1
|
Behrouz B, Rasooli I, Badmasti F. Inserting Omp22 into the flagellin protein, replacing its hypervariable region, results in stronger protection against lethal Acinetobacter baumannii infection. Sci Rep 2024; 14:27646. [PMID: 39533090 PMCID: PMC11557591 DOI: 10.1038/s41598-024-79013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Acinetobacter baumannii, a common nosocomial pathogen, is known for its rapid acquisition of antimicrobial resistance, underscoring the urgent need to develop an effective vaccine against this pathogen. Outer membrane protein 22 (Omp22) regulates the biogenesis of outer membrane vesicles to transport virulence-promoting factors into the host cells and facilitates the progression of A. baumannii infection. In this study, we used a mouse model to assess a vaccine's immunogenicity and protective efficacy using recombinant Omp22 protein within the hypervariable region of flagellin (FliC-Omp22). FliC-Omp22 demonstrated superior protection following challenge with a lethal dose of multidrug-resistant (MDR) A. baumannii strain 58ST compared to Omp22 alone. In addition, it elicited increased IgG1/IgG2a and IL-4/IFN-γ ratios, indicating a predominant Th2 immune response. Furthermore, the FliC-Omp22 vaccination elicited strong specific antibodies that inhibited the adhesion and invasion of A. baumannii 58ST and enhanced the opsonic killing activity against the pathogen. FliC-Omp22 immunization significantly reduced bacterial loads in infected mice's spleen, lungs, and liver, thereby improving their survival against the lethal infection caused by MDR A. baumannii 58ST. This study suggests that integrating Omp22 into the hypervariable domain of flagellin holds promise for developing an effective vaccine against A. baumannii infections.
Collapse
Affiliation(s)
- Bahador Behrouz
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | - Iraj Rasooli
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran.
- Molecular Microbiology Research Center, Department of Biology, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran.
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Nourani L, Lotfi A, Vand-Rajabpour H, Pourhashem Z, Nemati F, Mehrizi AA. Optimized Refolding Buffers Oriented Humoral Immune Responses Versus PfGCS1 Self-Assembled Peptide Nanoparticle. Mol Biotechnol 2024; 66:2648-2664. [PMID: 38267696 DOI: 10.1007/s12033-023-01044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Developing a novel class of vaccine is pivotal for eliminating and eradicating malaria. Preceding investigations demonstrated partial blocking activity in malaria transmission against recombinant vaccine PfHAP2-GCS1 and conserved region of the cd loop. The effectiveness of immune response varies with the size and shape of the self-assembly of peptide nanoparticles (SAPNs) displaying antigen, affected by different components in refolding buffers. Plasmodium falciparum Generative Cell Specific 1 (PfGCS1), a promising malaria transmission-blocking vaccine (TBV) candidate, was expressed, purified, and followed by a four-step refolding process to form nanoparticles (PfGCS1-SAPNs). The influence of buffer components on the size and shape of SAPNs was investigated by DLS and FESEM. Furthermore, the immunogenicity of nanostructures was assessed in different mouse groups. The results showed that PfGCS1-SAPN was immunogenic and its administration with Poly (I:C), stimulated humoral and cellular responses in the mouse model. In the immunized mice groups, the level of IgG antibodies against PfGCS1-SAPN was significantly increased in different time points (second and third boost) and heterogeneous boosters. The various IgG-subclasses profile shifted to Th1, Th2, or Th1/Th2 mix responses in mice immunized with PfGCS1-SAPN refolded in different buffers, indicating a prerequisite for further investigations to optimize vaccine formulation to enhance and modulate Th1/cellular responses. Such studies pave the way to improve biophysical features related to the nanoparticles' size, shape, and conformational epitopes of candidate antigens and T- and B-cells presented on the superficial structure to elicit robust immune responses.
Collapse
Affiliation(s)
- Leila Nourani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
| | - Anita Lotfi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hediye Vand-Rajabpour
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
| | - Zeinab Pourhashem
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
| | - Fahimeh Nemati
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran.
| |
Collapse
|
3
|
Park J, Zhang Z, Belinskaya T, Tsoras AN, Chao CC, Jiang L, Champion JA. Dual-Antigen Subunit Vaccine Nanoparticles for Scrub Typhus. Pathogens 2023; 12:1390. [PMID: 38133275 PMCID: PMC10745692 DOI: 10.3390/pathogens12121390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Orientia tsutsugamushi is the causative pathogen of scrub typhus, an acute febrile disease prevalent in the Asia-Pacific region that is spread to people through chigger bites. Despite the emerging threat, there is no currently available vaccine against O. tsutsugamushi. Here, we developed dual-antigen subunit vaccine nanoparticles using recombinant 47 kD and 56 kD proteins, which are immunogenic outer membrane antigens of O. tsutsugamushi. The biocompatible protein vaccine nanoparticles were formed via desolvation of r56 or r47E antigens with acetone, coating with an additional layer of the 56 kD protein, and stabilization with reducible homobifunctional DTSSP and heterobifunctional SDAD crosslinkers. The dual-antigen subunit vaccine nanoparticles significantly improved antigen-specific antibody responses in vaccinated mice. Most importantly, the dual-antigen nanoparticles coated with an additional layer of the 56 kD protein were markedly more immunogenic than soluble antigens or single-antigen nanoparticles in the context of cellular immune responses. Given the significance of cellular immune responses for protection against O. tsutsugamushi, these results demonstrate the potent immunogenicity of dual-layered antigen nanoparticles and their potential as a promising strategy for developing vaccines against scrub typhus.
Collapse
Affiliation(s)
- Jaeyoung Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA 30332, USA; (J.P.); (A.N.T.)
| | - Zhiwen Zhang
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Bethesda, MD 20817, USA; (Z.Z.); (T.B.)
- Naval Medical Research Center, 503 Robert Grant Ave., Silver Spring, MD 20910, USA;
| | - Tatyana Belinskaya
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Bethesda, MD 20817, USA; (Z.Z.); (T.B.)
- Naval Medical Research Center, 503 Robert Grant Ave., Silver Spring, MD 20910, USA;
| | - Alexandra N. Tsoras
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA 30332, USA; (J.P.); (A.N.T.)
| | - Chien-Chung Chao
- Naval Medical Research Center, 503 Robert Grant Ave., Silver Spring, MD 20910, USA;
| | - Le Jiang
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Bethesda, MD 20817, USA; (Z.Z.); (T.B.)
- Naval Medical Research Center, 503 Robert Grant Ave., Silver Spring, MD 20910, USA;
| | - Julie A. Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA 30332, USA; (J.P.); (A.N.T.)
| |
Collapse
|
4
|
Park J, Pho T, Champion JA. Chemical and biological conjugation strategies for the development of multivalent protein vaccine nanoparticles. Biopolymers 2023; 114:e23563. [PMID: 37490564 PMCID: PMC10528127 DOI: 10.1002/bip.23563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles. Increasing multivalency can be an effective approach to provide a potent humoral immune response by more strongly engaging and clustering B cell receptors (BCRs) to induce activation, as well as increased uptake by antigen presenting cells and their subsequent T cell activation. Proper orientation of antigen on protein nanoparticles is also considered a crucial factor for enhanced BCR engagement and subsequent immune responses. Therefore, various strategies have been reported to decorate highly repetitive surfaces of protein nanoparticle scaffolds with multiple copies of antigens, arrange antigens in proper orientation, or combinations thereof. In this review, we describe different chemical bioconjugation methods, approaches for genetic fusion of recombinant antigens, biological affinity tags, and enzymatic conjugation methods to effectively present antigens on the surface of protein nanoparticle vaccine scaffolds.
