1
|
Kirk A, Graham SV. The human papillomavirus late life cycle and links to keratinocyte differentiation. J Med Virol 2024; 96:e29461. [PMID: 38345171 DOI: 10.1002/jmv.29461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Regulation of human papillomavirus (HPV) gene expression is tightly linked to differentiation of the keratinocytes the virus infects. HPV late gene expression is confined to the cells in the upper layers of the epithelium where the virus capsid proteins are synthesized. As these proteins are highly immunogenic, and the upper epithelium is an immune-privileged site, this spatial restriction aids immune evasion. Many decades of work have contributed to the current understanding of how this restriction occurs at a molecular level. This review will examine what is known about late gene expression in HPV-infected lesions and will dissect the intricacies of late gene regulation. Future directions for novel antiviral approaches will be highlighted.
Collapse
Affiliation(s)
- Anna Kirk
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sheila V Graham
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Wang Z, Guan S, Cai B, Rong S, Li Q. Human Papillomavirus E1 Protein Regulates Gene Expression in Cells Involved in Immune Response. Appl Biochem Biotechnol 2022; 195:2786-2802. [PMID: 36418714 PMCID: PMC9684793 DOI: 10.1007/s12010-022-04249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/25/2022]
Abstract
Human papillomavirus belongs to papovaviridae family papillomavirus A, a spherical deoxyribonucleic acid (DNA) virus, which can cause the proliferation of squamous epithelial cells of human skin or mucous membranes. With the rapid increase in the incidence of condyloma acuminatum among STDs and the increase in diseases caused by HPV infection, HPV infection has seriously endangered human health. In this paper, the in vitro detection of HPV E1 protein was realized using AgNCs-dsDNA. And through the test of this detection method, we calculated that the detection limit of this method is 0.886 nM. Compared with other methods for detecting E1 protein in vitro, this method has high sensitivity and simple operation. In addition, the detection method also has good anti-interference and selectivity, and can realize the detection of E1 in serum samples. The transfection efficiency of BLV-miR-B4-3p mimics at different time points was determined by quantitative real-time PCR (qPCR); the transcriptome sequencing of lymphocytes transfected with different concentrations of BLV-miR-B4-3p mimics was performed, and differential gene clustering was performed on the sequencing results. And the BLV-miR-B4-3p target gene prediction and transcriptome analysis results were verified by qPCR. The effects of BLV-miR-B4-3p on the transcriptional levels of immune-related cytokines in human lymphocytes were analyzed. Transcriptome sequencing analysis showed that after BLV-miR-B4-3p entered lymphocytes, a total of 556 differentially expressed genes were obtained. GO enrichment and KEGG analysis results showed that BLV-miR-B4-3p could independently activate influenza. The signaling pathway ultimately affects the body's immune system process, stress response, defense response, immune response, and other biological processes. After BLV-miR-B4-3p enters lymphocytes, it will lead to abnormal lymphocyte immune function, including the mRNA expression of TNF-α in Th1 cytokines which was significantly increased (P < 0.05), and the expression of IL-10 in Th2 cytokines was significantly increased (P < 0.05). The mRNA expression was significantly decreased (P < 0.05), and the mRNA expression of IL-27 was significantly increased (P < 0.001), which did not affect the mRNA expression of lymphocyte proliferation and activation-related regulators. The tumor suppressor breast cancer 1 (BRCA1) and antimicrobial peptide CAMP were significantly increased, and decreased (P < 0.001), and the expression of pro-apoptotic factor Caspase9 showed a significant downward trend (P < 0.05).
