome of finch picornavirus strain waxbill/DB01/HUN/2014 (MF977321) showed the highest amino acid sequence identity of 38.9%, 61.6%, 69.6% in P1cap, 2Chel and 3CproDpol, respectively, to passerivirus A1 (GU182406). A high viral load (6.58 × 1010 genomic copies/ml) was measured in a cloacal specimen and in the tissues (spinal cord, lung, and the intestines) of two additional affected finches. In addition to intestinal symptoms (diarrhoea), the presence of extra-intestinal virus suggests a generalized infection in this fatal disease, for which the passerivirus might be a causative agent.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA.,University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary. .,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.
| |
Collapse
|
36
|
Martinez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Embarek AM. Insights into Structural and Mechanistic Features of Viral IRES Elements. Front Microbiol 2018; 8:2629. [PMID: 29354113 PMCID: PMC5759354 DOI: 10.3389/fmicb.2017.02629] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 01/19/2023] Open
Abstract
Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of protein synthesis using cap-independent mechanisms. However, distinct types of IRES elements present in the genome of various RNA viruses perform the same function despite lacking conservation of sequence and secondary RNA structure. Likewise, IRES elements differ in host factor requirement to recruit the ribosomal subunits. In spite of this diversity, evolutionarily conserved motifs in each family of RNA viruses preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES activity. Indeed, IRES elements adopting remarkable different structural organizations contain RNA structural motifs that play an essential role in recruiting ribosomes, initiation factors and/or RNA-binding proteins using different mechanisms. Therefore, given that a universal IRES motif remains elusive, it is critical to understand how diverse structural motifs deliver functions relevant for IRES activity. This will be useful for understanding the molecular mechanisms beyond cap-independent translation, as well as the evolutionary history of these regulatory elements. Moreover, it could improve the accuracy to predict IRES-like motifs hidden in genome sequences. This review summarizes recent advances on the diversity and biological relevance of RNA structural motifs for viral IRES elements.
Collapse
Affiliation(s)
- Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Fernandez-Chamorro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Azman M Embarek
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
37
|
Lim CS, Brown CM. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs. Front Microbiol 2018; 8:2582. [PMID: 29354101 PMCID: PMC5758548 DOI: 10.3389/fmicb.2017.02582] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
38
|
Boros Á, Pankovics P, Simmonds P, Kiss T, Phan TG, Delwart E, Reuter G. Genomic analysis of a novel picornavirus from a migratory waterfowl, greater white-fronted goose (Anser albifrons). Arch Virol 2017; 163:1087-1090. [PMID: 29288473 DOI: 10.1007/s00705-017-3696-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/12/2017] [Indexed: 11/24/2022]
Abstract
The complete genome of goose picornavirus 1 (GPV-1) strain goose/NLSZK2/HUN/2013 (MF358731) was determined by RT-PCR and next-generation sequencing from a cloacal sample of a migratory waterfowl, greater white-fronted goose (Anser albifrons) in Hungary. The genome of GPV-1 shows an L-3-3-4 organization pattern with a 5'-terminal origin of replication (ORI) region, a type-IV IRES, and an Hbox/NC-type 2A protein. This virus showed the highest overall sequence identity to the members of the genus Kobuvirus, although the phylogenetic position of GPV-1 is different in the analyzed P1, 2C and 3CD phylogenetic trees, which further increases the diversity of known avian picornaviruses.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., H-7624, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., H-7624, Pécs, Hungary
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
| | - Tamás Kiss
- Hungarian Ornithological and Nature Conservation Society, Budapest, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA.,University of California, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA.,University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary. .,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., H-7624, Pécs, Hungary.
