1
|
Cochin M, Driouich JS, Moureau G, Piorkowski G, de Lamballerie X, Nougairède A. In vivo rescue of arboviruses directly from subgenomic DNA fragments. Emerg Microbes Infect 2024; 13:2356140. [PMID: 38742328 PMCID: PMC11133884 DOI: 10.1080/22221751.2024.2356140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Reverse genetic systems are mainly used to rescue recombinant viral strains in cell culture. These tools have also been used to generate, by inoculating infectious clones, viral strains directly in living animals. We previously developed the "Infectious Subgenomic Amplicons" (ISA) method, which enables the rescue of single-stranded positive sense RNA viruses in vitro by transfecting overlapping subgenomic DNA fragments. Here, we provide proof-of-concept for direct in vivo generation of infectious particles following the inoculation of subgenomic amplicons. First, we rescued a strain of tick-borne encephalitis virus in mice to transpose the ISA method in vivo. Subgenomic DNA fragments were amplified using a 3-fragment reverse genetics system and inoculated intramuscularly. Almost all animals were infected when quantities of DNA inoculated were at least 20 µg. We then optimized our procedure in order to increase the animal infection rate. This was achieved by adding an electroporation step and/or using a simplified 2- fragment reverse genetics system. Under optimal conditions, a large majority of animals were infected with doses of 20 ng of DNA. Finally, we demonstrated the versatility of this method by applying it to Japanese encephalitis and Chikungunya viruses. This method provides an efficient strategy for in vivo rescue of arboviruses. Furthermore, in the context of the development of DNA-launched live attenuated vaccines, this new approach may facilitate the generation of attenuated strains in vivo. It also enables to deliver a substance free of any vector DNA, which seems to be an important criterion for the development of human vaccines.
Collapse
Affiliation(s)
- Maxime Cochin
- Unité des Virus Émergents, UVE: Aix Marseille Université, Marseille, France
| | | | - Grégory Moureau
- Unité des Virus Émergents, UVE: Aix Marseille Université, Marseille, France
| | | | | | - Antoine Nougairède
- Unité des Virus Émergents, UVE: Aix Marseille Université, Marseille, France
| |
Collapse
|
2
|
Fan YC, Chen JM, Chen YY, Ke YD, Chang GJJ, Chiou SS. Epitope(s) involving amino acids of the fusion loop of Japanese encephalitis virus envelope protein is(are) important to elicit protective immunity. J Virol 2024; 98:e0177323. [PMID: 38530012 PMCID: PMC11019926 DOI: 10.1128/jvi.01773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Dengue vaccine candidates have been shown to improve vaccine safety and efficacy by altering the residues or accessibility of the fusion loop on the virus envelope protein domain II (DIIFL) in an ex vivo animal study. The current study aimed to comprehensively investigate the impact of DIIFL mutations on the antigenicity, immunogenicity, and protective efficacy of Japanese encephalitis virus (JEV) virus-like particles (VLPs) in mice. We found the DIIFL G106K/L107D (KD) and W101G/G106K/L107D (GKD) mutations altered the binding activity of JEV VLP to cross-reactive monoclonal antibodies but had no effect on their ability to elicit total IgG antibodies in mice. However, JEV VLPs with KD or GKD mutations induced significantly less neutralizing antibodies against JEV. Only 46% and 31% of the KD and GKD VLPs-immunized mice survived compared to 100% of the wild-type (WT) VLP-immunized mice after a lethal JEV challenge. In passive protection experiments, naïve mice that received sera from WT VLP-immunized mice exhibited a significantly higher survival rate of 46.7% compared to those receiving sera from KD VLP- and GKD VLP-immunized mice (6.7% and 0%, respectively). This study demonstrated that JEV DIIFL is crucial for eliciting potently neutralizing antibodies and protective immunity against JEV. IMPORTANCE Introduction of mutations into the fusion loop is one potential strategy for generating safe dengue and Zika vaccines by reducing the risk of severe dengue following subsequent infections, and for constructing live-attenuated vaccine candidates against newly emerging Japanese encephalitis virus (JEV) or Japanese encephalitis (JE) serocomplex virus. The monoclonal antibody studies indicated the fusion loop of JE serocomplex viruses primarily comprised non-neutralizing epitopes. However, the present study demonstrates that the JEV fusion loop plays a critical role in eliciting protective immunity in mice. Modifications to the fusion loop of JE serocomplex viruses might negatively affect vaccine efficacy compared to dengue and zika serocomplex viruses. Further studies are required to assess the impact of mutant fusion loop encoded by commonly used JEV vaccine strains on vaccine efficacy or safety after subsequent dengue virus infection.