Collapse
Affiliation(s)
- Zifeng Wang
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Shimin Guan
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Baoguo Cai
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Shaofeng Rong
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
3
|
Spatial and Functional Organization of Human Papillomavirus Replication Foci in the Productive Stage of Infection. mBio 2021; 12:e0268421. [PMID: 34749533 PMCID: PMC8576538 DOI: 10.1128/mbio.02684-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The life cycle of human papillomavirus (HPV) depends on keratinocyte differentiation as the virus modulates and takes advantage of cellular pathways to replicate its genome and assemble viral particles in differentiated cells. Viral genomes are amplified in nuclear replication foci in differentiated keratinocytes, and DNA repair factors from the DNA damage response signaling pathway are recruited to replicate viral DNA. The HPV genome is associated with cellular histones at all stages of the infectious cycle, and here, we show that the histone variant macroH2A1 is bound to the HPV genome and enriched in viral replication foci in differentiated cells. macroH2A1 isoforms play important roles in cellular transcriptional repression, double-strand break repair, and replication stress. The viral E8^E2 protein also binds to the HPV genome and inhibits viral replication and gene expression by recruiting NCoR/SMRT complexes. We show here that E8^E2 and SMRT also localize within replication foci, though independently from macroH2A1. Conversely, transcription complexes containing RNA polymerase II and Brd4 are located on the surface of the foci. Foci generated with an HPV16 E8^E2 mutant genome are not enriched for SMRT or macroH2A1 but contain transcriptional complexes throughout the foci. We propose that both the cellular macroH2A1 protein and viral E8^E2 protein help to spatially separate replication and transcription activities within viral replication foci. IMPORTANCE Human papillomaviruses are small DNA viruses that cause chronic infection of cutaneous and mucosal epithelium. In some cases, persistent infection with HPV can result in cancer, and 5% of human cancers are the result of HPV infection. In differentiated cells, HPV amplifies viral DNA in nuclear replication factories and transcribes late mRNAs to produce capsid proteins. However, very little is known about the spatial organization of these activities in the nucleus. Here, we show that repressive viral and cellular factors localize within the foci to suppress viral transcription, while active transcription takes place on the surface. The cellular histone variant macroH2A1 is important for this spatial organization.
Collapse
|
4
|
Ferguson J, Campos-León K, Pentland I, Stockton JD, Günther T, Beggs AD, Grundhoff A, Roberts S, Noyvert B, Parish JL. The chromatin insulator CTCF regulates HPV18 transcript splicing and differentiation-dependent late gene expression. PLoS Pathog 2021; 17:e1010032. [PMID: 34735550 PMCID: PMC8594839 DOI: 10.1371/journal.ppat.1010032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/16/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
The ubiquitous host protein, CCCTC-binding factor (CTCF), is an essential regulator of cellular transcription and functions to maintain epigenetic boundaries, stabilise chromatin loops and regulate splicing of alternative exons. We have previously demonstrated that CTCF binds to the E2 open reading frame (ORF) of human papillomavirus (HPV) 18 and functions to repress viral oncogene expression in undifferentiated keratinocytes by co-ordinating an epigenetically repressed chromatin loop within HPV episomes. Keratinocyte differentiation disrupts CTCF-dependent chromatin looping of HPV18 episomes promoting induction of enhanced viral oncogene expression. To further characterise CTCF function in HPV transcription control we utilised direct, long-read Nanopore RNA-sequencing which provides information on the structure and abundance of full-length transcripts. Nanopore analysis of primary human keratinocytes containing HPV18 episomes before and after synchronous differentiation allowed quantification of viral transcript species, including the identification of low abundance novel transcripts. Comparison of transcripts produced in wild type HPV18 genome-containing cells to those identified in CTCF-binding deficient genome-containing cells identifies CTCF as a key regulator of differentiation-dependent late promoter activation, required for efficient E1^E4 and L1 protein expression. Furthermore, our data show that CTCF binding at the E2 ORF promotes usage of the downstream weak splice donor (SD) sites SD3165 and SD3284, to the dominant E4 splice acceptor site at nucleotide 3434. These findings demonstrate that in the HPV life cycle both early and late virus transcription programmes are facilitated by recruitment of CTCF to the E2 ORF. Oncogenic human papillomavirus (HPV) infection is the cause of a subset of epithelial cancers of the uterine cervix, other anogenital areas and the oropharynx. HPV infection is established in the basal cells of epithelia where a restricted programme of viral gene expression is required for replication and maintenance of the viral episome. Completion of the HPV life cycle is dependent on the maturation (differentiation) of infected cells which induces enhanced viral gene expression and induction of capsid production. We previously reported that the host cell transcriptional regulator, CTCF, is hijacked by HPV to control viral gene expression. In this study, we use long-read mRNA sequencing to quantitatively map the variety and abundance of HPV transcripts produced in early and late stages of the HPV life cycle and to dissect the function of CTCF in controlling HPV gene expression and transcript processing.