| |
Collapse
|
39
|
Johnson AG, Grosely R, Petrov AN, Puglisi JD. Dynamics of IRES-mediated translation. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0177. [PMID: 28138065 DOI: 10.1098/rstb.2016.0177] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
Viral internal ribosome entry sites (IRESs) are unique RNA elements, which use stable and dynamic RNA structures to recruit ribosomes and drive protein synthesis. IRESs overcome the high complexity of the canonical eukaryotic translation initiation pathway, often functioning with a limited set of eukaryotic initiation factors. The simplest types of IRESs are typified by the cricket paralysis virus intergenic region (CrPV IGR) and hepatitis C virus (HCV) IRESs, both of which independently form high-affinity complexes with the small (40S) ribosomal subunit and bypass the molecular processes of cap-binding and scanning. Owing to their simplicity and ribosomal affinity, the CrPV and HCV IRES have been important models for structural and functional studies of the eukaryotic ribosome during initiation, serving as excellent targets for recent technological breakthroughs in cryogenic electron microscopy (cryo-EM) and single-molecule analysis. High-resolution structural models of ribosome : IRES complexes, coupled with dynamics studies, have clarified decades of biochemical research and provided an outline of the conformational and compositional trajectory of the ribosome during initiation. Here we review recent progress in the study of HCV- and CrPV-type IRESs, highlighting important structural and dynamics insights and the synergy between cryo-EM and single-molecule studies.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexey N Petrov
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Sun D, Wang M, Wen X, Cheng A, Jia R, Sun K, Yang Q, Wu Y, Zhu D, Chen S, Liu M, Zhao X, Chen X. Cleavage of poly(A)-binding protein by duck hepatitis A virus 3C protease. Sci Rep 2017; 7:16261. [PMID: 29176600 PMCID: PMC5701138 DOI: 10.1038/s41598-017-16484-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/14/2017] [Indexed: 01/13/2023] Open
Abstract
During viral infections, some viruses subvert the host proteins to promote the translation or RNA replication with their protease-mediated cleavage. Poly (A)-binding protein (PABP) is a target for several RNA viruses; however, the impact of duck hepatitis A virus (DHAV) on PABP remains unknown. In this study, we demonstrated for the first time that DHAV infection stimulates a decrease in endogenous PABP and generates two cleavage fragments. On the basis of in vitro cleavage assays, an accumulation of PABP cleavage fragments was detected in duck embryo fibroblast (DEF) cell extracts incubated with functional DHAV 3C protease. In addition, DHAV 3C protease was sufficient for the cleavage of recombinant PABP without the assistance of other eukaryotic cellular cofactors. Furthermore, using site-directed mutagenesis, our data demonstrated a 3C protease cleavage site located between Q367 and G368 in duck PABP. Moreover, the knockdown of PABP inhibited the production of viral RNA, and the C-terminal domain of PABP caused a reduction in viral replication compared to the N-terminal domain. Taken together, these findings suggested that DHAV 3C protease mediates the cleavage of PABP, which may be a strategy to manipulate viral replication.
Collapse
Affiliation(s)
- Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| |
Collapse
|
41
|
Diaz-Toledano R, Lozano G, Martinez-Salas E. In-cell SHAPE uncovers dynamic interactions between the untranslated regions of the foot-and-mouth disease virus RNA. Nucleic Acids Res 2017; 45:1416-1432. [PMID: 28180318 PMCID: PMC5388415 DOI: 10.1093/nar/gkw795] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
Abstract
The genome of RNA viruses folds into 3D structures that include long-range RNA–RNA interactions relevant to control critical steps of the viral cycle. In particular, initiation of translation driven by the IRES element of foot-and-mouth disease virus is stimulated by the 3΄UTR. Here we sought to investigate the RNA local flexibility of the IRES element and the 3΄UTR in living cells. The SHAPE reactivity observed in vivo showed statistically significant differences compared to the free RNA, revealing protected or exposed positions within the IRES and the 3΄UTR. Importantly, the IRES local flexibility was modified in the presence of the 3΄UTR, showing significant protections at residues upstream from the functional start codon. Conversely, presence of the IRES element in cis altered the 3΄UTR local flexibility leading to an overall enhanced reactivity. Unlike the reactivity changes observed in the IRES element, the SHAPE differences of the 3΄UTR were large but not statistically significant, suggesting multiple dynamic RNA interactions. These results were supported by covariation analysis, which predicted IRES-3΄UTR conserved helices in agreement with the protections observed by SHAPE probing. Mutational analysis suggested that disruption of one of these interactions could be compensated by alternative base pairings, providing direct evidences for dynamic long-range interactions between these distant elements of the viral genome.