Collapse
Affiliation(s)
- Jaeyoung Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
| | - Thomas Pho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| | - Julie A. Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| |
Collapse
|
5
|
Wang Z, Zhang T, Jia F, Ge C, He Y, Tian Y, Wang W, Yang G, Huang H, Wang J, Shi C, Yang W, Cao X, Zeng Y, Wang N, Qian A, Wang C, Jiang Y. Homologous Sequential Immunization Using Salmonella Oral Administration Followed by an Intranasal Boost with Ferritin-Based Nanoparticles Enhanced the Humoral Immune Response against H1N1 Influenza Virus. Microbiol Spectr 2023; 11:e0010223. [PMID: 37154735 PMCID: PMC10269571 DOI: 10.1128/spectrum.00102-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
The influenza virus continues to pose a great threat to public health due to the frequent variations in RNA viruses. Vaccines targeting conserved epitopes, such as the extracellular domain of the transmembrane protein M2 (M2e), a nucleoprotein, and the stem region of hemagglutinin proteins, have been developed, but more efficient strategies, such as nanoparticle-based vaccines, are still urgently needed. However, the labor-intensive in vitro purification of nanoparticles is still necessary, which could hinder the application of nanoparticles in the veterinary field in the future. To overcome this limitation, we used regulated lysis Salmonella as an oral vector with which to deliver three copies of M2e (3M2e-H1N1)-ferritin nanoparticles in situ and evaluated the immune response. Then, sequential immunization using Salmonella-delivered nanoparticles followed by an intranasal boost with purified nanoparticles was performed to further improve the efficiency. Compared with 3M2e monomer administration, Salmonella-delivered in situ nanoparticles significantly increased the cellular immune response. Additionally, the results of sequential immunization showed that the intranasal boost with purified nanoparticles dramatically stimulated the activation of lung CD11b dendritic cells (DCs) and elevated the levels of effector memory T (TEM) cells in both spleen and lung tissues as well as those of CD4 and CD8 tissue-resident memory T (TRM) cells in the lungs. The increased production of mucosal IgG and IgA antibody titers was also observed, resulting in further improvements to protection against a virus challenge, compared with the pure oral immunization group. Salmonella-delivered in situ nanoparticles efficiently increased the cellular immune response, compared with the monomer, and sequential immunization further improved the systemic immune response, as shown by the activation of DCs, the production of TEM cells and TRM cells, and the mucosal immune response, thereby providing us with a novel strategy by which to apply nanoparticle-based vaccines in the future. IMPORTANCE Salmonella-delivered in situ nanoparticle platforms may provide novel nanoparticle vaccines for oral administration, which would be beneficial for veterinary applications. The combination of administering Salmonella-vectored, self-assembled nanoparticles and an intranasal boost with purified nanoparticles significantly increased the production of effector memory T cells and lung resident memory T cells, thereby providing partial protection against an influenza virus challenge. This novel strategy could open a novel avenue for the application of nanoparticle vaccines for veterinary purposes.
Collapse
Affiliation(s)
- Zhannan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tongyu Zhang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Futing Jia
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chongbo Ge
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yingkai He
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yawen Tian
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wenfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Aidong Qian
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Danielsen M, Kempen PJ, Andresen TL, Urquhart AJ. Formulation and characterization of insulin nanoclusters for a controlled release. Int J Biol Macromol 2023; 235:123658. [PMID: 36822285 DOI: 10.1016/j.ijbiomac.2023.123658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
The growing interest in biopharmaceuticals combined with the challenges regarding formulation and delivery continues to encourage the development of new and improved formulations of this class of therapeutics. Nanoclusters (NCs) represent a type of formulation strategy where the biopharmaceutical is clustered in a reversible manner to function as both the therapeutic and the vehicle. In this study, insulin NCs (INCs) were formulated by a new methodology of first crosslinking proteins followed by desolvation. Crosslinking of the protein with the reducible DTSSP crosslinker improved control of the INC synthesis process to give INCs with a mean size of 198 ± 7 nm and a mean zeta potential of -39 ± 1 mV. Crosslinking and clustering of insulin did not induce cytotoxicity or major differences in the biological activity compared to the free unmodified protein. The potency of the crosslinked insulin and the INCs appeared slightly lower than that of the unmodified protein, and significantly higher doses of the INCs compared to the free protein were applied to achieve similar blood sugar lowering effects in vivo. Interestingly, the INCs allowed for high doses to be subcutaneously delivered with prolonged efficacy without being lethal in rats.
Collapse
Affiliation(s)
- Mia Danielsen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Paul Joseph Kempen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; National Centre for Nano Fabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Andrew James Urquhart
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
7
|
Wang Y, Dong C, Ma Y, Zhu W, Gill HS, Denning TL, Kang SM, Wang BZ. Monophosphoryl lipid A-adjuvanted nucleoprotein-neuraminidase nanoparticles improve immune protection against divergent influenza viruses. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102614. [PMID: 36265560 PMCID: PMC9756393 DOI: 10.1016/j.nano.2022.102614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Universal influenza vaccines are urgently needed to prevent recurrent influenza epidemics and inevitable pandemics. We generated double-layered protein nanoparticles incorporating two conserved influenza antigens-nucleoprotein and neuraminidase-through a two-step desolvation-crosslinking method. These protein nanoparticles displayed immunostimulatory properties to antigen-presenting cells by promoting inflammatory cytokine (IL-6 and TNF-α) secretion from JAWS II dendric cells. The nanoparticle immunization induced significant antigen-specific humoral and cellular responses, including antigen-binding and neutralizing antibodies, antibody- and cytokine (IFN-γ and IL-4)-secreting cells, and NP147-155 tetramer-specific cytotoxic T lymphocyte (CTL) responses. Co-administration of monophosphoryl lipid A (MPLA, a toll-like receptor 4 agonist) with the protein nanoparticles further improved immune responses and conferred heterologous and heterosubtypic influenza protection. The MPLA-adjuvanted nanoparticles reduced lung inflammation post-infection. The results demonstrated that the combination of MPLA and conserved protein nanoparticles could be developed into an improved universal influenza vaccine strategy.
Collapse
Affiliation(s)
- Ye Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Timothy L Denning
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
8
|
Chimeric Virus-like Particles Co-Displaying Hemagglutinin Stem and the C-Terminal Fragment of DnaK Confer Heterologous Influenza Protection in Mice. Viruses 2022; 14:v14102109. [PMID: 36298664 PMCID: PMC9610613 DOI: 10.3390/v14102109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza virus hemagglutinin (HA) stem is currently regarded as an extremely promising immunogen for designing universal influenza vaccines. The appropriate antigen-presenting vaccine vector would be conducive to increasing the immunogenicity of the HA stem antigen. In this study, we generated chimeric virus-like particles (cVLPs) co-displaying the truncated C-terminal of DnaK from Escherichia coli and H1 stem or full-length H1 antigen using the baculovirus expression system. Transmission electronic micrography revealed the expression and presentation of H1 stem antigens on the surface of VLPs. Vaccinations of mice with the H1 stem cVLPs induced H1-specific immune responses and provided heterologous immune protection in vivo, which was more effective than vaccinations with VLPs displaying H1 stem alone in protecting mice against weight loss as well as increasing survival rates after lethal influenza viral challenge. The results indicate that the incorporation of the truncated C-terminal of DnaK as an adjuvant protein into the cVLPs significantly enhances the H1-specific immunity and immune protection. We have explicitly identified the VLP platform as an effective way of expressing HA stem antigen and revealed that chimeric VLP is an vaccine vector for developing HA stem-based universal influenza vaccines.
Collapse
|
9
|
Danielsen M, Hempel C, Andresen TL, Urquhart AJ. Biopharmaceutical nanoclusters: Towards the self-delivery of protein and peptide therapeutics. J Control Release 2022; 347:282-307. [PMID: 35513210 DOI: 10.1016/j.jconrel.2022.04.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022]
Abstract
Protein and peptide biopharmaceuticals have had a major impact on the treatment of a number of diseases. There is a growing interest in overcoming some of the challenges associated with biopharmaceuticals, such as rapid degradation in physiological fluid, using nanocarrier delivery systems. Biopharmaceutical nanoclusters (BNCs) where the therapeutic protein or peptide is clustered together to form the main constituent of the nanocarrier system have the potential to mimic the benefits of more established nanocarriers (e.g., liposomal and polymeric systems) whilst eliminating the issue of low drug loading and potential side effects from additives. These benefits would include enhanced stability, improved absorption, and increased biopharmaceutical activity. However, the successful development of BNCs is challenged by the physicochemical complexity of the protein and peptide constituents as well as the dynamics of clustering. Here, we present and discuss common methodologies for the synthesis of therapeutic protein and peptide nanoclusters, as well as review the current status of this emerging field.
