1
|
Curlin JZ, Schmitt K, Remling-Mulder L, Tibbitts CV, O’Connor S, Marx P, Akkina R. Viral evolution of SIV chimpanzee toward HIV-1 using humanized mice. J Med Primatol 2023; 52:294-297. [PMID: 37658595 PMCID: PMC10635509 DOI: 10.1111/jmp.12675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
HIV-1 emerged from SIVcpz evolving in humans. Humanized mice are an effective tool for assessing viral evolution via measuring viral loads, CD4+ T cell decline, and analyzing genetic changes. Four serial passages showed many non-synonymous mutations important for the adaptation and evolution of SIVcpz to human immune cells.
Collapse
Affiliation(s)
- James Z. Curlin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- ADEAR Training Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberly Schmitt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Corina Valencia Tibbitts
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Shelby O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Preston Marx
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, New Orleans, LA, United States
- Tulane National Primate Research Center, Covington, LA, United States
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Curlin JZ, Schmitt K, Remling-Mulder L, Tibbitts CV, Connor SO, Marx P, Akkina R. Characterizing the phenotypic and genetic changes of pre-epidemic HIV-2 group F virus following serial passage in humanized mice. J Med Primatol 2023; 52:290-293. [PMID: 37658590 PMCID: PMC10635500 DOI: 10.1111/jmp.12674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
HIV-2 Group F virus with an origin in NHPs was isolated from only two individuals. Two serial passages in hu-mice showed increased viral loads, CD4+ T cell decline and nonsynonymous genetic changes showing its capacity for further evolution, and spread in the human.
Collapse
Affiliation(s)
- James Z. Curlin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- ADEAR Training Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberly Schmitt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Corina Valencia Tibbitts
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Shelby O’ Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Preston Marx
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, New Orleans, LA, United States and
- Tulane National Primate Research Center, Covington, LA, United States
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
3
|
Schmitt K, Curlin J, Remling‐Mulder L, Morrison J, Moriarty R, Goff K, Stenglein M, O'Connor S, Marx P, Akkina R. Long-term evolutionary adaptation of SIVcpz toward HIV-1 using a humanized mouse model. J Med Primatol 2022; 51:288-291. [PMID: 36030391 PMCID: PMC9536748 DOI: 10.1111/jmp.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/26/2022]
Abstract
Critical genetic adaptations needed for SIV chimpanzee to evolve into HIV-1 are not well understood. Using humanized mice, we mimicked the evolution of SIVcpzLB715 into HIV-1 Group M over the course of four generations. Higher initial viral load, increased CD4+ T-cell decline, and nonsynonymous substitutions arose suggesting viral evolution.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - James Curlin
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
- ADEAR Training Program, Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Leila Remling‐Mulder
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Jared Morrison
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Ryan Moriarty
- University of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Kelly Goff
- Tulane National Primate Research CenterCovingtonLouisianaUSA
| | - Mark Stenglein
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Shelby O'Connor
- University of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Preston Marx
- Tulane National Primate Research CenterCovingtonLouisianaUSA
- Department of Tropical MedicineSchool Public Health and Tropical MedicineNew OrleansLouisianaUSA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
4
|
Curlin JZ, Schmitt K, Remling‐Mulder L, Morrison J, Baczenas JJ, Tibbits CV, Goff K, O'Connor S, Stenglein M, Marx P, Akkina R. Evolution of SIVmac239 following serial passaging in humanized mice. J Med Primatol 2022; 51:284-287. [PMID: 36030392 PMCID: PMC9536747 DOI: 10.1111/jmp.12614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 11/28/2022]
Abstract
Serial passage of SIVmac239 allows for greater understanding of the genetic changes necessary for cross-species transmission of primate lentiviruses into humans. Using humanized mice, we show that adaptive mutations continue to accumulate in SIVmac239 during four serial passages, with persistent CD4+ T cell decline and increases in plasma viral loads.
