1
|
Zhang X, Chen Y, Liu M, Long X, Guo C. Intervention strategies targeting virus and host factors against porcine reproductive and respiratory syndrome virus: A systematic review. Int J Biol Macromol 2024; 279:135403. [PMID: 39245101 DOI: 10.1016/j.ijbiomac.2024.135403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by porcine reproductive and respiratory syndrome virus (PRRSV) causes considerable economic losses to the global swine industry every year and seriously hinders the healthy development of this industry. Although tremendous efforts have been made over the past 30 years toward the development of prevention and control strategies against PRRSV infection, to date, treatments with proven efficacy have yet to be available due to our incomplete understanding of the molecular basis and complexity of the infection machinery. This review systematically discusses recent advances in the research and development of anti-PRRSV therapies targeting different stages of the viral life cycle. Furthermore, this review puts forward novel intervention targets and research approaches based on our in-depth exploration of virus-host interactions and the latest biological technologies, which have the potential to complement or transform current anti-PRRSV strategies and become breakthrough points for the control of PRRS in the future.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Yongjie Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Min Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Xiaoqin Long
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
2
|
Su CM, Kim J, Tang J, Hung YF, Zuckermann FA, Husmann R, Roady P, Kim J, Lee YM, Yoo D. A clinically attenuated double-mutant of porcine reproductive and respiratory syndrome virus-2 that does not prompt overexpression of proinflammatory cytokines during co-infection with a secondary pathogen. PLoS Pathog 2024; 20:e1012128. [PMID: 38547254 PMCID: PMC11003694 DOI: 10.1371/journal.ppat.1012128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/09/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is known to suppress the type I interferon (IFNs-α/β) response during infection. PRRSV also activates the NF-κB signaling pathway, leading to the production of proinflammatory cytokines during infection. In swine farms, co-infections of PRRSV and other secondary bacterial pathogens are common and exacerbate the production of proinflammatory cytokines, contributing to the porcine respiratory disease complex (PRDC) which is clinically a severe disease. Previous studies identified the non-structural protein 1β (nsp1β) of PRRSV-2 as an IFN antagonist and the nucleocapsid (N) protein as the NF-κB activator. Further studies showed the leucine at position 126 (L126) of nsp1β as the essential residue for IFN suppression and the region spanning the nuclear localization signal (NLS) of N as the NF-κB activation domain. In the present study, we generated a double-mutant PRRSV-2 that contained the L126A mutation in the nsp1β gene and the NLS mutation (ΔNLS) in the N gene using reverse genetics. The immunological phenotype of this mutant PRRSV-2 was examined in porcine alveolar macrophages (PAMs) in vitro and in young pigs in vivo. In PAMs, the double-mutant virus did not suppress IFN-β expression but decreased the NF-κB-dependent inflammatory cytokine productions compared to those for wild-type PRRSV-2. Co-infection of PAMs with the mutant PRRSV-2 and Streptococcus suis (S. suis) also reduced the production of NF-κB-directed inflammatory cytokines. To further examine the cytokine profiles and the disease severity by the mutant virus in natural host animals, 6 groups of pigs, 7 animals per group, were used for co-infection with the mutant PRRSV-2 and S. suis. The double-mutant PRRSV-2 was clinically attenuated, and the expressions of proinflammatory cytokines and chemokines were significantly reduced in pigs after bacterial co-infection. Compared to the wild-type PRRSV-2 and S. suis co-infection control, pigs coinfected with the double-mutant PRRSV-2 exhibited milder clinical signs, lower titers and shorter duration of viremia, and lower expression of proinflammatory cytokines. In conclusion, our study demonstrates that genetic modification of the type I IFN suppression and NF-κB activation functions of PRRSV-2 may allow us to design a novel vaccine candidate to alleviate the clinical severity of PRRS-2 and PRDC during bacterial co-infection.