Collapse
Affiliation(s)
- Mia Danielsen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Casper Hempel
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Andrew J Urquhart
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
10
|
Calzas C, Mao M, Turpaud M, Viboud Q, Mettier J, Figueroa T, Bessière P, Mangin A, Sedano L, Hervé PL, Volmer R, Ducatez MF, Bourgault S, Archambault D, Le Goffic R, Chevalier C. Immunogenicity and Protective Potential of Mucosal Vaccine Formulations Based on Conserved Epitopes of Influenza A Viruses Fused to an Innovative Ring Nanoplatform in Mice and Chickens. Front Immunol 2021; 12:772550. [PMID: 34868036 PMCID: PMC8632632 DOI: 10.3389/fimmu.2021.772550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Current inactivated vaccines against influenza A viruses (IAV) mainly induce immune responses against highly variable epitopes across strains and are mostly delivered parenterally, limiting the development of an effective mucosal immunity. In this study, we evaluated the potential of intranasal formulations incorporating conserved IAV epitopes, namely the long alpha helix (LAH) of the stalk domain of hemagglutinin and three tandem repeats of the ectodomain of the matrix protein 2 (3M2e), as universal mucosal anti-IAV vaccines in mice and chickens. The IAV epitopes were grafted to nanorings, a novel platform technology for mucosal vaccination formed by the nucleoprotein (N) of the respiratory syncytial virus, in fusion or not with the C-terminal end of the P97 protein (P97c), a recently identified Toll-like receptor 5 agonist. Fusion of LAH to nanorings boosted the generation of LAH-specific systemic and local antibody responses as well as cellular immunity in mice, whereas the carrier effect of nanorings was less pronounced towards 3M2e. Mice vaccinated with chimeric nanorings bearing IAV epitopes in fusion with P97c presented modest LAH- or M2e-specific IgG titers in serum and were unable to generate a mucosal humoral response. In contrast, N-3M2e or N-LAH nanorings admixed with Montanide™ gel (MG) triggered strong specific humoral responses, composed of serum type 1/type 2 IgG and mucosal IgG and IgA, as well as cellular responses dominated by type 1/type 17 cytokine profiles. All mice vaccinated with the [N-3M2e + N-LAH + MG] formulation survived an H1N1 challenge and the combination of both N-3M2e and N-LAH nanorings with MG enhanced the clinical and/or virological protective potential of the preparation in comparison to individual nanorings. Chickens vaccinated parenterally or mucosally with N-LAH and N-3M2e nanorings admixed with Montanide™ adjuvants developed a specific systemic humoral response, which nonetheless failed to confer protection against heterosubtypic challenge with a highly pathogenic H5N8 strain. Thus, while the combination of N-LAH and N-3M2e nanorings with Montanide™ adjuvants shows promise as a universal mucosal anti-IAV vaccine in the mouse model, further experiments have to be conducted to extend its efficacy to poultry.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Chickens
- Cytokines/immunology
- Cytokines/metabolism
- Epitopes/immunology
- Female
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Immunity, Mucosal/drug effects
- Immunity, Mucosal/immunology
- Immunogenicity, Vaccine/immunology
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/chemistry
- Influenza Vaccines/immunology
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Protective Agents/administration & dosage
- Survival Analysis
- Vaccination/methods
- Mice
Collapse
Affiliation(s)
- Cynthia Calzas
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| | - Molida Mao
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| | - Mathilde Turpaud
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| | - Quentin Viboud
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| | - Joelle Mettier
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| | - Thomas Figueroa
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Unité Mixte de Recherche (UMR1225), Interactions Hótes-Agents Pathogénes-Ecole Nationale Vétérinaire de Toulouse (IHAP-ENVT)-University of Toulouse, Toulouse, France
| | - Pierre Bessière
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Unité Mixte de Recherche (UMR1225), Interactions Hótes-Agents Pathogénes-Ecole Nationale Vétérinaire de Toulouse (IHAP-ENVT)-University of Toulouse, Toulouse, France
| | - Antoine Mangin
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
- Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Laura Sedano
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| | - Pierre-Louis Hervé
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
- Chemistry Department, Université du Québec à Montréal, Montreal, QC, Canada
| | - Romain Volmer
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Unité Mixte de Recherche (UMR1225), Interactions Hótes-Agents Pathogénes-Ecole Nationale Vétérinaire de Toulouse (IHAP-ENVT)-University of Toulouse, Toulouse, France
| | - Mariette F. Ducatez
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Unité Mixte de Recherche (UMR1225), Interactions Hótes-Agents Pathogénes-Ecole Nationale Vétérinaire de Toulouse (IHAP-ENVT)-University of Toulouse, Toulouse, France
| | - Steve Bourgault
- Chemistry Department, Université du Québec à Montréal, Montreal, QC, Canada
| | - Denis Archambault
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
| | - Ronan Le Goffic
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| | - Christophe Chevalier
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Molecular and Virology Unit VIM-Unité Mixte de Recherche (UMR) 892, University Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
11
|
Mohammadzadeh R, Soleimanpour S, Pishdadian A, Farsiani H. Designing and development of epitope-based vaccines against Helicobacter pylori. Crit Rev Microbiol 2021; 48:489-512. [PMID: 34559599 DOI: 10.1080/1040841x.2021.1979934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is the principal cause of serious diseases (e.g. gastric cancer and peptic ulcers). Antibiotic therapy is an inadequate strategy in H. pylori eradication because of which vaccination is an inevitable approach. Despite the presence of countless vaccine candidates, current vaccines in clinical trials have performed with poor efficacy which makes vaccination extremely challenging. Remarkable advancements in immunology and pathogenic biology have provided an appropriate opportunity to develop various epitope-based vaccines. The fusion of proper antigens involved in different aspects of H. pylori colonization and pathogenesis as well as peptide linkers and built-in adjuvants results in producing epitope-based vaccines with excellent therapeutic efficacy and negligible adverse effects. Difficulties of the in vitro culture of H. pylori, high genetic variation, and unfavourable immune responses against feeble epitopes in the complete antigen are major drawbacks of current vaccine strategies that epitope-based vaccines may overcome. Besides decreasing the biohazard risk, designing precise formulations, saving time and cost, and induction of maximum immunity with minimum adverse effects are the advantages of epitope-based vaccines. The present article is a comprehensive review of strategies for designing and developing epitope-based vaccines to provide insights into the innovative vaccination against H. pylori.
Collapse
Affiliation(s)
- Roghayeh Mohammadzadeh
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Pishdadian
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Mytle N, Leyrer S, Inglefield JR, Harris AM, Hickey TE, Minang J, Lu H, Ma Z, Andersen H, Grubaugh ND, Guina T, Skiadopoulos MH, Lacy MJ. Influenza Antigens NP and M2 Confer Cross Protection to BALB/c Mice against Lethal Challenge with H1N1, Pandemic H1N1 or H5N1 Influenza A Viruses. Viruses 2021; 13:1708. [PMID: 34578289 PMCID: PMC8473317 DOI: 10.3390/v13091708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/01/2023] Open
Abstract
Influenza hemagglutinin (HA) is considered a major protective antigen of seasonal influenza vaccine but antigenic drift of HA necessitates annual immunizations using new circulating HA versions. Low variation found within conserved non-HA influenza virus (INFV) antigens may maintain protection with less frequent immunizations. Conserved antigens of influenza A virus (INFV A) that can generate cross protection against multiple INFV strains were evaluated in BALB/c mice using modified Vaccinia virus Ankara (MVA)-vectored vaccines that expressed INFV A antigens hemagglutinin (HA), matrix protein 1 (M1), nucleoprotein (NP), matrix protein 2 (M2), repeats of the external portion of M2 (M2e) or as tandem repeats (METR), and M2e with transmembrane region and cytoplasmic loop (M2eTML). Protection by combinations of non-HA antigens was equivalent to that of subtype-matched HA. Combinations of NP and forms of M2e generated serum antibody responses and protected mice against lethal INFV A challenge using PR8, pandemic H1N1 A/Mexico/4108/2009 (pH1N1) or H5N1 A/Vietnam/1203/2004 (H5N1) viruses, as demonstrated by reduced lung viral burden and protection against weight loss. The highest levels of protection were obtained with NP and M2e antigens delivered as MVA inserts, resulting in broadly protective immunity in mice and enhancement of previous natural immunity to INFV A.