Collapse
Affiliation(s)
- Yi-Chin Fan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Master of Public Health Degree Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jo-Mei Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yuan-Dun Ke
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Gwong-Jen J. Chang
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort, Fort Collins, Colorado, USA
| | - Shyan-Song Chiou
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Pushko P, Lukashevich IS, Johnson DM, Tretyakova I. Single-Dose Immunogenic DNA Vaccines Coding for Live-Attenuated Alpha- and Flaviviruses. Viruses 2024; 16:428. [PMID: 38543793 PMCID: PMC10974764 DOI: 10.3390/v16030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Single-dose, immunogenic DNA (iDNA) vaccines coding for whole live-attenuated viruses are reviewed. This platform, sometimes called immunization DNA, has been used for vaccine development for flavi- and alphaviruses. An iDNA vaccine uses plasmid DNA to launch live-attenuated virus vaccines in vitro or in vivo. When iDNA is injected into mammalian cells in vitro or in vivo, the RNA genome of an attenuated virus is transcribed, which starts replication of a defined, live-attenuated vaccine virus in cell culture or the cells of a vaccine recipient. In the latter case, an immune response to the live virus vaccine is elicited, which protects against the pathogenic virus. Unlike other nucleic acid vaccines, such as mRNA and standard DNA vaccines, iDNA vaccines elicit protection with a single dose, thus providing major improvement to epidemic preparedness. Still, iDNA vaccines retain the advantages of other nucleic acid vaccines. In summary, the iDNA platform combines the advantages of reverse genetics and DNA immunization with the high immunogenicity of live-attenuated vaccines, resulting in enhanced safety and immunogenicity. This vaccine platform has expanded the field of genetic DNA and RNA vaccines with a novel type of immunogenic DNA vaccines that encode entire live-attenuated viruses.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc., 8420 Gas House Pike Suite S, Frederick, MD 21701, USA;
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, 505 S Hancock St., Louisville, KY 40202, USA;
| | - Dylan M. Johnson
- Department of Biotechnology & Bioengineering, Sandia National Laboratories, Livermore, CA 945501, USA;
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike Suite S, Frederick, MD 21701, USA;
| |
Collapse
|
4
|
Tajima S, Taniguchi S, Nakayama E, Maeki T, Inagaki T, Saijo M, Lim CK. Immunogenicity and Protective Ability of Genotype I-Based Recombinant Japanese Encephalitis Virus (JEV) with Attenuation Mutations in E Protein against Genotype V JEV. Vaccines (Basel) 2021; 9:vaccines9101077. [PMID: 34696184 PMCID: PMC8538582 DOI: 10.3390/vaccines9101077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Genotype V (GV) Japanese encephalitis virus (JEV) has emerged in Korea and China since 2009. Recent findings suggest that current Japanese encephalitis (JE) vaccines may reduce the ability to induce neutralizing antibodies against GV JEV compared to other genotypes. This study sought to produce a novel live attenuated JE vaccine with a high efficacy against GV JEV. Genotype I (GI)-GV intertypic recombinant strain rJEV-EXZ0934-M41 (EXZ0934), in which the E region of the GI Mie/41/2002 strain was replaced with that of GV strain XZ0934, was introduced with the same 10 attenuation substitutions in the E region found in the live attenuated JE vaccine strain SA 14-14-2 to produce a novel mutant virus rJEV-EXZ/SA14142m-M41 (EXZ/SA14142m). In addition, another mutant rJEV-EM41/SA14142m-M41 (EM41/SA14142m), which has the same substitutions in the Mie/41/2002, was also produced. The neuroinvasiveness and neurovirulence of the two mutant viruses were significantly reduced in mice. The mutant viruses induced neutralizing antibodies against GV JEV in mice. The growth of EXZ/SA14142m was lower than that of EM41/SA14142m. In mouse challenge tests, a single inoculation with a high dose of the mutants blocked lethal GV JEV infections; however, the protective efficacy of EXZ/SA14142m was weaker than that of EM41/SA14142m in low-dose inoculations. The lower protection potency of EXZ/SA14142m may be ascribed to the reduced growth ability caused by the attenuation mutations.