Collapse
Affiliation(s)
- Chia-Ming Su
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jineui Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yu Fan Hung
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Federico A. Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Robert Husmann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Patrick Roady
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jiyoun Kim
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
3
|
Su CM, Hung YF, Tang J, Han M, Everett R, Yoo D. Suppression of TRIM19 by arterivirus nonstructural protein 1 promotes viral replication. Virus Res 2024; 340:199302. [PMID: 38104946 PMCID: PMC10776440 DOI: 10.1016/j.virusres.2023.199302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Tripartite motif (TRIM)-containing proteins are a family of regulatory proteins that can participate in the induction of antiviral cytokines and antagonize viral replication. Promyelocytic leukemia (PML) protein is known as TRIM19 and is a major scaffold protein organizing the PML nuclear bodies (NBs). PML NBs are membrane-less organelles in the nucleus and play a diverse role in maintaining cellular homeostasis including antiviral response. Porcine reproductive and respiratory syndrome virus (PRRSV), a member virus of the family Arteriviridae, inhibits type I interferon (IFN) response during infection, and nonstructural protein 1 (nsp1) of the virus has been identified as a potent IFN antagonist. We report that the numbers of PML NBs per nucleus were significantly downregulated during infection of PRRSV. The overexpression of all six isoforms of PML suppressed the PRRSV replication, and conversely, the silencing of PML gene expression enhanced the PRRSV replication. The suppression of PML NBs by the nsp1 protein was common in other member viruses of the family, represented by equine arteritis virus, lactate dehydrogenase elevating virus of mice, and simian hemorrhagic fever virus. Our study unveils a conserved viral strategy in arteriviruses for innate immune evasion.
Collapse
Affiliation(s)
- Chia-Ming Su
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802, United States
| | - Yu Fan Hung
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802, United States
| | - Junyu Tang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802, United States
| | - Mingyuan Han
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802, United States
| | - Roger Everett
- MRC-University of Glasgow Center for Virus Research, Glasgow, Scotland, United Kingdom
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802, United States.
| |
Collapse
|
4
|
Riccio S, Childs K, Jackson B, Graham SP, Seago J. The Identification of Host Proteins That Interact with Non-Structural Proteins-1α and -1β of Porcine Reproductive and Respiratory Syndrome Virus-1. Viruses 2023; 15:2445. [PMID: 38140685 PMCID: PMC10747794 DOI: 10.3390/v15122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome viruses (PRRSV-1 and -2) are the causative agents of one of the most important infectious diseases affecting the global pig industry. Previous studies, largely focused on PRRSV-2, have shown that non-structural protein-1α (NSP1α) and NSP1β modulate host cell responses; however, the underlying molecular mechanisms remain to be fully elucidated. Therefore, we aimed to identify novel PRRSV-1 NSP1-host protein interactions to improve our knowledge of NSP1-mediated immunomodulation. NSP1α and NSP1β from a representative western European PRRSV-1 subtype 1 field strain (215-06) were used to screen a cDNA library generated from porcine alveolar macrophages (PAMs), the primary target cell of PRRSV, using the yeast-2-hybrid system. This identified 60 putative binding partners for NSP1α and 115 putative binding partners for NSP1β. Of those taken forward for further investigation, 3 interactions with NSP1α and 27 with NSP1β were confirmed. These proteins are involved in the immune response, ubiquitination, nuclear transport, or protein expression. Increasing the stringency of the system revealed NSP1α interacts more strongly with PIAS1 than PIAS2, whereas NSP1β interacts more weakly with TAB3 and CPSF4. Our study has increased our knowledge of the PRRSV-1 NSP1α and NSP1β interactomes, further investigation of which could provide detailed insight into PRRSV immunomodulation and aid vaccine development.
Collapse
Affiliation(s)
- Sofia Riccio
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK
| | - Kay Childs
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| | - Ben Jackson
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| | - Simon P. Graham
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| | - Julian Seago
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| |
Collapse
|
5
|
Ozhelvaci F, Steczkiewicz K. Identification and Classification of Papain-like Cysteine Proteinases. J Biol Chem 2023:104801. [PMID: 37164157 DOI: 10.1016/j.jbc.2023.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain-like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function, and provide structural chacterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein (DRIP1) as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Chen XX, Qiao S, Li R, Wang J, Li X, Zhang G. Evasion strategies of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1140449. [PMID: 37007469 PMCID: PMC10063791 DOI: 10.3389/fmicb.2023.1140449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
During the co-evolution of viruses and their hosts, viruses have developed various strategies for overcoming host immunological defenses so that they can proliferate efficiently. Porcine reproductive and respiratory syndrome virus (PRRSV), a significant virus to the swine industry across the world, typically establishes prolonged infection via diverse and complicated mechanisms, which is one of the biggest obstacles for controlling the associated disease, porcine reproductive and respiratory syndrome (PRRS). In this review, we summarize the latest research on how PRRSV circumvents host antiviral responses from both the innate and adaptive immune systems and how this virus utilizes other evasion mechanisms, such as the manipulation of host apoptosis and microRNA. A thorough understanding of the exact mechanisms of PRRSV immune evasion will help with the development of novel antiviral strategies against PRRSV.