Collapse
Affiliation(s)
- Nutan Mytle
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Biomedical Advanced Research and Development Agency, U.S. Department of Health and Human Services, Washington, DC 20201, USA
| | - Sonja Leyrer
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Jon R. Inglefield
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Andrea M. Harris
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| | - Thomas E. Hickey
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- National Cancer Institute, National Institutes of Health, Frederick, MD 20814, USA
| | - Jacob Minang
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Optimal Health Care, 11377 Robinwood Dr, Hagerstown, MD 21742, USA
| | - Hang Lu
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| | - Zhidong Ma
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| | - Hanné Andersen
- BIOQUAL, Inc., 12301 Parklawn Dr, Rockville, MD 20852, USA;
| | - Nathan D. Grubaugh
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Tina Guina
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- AstraZeneca, Gaithersburg, MD 20878, USA
| | - Mario H. Skiadopoulos
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
- U.S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J. Lacy
- Emergent BioSolutions, 300 Professional Drive, Gaithersburg, MD 20879, USA; (N.M.); (S.L.); (J.R.I.); (A.M.H.); (T.E.H.); (J.M.); (H.L.); (Z.M.); (N.D.G.); (T.G.); (M.H.S.)
| |
Collapse
|
13
|
Venkataraman S, Hefferon K, Makhzoum A, Abouhaidar M. Combating Human Viral Diseases: Will Plant-Based Vaccines Be the Answer? Vaccines (Basel) 2021; 9:vaccines9070761. [PMID: 34358177 PMCID: PMC8310141 DOI: 10.3390/vaccines9070761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular pharming or the technology of application of plants and plant cell culture to manufacture high-value recombinant proteins has progressed a long way over the last three decades. Whether generated in transgenic plants by stable expression or in plant virus-based transient expression systems, biopharmaceuticals have been produced to combat several human viral diseases that have impacted the world in pandemic proportions. Plants have been variously employed in expressing a host of viral antigens as well as monoclonal antibodies. Many of these biopharmaceuticals have shown great promise in animal models and several of them have performed successfully in clinical trials. The current review elaborates the strategies and successes achieved in generating plant-derived vaccines to target several virus-induced health concerns including highly communicable infectious viral diseases. Importantly, plant-made biopharmaceuticals against hepatitis B virus (HBV), hepatitis C virus (HCV), the cancer-causing virus human papillomavirus (HPV), human immunodeficiency virus (HIV), influenza virus, zika virus, and the emerging respiratory virus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been discussed. The use of plant virus-derived nanoparticles (VNPs) and virus-like particles (VLPs) in generating plant-based vaccines are extensively addressed. The review closes with a critical look at the caveats of plant-based molecular pharming and future prospects towards further advancements in this technology. The use of biopharmed viral vaccines in human medicine and as part of emergency response vaccines and therapeutics in humans looks promising for the near future.
Collapse
Affiliation(s)
- Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
- Correspondence:
| | - Kathleen Hefferon
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana;
| | - Mounir Abouhaidar
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| |
Collapse
|
14
|
Wang Y, Li S, Dong C, Ma Y, Song Y, Zhu W, Kim J, Deng L, Denning TL, Kang SM, Prausnitz MR, Wang BZ. Skin vaccination with dissolvable microneedle patches incorporating influenza neuraminidase and flagellin protein nanoparticles induces broad immune protection against multiple influenza viruses. ACS APPLIED BIO MATERIALS 2021; 4:4953-4961. [PMID: 34179728 PMCID: PMC8232372 DOI: 10.1021/acsabm.1c00240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We generated self-adjuvanted protein nanoparticles of conserved influenza antigens and immunized mice via skin vaccination with dissolvable microneedle patches (MNPs) to increase the strength and breadth of immune responses. We produced M2e nanoparticles via ethanol desolvation, and double-layered NA1/M2e (shell/core), NA1-FliC/M2e, NA2/M2e, and NA2-FliC/M2e protein nanoparticles by chemically crosslinking influenza NA and flagellin (FliC) onto the surfaces of the M2e nanoparticles. The resulting nanoparticles retained FliC TLR5 innate signaling activity and significantly increased antigen-uptake and dendritic cell maturation in vitro. We incorporated the nanoparticles into MNPs for skin vaccination in mice. The nanoparticle MNPs significantly increased M2e and NA-specific antibody levels, the numbers of germinal center B cells, and IL-4 positive splenocytes. Double-layered nanoparticle MNP skin vaccination protected mice against homologous and heterosubtypic influenza viruses. Our results demonstrated that MNP skin vaccination of NA-FliC/M2e nanoparticles could be developed into a standalone or synergistic component of a universal influenza vaccine strategy.
Collapse
Affiliation(s)
- Ye Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Song Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Yufeng Song
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Joo Kim
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Lei Deng
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Timothy L. Denning
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Road, Atlanta, Georgia 30302, USA
| |
Collapse
|
15
|
Schneider CG, Taylor JA, Sibilo MQ, Miura K, Mallory KL, Mann C, Karch C, Beck Z, Matyas GR, Long CA, Bergmann-Leitner E, Burkhard P, Angov E. Orientation of Antigen Display on Self-Assembling Protein Nanoparticles Influences Immunogenicity. Vaccines (Basel) 2021; 9:vaccines9020103. [PMID: 33572803 PMCID: PMC7911071 DOI: 10.3390/vaccines9020103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Self-assembling protein nanoparticles (SAPN) serve as a repetitive antigen delivery platform with high-density epitope display; however, antigen characteristics such as size and epitope presentation can influence the immunogenicity of the assembled particle and are aspects to consider for a rationally designed effective vaccine. Here, we characterize the folding and immunogenicity of heterogeneous antigen display by integrating (a) dual-stage antigen SAPN presenting the P. falciparum (Pf) merozoite surface protein 1 subunit, PfMSP119, and Pf cell-traversal protein for ookinetes and sporozoites, PfCelTOS, in addition to (b) a homogenous antigen SAPN displaying two copies of PfCelTOS. Mice and rabbits were utilized to evaluate antigen-specific humoral and cellular induction as well as functional antibodies via growth inhibition of the blood-stage parasite. We demonstrate that antigen orientation and folding influence the elicited immune response, and when appropriately designed, SAPN can serve as an adaptable platform for an effective multi-antigen display.
Collapse
Affiliation(s)
- Cosette G. Schneider
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Justin A. Taylor
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Michael Q. Sibilo
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Parsons Corporation, Centreville, VA 20120, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20892, USA; (K.M.); (C.A.L.)
| | - Katherine L. Mallory
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Parsons Corporation, Centreville, VA 20120, USA
| | - Christopher Mann
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Parsons Corporation, Centreville, VA 20120, USA
| | - Christopher Karch
- Laboratory of Antigen and Adjuvants, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (Z.B.); (G.R.M.)
- Henry Jackson Foundation, Bethesda, MD 20817, USA
| | - Zoltan Beck
- Laboratory of Antigen and Adjuvants, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (Z.B.); (G.R.M.)
- Henry Jackson Foundation, Bethesda, MD 20817, USA
| | - Gary R. Matyas
- Laboratory of Antigen and Adjuvants, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (Z.B.); (G.R.M.)
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20892, USA; (K.M.); (C.A.L.)
| | - Elke Bergmann-Leitner
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
| | | | - Evelina Angov
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Correspondence: ; Tel.: +1-301-319-9614
| |
Collapse
|
16
|
Zhu W, Dong C, Wei L, Wang BZ. Promising Adjuvants and Platforms for Influenza Vaccine Development. Pharmaceutics 2021; 13:pharmaceutics13010068. [PMID: 33430259 PMCID: PMC7825707 DOI: 10.3390/pharmaceutics13010068] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Influenza is one of the major threats to public health. Current influenza vaccines cannot provide effective protection against drifted or shifted influenza strains. Researchers have considered two important strategies to develop novel influenza vaccines with improved immunogenicity and broader protective efficacy. One is applying fewer variable viral antigens, such as the haemagglutinin stalk domain. The other is including adjuvants in vaccine formulations. Adjuvants are promising and helpful boosters to promote more rapid and stronger immune responses with a dose-sparing effect. However, few adjuvants are currently licensed for human influenza vaccines, although many potential candidates are in different trials. While many advantages have been observed using adjuvants in influenza vaccine formulations, an improved understanding of the mechanisms underlying viral infection and vaccination-induced immune responses will help to develop new adjuvant candidates. In this review, we summarize the works related to adjuvants in influenza vaccine research that have been used in our studies and other laboratories. The review will provide perspectives for the utilization of adjuvants in developing next-generation and universal influenza vaccines.