Collapse
Affiliation(s)
- James Z. Curlin
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
- ADEAR Training Program, Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Kimberly Schmitt
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Leila Remling‐Mulder
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Jared Morrison
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - John J. Baczenas
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Corina Valencia Tibbits
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Kelly Goff
- Department of Tropical MedicineSchool of Public Health and Tropical MedicineNew OrleansLouisianaUSA
| | - Shelby O'Connor
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Mark Stenglein
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Preston Marx
- Department of Tropical MedicineSchool of Public Health and Tropical MedicineNew OrleansLouisianaUSA
- Tulane National Primate Research CenterCovingtonLouisianaUSA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
5
|
Curlin JZ, Schmitt K, Remling-Mulder L, Moriarty R, Baczenas JJ, Goff K, O’Connor S, Stenglein M, Marx PA, Akkina R. In vivo infection dynamics and human adaptive changes of SIVsm-derived viral siblings SIVmac239, SIV B670 and SIVhu in humanized mice as a paralog of HIV-2 genesis. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2021; 1:813606. [PMID: 37168442 PMCID: PMC10168645 DOI: 10.3389/fviro.2021.813606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Simian immunodeficiency virus native to sooty mangabeys (SIVsm) is believed to have given rise to HIV-2 through cross-species transmission and evolution in the human. SIVmac239 and SIVB670, pathogenic to macaques, and SIVhu, isolated from an accidental human infection, also have origins in SIVsm. With their common ancestral lineage as that of HIV-2 from the progenitor SIVsm, but with different passage history in different hosts, they provide a unique opportunity to evaluate cross-species transmission to a new host and their adaptation/evolution both in terms of potential genetic and phenotypic changes. Using humanized mice with a transplanted human system, we evaluated in vivo replication kinetics, CD4+ T cell dynamics and genetic adaptive changes during serial passage with a goal to understand their evolution under human selective immune pressure. All the three viruses readily infected hu-mice causing chronic viremia. While SIVmac and SIVB670 caused CD4+ T cell depletion during sequential passaging, SIVhu with a deletion in nef gene was found to be less pathogenic. Deep sequencing of the genomes of these viruses isolated at different times revealed numerous adaptive mutations of significance that increased in frequency during sequential passages. The ability of these viruses to infect and replicate in humanized mice provides a new small animal model to study SIVs in vivo in addition to more expensive macaques. Since SIVmac and related viruses have been indispensable in many areas of HIV pathogenesis, therapeutics and cure research, availability of this small animal hu-mouse model that is susceptible to both SIV and HIV viruses is likely to open novel avenues of investigation for comparative studies using the same host.
Collapse
Affiliation(s)
- James Z. Curlin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
- Antiviral Discovery, Evaluation and Application Research (ADEAR) Training Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kimberly Schmitt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ryan Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - John J. Baczenas
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kelly Goff
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Shelby O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Preston A. Marx
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Tulane National Primate Research Center, Covington, LA, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Ragan IK, Hartson LM, Dutt TS, Obregon-Henao A, Maison RM, Gordy P, Fox A, Karger BR, Cross ST, Kapuscinski ML, Cooper SK, Podell BK, Stenglein MD, Bowen RA, Henao-Tamayo M, Goodrich RP. A Whole Virion Vaccine for COVID-19 Produced via a Novel Inactivation Method and Preliminary Demonstration of Efficacy in an Animal Challenge Model. Vaccines (Basel) 2021; 9:vaccines9040340. [PMID: 33916180 PMCID: PMC8066708 DOI: 10.3390/vaccines9040340] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/16/2022] Open
Abstract
The COVID-19 pandemic has generated intense interest in the rapid development and evaluation of vaccine candidates for this disease and other emerging diseases. Several novel methods for preparing vaccine candidates are currently undergoing clinical evaluation in response to the urgent need to prevent the spread of COVID-19. In many cases, these methods rely on new approaches for vaccine production and immune stimulation. We report on the use of a novel method (SolaVAX) for production of an inactivated vaccine candidate and the testing of that candidate in a hamster animal model for its ability to prevent infection upon challenge with SARS-CoV-2 virus. The studies employed in this work included an evaluation of the levels of neutralizing antibody produced post-vaccination, levels of specific antibody sub-types to RBD and spike protein that were generated, evaluation of viral shedding post-challenge, flow cytometric and single cell sequencing data on cellular fractions and histopathological evaluation of tissues post-challenge. The results from this preliminary evaluation provide insight into the immunological responses occurring as a result of vaccination with the proposed vaccine candidate and the impact that adjuvant formulations, specifically developed to promote Th1 type immune responses, have on vaccine efficacy and protection against infection following challenge with live SARS-CoV-2. This data may have utility in the development of effective vaccine candidates broadly. Furthermore, the results of this preliminary evaluation suggest that preparation of a whole virion vaccine for COVID-19 using this specific photochemical method may have potential utility in the preparation of one such vaccine candidate.