Collapse
Affiliation(s)
- Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jing Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Abstract
Protein kinase R (PKR) is a critical host restriction factor against invading viral pathogens. However, this molecule is inactivated in the cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), an economically devastating pathogen to the world swine industry. Here, we report that this event is to suppress cellular inflammation and is mediated by the viral replicase protein nsp1β. We show that nsp1β is a stress-responsive protein, enters virus-induced stress granules (SGs) during infection, and repurposes SGs into a proviral platform, where it co-opts the SG core component G3BP1 to interact with PKR in a regulated manner. RNA interference silencing of G3BP1 or mutation of specific nsp1β residues (VS19GG) can abolish the antagonization of PKR activation. The viral mutant carrying the corresponding mutations induces elevated level of PKR phosphorylation and pronounced production of inflammatory cytokines (e.g., tumor necrosis factor-α, interleukin [IL]-6, and IL-8), whereas small-interfering RNA knockdown of PKR or treatment with C16, a PKR inhibitor, blocks this effect. Thus, PRRSV has evolved a unique strategy to evade PKR restriction to suppress host inflammatory responses.
Collapse
|
8
|
Cook GM, Brown K, Shang P, Li Y, Soday L, Dinan AM, Tumescheit C, Mockett APA, Fang Y, Firth AE, Brierley I. Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. eLife 2022; 11:e75668. [PMID: 35226596 PMCID: PMC9000960 DOI: 10.7554/elife.75668] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
The arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Here we apply ribosome profiling (RiboSeq) and parallel RNA sequencing (RNASeq) to characterise the transcriptome and translatome of both species of PRRSV and to analyse the host response to infection. We calculated programmed ribosomal frameshift (PRF) efficiency at both sites on the viral genome. This revealed the nsp2 PRF site as the second known example where temporally regulated frameshifting occurs, with increasing -2 PRF efficiency likely facilitated by accumulation of the PRF-stimulatory viral protein, nsp1β. Surprisingly, we find that PRF efficiency at the canonical ORF1ab frameshift site also increases over time, in contradiction of the common assumption that RNA structure-directed frameshift sites operate at a fixed efficiency. This has potential implications for the numerous other viruses with canonical PRF sites. Furthermore, we discovered several highly translated additional viral ORFs, the translation of which may be facilitated by multiple novel viral transcripts. For example, we found a highly expressed 125-codon ORF overlapping nsp12, which is likely translated from novel subgenomic RNA transcripts that overlap the 3' end of ORF1b. Similar transcripts were discovered for both PRRSV-1 and PRRSV-2, suggesting a potential conserved mechanism for temporally regulating expression of the 3'-proximal region of ORF1b. We also identified a highly translated, short upstream ORF in the 5' UTR, the presence of which is highly conserved amongst PRRSV-2 isolates. These findings reveal hidden complexity in the gene expression programmes of these important nidoviruses.