Collapse
Affiliation(s)
- Rosa Diaz-Toledano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, Madrid, Spain
| | - Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, Madrid, Spain
| |
Collapse
|
42
|
Yamamoto H, Unbehaun A, Spahn CMT. Ribosomal Chamber Music: Toward an Understanding of IRES Mechanisms. Trends Biochem Sci 2017; 42:655-668. [PMID: 28684008 DOI: 10.1016/j.tibs.2017.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022]
Abstract
Internal initiation is a 5'-end-independent mode of translation initiation engaged by many virus- and putatively some cell-encoded templates. Internal initiation is facilitated by specific RNA tertiary folds, called internal ribosomal entry sites (IRESs), in the 5' untranslated region (UTR) of the respective transcripts. In this review we discuss recent structural insight into how established IRESs first capture and then manipulate the eukaryotic translation machinery through non-canonical interactions and by guiding the intrinsic conformational flexibility of the eukaryotic ribosome. Because IRESs operate with reduced complexity and constitute minimal systems of initiation, comparison with canonical initiation may allow common mechanistic principles of the ribosome to be delineated.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany
| | - Anett Unbehaun
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian M T Spahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
43
|
Pankovics P, Boros Á, Tóth Z, Phan TG, Delwart E, Reuter G. Genetic characterization of a second novel picornavirus from an amphibian host, smooth newt (Lissotriton vulgaris). Arch Virol 2016; 162:1043-1050. [PMID: 28005212 DOI: 10.1007/s00705-016-3198-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022]
Abstract
In this study, a novel picornavirus was identified in faecal samples from smooth newts (Lissotriton vulgaris). The complete genome of picornavirus strain newt/II-5-Pilis/2014/HUN (KX463670) is 7755 nt long with type-IV IRES and has 39.6% aa sequence identity in the protein P1 to the corresponding protein of bat picornavirus (KJ641686, unassigned) and 42.7% and 53.5% aa sequence identity in the 2C and 3CD protein, respectively, to oscivirus (GU182410, genus Oscivirus). Interestingly, the L-protein of newt/II-5-Pilis/2014/HUN has conserved aa motifs that are similar to those found in phosphatase-1 catalytic (PP1C) subunit binding region (pfam10488) proteins. This second amphibian-origin picornavirus could represent a novel species and could be a founding member of a potential novel picornavirus genus.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pecs, Hungary
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pecs, Hungary
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary
| | - Zoltán Tóth
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pecs, Hungary.
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary.
| |
Collapse
|
44
|
Asnani M, Pestova TV, Hellen CUT. PCBP2 enables the cadicivirus IRES to exploit the function of a conserved GRNA tetraloop to enhance ribosomal initiation complex formation. Nucleic Acids Res 2016; 44:9902-9917. [PMID: 27387282 PMCID: PMC5175331 DOI: 10.1093/nar/gkw609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022] Open
Abstract
The cadicivirus IRES diverges structurally from canonical Type 1 IRESs (e.g. poliovirus) but nevertheless also contains an essential GNRA tetraloop in a subdomain (d10c) that is homologous to poliovirus dIVc. In addition to canonical initiation factors, the canonical Type 1 and divergent cadicivirus IRESs require the same IRES trans-acting factor, poly(C)-binding protein 2 (PCBP2). PCBP2 has three KH domains and binds poliovirus IRES domain dIV in the vicinity of the tetraloop. How PCBP2 binds the cadicivirus IRES, and the roles of PCBP2 and the tetraloop in Type 1 IRES function are unknown. Here, directed hydroxyl radical probing showed that KH1 also binds near the cadicivirus tetraloop. KH2 and KH3 bind adjacently to an IRES subdomain (d10b) that is unrelated to dIV, with KH3 in an inverted orientation. KH3 is critical for PCBP2's binding to this IRES whereas KH1 is essential for PCBP2's function in promoting initiation. PCBP2 enforced the wild-type structure of d10c when it contained minor destabilizing substitutions, exposing the tetraloop. Strikingly, PCBP2 enhanced initiation on mutant IRESs that retained consensus GNRA tetraloops, whereas mutants with divergent sequences did not respond to PCBP2. These studies show that PCBP2 enables the IRES to exploit the GNRA tetraloop to enhance initiation.
Collapse
Affiliation(s)
- Mukta Asnani
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| |
Collapse
|
45
|
Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements. Sci Rep 2016; 6:24243. [PMID: 27053355 PMCID: PMC4823658 DOI: 10.1038/srep24243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/23/2016] [Indexed: 12/22/2022] Open
Abstract
The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both in vitro and in vivo systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function.