Collapse
Affiliation(s)
- Izabela K Ragan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (I.K.R.); (R.M.M.); (P.G.); (R.A.B.)
| | - Lindsay M Hartson
- Infectious Disease Research Center, Colorado State University, Fort Collins, CO 80521, USA;
| | - Taru S Dutt
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.S.D.); (A.O.-H.); (A.F.); (B.R.K.); (S.T.C.); (M.L.K.); (S.K.C.); (B.K.P.); (M.D.S.); (M.H.-T.)
| | - Andres Obregon-Henao
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.S.D.); (A.O.-H.); (A.F.); (B.R.K.); (S.T.C.); (M.L.K.); (S.K.C.); (B.K.P.); (M.D.S.); (M.H.-T.)
| | - Rachel M Maison
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (I.K.R.); (R.M.M.); (P.G.); (R.A.B.)
| | - Paul Gordy
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (I.K.R.); (R.M.M.); (P.G.); (R.A.B.)
| | - Amy Fox
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.S.D.); (A.O.-H.); (A.F.); (B.R.K.); (S.T.C.); (M.L.K.); (S.K.C.); (B.K.P.); (M.D.S.); (M.H.-T.)
| | - Burton R Karger
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.S.D.); (A.O.-H.); (A.F.); (B.R.K.); (S.T.C.); (M.L.K.); (S.K.C.); (B.K.P.); (M.D.S.); (M.H.-T.)
| | - Shaun T Cross
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.S.D.); (A.O.-H.); (A.F.); (B.R.K.); (S.T.C.); (M.L.K.); (S.K.C.); (B.K.P.); (M.D.S.); (M.H.-T.)
| | - Marylee L Kapuscinski
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.S.D.); (A.O.-H.); (A.F.); (B.R.K.); (S.T.C.); (M.L.K.); (S.K.C.); (B.K.P.); (M.D.S.); (M.H.-T.)
| | - Sarah K Cooper
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.S.D.); (A.O.-H.); (A.F.); (B.R.K.); (S.T.C.); (M.L.K.); (S.K.C.); (B.K.P.); (M.D.S.); (M.H.-T.)
| | - Brendan K Podell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.S.D.); (A.O.-H.); (A.F.); (B.R.K.); (S.T.C.); (M.L.K.); (S.K.C.); (B.K.P.); (M.D.S.); (M.H.-T.)
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.S.D.); (A.O.-H.); (A.F.); (B.R.K.); (S.T.C.); (M.L.K.); (S.K.C.); (B.K.P.); (M.D.S.); (M.H.-T.)
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (I.K.R.); (R.M.M.); (P.G.); (R.A.B.)
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.S.D.); (A.O.-H.); (A.F.); (B.R.K.); (S.T.C.); (M.L.K.); (S.K.C.); (B.K.P.); (M.D.S.); (M.H.-T.)
| | - Raymond P Goodrich
- Infectious Disease Research Center, Colorado State University, Fort Collins, CO 80521, USA;
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.S.D.); (A.O.-H.); (A.F.); (B.R.K.); (S.T.C.); (M.L.K.); (S.K.C.); (B.K.P.); (M.D.S.); (M.H.-T.)
- Correspondence:
| |
Collapse
|
7
|
Gillgrass A, Wessels JM, Yang JX, Kaushic C. Advances in Humanized Mouse Models to Improve Understanding of HIV-1 Pathogenesis and Immune Responses. Front Immunol 2021; 11:617516. [PMID: 33746940 PMCID: PMC7973037 DOI: 10.3389/fimmu.2020.617516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Although antiretroviral therapy has transformed human immunodeficiency virus-type 1 (HIV-1) from a deadly infection into a chronic disease, it does not clear the viral reservoir, leaving HIV-1 as an uncurable infection. Currently, 1.2 million new HIV-1 infections occur globally each year, with little decrease over many years. Therefore, additional research is required to advance the current state of HIV management, find potential therapeutic strategies, and further understand the mechanisms of HIV pathogenesis and prevention strategies. Non-human primates (NHP) have been used extensively in HIV research and have provided critical advances within the field, but there are several issues that limit their use. Humanized mouse (Hu-mouse) models, or immunodeficient mice engrafted with human immune cells and/or tissues, provide a cost-effective and practical approach to create models for HIV research. Hu-mice closely parallel multiple aspects of human HIV infection and disease progression. Here, we highlight how innovations in Hu-mouse models have advanced HIV-1 research in the past decade. We discuss the effect of different background strains of mice, of modifications on the reconstitution of the immune cells, and the pros and cons of different human cells and/or tissue engraftment methods, on the ability to examine HIV-1 infection and immune response. Finally, we consider the newest advances in the Hu-mouse models and their potential to advance research in emerging areas of mucosal infections, understand the role of microbiota and the complex issues in HIV-TB co-infection. These innovations in Hu-mouse models hold the potential to significantly enhance mechanistic research to develop novel strategies for HIV prevention and therapeutics.