Collapse
Affiliation(s)
- Georgia M Cook
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Katherine Brown
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Pengcheng Shang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Lior Soday
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Adam M Dinan
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | | | | | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Andrew E Firth
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Ian Brierley
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
9
|
Li J, Wang D, Fang P, Pang Y, Zhou Y, Fang L, Xiao S. DEAD-Box RNA Helicase 21 (DDX21) Positively Regulates the Replication of Porcine Reproductive and Respiratory Syndrome Virus via Multiple Mechanisms. Viruses 2022; 14:v14030467. [PMID: 35336874 PMCID: PMC8949431 DOI: 10.3390/v14030467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) remains a persistent hazard in the global pig industry. DEAD (Glu-Asp-Ala-Glu) box helicase 21 (DDX21) is a member of the DDX family. In addition to its function of regulating cellular RNA metabolism, DDX21 also regulates innate immunity and is involved in the replication cycle of some viruses. However, the relationship between DDX21 and PRRSV has not yet been explored. Here, we found that a DDX21 overexpression promoted PRRSV replication, whereas knockdown of DDX21 reduced PRRSV proliferation. Mechanistically, DDX21 promoted PRRSV replication independently of its ATPase, RNA helicase, and foldase activities. Furthermore, overexpression of DDX21 stabilized the expressions of PRRSV nsp1α, nsp1β, and nucleocapsid proteins, three known antagonists of interferon β (IFN-β). Knockdown of DDX21 activated the IFN-β signaling pathway in PRRSV-infected cells, suggesting that the effect of DDX21 on PRRSV-encoded IFN-β antagonists may be a driving factor for its contribution to viral proliferation. We also found that PRRSV infection enhanced DDX21 expression and promoted its nucleus-to-cytoplasm translocation. Screening PRRSV-encoded proteins showed that nsp1β interacted with the C-terminus of DDX21 and enhanced the expression of DDX21. Taken together, these findings reveal that DDX21 plays an important role in regulating PRRSV proliferation through multiple mechanisms.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yu Pang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
10
|
Porcine Reproductive and Respiratory Syndrome Virus: Immune Escape and Application of Reverse Genetics in Attenuated Live Vaccine Development. Vaccines (Basel) 2021; 9:vaccines9050480. [PMID: 34068505 PMCID: PMC8150910 DOI: 10.3390/vaccines9050480] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/16/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus widely prevalent in pigs, results in significant economic losses worldwide. PRRSV can escape from the host immune response in several processes. Vaccines, including modified live vaccines and inactivated vaccines, are the best available countermeasures against PRRSV infection. However, challenges still exist as the vaccines are not able to induce broad protection. The reason lies in several facts, mainly the variability of PRRSV and the complexity of the interaction between PRRSV and host immune responses, and overcoming these obstacles will require more exploration. Many novel strategies have been proposed to construct more effective vaccines against this evolving and smart virus. In this review, we will describe the mechanisms of how PRRSV induces weak and delayed immune responses, the current vaccines of PRRSV, and the strategies to develop modified live vaccines using reverse genetics systems.
Collapse
|
11
|
Patel A, Treffers EE, Meier M, Patel TR, Stetefeld J, Snijder EJ, Mark BL. Molecular characterization of the RNA-protein complex directing -2/-1 programmed ribosomal frameshifting during arterivirus replicase expression. J Biol Chem 2020; 295:17904-17921. [PMID: 33127640 PMCID: PMC7939443 DOI: 10.1074/jbc.ra120.016105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Programmed ribosomal frameshifting (PRF) is a mechanism used by arteriviruses like porcine reproductive and respiratory syndrome virus (PRRSV) to generate multiple proteins from overlapping reading frames within its RNA genome. PRRSV employs -1 PRF directed by RNA secondary and tertiary structures within its viral genome (canonical PRF), as well as a noncanonical -1 and -2 PRF that are stimulated by the interactions of PRRSV nonstructural protein 1β (nsp1β) and host protein poly(C)-binding protein (PCBP) 1 or 2 with the viral genome. Together, nsp1β and one of the PCBPs act as transactivators that bind a C-rich motif near the shift site to stimulate -1 and -2 PRF, thereby enabling the ribosome to generate two frameshift products that are implicated in viral immune evasion. How nsp1β and PCBP associate with the viral RNA genome remains unclear. Here, we describe the purification of the nsp1β:PCBP2:viral RNA complex on a scale sufficient for structural analysis using small-angle X-ray scattering and stochiometric analysis by analytical ultracentrifugation. The proteins associate with the RNA C-rich motif as a 1:1:1 complex. The monomeric form of nsp1β within the complex differs from previously reported homodimer identified by X-ray crystallography. Functional analysis of the complex via mutational analysis combined with RNA-binding assays and cell-based frameshifting reporter assays reveal a number of key residues within nsp1β and PCBP2 that are involved in complex formation and function. Our results suggest that nsp1β and PCBP2 both interact directly with viral RNA during formation of the complex to coordinate this unusual PRF mechanism.