Collapse
|
46
|
Asnani M, Pestova TV, Hellen CUT. Initiation on the divergent Type I cadicivirus IRES: factor requirements and interactions with the translation apparatus. Nucleic Acids Res 2016; 44:3390-407. [PMID: 26873921 PMCID: PMC4838371 DOI: 10.1093/nar/gkw074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/29/2016] [Indexed: 01/03/2023] Open
Abstract
Cadicivirus (CDV) is unique amongst picornaviruses in having a dicistronic genome with internal ribosomal entry sites (IRESs) preceding both open reading frames. Here, we investigated initiation on the 5'-terminal IRES. We report that the 982-nt long 5'UTR comprises 12 domains (d1-d12), five of which (d8-d12, nts 341-950) constitute a divergent Type I IRES. It comprises central elements (the apex of d10, d11 and the following polypyrimidine tract) that are homologous to corresponding elements in canonical Type 1 IRESs, and non-canonical flanking domains (d8, d9 and d12). In vitro reconstitution revealed that as with canonical Type I IRESs, 48S complex formation requires eukaryotic initiation factors (eIFs) 1, 1A, 2, 3, 4A, 4B and 4G, and the poly(C) binding protein 2 (PCBP2), and starts with specific binding of eIF4G/eIF4A to d11. However, in contrast to canonical Type I IRESs, subsequent recruitment of 43S ribosomal complexes does not require direct interaction of their eIF3 constituent with the IRES-bound eIF4G. On the other hand, the CDV IRES forms a 40S/eIF3/IRES ternary complex, with multiple points of contact. These additional interactions with translational components could potentially stimulate recruitment of the 43S complex and alleviate the necessity for direct eIF4G/eIF3 interaction.
Collapse
Affiliation(s)
- Mukta Asnani
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC44, Brooklyn, NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC44, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC44, Brooklyn, NY 11203, USA
| |
Collapse
|
47
|
Abaeva IS, Pestova TV, Hellen CUT. Attachment of ribosomal complexes and retrograde scanning during initiation on the Halastavi árva virus IRES. Nucleic Acids Res 2016; 44:2362-77. [PMID: 26783202 PMCID: PMC4797288 DOI: 10.1093/nar/gkw016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/07/2016] [Indexed: 01/02/2023] Open
Abstract
Halastavi árva virus (HalV) has a positive-sense RNA genome, with an 827 nt-long 5' UTR and an intergenic region separating two open reading frames. Whereas the encoded proteins are most homologous to Dicistrovirus polyproteins, its 5' UTR is distinct. Here, we report that the HalV 5' UTR comprises small stem-loop domains separated by long single-stranded areas and a large A-rich unstructured region surrounding the initiation codon AUG828, and possesses cross-kingdom internal ribosome entry site (IRES) activity. In contrast to most viral IRESs, it does not depend on structural integrity and specific interaction of a structured element with a translational component, and is instead determined by the unstructured region flanking AUG828. eIF2, eIF3, eIF1 and eIF1A promote efficient 48S initiation complex formation at AUG828, which is reduced ∼5-fold on omission of eIF1 and eIF1A. Initiation involves direct attachment of 43S preinitiation complexes within a short window at or immediately downstream of AUG828. 40S and eIF3 are sufficient for initial binding. After attachment, 43S complexes undergo retrograde scanning, strongly dependent on eIF1 and eIF1A. eIF4A/eIF4G stimulated initiation only at low temperatures or on mutants, in which areas surrounding AUG828 had been replaced by heterologous sequences. However, they strongly promoted initiation at AUG872, yielding a proline-rich oligopeptide.