Collapse
Affiliation(s)
- Amy Gillgrass
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Jocelyn M. Wessels
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Jack X. Yang
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Schmitt K, Curlin J, Remling-Mulder L, Moriarty R, Goff K, O’Connor S, Stenglein M, Marx P, Akkina R. Mimicking SIV chimpanzee viral evolution toward HIV-1 during cross-species transmission. J Med Primatol 2020; 49:284-287. [PMID: 33460210 PMCID: PMC8177655 DOI: 10.1111/jmp.12485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022]
Abstract
HIV-1 evolved from SIV during cross-species transmission events, though viral genetic changes are not well understood. Here, we studied the evolution of SIVcpzLB715 into HIV-1 Group M using humanized mice. High viral loads, rapid CD4+ T-cell decline, and non-synonymous substitutions were identified throughout the viral genome suggesting viral adaptation.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - James Curlin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ryan Moriarty
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53711, USA
| | - Kelly Goff
- Tulane University School of Public Health and Tropical, Medicine, New Orleans, LA 70112, USA
| | - Shelby O’Connor
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53711, USA
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Preston Marx
- Tulane University School of Public Health and Tropical, Medicine, New Orleans, LA 70112, USA
- Tulane National Primate, Research Center, Covington, LA 70433, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
9
|
Schmitt K, Curlin J, Remling-Mulder L, Moriarty R, Goff K, O'Connor S, Stenglein M, Marx P, Akkina R. Cross-Species Transmission and Evolution of SIV Chimpanzee Progenitor Viruses Toward HIV-1 in Humanized Mice. Front Microbiol 2020; 11:1889. [PMID: 32849468 PMCID: PMC7432304 DOI: 10.3389/fmicb.2020.01889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
The genetic evolution of HIV-1 from its progenitor virus SIV following cross-species transmission is not well understood. Here we simulated the SIVcpz initial transmission to humans using humanized mice and followed the viral evolution during serial passages lasting more than a year. All three SIVcpz progenitor viruses used, namely LB715 and MB897 (group M) as well as EK505 (group N) readily infected hu-mice resulting in chronic viremia. Viral loads increased progressively to higher set-points and the CD4+ T cell decline became more pronounced by the end of the second serial passage indicating viral adaptation and increased pathogenicity. Viral genomes sequenced at different time points revealed many non-synonymous variants not previously reported that occurred throughout the viral genome, including the gag, pol, env, and nef genes. These results shed light on the potential changes that the SIVcpz genome had undergone during the initial stages of human infection and subsequent spread.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - James Curlin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Ryan Moriarty
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Kelly Goff
- Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Shelby O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Preston Marx
- Tulane National Primate Research Center, Tulane University, Covington, LA, United States.,Department of Tropical Medicine, School of Public Health & Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Ramesh Akkina
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
10
|
Curlin J, Schmitt K, Remling-Mulder L, Moriarty R, Goff K, O'Connor S, Stenglein M, Marx P, Akkina R. Evolution of SIVsm in humanized mice towards HIV-2. J Med Primatol 2020; 49:280-283. [PMID: 32777101 DOI: 10.1111/jmp.12486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/09/2020] [Indexed: 02/04/2023]
Abstract
Through the accumulation of adaptive mutations, HIV-2 originated from SIVsm. To identify these evolutionary changes, a humanized mouse model recapitulated the process that likely enabled this cross-species transmission event. Various adaptive mutations arose, as well as increased virulence and CD4+ T-cell decline as the virus was passaged in humanized mice.