Collapse
Affiliation(s)
- Ankoor Patel
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Emmely E Treffers
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus Meier
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
12
|
Porcine Reproductive and Respiratory Syndrome Virus Reverse Genetics and the Major Applications. Viruses 2020; 12:v12111245. [PMID: 33142752 PMCID: PMC7692847 DOI: 10.3390/v12111245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive sense, single-stranded RNA virus that is known to infect only pigs. The virus emerged in the late 1980s and became endemic in most swine producing countries, causing substantial economic losses to the swine industry. The first reverse genetics system for PRRSV was reported in 1998. Since then, several infectious cDNA clones for PRRSV have been constructed. The availability of these infectious cDNA clones has facilitated the genetic modifications of the viral genome at precise locations. Common approaches to manipulate the viral genome include site-directed mutagenesis, deletion of viral genes or gene fragments, insertion of foreign genes, and swapping genes between PRRSV strains or between PRRSV and other members of the Arteriviridae family. In this review, we describe the approaches to construct an infectious cDNA for PRRSV and the ten major applications of these infectious clones to study virus biology and virus–host interaction, and to design a new generation of vaccines with improved levels of safety and efficacy.
Collapse
|
13
|
Molecular and Cellular Mechanisms for PRRSV Pathogenesis and Host Response to Infection. Virus Res 2020; 286:197980. [PMID: 32311386 PMCID: PMC7165118 DOI: 10.1016/j.virusres.2020.197980] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
PRRSV has evolved to arm with various strategies to modify host antiviral response. Viral modulation of homeostatic cellular processes provides favorable conditions for PRRSV survival during infection. PRRSV modulation of cellular processes includes pathways for interferons, apoptosis, microRNAs, cytokines, autophagy, and viral genome recombination.
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous amounts of economic losses to the swine industry for more than three decades, but its control is still unsatisfactory. A significant amount of information is available for host cell-virus interactions during infection, and it is evident that PRRSV has evolved to equip various strategies to disrupt the host antiviral system and provide favorable conditions for survival. The current study reviews viral strategies for modulations of cellular processes including innate immunity, apoptosis, microRNAs, inflammatory cytokines, and other cellular pathways.
Collapse
|
14
|
Ke H, Han M, Kim J, Gustin KE, Yoo D. Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 1 Beta Interacts with Nucleoporin 62 To Promote Viral Replication and Immune Evasion. J Virol 2019; 93:e00469-19. [PMID: 31043527 PMCID: PMC6600190 DOI: 10.1128/jvi.00469-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) blocks host mRNA nuclear export to the cytoplasm, and nonstructural protein 1 beta (nsp1β) of PRRSV has been identified as the protein that disintegrates the nuclear pore complex. In the present study, the molecular basis for the inhibition of host mRNA nuclear export was investigated. Nucleoporin 62 (Nup62) was found to bind to nsp1β, and the region representing the C-terminal residues 328 to 522 of Nup62 was determined to be the binding domain for nsp1β. The nsp1β L126A mutant in the SAP domain did not bind to Nup62, and in L126A-expressing cells, host mRNA nuclear export occurred normally. The vL126A mutant PRRSV generated by reverse genetics replicated at a lower rate, and the titer was lower than for wild-type virus. In nsp1β-overexpressing cells or small interfering RNA (siRNA)-mediated Nup62 knockdown cells, viral protein synthesis increased. Notably, the production of type I interferons (IFN-α/β), IFN-stimulated genes (PKR, OAS, Mx1, and ISG15 genes), IFN-induced proteins with tetratricopeptide repeats (IFITs) 1 and 2, and IFN regulatory factor 3 decreased in these cells. As a consequence, the growth of vL126A mutant PRRSV was rescued to the level of wild-type PRRSV. These findings are attributed to nuclear pore complex (NPC) disintegration by nsp1β, resulting in increased viral protein production and decreased host protein production, including antiviral proteins in the cytoplasm. Our study reveals a new strategy of PRRSV for immune evasion and enhanced replication during infection.IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) causes PRRS and is known to effectively suppress host innate immunity. The PRRSV nsp1β protein blocks host mRNA nuclear export, which has been shown to be one of the viral mechanisms for inhibition of antiviral protein production. nsp1β binds to the cellular protein nucleoporin 62 (Nup62), and as a consequence, the nuclear pore complex (NPC) is disintegrated and the nucleocytoplasmic trafficking of host mRNAs and host proteins is blocked. We show the dual benefits of Nup62 and nsp1β binding for PRRSV replication: the inhibition of host antiviral protein expression and the exclusive use of host translation machinery by the virus. Our study unveils a novel strategy of PRRSV for immune evasion and enhanced replication during infection.