Collapse
Affiliation(s)
- Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, 11203, NY, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, 11203, NY, USA
| | | |
Collapse
|
48
|
Yamamoto H, Collier M, Loerke J, Ismer J, Schmidt A, Hilal T, Sprink T, Yamamoto K, Mielke T, Bürger J, Shaikh TR, Dabrowski M, Hildebrand PW, Scheerer P, Spahn CMT. Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA. EMBO J 2015; 34:3042-58. [PMID: 26604301 DOI: 10.15252/embj.201592469] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022] Open
Abstract
Internal ribosomal entry sites (IRESs) are structured cis-acting RNAs that drive an alternative, cap-independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES transacting factors. Here we present cryo-EM reconstructions of the ribosome 80S- and 40S-bound Hepatitis C Virus (HCV) IRES. The presence of four subpopulations for the 80S•HCV IRES complex reveals dynamic conformational modes of the complex. At a global resolution of 3.9 Å for the most stable complex, a derived atomic model reveals a complex fold of the IRES RNA and molecular details of its interaction with the ribosome. The comparison of obtained structures explains how a modular architecture facilitates mRNA loading and tRNA binding to the P-site. This information provides the structural foundation for understanding the mechanism of HCV IRES RNA-driven translation initiation.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Marianne Collier
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Jochen Ismer
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Andrea Schmidt
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Tarek Hilal
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Thiemo Sprink
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Kaori Yamamoto
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Thorsten Mielke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jörg Bürger
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Tanvir R Shaikh
- Structural Biology Programme, CEITEC, Masaryk University, Brno, Czech Republic
| | - Marylena Dabrowski
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Peter W Hildebrand
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
49
|
Mauro VP, Matsuda D. Translation regulation by ribosomes: Increased complexity and expanded scope. RNA Biol 2015; 13:748-55. [PMID: 26513496 DOI: 10.1080/15476286.2015.1107701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The primary function of ribosomes is to decode mRNAs into polypeptide chains; however, this description is overly simplistic. Accumulating evidence shows that ribosomes themselves can affect the relative efficiency with which various mRNAs are translated and indicates that these effects can be modulated by ribosome heterogeneity. The notion that ribosomes have regulatory capabilities was elaborated more than a decade ago in the ribosome filter hypothesis. Various lines of evidence support this idea and have shown that the translation of some mRNAs is affected by discrete binding interactions with rRNA or ribosomal proteins. Recent work from our laboratory has demonstrated that base-pairing of the Hepatitis C Virus (HCV) internal ribosome entry site (IRES) to 18S rRNA is required for IRES function, but only in the context of more complex ribosomal interactions. The HCV IRES provides an example of the ribosome filter that involves multiple binding interactions between mRNAs and ribosomal subunits.
Collapse
Affiliation(s)
- Vincent P Mauro
- a Promosome, LLC , San Diego , CA , USA.,b The Scripps Research Institute , La Jolla , CA , USA
| | - Daiki Matsuda
- b The Scripps Research Institute , La Jolla , CA , USA
| |
Collapse
|
50
|
Virome Analysis of Transfusion Recipients Reveals a Novel Human Virus That Shares Genomic Features with Hepaciviruses and Pegiviruses. mBio 2015; 6:e01466-15. [PMID: 26396247 PMCID: PMC4600124 DOI: 10.1128/mbio.01466-15] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To investigate the transmission of novel infectious agents by blood transfusion, we studied changes in the virome composition of blood transfusion recipients pre- and posttransfusion. Using this approach, we detected and genetically characterized a novel human virus, human hepegivirus 1 (HHpgV-1), that shares features with hepatitis C virus (HCV) and human pegivirus (HPgV; formerly called GB virus C or hepatitis G virus). HCV and HPgV belong to the genera Hepacivirus and Pegivirus of the family Flaviviridae. HHpgV-1 was found in serum samples from two blood transfusion recipients and two hemophilia patients who had received plasma-derived clotting factor concentrates. In the former, the virus was detected only in the posttransfusion samples, indicating blood-borne transmission. Both hemophiliacs were persistently viremic over periods of at least 201 and 1,981 days. The 5′ untranslated region (UTR) of HHpgV-1 contained a type IV internal ribosome entry site (IRES), structurally similar to although highly divergent in sequence from that of HCV and other hepaciviruses. However, phylogenetic analysis of nonstructural genes (NS3 and NS5B) showed that HHpgV-1 forms a branch within the pegivirus clade distinct from HPgV and homologs infecting other mammalian species. In common with some pegivirus variants infecting rodents and bats, the HHpgV-1 genome encodes a short, highly basic protein upstream of E1, potentially possessing a core-like function in packaging RNA during assembly. Identification of this new human virus, HHpgV-1, expands our knowledge of the range of genome configurations of these viruses and may lead to a reevaluation of the original criteria by which the genera Hepacivirus and Pegivirus are defined. More than 30 million blood components are transfused annually in the United States alone. Surveillance for infectious agents in the blood supply is key to ensuring the safety of this critical resource for medicine and public health. Here, we report the identification of a new and highly diverse HCV/GB virus (GBV)-like virus from human serum samples. This new virus, human hepegivirus 1 (HHpgV-1), was found in serum samples from blood transfusion recipients, indicating its potential for transmission via transfusion products. We also found persistent long-term HHpgV-1 viremia in two hemophilia patients. HHpgV-1 is unique because it shares genetic similarity with both highly pathogenic HCV and the apparently nonpathogenic HPgV (GBV-C). Our results add to the list of human viruses and provide data to develop reagents to study virus transmission and disease association and for interrupting virus transmission and new human infections.
Collapse
|