Collapse
Affiliation(s)
- Jack Ferguson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Karen Campos-León
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Ieisha Pentland
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Joanne D. Stockton
- Genomics Birmingham, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Thomas Günther
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Andrew D. Beggs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
- Genomics Birmingham, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Adam Grundhoff
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Boris Noyvert
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
- CRUK Birmingham Centre and Centre for Computational Biology, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Joanna L. Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
McBride AA, Warburton A, Khurana S. Multiple Roles of Brd4 in the Infectious Cycle of Human Papillomaviruses. Front Mol Biosci 2021; 8:725794. [PMID: 34386523 PMCID: PMC8353396 DOI: 10.3389/fmolb.2021.725794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Human Papillomaviruses (HPV) reproduce in stratified epithelia by establishing a reservoir of low- level infection in the dividing basal cells and restricting the production of viral particles to terminally differentiated cells. These small DNA viruses hijack pivotal cellular processes and pathways to support the persistent infectious cycle. One cellular factor that is key to multiple stages of viral replication and transcription is the BET (bromodomain and extra-terminal domain) protein, Brd4 (Bromodomain containing protein 4). Here we provide an overview of the multiple interactions of Brd4 that occur throughout the HPV infectious cycle.
Collapse
Affiliation(s)
- Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | | |
Collapse
|
6
|
Fu Y, Cao R, Schäfer M, Stephan S, Braspenning-Wesch I, Schmitt L, Bischoff R, Müller M, Schäfer K, Vinzón SE, Rösl F, Hasche D. Expression of different L1 isoforms of Mastomys natalensis papillomavirus as mechanism to circumvent adaptive immunity. eLife 2020; 9:e57626. [PMID: 32746966 PMCID: PMC7402679 DOI: 10.7554/elife.57626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Although many high-risk mucosal and cutaneous human papillomaviruses (HPVs) theoretically have the potential to synthesize L1 isoforms differing in length, previous seroepidemiological studies only focused on the short L1 variants, co-assembling with L2 to infectious virions. Using the multimammate mouse Mastomys coucha as preclinical model, this is the first study demonstrating seroconversion against different L1 isoforms during the natural course of papillomavirus infection. Intriguingly, positivity with the cutaneous MnPV was accompanied by a strong seroresponse against a longer L1 isoform, but to our surprise, the raised antibodies were non-neutralizing. Only after a delay of around 4 months, protecting antibodies against the short L1 appeared, enabling the virus to successfully establish an infection. This argues for a novel humoral immune escape mechanism that may also have important implications on the interpretation of epidemiological data in terms of seropositivity and protection of PV infections in general.