Collapse
|
17
|
Cossette B, Kelly SH, Collier JH. Intranasal Subunit Vaccination Strategies Employing Nanomaterials and Biomaterials. ACS Biomater Sci Eng 2020; 7:1765-1779. [DOI: 10.1021/acsbiomaterials.0c01291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Benjamin Cossette
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Sean H. Kelly
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Joel H. Collier
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| |
Collapse
|
18
|
Protein and Peptide Nanocluster Vaccines. Curr Top Microbiol Immunol 2020. [PMID: 33165870 DOI: 10.1007/82_2020_228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Recombinant protein- and peptide-based vaccines can deliver large amounts of specific antigens for tailored immune responses. One class of these are protein and peptide nanoclusters (PNCs), which are made entirely from the crosslinked antigen. PNCs leverage the inherent immunogenicity of nanoparticulate antigens while minimizing the use of excipients normally used to create them. In this chapter, we discuss PNC fabrication methods, immunostimulatory properties of nanoclusters observed in vitro and in vivo, and protective benefits of PNC vaccines against influenza and cancer mouse models. We conclude with an outlook on future studies of PNCs and PNC design strategies, as well as their use in future vaccine formulations.
Collapse
|
19
|
In Silico Design of a Poly-epitope Vaccine for Urinary Tract Infection Based on Conserved Antigens by Modern Vaccinology. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10137-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Tang S, Zhu W, Wang BZ. Influenza Vaccines toward Universality through Nanoplatforms and Given by Microneedle Patches. Viruses 2020; 12:E1212. [PMID: 33114336 PMCID: PMC7690886 DOI: 10.3390/v12111212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
Influenza is one of the top threats to public health. The best strategy to prevent influenza is vaccination. Because of the antigenic changes in the major surface antigens of influenza viruses, current seasonal influenza vaccines need to be updated every year to match the circulating strains and are suboptimal for protection. Furthermore, seasonal vaccines do not protect against potential influenza pandemics. A universal influenza vaccine will eliminate the threat of both influenza epidemics and pandemics. Due to the massive challenge in realizing influenza vaccine universality, a single vaccine strategy cannot meet the need. A comprehensive approach that integrates advances in immunogen designs, vaccine and adjuvant nanoplatforms, and vaccine delivery and controlled release has the potential to achieve an effective universal influenza vaccine. This review will summarize the advances in the research and development of an affordable universal influenza vaccine.
Collapse
Affiliation(s)
| | | | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (W.Z.)
| |
Collapse
|
21
|
An approach to the influenza chimeric subunit vaccine (3M2e-HA2-NP) provides efficient protection against lethal virus challenge. Biotechnol Lett 2020; 42:1147-1159. [PMID: 32152828 DOI: 10.1007/s10529-020-02822-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/26/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Vaccination is the most effective preventive strategy for influenza disease. As the virus undergoes high antigenic drift, it requires a constant reformulation to obtain high protection. RESULTS Immunogenicity of a purified chimeric protein containing conserved regions of influenza A/H1N1 viruses including the Hemagglutinin stalk domain, Nucleoprotein, and Matrix protein produced in a prokaryotic system was assessed in vitro and in vivo, alone or in combination with adjuvants by evaluating antibody responses, cytokine production, lymphocyte proliferative assay, and mortality rate after challenge. The animals that received the chimeric protein had specific antibody responses, elicited memory CD4 cells, cytokines of Th1 and Th2 cells and showed 75% protection against influenza virus lethal challenge. The animals injected with the chimeric protein supplemented with Alum showed improved immune responses, but they had 67% protection. In other words, although Alum adjuvant enriched the chimera specific immune responses potently, it could not enhance its protectivity. CONCLUSION Regarding the immunogenicity and protectivity of the chimeric protein construct against influenza, findings of the study suggested that the chimeric protein could be considered as a promising influenza vaccine candidate.
Collapse
|
22
|
Blokhina EA, Mardanova ES, Stepanova LA, Tsybalova LM, Ravin NV. Plant-Produced Recombinant Influenza A Virus Candidate Vaccine Based on Flagellin Linked to Conservative Fragments of M2 Protein and Hemagglutintin. PLANTS 2020; 9:plants9020162. [PMID: 32013187 PMCID: PMC7076671 DOI: 10.3390/plants9020162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/26/2022]
Abstract
The development of recombinant influenza vaccines with broad spectrum protection is an important task. The combination of conservative viral antigens, such as M2e, the extracellular domain of the transmembrane protein M2, and conserved regions of the second subunit of hemagglutinin (HA), provides an opportunity for the development of universal influenza vaccines. Immunogenicity of the antigens could be enhanced by fusion to bacterial flagellin, the ligand for Toll-like receptor 5, acting as a powerful mucosal adjuvant. In this study, we report the transient expression in plants of a recombinant protein comprising flagellin of Salmonella typhimurium fused to the conserved region of the second subunit of HA (76–130 a.a.) of the first phylogenetic group of influenza A viruses and four tandem copies of the M2e peptide. The hybrid protein was expressed in Nicotiana benthamiana plants using the self-replicating potato virus X-based vector pEff up to 300 µg/g of fresh leaf tissue. The intranasal immunization of mice with purified fusion protein induced high levels of M2e-specific serum antibodies and provided protection against lethal challenge with influenza A virus strain A/Aichi/2/68(H3N2). Our results show that M2e and hemagglutinin-derived peptide can be used as important targets for the development of a plant-produced vaccine against influenza.
Collapse
Affiliation(s)
- Elena A. Blokhina
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 101000, Russia; (E.A.B.); (E.S.M.)
| | - Eugenia S. Mardanova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 101000, Russia; (E.A.B.); (E.S.M.)
| | - Liudmila A. Stepanova
- Research Institute of Influenza, Russian Ministry of Health, St. Petersburg 23805, Russia; (L.A.S.); (L.M.T.)
| | - Liudmila M. Tsybalova
- Research Institute of Influenza, Russian Ministry of Health, St. Petersburg 23805, Russia; (L.A.S.); (L.M.T.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 101000, Russia; (E.A.B.); (E.S.M.)
- Correspondence: ; Tel.: +7-499-7833264
| |
Collapse
|
23
|
Zhang T, Chen X, Liu H, Bao Q, Wang Z, Liao G, Xu X. A rationally designed flagellin-L2 fusion protein induced serum and mucosal neutralizing antibodies against multiple HPV types. Vaccine 2019; 37:4022-4030. [PMID: 31213378 DOI: 10.1016/j.vaccine.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/12/2019] [Accepted: 06/03/2019] [Indexed: 12/27/2022]
Abstract
The amino terminus of human papillomavirus (HPV) minor capsid protein L2 harbors several conserved neutralizing epitopes, including aa.17-36 (RG-1 epitope) and aa.65-85 consensus epitope (cL2 epitope), which are considered to be promising for the construction of cost-effective pan-HPV vaccine candidates. However, the immunogenicity of L2 epitope/peptide is rather weak, and the neutralizing spectrum induced by single type of L2 antigen is suboptimal. In this study, we constructed L2 concatemer with HPV18/33/58/59 RG-1 epitopes and 16L2 aa.11-88 peptide, and fused it with flagellin, a strong systemic and mucosal adjuvant, by hypervariable region replacement. A copy of cL2 epitope was also introduced to the C-terminus of the recombinant protein. The resultant Fla-5PcL2 protein can be produced in E. coli expression system with high yield and good stability. We assessed the immunogenicity of Fla-5PcL2 in mouse model via systemic and mucosal route, and found that subcutaneous immunization with Fla-5PcL2 induced robust serum neutralizing antibodies against divergent HPV types, while intranasal immunization with Fla-5PcL2 induced remarkable L2-specific IgA and cross-neutralizing antibodies in mucosal secretions, and medium titers of cross-neutralizing antibodies in sera. Moreover, Fla-5PcL2 induced full protection against vaginal HPV challenges. As mucosal antibodies provide the first-line defense at infection sites, and needle-free immunizations may increase vaccine compliance and require less public health resources, our results demonstrate that Fla-5PcL2 is a promising vaccine candidate which possibly meet the need in low-resource regions.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xue Chen
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hongyang Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qifeng Bao
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhirong Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Guoyang Liao
- The Fifth Department of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Yunnan, China.