Collapse
Affiliation(s)
- Hanzhong Ke
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Mingyuan Han
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Jineui Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kurt E Gustin
- Department of Basic Medical Sciences, College of Medicine-Phoenix, The University of Arizona, Phoenix, Arizona, USA
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
15
|
Cross ST, Michalski D, Miller MR, Wilusz J. RNA regulatory processes in RNA virus biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1536. [PMID: 31034160 PMCID: PMC6697219 DOI: 10.1002/wrna.1536] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
Numerous post‐transcriptional RNA processes play a major role in regulating the quantity, quality and diversity of gene expression in the cell. These include RNA processing events such as capping, splicing, polyadenylation and modification, but also aspects such as RNA localization, decay, translation, and non‐coding RNA‐associated regulation. The interface between the transcripts of RNA viruses and the various RNA regulatory processes in the cell, therefore, has high potential to significantly impact virus gene expression, regulation, cytopathology and pathogenesis. Furthermore, understanding RNA biology from the perspective of an RNA virus can shed considerable light on the broad impact of these post‐transcriptional processes in cell biology. Thus the goal of this article is to provide an overview of the richness of cellular RNA biology and how RNA viruses use, usurp and/or avoid the associated machinery to impact the outcome of infection. This article is categorized under:RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Shaun T Cross
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Daniel Michalski
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Megan R Miller
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
16
|
Porcine reproductive and respiratory syndrome virus nsp1β and nsp11 antagonize the antiviral activity of cholesterol-25-hydroxylase via lysosomal degradation. Vet Microbiol 2018; 223:134-143. [PMID: 30173739 DOI: 10.1016/j.vetmic.2018.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/29/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an immunosuppressive pathogen which has been recognized to modulate the host interferon (IFN) systems. Cholesterol-25-hydroxylase (CH25 H) is an important interferon-stimulated gene (ISG)-encoded polytopic membrane protein that significantly inhibits the replication of many viruses. In the current study, we showed that PRRSV infection induced the down-regulation of the endogenous CH25H in porcine alveolar macrophages (PAMs), and then discovered that the nonstructural protein (nsp) 1β and nsp11 of PRRSV could mediate the reduction of porcine CH25H d in HEK 293FT cells. Next, the amino acids including His-159 in nsp1β, and His-129, His-144 and Lys-173 in nsp11 were determined to play crucial roles in the reduction of CH25H. Furthermore, we confirmed that the nsp1β and nsp11 mediated the degradation of CH25H by lysosomal pathway in HEK 293FT cells. Finally, it was demonstrated that the anti-PRRSV activity of CH25H could be antagonized by nsp1β and nsp11 in MARC-145 cells. Our findings suggest a manner of antagonizing the antiviral activity of CH25H by PRRSV, and provide novel insight into the understanding of PRRSV's ability of escaping the innate immunity of host.