Collapse
Affiliation(s)
- Yingying Fu
- Division of Viral Transformation Mechanisms, Research Program 'Infection, Inflammation and Cancer', German Cancer Research CenterHeidelbergGermany
| | - Rui Cao
- Division of Viral Transformation Mechanisms, Research Program 'Infection, Inflammation and Cancer', German Cancer Research CenterHeidelbergGermany
| | - Miriam Schäfer
- Division of Viral Transformation Mechanisms, Research Program 'Infection, Inflammation and Cancer', German Cancer Research CenterHeidelbergGermany
| | - Sonja Stephan
- Division of Viral Transformation Mechanisms, Research Program 'Infection, Inflammation and Cancer', German Cancer Research CenterHeidelbergGermany
| | - Ilona Braspenning-Wesch
- Division of Viral Transformation Mechanisms, Research Program 'Infection, Inflammation and Cancer', German Cancer Research CenterHeidelbergGermany
| | - Laura Schmitt
- Division of Viral Transformation Mechanisms, Research Program 'Infection, Inflammation and Cancer', German Cancer Research CenterHeidelbergGermany
| | - Ralf Bischoff
- Division of Functional Genome Analysis, Research Program 'Functional and Structural Genomics', German Cancer Research CenterHeidelbergGermany
| | - Martin Müller
- Research Group Tumorvirus-specific Vaccination Strategies, Research Program 'Infection, Inflammation and Cancer', German Cancer Research CenterHeidelbergGermany
| | - Kai Schäfer
- Division of Viral Transformation Mechanisms, Research Program 'Infection, Inflammation and Cancer', German Cancer Research CenterHeidelbergGermany
| | - Sabrina E Vinzón
- Division of Viral Transformation Mechanisms, Research Program 'Infection, Inflammation and Cancer', German Cancer Research CenterHeidelbergGermany
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, Research Program 'Infection, Inflammation and Cancer', German Cancer Research CenterHeidelbergGermany
| | - Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program 'Infection, Inflammation and Cancer', German Cancer Research CenterHeidelbergGermany
| |
Collapse
|
7
|
Phosphorylation of the Human Papillomavirus E2 Protein at Tyrosine 138 Regulates Episomal Replication. J Virol 2020; 94:JVI.00488-20. [PMID: 32350070 DOI: 10.1128/jvi.00488-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/19/2020] [Indexed: 01/15/2023] Open
Abstract
The papillomavirus (PV) E2 protein is a critical regulator of viral transcription and genome replication. We previously reported that tyrosine (Y) 138 of HPV-31 E2 is phosphorylated by the fibroblast growth factor receptor 3 (FGFR3) kinase. In this study, we generated quasiviruses containing G418-selectable HPV-31 genomes with phosphodeficient phenylalanine mutant E2 Y138F and phosphomimetic glutamic acid mutant Y138E. We observed significantly fewer early viral transcripts immediately after infection with these Y138 mutant genomes even though E2 occupancy at the viral origin was equivalent to that of wild-type E2. Keratinocytes infected with Y138F quasiviruses formed stable colonies, and the genomes were maintained as episomes, while those infected with Y138E quasiviruses did not. We previously reported that the HPV-31 E2 Y138 mutation to glutamic acid did not bind to the Brd4 C-terminal motif (CTM). Here, we demonstrate that HPV-16 E2 Y138E bound to full-length Brd4 but not to the Brd4 CTM. We conclude that association of E2 with the Brd4 CTM is necessary for viral genome replication and suggest that this interaction can be regulated by phosphorylation of E2 Y138.IMPORTANCE Papillomavirus (PV) is a double-stranded DNA tumor virus infecting the cutaneous and mucosal epithelium. The PV E2 protein associates with a number of cellular factors to mediate replication of the HPV genome. Fibroblast growth factor receptor 3 (FGFR3) regulates HPV replication through phosphorylation of tyrosine 138 in the HPV E2 protein. Employing a quasivirus infection model and selection for G418 resistant genomes, we demonstrated that Y138 is a critical residue for Brd4 association and that inability to complex with Brd4 does not support episomal replication.
Collapse
|
8
|
Suppression of a Subset of Interferon-Induced Genes by Human Papillomavirus Type 16 E7 via a Cyclin Dependent Kinase 8-Dependent Mechanism. Viruses 2020; 12:v12030311. [PMID: 32183180 PMCID: PMC7150855 DOI: 10.3390/v12030311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Persistent infection by human papillomaviruses (HPVs), small, double-stranded DNA viruses that infect keratinocytes of the squamous epithelia, can lead to the development of cervical and other cancers. The viral oncoprotein E7 contributes to viral persistence in part by regulating host gene expression through binding host transcriptional regulators, although mechanisms responsible for E7-mediated transcriptional regulation are incompletely understood. Type I IFN signaling promotes the expression of anti-viral genes, called interferon-stimulated genes (ISGs), through the phosphorylation and activation of STAT1. In this study, we have observed that the CR3 domain of E7 contributes to the episomal maintenance of viral genomes. Transcriptome analysis revealed that E7 transcriptionally suppresses a subset of ISGs but not through regulation of STAT1 activation. Instead, we discovered that E7 associates with Mediator kinase CDK8 and this is correlated with the recruitment of CDK8 to ISG promoters and reduced ISG expression. E7 fails to suppress ISGs in the absence of CDK8, indicating that CDK8 function contributes to the suppression of ISGs by E7. Altogether, E7/CDK8 association may be a novel mechanism by which E7 inhibits innate immune signaling.