| | - Xuemei Xu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
24
|
Lei Y, Zhao F, Shao J, Li Y, Li S, Chang H, Zhang Y. Application of built-in adjuvants for epitope-based vaccines. PeerJ 2019; 6:e6185. [PMID: 30656066 PMCID: PMC6336016 DOI: 10.7717/peerj.6185] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Several studies have shown that epitope vaccines exhibit substantial advantages over conventional vaccines. However, epitope vaccines are associated with limited immunity, which can be overcome by conjugating antigenic epitopes with built-in adjuvants (e.g., some carrier proteins or new biomaterials) with special properties, including immunologic specificity, good biosecurity and biocompatibility, and the ability to vastly improve the immune response of epitope vaccines. When designing epitope vaccines, the following types of built-in adjuvants are typically considered: (1) pattern recognition receptor ligands (i.e., toll-like receptors); (2) virus-like particle carrier platforms; (3) bacterial toxin proteins; and (4) novel potential delivery systems (e.g., self-assembled peptide nanoparticles, lipid core peptides, and polymeric or inorganic nanoparticles). This review primarily discusses the current and prospective applications of these built-in adjuvants (i.e., biological carriers) to provide some references for the future design of epitope-based vaccines.
Collapse
Affiliation(s)
- Yao Lei
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Furong Zhao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Junjun Shao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yangfan Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifang Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
25
|
Abstract
Annually recurring seasonal influenza causes massive economic loss and poses severe threats to public health worldwide. The current seasonal influenza vaccines are the most effective means of preventing influenza infections but possess major weaknesses. Seasonal influenza vaccines require annual updating of the vaccine strains. However, it is an unreachable task to accurately predict the future circulating strains. Vaccines with mismatched strains dramatically compromise the vaccine efficacy. In addition, the seasonal influenza vaccines are ineffective against an unpredictable pandemic. A universal influenza vaccine would overcome these weaknesses of the seasonal vaccines and abolish the threat of influenza pandemics. One approach under investigation is to design influenza vaccine immunogens based on conserved, type-specific amino acid sequences and conformational epitopes, rather than strain-specific. Such vaccines can elicit broadly reactive humoral and cellular immunity. Universal influenza vaccine development has intensively employed nanotechnology because the structural and morphological properties of nanoparticles dramatically improve vaccine immunogenicity and the induced immunity duration. Layered protein nanoparticles can decrease off-target immune responses, fine-tune antigen recognition and processing, and facilitate comprehensive immune response induction. Herein, we review the designs of effective nanoparticle universal influenza vaccines, the recent discoveries of specific nanoparticle features that contribute to immunogenicity enhancement, and recent progress in clinical trials.
Collapse
Affiliation(s)
- Lei Deng
- Center for Inflammation, Immunity & Infection, Georgia State University, 145 Piedmont Avenue SE, Atlanta, Georgia 30302-3965, United States
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, 145 Piedmont Avenue SE, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
26
|
Wang Y, Deng L, Kang SM, Wang BZ. Universal influenza vaccines: from viruses to nanoparticles. Expert Rev Vaccines 2018; 17:967-976. [PMID: 30365905 DOI: 10.1080/14760584.2018.1541408] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The current seasonal influenza vaccine confers only limited protection due to waning antibodies or the antigenic shift and drift of major influenza surface antigens. A universal influenza vaccine which induces broad cross-protection against divergent influenza viruses with a comparable or better efficacy to seasonal influenza vaccines against matched strains will negate the need for an annual update of vaccine strains and protect against possible influenza pandemics. AREAS COVERED In this review, we summarize the recent progress in nanoparticle-based universal influenza vaccine development. We compared the most potent nanoparticle categories, focusing on how they encapsulate conserved influenza epitopes, stimulate the innate and adaptive immune systems, exhibit antigen depot effect, extend the period for antigen-processing and presentation, and exert an intrinsic adjuvant effect on inducing robust immune responses. EXPERT COMMENTARY The development of an effective universal influenza vaccine is an urgent task. Traditional influenza vaccine approaches are not sufficient for preventing recurrent epidemics or occasional pandemics. Nanoparticles are compatible with different immunogens and immune stimulators and can overcome the intrinsically low immunogenicity of conserved influenza virus antigens. We foresee that an affordable universal influenza vaccine will be available within ten years by integrating nanoparticles with other targeted delivery and controlled release technology.
Collapse
Affiliation(s)
- Ye Wang
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| | - Lei Deng
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| | - Sang-Moo Kang
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| | - Bao-Zhong Wang
- a Center for Inflammation, Immunity & Infection , Georgia State University Institute for Biomedical Sciences , Atlanta , GA , USA
| |
Collapse
|
27
|
Westcott MM, Clemens EA, Holbrook BC, King SB, Alexander-Miller MA. The choice of linker for conjugating R848 to inactivated influenza virus determines the stimulatory capacity for innate immune cells. Vaccine 2018; 36:1174-1182. [PMID: 29398273 DOI: 10.1016/j.vaccine.2018.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/14/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022]
Abstract
Inactivated influenza vaccines are not approved for use in infants less than 6 months of age due to poor immunogenicity in that population. While the live attenuated influenza vaccine has the potential to be more immunogenic, it is not an option for infants and other vulnerable populations, including the elderly and immunocompromised individuals due to safety concerns. In an effort to improve the immunogenicity of the inactivated vaccine for use in vulnerable populations, we have used an approach of chemically crosslinking the Toll-like receptor (TLR) 7/8 agonist R848 directly to virus particles. We have reported previously that an R848-conjugated, inactivated vaccine is more effective at inducing adaptive immune responses and protecting against lung pathology in influenza challenged neonatal African green monkeys than is the unmodified counterpart. In the current study, we describe a second generation vaccine that utilizes an amide-sulfhydryl crosslinker with different spacer chemistry and length to couple R848 to virions. The new vaccine has significantly enhanced immunostimulatory activity for murine macrophages and importantly for monocyte derived human dendritic cells. Demonstration of the significant differences in stimulatory activity afforded by modest changes in linker impacts our fundamental view of the design of TLR agonist-antigen vaccines.
Collapse
Affiliation(s)
- Marlena M Westcott
- Department of Microbiology and Immunology, Biotech Place, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC 27101, USA.
| | - Elene A Clemens
- Department of Microbiology and Immunology, Biotech Place, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC 27101, USA.
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Biotech Place, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC 27101, USA.
| | - S Bruce King
- Department of Chemistry, Wake Downtown, Wake Forest University, 455 Vine Street, Winston-Salem, NC 27101, USA.
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Biotech Place, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC 27101, USA.
| |
Collapse
|
28
|
Tsybalova LM, Stepanova LA, Shuklina MA, Mardanova ES, Kotlyarov RY, Potapchuk MV, Petrov SA, Blokhina EA, Ravin NV. Combination of M2e peptide with stalk HA epitopes of influenza A virus enhances protective properties of recombinant vaccine. PLoS One 2018; 13:e0201429. [PMID: 30138320 PMCID: PMC6107133 DOI: 10.1371/journal.pone.0201429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
Background Influenza infection could be more effectively controlled if a multi-purpose vaccine with the ability to induce responses against most, or all, influenza A subtypes could be generated. Conserved viral proteins are a promising basis for the creation of a broadly protective vaccine. In the present study, the immunogenicity and protective properties of three recombinant proteins (vaccine candidates), comprising conserved viral proteins fused with bacterial flagellin, were compared. Methods Balb/c mice were immunized intranasally with recombinant proteins comprising either one viral protein (the ectodomain of the M2 protein, ‘M2e’) or two viral proteins (M2e and the hemagglutinin second subunit ‘HA2’ epitope) genetically fused with flagellin. Further, two different consensus variants of HA2 were used. Therefore, three experimental positives were used in addition to the negative control (Flg-his). The mucosal, humoral, and T-cell immune responses to these constructs were evaluated. Result We have demonstrated that insertion of the HA2 consensus polypeptide (aa 76–130), derived from either the first (HA2-1) or second (HA2-2) virus phylogenetic group, into the recombinant Flg4M2e protein significantly enhanced its immunogenicity and protective properties. Intranasal administration of the vaccine candidates (Flg-HA2-2-4M2e or Flg-HA2-1-4M2e) induced considerable mucosal and systemic responses directed at both the M2e-protein and, in general, the influenza A virus. However, the immune response elicited by the Flg-HA2-1-4M2e protein was weaker than the one generated by Flg-HA2-2-4M2e. These recombinant proteins containing both viral peptides provide complete protection from lethal challenge with various influenza viruses: A/H3N2; A/H2N2; and A/H5N1. Conclusion This study demonstrates that the intranasal administration of Flg-HA2-2-4M2e recombinant protein induces a strong immune response which provides broad protection against various influenza viruses. This construct is therefore a strong candidate for development as a universal vaccine.