Collapse
|
17
|
Porcine Reproductive and Respiratory Syndrome Virus Infection Induces both eIF2α Phosphorylation-Dependent and -Independent Host Translation Shutoff. J Virol 2018; 92:JVI.00600-18. [PMID: 29899101 DOI: 10.1128/jvi.00600-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has caused tremendous economic losses in the global swine industry since it was discovered in the late 1980s. Inducing host translation shutoff is a strategy used by many viruses to optimize their replication and spread. Here, we demonstrate that PRRSV infection causes host translation suppression, which is strongly dependent on viral replication. By screening PRRSV-encoded nonstructural proteins (nsps), we found that nsp2 participates in the induction of host translation shutoff and that its transmembrane (TM) domain is required for this process. nsp2-induced translation suppression is independent of protein degradation pathways and the phosphorylation of eukaryotic initiation factor 2α (eIF2α). However, the overexpression of nsp2 or its TM domain significantly attenuated the mammalian target of rapamycin (mTOR) signaling pathway, an alternative pathway for modulating host gene expression. PRRSV infection also attenuated the mTOR signaling pathway, and PRRSV-induced host translation shutoff could be partly reversed when the attenuated mTOR phosphorylation was reactivated by an activator of the mTOR pathway. PRRSV infection still negatively regulated the host translation when the effects of eIF2α phosphorylation were completely reversed. Taken together, our results demonstrate that PRRSV infection induces host translation shutoff and that nsp2 is associated with this process. Both eIF2α phosphorylation and the attenuation of the mTOR signaling pathway contribute to PRRSV-induced host translation arrest.IMPORTANCE Viruses are obligate parasites, and the production of progeny viruses relies strictly on the host translation machinery. Therefore, the efficient modulation of host mRNA translation benefits viral replication, spread, and evolution. In this study, we provide evidence that porcine reproductive and respiratory syndrome virus (PRRSV) infection induces host translation shutoff and that the viral nonstructural protein nsp2 is associated with this process. Many viruses induce host translation shutoff by phosphorylating eukaryotic initiation factor 2α (eIF2α). However, PRRSV nsp2 does not induce eIF2α phosphorylation but attenuates the mTOR signaling pathway, another pathway regulating the host cell translational machinery. We also found that PRRSV-induced host translation shutoff was partly reversed by eliminating the effects of eIF2α phosphorylation or reactivating the mTOR pathway, indicating that PRRSV infection induces both eIF2α phosphorylation-dependent and -independent host translation shutoff.
Collapse
|
18
|
Ke H, Han M, Zhang Q, Rowland R, Kerrigan M, Yoo D. Type I interferon suppression-negative and host mRNA nuclear retention-negative mutation in nsp1β confers attenuation of porcine reproductive and respiratory syndrome virus in pigs. Virology 2018; 517:177-187. [PMID: 29402432 DOI: 10.1016/j.virol.2018.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/20/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has the ability to suppress the type I interferons (IFNs-α/β) induction to facilitate its survival during infection, and the nsp1 protein of PRRSV has been identified as the potent IFN antagonist. The nsp1β subunit of nsp1 has also been shown to block the host mRNA nuclear export as one of the mechanisms to suppress host antiviral protein production. The SAP motif in nsp1β is the functional motif for both IFN suppression and host mRNA nuclear retention, and using infectious clones, two mutant viruses vL126A and vL135A have been generated. These mutants retain the infectivity, but the phenotype is negative for both IFN suppression and host mRNA nuclear retention due to the loss of the SAP motif. To examine the pathogenic role of IFN suppression in pigs, 40 piglets were allotted to four groups and each group was intramuscularly infected with vL126A, vL135A, wild-type (WT) PRRSV, and placebo. Pigs infected with vL126A or vL135A exhibited mild clinical signs with low viral titers and short duration of viremia. The levels of PRRSV-specific antibody remained comparable in all infected groups but the neutralizing antibody titers were high in vL126A-infected or vL135A-infected pigs. The IFN-α concentration was also high in pigs infected with the SAP mutants. Reversion to WT sequence was observed in the SAP motif in some animals, and the revertants regained the function to suppress IFN production and host mRNA nuclear export, indicating strong selection pressure in the SAP motif of nsp1β. Together, our data demonstrate that the IFN antagonism and host mRNA nuclear retention mediated by nsp1β contributes to viral virulence, and loss of these functions confers PRRSV attenuation.