Collapse
|
9
|
Levan J, Vliet-Gregg PA, Robinson KL, Matsumoto LR, Katzenellenbogen RA. HPV type 16 E6 and NFX1-123 augment JNK signaling to mediate keratinocyte differentiation and L1 expression. Virology 2019; 531:171-182. [PMID: 30903928 DOI: 10.1016/j.virol.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
Abstract
The HPV life cycle is differentiation-dependent, with cellular differentiation driving initiation of the late, productive stage of the viral life cycle. Here, we identify a role for the protein NFX1-123 in regulating keratinocyte differentiation and events of the late HPV life cycle. NFX1-123 itself increased with differentiation of epithelial cells. Greater NFX1-123 augmented differentiation marker expression and JNK phosphorylation in differentiating 16E6-expressing human foreskin keratinocytes (16E6 HFKs). This was associated with altered expression of MKK4 and MKK7, upstream kinase regulators of JNK phosphorylation. Modulating levels of NFX1-123 in HPV16-positive W12E cells recapitulated the effects on differentiation markers, JNK phosphorylation, and MKK4/7 seen in 16E6 HFKs. Crucially, levels of NFX1-123 also correlated with expression of L1, the capsid protein of HPV. Altogether, these studies define a role for NFX1-123 in mediating epithelial differentiation through the JNK signaling pathway, potentially linking expression of cellular genes and HPV genes during differentiation.
Collapse
Affiliation(s)
- Justine Levan
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA; Department of Global Health, Pathobiology Program, University of Washington, Seattle, WA, USA
| | - Portia A Vliet-Gregg
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA
| | - Kristin L Robinson
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA
| | - Lisa R Matsumoto
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA
| | - Rachel A Katzenellenbogen
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA; Department of Global Health, Pathobiology Program, University of Washington, Seattle, WA, USA; Department of Pediatrics, Division of Adolescent Medicine, University of Washington, Seattle WA, USA.
| |
Collapse
|
10
|
Abstract
Human papillomavirus infection is associated with the development of malignant and benign neoplasms. Approximately 40 viral types can infect the anogenital mucosa and are categorized into high- and low-risk oncogenic human papillomavirus, depending on their association with the development of cervical carcinoma. High-risk human papillomavirus 16 and 18 are detected in 55% and 15% of all invasive cervical squamous cell carcinomas worldwide, respectively. Low-risk human papillomavirus 6 and 11 are responsible for 90% of genital warts and are also associated with the development of recurrent respiratory papillomatosis. Human papillomavirus preferentially infects mitotic active cells of the basal layer from both mucosal and cutaneous epithelium through microabrasions. The viral life cycle synchronizes with the epithelial differentiation program, which may be due, in part, to the binding of differentially expressed cellular transcription factors to the long control region throughout the various epithelial layers. This review aimed to summarize the current knowledge regarding the mechanisms by which viral gene expression is regulated and the influence of human papillomavirus heterogeneity upon this phenomenon. A better understanding of the regulatory mechanisms may elucidate the particularities of human papillomavirus-associated pathogenesis and may provide new tools for antiviral therapy.