Collapse
Affiliation(s)
- Liudmila M. Tsybalova
- Department of Vaccinology, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
- * E-mail:
| | - Liudmila A. Stepanova
- Department of Vaccinology, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Marina A. Shuklina
- Department of Vaccinology, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Eugenia S. Mardanova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Roman Y. Kotlyarov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Marina V. Potapchuk
- Department of Vaccinology, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Sergei A. Petrov
- Department of Vaccinology, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Elena A. Blokhina
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
29
|
Heterosubtypic influenza protection elicited by double-layered polypeptide nanoparticles in mice. Proc Natl Acad Sci U S A 2018; 115:E7758-E7767. [PMID: 30065113 DOI: 10.1073/pnas.1805713115] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Influenza is a persistent threat to public health. Here we report that double-layered peptide nanoparticles induced robust specific immunity and protected mice against heterosubtypic influenza A virus challenges. We fabricated the nanoparticles by desolvating a composite peptide of tandem copies of nucleoprotein epitopes into nanoparticles as cores and cross-linking another composite peptide of four tandem copies of influenza matrix protein 2 ectodomain epitopes to the core surfaces as a coating. Delivering the nanoparticles via dissolvable microneedle patch-based skin vaccination further enhanced the induced immunity. These peptide-only, layered nanoparticles demonstrated a strong antigen depot effect and migrated into spleens and draining (inguinal) lymph nodes for an extended period compared with soluble antigens. This increased antigen-presentation time correlated with the stronger immune responses in the nanoparticle-immunized group. The protection conferred by nanoparticle immunization was transferable by passive immune serum transfusion and depended partially on a functional IgG receptor FcγRIV. Using a conditional cell depletion, we found that CD8+ T cells were involved in the protection. The immunological potency and stability of the layered peptide nanoparticles indicate applications for other peptide-based vaccines and peptide drug delivery.
Collapse
|
30
|
Wang C, Zhu W, Luo Y, Wang BZ. Gold nanoparticles conjugating recombinant influenza hemagglutinin trimers and flagellin enhanced mucosal cellular immunity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1349-1360. [PMID: 29649593 DOI: 10.1016/j.nano.2018.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/09/2018] [Accepted: 03/31/2018] [Indexed: 01/13/2023]
Abstract
The immunogenicity of subunit vaccines can be augmented by formulating them into nanoparticles. We conjugated recombinant trimetric influenza A/Aichi/2/68(H3N2) hemagglutinin (HA) onto functionalized gold nanoparticle (AuNP) surfaces in a repetitive, oriented configuration. To further improve the immunogenicity, we generated Toll-like receptor 5 (TLR5) agonist flagellin (FliC)-coupled AuNPs as particulate adjuvants. Intranasal immunizations with an AuNP-HA and AuNP-FliC particle mixture elicited strong mucosal and systemic immune responses that protected hosts against lethal influenza challenges. Compared with the AuNP-HA alone group, the addition of AuNP-FliC improved mucosal B cell responses as characterized by elevated influenza specific IgA and IgG levels in nasal, tracheal, and lung washes. AuNP-HA/AuNP-FliC also stimulated antigen-specific interferon-γ (IFN-γ)-secreting CD4+ cell proliferation and induced strong effector CD8+ T cell activation. Our results indicate that intranasal co-delivery of antigen and adjuvant-displaying AuNPs enhanced vaccine efficacy by inducing potent cellular immune responses.
Collapse
Affiliation(s)
- Chao Wang
- Center for Inflammation, Immunity & infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA
| | - Yuan Luo
- Center for Inflammation, Immunity & infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA.
| |
Collapse
|
31
|
Stepanova LA, Mardanova ES, Shuklina MA, Blokhina EA, Kotlyarov RY, Potapchuk MV, Kovaleva AA, Vidyaeva IG, Korotkov AV, Eletskaya EI, Ravin NV, Tsybalova LM. Flagellin-fused protein targeting M2e and HA2 induces potent humoral and T-cell responses and protects mice against various influenza viruses a subtypes. J Biomed Sci 2018; 25:33. [PMID: 29631629 PMCID: PMC5891888 DOI: 10.1186/s12929-018-0433-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/27/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Current influenza vaccines are mainly strain-specific and have limited efficacy in preventing new, potentially pandemic, influenza strains. Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum vaccines based on conserved antigens. A current trend in the design of universal flu vaccines is the construction of recombinant proteins based on combinations of various conserved epitopes of viral proteins (M1, M2, HA2, NP). In this study, we compared the immunogenicity and protective action of two recombinant proteins which feature different designs and which target different antigens. RESULTS Balb/c mice were immunized subcutaneously with Flg-HA2-2-4M2ehs or FlgSh-HA2-2-4M2ehs; these constructs differ in the location of hemagglutinin's HA2-2(76-130) insertion into flagellin (FliC). The humoral and T-cell immune responses to these constructs were evaluated. The simultaneous expression of different M2e and HA2-2(76-130) in recombinant protein form induces a strong M2e-specific IgG response and CD4+/ CD8+ T-cell response. The insertion of HA2-2(76-130) into the hypervariable domain of flagellin greatly increases antigen-specific T-cell response, as evidenced by the formation of multi-cytokine-secreting CD4+, CD8+ T-cells, Tem, and Tcm. Both proteins provide full protection from lethal challenge with A/H3N2 and A/H7N9. CONCLUSION Our results show that highly conserved M2e and HA2-2(76-130) can be used as important targets for the development of universal flu vaccines. The location of the HA2-2(76-130) peptide's insertion into the hypervariable domain of flagellin had a significant effect on the T-cell response to influenza antigens, as seen by forming of multi-cytokine-secreting CD4+ and CD8+ T-cells.
Collapse
Affiliation(s)
- Liudmila A Stepanova
- Research Institute of Influenza, Russian Ministry of Health, Prof. Popova str.15/17, 197376, St. Petersburg, Russia.
| | - Eugenia S Mardanova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, building 2, 119071, Moscow, Russia
| | - Marina A Shuklina
- Research Institute of Influenza, Russian Ministry of Health, Prof. Popova str.15/17, 197376, St. Petersburg, Russia
| | - Elena A Blokhina
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, building 2, 119071, Moscow, Russia
| | - Roman Y Kotlyarov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, building 2, 119071, Moscow, Russia
| | - Marina V Potapchuk
- Research Institute of Influenza, Russian Ministry of Health, Prof. Popova str.15/17, 197376, St. Petersburg, Russia
| | - Anna A Kovaleva
- Research Institute of Influenza, Russian Ministry of Health, Prof. Popova str.15/17, 197376, St. Petersburg, Russia
| | - Inna G Vidyaeva
- Research Institute of Influenza, Russian Ministry of Health, Prof. Popova str.15/17, 197376, St. Petersburg, Russia
| | - Alexandr V Korotkov
- Research Institute of Influenza, Russian Ministry of Health, Prof. Popova str.15/17, 197376, St. Petersburg, Russia
| | - Elizaveta I Eletskaya
- Research Institute of Influenza, Russian Ministry of Health, Prof. Popova str.15/17, 197376, St. Petersburg, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33, building 2, 119071, Moscow, Russia
| | - Liudmila M Tsybalova
- Research Institute of Influenza, Russian Ministry of Health, Prof. Popova str.15/17, 197376, St. Petersburg, Russia
| |
Collapse
|
32
|
Immunogenicity in African Green Monkeys of M Protein Mutant Vesicular Stomatitis Virus Vectors and Contribution of Vector-Encoded Flagellin. Vaccines (Basel) 2018; 6:vaccines6010016. [PMID: 29562688 PMCID: PMC5874657 DOI: 10.3390/vaccines6010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/02/2022] Open
Abstract
Recombinant vesicular stomatitis virus (VSV) is a promising platform for vaccine development. M51R VSV, an attenuated, M protein mutant strain, is an effective inducer of Type I interferon and dendritic cell (DC) maturation, which are desirable properties to exploit for vaccine design. We have previously evaluated M51R VSV (M51R) and M51R VSV that produces flagellin (M51R-F) as vaccine vectors using murine models, and found that flagellin enhanced DC activation and VSV-specific antibody production after low-dose vaccination. In this report, the immunogenicity of M51R vectors and the adjuvant effect of virus-produced flagellin were evaluated in nonhuman primates following high-dose (108 pfu) and low-dose (105 pfu) vaccination. A single intramuscular vaccination of African green monkeys with M51R or M51R-F induced VSV-specific, dose-dependent humoral immune responses. Flagellin induced a significant increase in antibody production (IgM, IgG and neutralizing antibody) at the low vaccination dose. A VSV-specific cellular response was detected at 6 weeks post-vaccination, but was neither dose-dependent nor enhanced by flagellin; similar numbers of VSV-specific, IFNγ-producing cells were detected in lymph node and spleen of all animals. These results indicate that virus-directed, intracellular flagellin production may improve VSV-based vaccines encoding heterologous antigens by lowering the dose required to achieve humoral immunity.