Collapse
Affiliation(s)
- Hanzhong Ke
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mingyuan Han
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Qingzhan Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Raymond Rowland
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Maureen Kerrigan
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
19
|
Karyopherin Alpha 6 Is Required for Replication of Porcine Reproductive and Respiratory Syndrome Virus and Zika Virus. J Virol 2018; 92:JVI.00072-18. [PMID: 29444946 DOI: 10.1128/jvi.00072-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/09/2018] [Indexed: 12/16/2022] Open
Abstract
Movement of macromolecules between the cytoplasm and the nucleus occurs through the nuclear pore complex (NPC). Karyopherins comprise a family of soluble transport factors facilitating the nucleocytoplasmic translocation of proteins through the NPC. In this study, we found that karyopherin α6 (KPNA6; also known as importin α7) was required for the optimal replication of porcine reproductive and respiratory syndrome virus (PRRSV) and Zika virus (ZIKV), which are positive-sense, single-stranded RNA viruses replicating in the cytoplasm. The KPNA6 protein level in virus-infected cells was much higher than that in mock-infected controls, whereas the KPNA6 transcript remains stable. Viral infection blocked the ubiquitin-proteasomal degradation of KPNA6, which led to an extension of the KPNA6 half-life and the elevation of the KPNA6 level in comparison to mock-infected cells. PRRSV nsp12 protein induced KPNA6 stabilization. KPNA6 silencing was detrimental to the replication of PRRSV, and KPNA6 knockout impaired ZIKV replication. Moreover, KPNA6 knockout blocked the nuclear translocation of PRRSV nsp1β but had a minimal effect on two other PRRSV proteins with nuclear localization. Exogenous restitution of KPNA6 expression in the KPNA6-knockout cells results in restoration of the nuclear translocation of PRRSV nsp1β and the replication of ZIKV. These results indicate that KPNA6 is an important cellular factor for the replication of PRRSV and ZIKV.IMPORTANCE Positive-sense, single-stranded RNA (+ssRNA) viruses replicate in the cytoplasm of infected cells. The roles of transport factors in the nucleocytoplasmic trafficking system for the replication of +ssRNA viruses are not known. In this study, we discovered that PRRSV and ZIKV viruses needed karyopherin α6 (KPNA6), one of the transport factors, to enhance the virus replication. Our data showed that viral infection induced an elevation of the KPNA6 protein level due to an extension of the KPNA6 half-life via viral interference of the ubiquitin-proteasomal degradation of KPNA6. Notably, KPNA6 silencing or knockout dramatically reduced the replication of PRRSV and ZIKV. PRRSV nsp1β depended on KPNA6 to translocate into the nucleus. In addition, exogenous restitution of KPNA6 expression in KPNA6-knockout cells led to the restoration of nsp1β nuclear translocation and ZIKV replication. These results reveal a new aspect in the virus-cell interaction and may facilitate the development of novel antiviral therapeutics.
Collapse
|
20
|
The viral innate immune antagonism and an alternative vaccine design for PRRS virus. Vet Microbiol 2017; 209:75-89. [PMID: 28341332 PMCID: PMC7111430 DOI: 10.1016/j.vetmic.2017.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/06/2023]
Abstract
PRRS virus has evolved to suppress the antiviral innate immunity during infection. Type I interferons are potent antiviral cytokines and function to stimulate the adaptive immune responses. Six viral proteins have been identified as interferon antagonists and characterized for their molecular actions. Interferon antagonism-negative viruses are attenuated and have been proven induce protective immunity. Interferon suppression-negative PRRS virus may serve as an alternative vaccine for PRRS.
Porcine reproductive and respiratory syndrome (PRRS) remains one of the most economically significant diseases in the swine industry worldwide. The current vaccines are less satisfactory to confer protections from heterologous infections and long-term persistence, and the need for better vaccines are urgent. The immunological hallmarks in PRRSV-infected pigs include the unusually poor production of type I interferons (IFNs-α/β) and the aberrant and delayed adaptive immune responses, indicating that PRRSV has the ability to suppress both innate and adaptive immune responses in the host. Type I IFNs are the potent antiviral cytokines and recent studies reveal their pleiotropic functions in the priming of expansion and maturation of adaptive immunity. Thus, IFN antagonism-negative PRRSV is hypothesized to be attenuated and to build effective and broad- spectrum innate and adaptive immune responses in pigs. Such vaccines are promising alternatives to traditional vaccines for PRRSV.
Collapse
|