Collapse
|
5
|
Szurgot I, Ljungberg K, Kümmerer BM, Liljeström P. Infectious RNA vaccine protects mice against chikungunya virus infection. Sci Rep 2020; 10:21076. [PMID: 33273501 PMCID: PMC7712826 DOI: 10.1038/s41598-020-78009-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
We describe a novel vaccine platform that can generate protective immunity to chikungunya virus (CHIKV) in C57BL/6J mice after a single immunization by employing an infectious RNA (iRNA), which upon introduction into a host cell launches an infectious attenuated virus. We and others have previously reported that an engineered deletion of 183 nucleotides in the nsP3 gene attenuates chikungunya virus (CHIKV) and reduces in vivo viral replication and viremia after challenge in mice, macaques and man. Here, we demonstrated that in vitro transfection of iRNA carrying the nsP3 deletion generated infectious viruses, and after intramuscular injection, the iRNA induced robust antibody responses in mice. The iRNA was superior at eliciting binding and neutralizing antibody responses as compared to a DNA vaccine encoding the same RNA (iDNA) or a non-propagating RNA replicon (RREP) lacking the capsid encoding gene. Subsequent challenge with a high dose of CHIKV demonstrated that the antibody responses induced by this vaccine candidate protected animals from viremia. The iRNA approach constitutes a novel vaccine platform with the potential to impact the spread of CHIKV. Moreover, we believe that this approach is likely applicable also to other positive-strand viruses.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Chikungunya Fever/immunology
- Chikungunya Fever/prevention & control
- Chikungunya Fever/virology
- Chikungunya virus/genetics
- Chikungunya virus/immunology
- Chikungunya virus/pathogenicity
- Female
- Immunogenicity, Vaccine
- Injections, Intramuscular
- Mice
- Mice, Inbred C57BL
- Mutation
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/immunology
- mRNA Vaccines
Collapse
Affiliation(s)
- Inga Szurgot
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
- Eurocine Vaccines AB, Karolinska Institutet Science Park, 171 65, Solna, Sweden
| | - Beate M Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
6
|
West Nile Virus: An Update on Pathobiology, Epidemiology, Diagnostics, Control and "One Health" Implications. Pathogens 2020; 9:pathogens9070589. [PMID: 32707644 PMCID: PMC7400489 DOI: 10.3390/pathogens9070589] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is an important zoonotic flavivirus responsible for mild fever to severe, lethal neuroinvasive disease in humans, horses, birds, and other wildlife species. Since its discovery, WNV has caused multiple human and animal disease outbreaks in all continents, except Antarctica. Infections are associated with economic losses, mainly due to the cost of treatment of infected patients, control programmes, and loss of animals and animal products. The pathogenesis of WNV has been extensively investigated in natural hosts as well as in several animal models, including rodents, lagomorphs, birds, and reptiles. However, most of the proposed pathogenesis hypotheses remain contentious, and much remains to be elucidated. At the same time, the unavailability of specific antiviral treatment or effective and safe vaccines contribute to the perpetuation of the disease and regular occurrence of outbreaks in both endemic and non-endemic areas. Moreover, globalisation and climate change are also important drivers of the emergence and re-emergence of the virus and disease. Here, we give an update of the pathobiology, epidemiology, diagnostics, control, and “One Health” implications of WNV infection and disease.