Collapse
Affiliation(s)
- Aline Lopes Ribeiro
- Centro de Pesquisa Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Amanda Schiersner Caodaglio
- Centro de Pesquisa Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Laura Sichero
- Centro de Pesquisa Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
11
|
Induction of Interferon Kappa in Human Papillomavirus 16 Infection by Transforming Growth Factor Beta-Induced Promoter Demethylation. J Virol 2018; 92:JVI.01714-17. [PMID: 29437968 DOI: 10.1128/jvi.01714-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/30/2018] [Indexed: 12/18/2022] Open
Abstract
Persistent high-risk human papillomavirus (HPV) infection is the major causal factor in cervical and other anogenital cancers. Because there are currently no therapeutics capable of preventing neoplastic progression of HPV infections, understanding the mechanisms of HPV-mediated persistence, including immune evasion, is a major research priority. The multifunctional growth factor transforming growth factor beta (TGFβ) has been shown to inhibit expression of early viral transcripts from cells harboring integrated HPV genomes or cells infected with retroviruses expressing HPV oncoproteins. However, the mechanism of TGFβ-induced inhibition has not been fully defined. In this study, we have observed a previously uncharacterized ability of TGFβ to repress the differentiation-induced upregulation of late HPV16 gene expression. In addition, interferon kappa (IFN-κ), a keratinocyte-specific, constitutively expressed cytokine suppressed by differentiation, can be transcriptionally induced by TGFβ1. TGFβ-mediated IFN-κ transcription only occurs in cells containing HPV16, and this is due to TGFβ1-mediated reversal of HPV-induced methylation of the IFN-κ promoter through active DNA demethylation mediated by thymine DNA glycosylase (TDG). This novel interaction between growth factor and innate immune signaling may shed light on the mechanisms of HPV persistence and how the virus manipulates both immune and growth factor signaling to promote its life cycle.IMPORTANCE Persistent infection by high-risk HPVs is the primary risk factor for development of HPV-induced cancers. Persistence involves viral evasion of the immune response, including the IFN response. HPV is also known to suppress TGFβ signaling, which inhibits viral gene expression. Here, we show that the TGFβ and IFN pathways are interrelated in the context of HPV16 infection through the upregulation of IFN-κ by TGFβ. The ability of TGFβ to induce IFN-κ promoter demethylation and transcriptional activation provides a new explanation for why HPV has evolved mechanisms to inhibit TGFβ in infected cells.
Collapse
|
12
|
Moody C. Mechanisms by which HPV Induces a Replication Competent Environment in Differentiating Keratinocytes. Viruses 2017; 9:v9090261. [PMID: 28925973 PMCID: PMC5618027 DOI: 10.3390/v9090261] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical cancer and are also associated with other genital malignancies, as well as an increasing number of head and neck cancers. HPVs have evolved their life cycle to contend with the different cell states found in the stratified epithelium. Initial infection and viral genome maintenance occurs in the proliferating basal cells of the stratified epithelium, where cellular replication machinery is abundant. However, the productive phase of the viral life cycle, including productive replication, late gene expression and virion production, occurs upon epithelial differentiation, in cells that normally exit the cell cycle. This review outlines how HPV interfaces with specific cellular signaling pathways and factors to provide a replication-competent environment in differentiating cells.
Collapse
Affiliation(s)
- Cary Moody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Graham SV. Keratinocyte Differentiation-Dependent Human Papillomavirus Gene Regulation. Viruses 2017; 9:E245. [PMID: 28867768 PMCID: PMC5618011 DOI: 10.3390/v9090245] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/29/2022] Open
Abstract
Human papillomaviruses (HPVs) cause diseases ranging from benign warts to invasive cancers. HPVs infect epithelial cells and their replication cycle is tightly linked with the differentiation process of the infected keratinocyte. The normal replication cycle involves an early and a late phase. The early phase encompasses viral entry and initial genome replication, stimulation of cell division and inhibition of apoptosis in the infected cell. Late events in the HPV life cycle include viral genome amplification, virion formation, and release into the environment from the surface of the epithelium. The main proteins required at the late stage of infection for viral genome amplification include E1, E2, E4 and E5. The late proteins L1 and L2 are structural proteins that form the viral capsid. Regulation of these late events involves both cellular and viral proteins. The late viral mRNAs are expressed from a specific late promoter but final late mRNA levels in the infected cell are controlled by splicing, polyadenylation, nuclear export and RNA stability. Viral late protein expression is also controlled at the level of translation. This review will discuss current knowledge of how HPV late gene expression is regulated.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK.
| |
Collapse
|