Collapse
|
33
|
Li Q, Peng O, Wu T, Xu Z, Huang L, Zhang Y, Xue C, Wen Z, Zhou Q, Cao Y. PED subunit vaccine based on COE domain replacement of flagellin domain D3 improved specific humoral and mucosal immunity in mice. Vaccine 2018; 36:1381-1388. [PMID: 29426660 DOI: 10.1016/j.vaccine.2018.01.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
Porcine epidemic diarrhea (PED) is an important re-emergent infectious disease and inflicts huge economic losses to the swine industry worldwide. To meet the pressing need of developing a safe and cost-efficient PED maternal vaccine, we generated three PED subunit vaccine candidates, using recombined Salmonella flagellin (rSF) as a mucosal molecular adjuvant. Domain D3 in rSF was replaced with COE domain of PEDV to generate rSF-COE-3D. COE fused to the flanking C'/N' terminal of rSF yielded rSF-COE-C and rSF-COE-N. As a result, rSF-COE-3D could significantly improve COE specific antibody production including serum IgG, serum IgA, mucosal IgA and PEDV neutralizing antibody. Furthermore, rSF-COE-3D elicited more CD3+CD8+ T cell and cytokine production of IFN-γ and IL-4 in mouse splenocytes. In summary, our data showed that rSF-COE-3D could improve specific humoral and mucosal immunity in mice, thus suggesting that rSF-COE-3D could be applied as a novel efficient maternal PED vaccine.
Collapse
Affiliation(s)
- Qianniu Li
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Ouyang Peng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Tingting Wu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Licheng Huang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhifen Wen
- Guangdong Wen's Foodstuffs Group Co, Ltd, Yunfu 527300, China
| | - Qingfeng Zhou
- Guangdong Wen's Foodstuffs Group Co, Ltd, Yunfu 527300, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Wen's Foodstuffs Group Co, Ltd, Yunfu 527300, China.
| |
Collapse
|
34
|
Double-layered protein nanoparticles induce broad protection against divergent influenza A viruses. Nat Commun 2018; 9:359. [PMID: 29367723 PMCID: PMC5783933 DOI: 10.1038/s41467-017-02725-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/20/2017] [Indexed: 01/22/2023] Open
Abstract
Current influenza vaccines provide limited protection against circulating influenza A viruses. A universal influenza vaccine will eliminate the intrinsic limitations of the seasonal flu vaccines. Here we report methodology to generate double-layered protein nanoparticles as a universal influenza vaccine. Layered nanoparticles are fabricated by desolvating tetrameric M2e into protein nanoparticle cores and coating these cores by crosslinking headless HAs. Representative headless HAs of two HA phylogenetic groups are constructed and purified. Vaccinations with the resulting protein nanoparticles in mice induces robust long-lasting immunity, fully protecting the mice against challenges by divergent influenza A viruses of the same group or both groups. The results demonstrate the importance of incorporating both structure-stabilized HA stalk domains and M2e into a universal influenza vaccine to improve its protective potency and breadth. These potent disassemblable protein nanoparticles indicate a wide application in protein drug delivery and controlled release. Relatively well conserved domains of influenza A virus (IAV) proteins are potential candidates for the development of a universal IAV vaccine. Here, Deng et al. combine two such conserved antigens (M2e and HA stalk) in a double-layered protein nanoparticle and show that it protects against divergent IAVs in mice.
Collapse
|
35
|
Unzueta U, Serna N, Sánchez-García L, Roldán M, Sánchez-Chardi A, Mangues R, Villaverde A, Vázquez E. Engineering multifunctional protein nanoparticles by in vitro disassembling and reassembling of heterologous building blocks. NANOTECHNOLOGY 2017; 28:505102. [PMID: 29072576 DOI: 10.1088/1361-6528/aa963e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The engineering of protein self-assembling at the nanoscale allows the generation of functional and biocompatible materials, which can be produced by easy biological fabrication. The combination of cationic and histidine-rich stretches in fusion proteins promotes oligomerization as stable protein-only regular nanoparticles that are composed by a moderate number of building blocks. Among other applications, these materials are highly appealing as tools in targeted drug delivery once empowered with peptidic ligands of cell surface receptors. In this context, we have dissected here this simple technological platform regarding the controlled disassembling and reassembling of the composing building blocks. By applying high salt and imidazole in combination, nanoparticles are disassembled in a process that is fully reversible upon removal of the disrupting agents. By taking this approach, we accomplish here the in vitro generation of hybrid nanoparticles formed by heterologous building blocks. This fact demonstrates the capability to generate multifunctional and/or multiparatopic or multispecific materials usable in nanomedical applications.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, E-08025 Barcelona, Spain. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Self-assembly polymerization enhances the immunogenicity of influenza M2e peptide. Microbes Infect 2017; 19:648-654. [DOI: 10.1016/j.micinf.2017.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/26/2017] [Accepted: 09/05/2017] [Indexed: 02/08/2023]
|
37
|
Guo Y, He L, Song N, Li P, Sun S, Zhao G, Tai W, Jiang S, Du L, Zhou Y. Highly conserved M2e and hemagglutinin epitope-based recombinant proteins induce protection against influenza virus infection. Microbes Infect 2017; 19:641-647. [PMID: 28903071 PMCID: PMC7110499 DOI: 10.1016/j.micinf.2017.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 10/25/2022]
Abstract
Highly pathogenic influenza viruses continue to cause serious threat to public health due to their pandemic potential, calling for an urgent need to develop effective, safe, convenient, and universal vaccines against influenza virus infection. In this study, we constructed two recombinant protein vaccines, 2H5M2e-2H7M2e-H5FP-H7FP (hereinafter M2e-FP-1) and 2H5M2e-H5FP-2H7M2e-H7FP (hereinafter M2e-FP-2), by respectively linking highly conserved sequences of two molecules of ectodomain of M2 (M2e) and one molecule of fusion peptide (FP) epitope of hemagglutinin (HA) of H5N1 and H7N9 influenza viruses in different orders. The Escherichia coli-expressed M2e-FP-1 and M2e-FP-2 proteins induced similarly high-titer M2e-FP-specific antibodies in the immunized mice. Importantly, both proteins were able to prevent lethal challenge of heterologous H1N1 influenza virus, with significantly reduced viral titers and alleviated pathological changes in the lungs, as well as increased body weight and complete survivals, in the challenge mice. Taken together, our study demonstrates that highly conserved M2e and FP epitope of HA of H5N1 and H7N9 influenza viruses can be used as important targets for development of safe and economical universal influenza vaccines, and that the position of H7N9 M2e and H5N1 HA epitope sequences in the vaccine components has no significant effects on the immunogenicity and efficacy of M2e-FP-based subunit vaccines.
Collapse
Affiliation(s)
- Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei He
- Graduate School of Guangxi Medical University, Nanning, Guangxi, China
| | - Nianping Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Pei Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wanbo Tai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, USA
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, USA
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, USA.
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Graduate School of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|