Collapse
|
7
|
Japanese encephalitis vaccine-specific envelope protein E138K mutation does not attenuate virulence of West Nile virus. NPJ Vaccines 2019; 4:50. [PMID: 31839996 PMCID: PMC6895119 DOI: 10.1038/s41541-019-0146-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022] Open
Abstract
West Nile (WNV) and Japanese encephalitis viruses (JEV) are closely related, mosquito-borne neurotropic flaviviruses. Although there are no licensed human vaccines for WNV, JEV has multiple human vaccines, including the live, attenuated vaccine SA14-14-2. Investigations into determinants of attenuation of JE SA14-14-2 demonstrated that envelope (E) protein mutation E138K was crucial to the attenuation of mouse virulence. As WNV is closely related to JEV, we investigated whether or not the E-E138K mutation would be beneficial to be included in a candidate live attenuated WNV vaccine. Rather than conferring a mouse attenuated phenotype, the WNV E-E138K mutant reverted and retained a wild-type mouse virulence phenotype. Next-generation sequencing analysis demonstrated that, although the consensus sequence of the mutant had the E-E138K mutation, there was increased variation in the E protein, including a single-nucleotide variant (SNV) revertant to the wild-type glutamic acid residue. Modeling of the E protein and analysis of SNVs showed that reversion was likely due to the inability of critical E-protein residues to be compatible electrostatically. Therefore, this mutation may not be reliable for inclusion in candidate live attenuated vaccines in related flaviviruses, such as WNV, and care must be taken in translation of attenuating mutations from one virus to another virus, even if they are closely related. Japanese encephalitis virus (JEV) and West Nile virus (WNV) are closely related neurotropic viruses—a live attenuated vaccine exists for JEV but not for WNV. A team led by Alan D.T. Barrett at the University of Texas investigated whether a key E-protein mutation (E138K) in the live attenuated JEV vaccine can also attenuate a candidate live WNV vaccine. The mutant WNV vaccine shows essentially identical behavior to the virulent parental strain in vitro but unexpectedly also has unimpaired lethality and neurotropism when mice are challenged intraperitoneally. Sequencing of the mutant WNV vaccine demonstrated increased frequencies of single-nucleotide variants clustered around residue 138—including reversion to the parental strain glutamic acid. E138K mutation is therefore unlikely to be a reliable means to attenuate candidate WNV vaccines.
Collapse
|
8
|
Replication-Defective West Nile Virus with NS1 Deletion as a New Vaccine Platform for Flavivirus. J Virol 2019; 93:JVI.00720-19. [PMID: 31189715 DOI: 10.1128/jvi.00720-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/10/2019] [Indexed: 02/03/2023] Open
Abstract
We previously produced a replication-defective West Nile virus (WNV) lacking NS1 (WNV-ΔNS1) that could propagate at low levels (105 infectious units [IU]/ml) in a 293T cell line expressing wild-type (WT) NS1. This finding indicates the potential of developing WNV-ΔNS1 as a noninfectious vaccine. To explore this idea, we developed an NS1-expressing Vero cell line (VeroNS1) that significantly improved the yield of WNV-ΔNS1 (108 IU/ml). We evaluated the safety and efficacy of WNV-ΔNS1 in mice. WNV-ΔNS1 appeared to be safe, as no replicative virus was found in naive Vero cells after continuous culturing of WNV-ΔNS1 in VeroNS1 cells for 15 rounds. WNV-ΔNS1 was noninfectious in mice, even when IFNAR-/- mice were administered a high dose of WNV-ΔNS1. Vaccination with a single dose of WNV-ΔNS1 protected mice from a highly lethal challenge with WT WNV. The antibody response against WNV correlated well with the protection of vaccinated mice. Our study demonstrates the potential of the NS1 trans complementation system as a new platform for flavivirus vaccine development.IMPORTANCE Many flaviviruses are significant human pathogens that frequently cause outbreaks and epidemics around the world. Development of novel vaccine platforms against these pathogens is a public health priority. Using WNV as a model, we developed a new vaccine platform for flaviviruses. WNV containing a NS1 deletion (WNV-ΔNS1) could be efficiently trans complemented in Vero cells that constitutively expressed WT NS1 protein. A single-dose immunization with WNV-ΔNS1 elicited robust immune responses in mice. The immunized animals were fully protected against pathogenic WNV infection. No adverse effects related to the WNV-ΔNS1 vaccination were observed. The results have demonstrated the potential of the NS1 complementation system as an alternative platform for flavivirus vaccine development, especially for highly pathogenic flaviviruses.
Collapse
|
9
|
Nickols B, Tretyakova I, Tibbens A, Klyushnenkova E, Pushko P. Plasmid DNA launches live-attenuated Japanese encephalitis virus and elicits virus-neutralizing antibodies in BALB/c mice. Virology 2017; 512:66-73. [PMID: 28938099 DOI: 10.1016/j.virol.2017.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 01/27/2023]
Abstract
We describe novel plasmid DNA that encodes the full-length Japanese encephalitis virus (JEV) genomic cDNA and launches live-attenuated JEV vaccine in vitro and in vivo. The synthetic cDNA based on the sequence of JEV SA14-14-2 live-attenuated virus was placed under transcriptional control of the cytomegalovirus major immediate-early promoter. The stability and yields of the plasmid in E. coli were optimized by inserting three synthetic introns that disrupted JEV cDNA in the structural and nonstructural genes. Transfection of Vero cells with the resulting plasmid resulted in the replication of JEV vaccine virus with intron sequences removed from viral RNA. Furthermore, a single-dose vaccination of BALB/c mice with 0.5 - 5μg of plasmid resulted in successful seroconversion and elicitation of JEV virus-neutralizing serum antibodies. The results demonstrate the possibility of using DNA vaccination to launch live-attenuated JEV vaccine and support further development of DNA-launched live-attenuated vaccine for prevention of JEV infections.
Collapse
Affiliation(s)
- Brian Nickols
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Alexander Tibbens
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | | | - Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA.
| |
Collapse
|
10
|
Yamshchikov V, Manuvakhova M, Rodriguez E, Hébert C. Development of a human live attenuated West Nile infectious DNA vaccine: Identification of a minimal mutation set conferring the attenuation level acceptable for a human vaccine. Virology 2016; 500:122-129. [PMID: 27816638 DOI: 10.1016/j.virol.2016.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
Abstract
For the development of a human West Nile (WN) infectious DNA (iDNA) vaccine, we created highly attenuated chimeric virus W1806 with the serological identity of highly virulent WN-NY99. Earlier, we attempted to utilize mutations found in the E protein of the SA14-14-2 vaccine to bring safety of W1806 to the level acceptable for human use (Yamshchikov et al., 2016). Here, we analyzed effects of the SA14-14-2 changes on growth properties and neurovirulence of W1806. A set including the E138K, K279M, K439R and G447D changes was identified as the perspective subset for satisfying the target safety profile without compromising immunogenicity of the vaccine candidate. The genetic stability of the attenuated phenotype was found to be unsatisfactory being dependent on a subset of attenuating changes incorporated in W1806. Elucidation of underlying mechanisms influencing selection of pathways for restoration of the envelope protein functionality will facilitate resolution of the emerged genetic stability issue.
Collapse
Affiliation(s)
| | | | - Efrain Rodriguez
- 2000 9th Avenue South, Southern Research, Birmingham, AL 35205, USA
| | - Charles Hébert
- 2000 9th Avenue South, Southern Research, Birmingham, AL 35205, USA
| |
Collapse
|
11
|
Pushko P, Lukashevich IS, Weaver SC, Tretyakova I. DNA-launched live-attenuated vaccines for biodefense applications. Expert Rev Vaccines 2016; 15:1223-34. [PMID: 27055100 PMCID: PMC5033646 DOI: 10.1080/14760584.2016.1175943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel vaccine platform uses DNA immunization to launch live-attenuated virus vaccines in vivo. This technology has been applied for vaccine development against positive-strand RNA viruses with global public health impact including alphaviruses and flaviviruses. The DNA-launched vaccine represents the recombinant plasmid that encodes the full-length genomic RNA of live-attenuated virus downstream from a eukaryotic promoter. When administered in vivo, the genomic RNA of live-attenuated virus is transcribed. The RNA initiates limited replication of a genetically defined, live-attenuated vaccine virus in the tissues of the vaccine recipient, thereby inducing a protective immune response. This platform combines the strengths of reverse genetics, DNA immunization and the advantages of live-attenuated vaccines, resulting in a reduced chance of genetic reversions, increased safety, and improved immunization. With this vaccine technology, the field of DNA vaccines is expanded from those that express subunit antigens to include a novel type of DNA vaccines that launch live-attenuated viruses.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc. 8420 Gas House Pike Suite S, Frederick, MD 21701, USA
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, 505 S Hancock St., Louisville, KY 40202, USA
| | - Scott C. Weaver
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Microbiology and Immunology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555, USA
| | - Irina Tretyakova
- Medigen, Inc. 8420 Gas House Pike Suite S, Frederick, MD 21701, USA
| |
Collapse
|