Collapse
Affiliation(s)
- James Curlin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kimberly Schmitt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ryan Moriarty
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kelly Goff
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Shelby O'Connor
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Preston Marx
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
11
|
Schmitt K, Curlin J, Kumar DM, Remling-Mulder L, Feely S, Stenglein M, O'Connor S, Marx P, Akkina R. SIV progenitor evolution toward HIV: A humanized mouse surrogate model for SIVsm adaptation toward HIV-2. J Med Primatol 2019; 47:298-301. [PMID: 30255956 DOI: 10.1111/jmp.12380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/14/2018] [Indexed: 11/28/2022]
Abstract
How SIV progenitors evolved into deadly HIV-1 and HIV-2 following initial cross-species transmission still remains a mystery. Here, we used humanized mice as a human surrogate system to evaluate SIVsm evolution into HIV-2. Increased viral virulence to human CD4+ T cells and adaptive genetic changes were observed during serial passages.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - James Curlin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Dipu Mohan Kumar
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Stephanie Feely
- Tulane National Primate Research Center, Covington, Louisiana
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Shelby O'Connor
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Preston Marx
- Tulane National Primate Research Center, Covington, Louisiana.,Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
12
|
Curlin J, Schmitt K, Remling-Mulder L, Moriarty R, Stenglein M, O'Connor S, Marx P, Akkina R. SIVcpz cross-species transmission and viral evolution toward HIV-1 in a humanized mouse model. J Med Primatol 2019; 49:40-43. [PMID: 31576587 DOI: 10.1111/jmp.12440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Abstract
HIV-1 evolved from its progenitor SIV strains, but details are lacking on its adaptation to the human host. We followed the evolution of SIVcpz in humanized mice to mimic cross-species transmission. Increasing viral loads, CD4+ T-cell decline, and non-synonymous mutations were seen in the entire genome reflecting viral adaptation.
Collapse
Affiliation(s)
- James Curlin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kimberly Schmitt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ryan Moriarty
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Shelby O'Connor
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Preston Marx
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
Abstract
HIV, the causative agent of AIDS, has a complex evolutionary history involving several cross-species transmissions and recombination events as well as changes in the repertoire and function of its accessory genes. Understanding these events and the adaptations to new host species provides key insights into innate defense mechanisms, viral dependencies on cellular factors, and prerequisites for the emergence of the AIDS pandemic. In addition, understanding the factors and adaptations required for the spread of HIV in the human population helps to better assess the risk of future lentiviral zoonoses and provides clues to how improved control of viral replication can be achieved. Here, we summarize our current knowledge on viral features and adaptations preceding the AIDS pandemic. We aim at providing a viral point of view, focusing on known key hurdles of each cross-species transmission and the mechanisms that HIV and its simian precursors evolved to overcome them.
Collapse
Affiliation(s)
- Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm 89081, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm 89081, Germany.
| |
Collapse
|
14
|
Preadaptation of Simian Immunodeficiency Virus SIVsmm Facilitated Env-Mediated Counteraction of Human Tetherin by Human Immunodeficiency Virus Type 2. J Virol 2018; 92:JVI.00276-18. [PMID: 29976668 DOI: 10.1128/jvi.00276-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/23/2018] [Indexed: 12/14/2022] Open
Abstract
The host restriction factor tetherin inhibits virion release from infected cells and poses a significant barrier to successful zoonotic transmission of primate lentiviruses to humans. While most simian immunodeficiency viruses (SIV), including the direct precursors of human immunodeficiency virus type 1 (HIV-1) and HIV-2, use their Nef protein to counteract tetherin in their natural hosts, they fail to antagonize the human tetherin ortholog. Pandemic HIV-1 group M and epidemic group O strains overcame this hurdle by adapting their Vpu and Nef proteins, respectively, whereas HIV-2 group A uses its envelope (Env) glycoprotein to counteract human tetherin. Whether or how the remaining eight groups of HIV-2 antagonize this antiviral factor has remained unclear. Here, we show that Nef proteins from diverse groups of HIV-2 do not or only modestly antagonize human tetherin, while their ability to downmodulate CD3 and CD4 is highly conserved. Experiments in transfected cell lines and infected primary cells revealed that not only Env proteins of epidemic HIV-2 group A but also those of a circulating recombinant form (CRF01_AB) and rare groups F and I decrease surface expression of human tetherin and significantly enhance progeny virus release. Intriguingly, we found that many SIVsmm Envs also counteract human as well as smm tetherin. Thus, Env-mediated tetherin antagonism in different groups of HIV-2 presumably stems from a preadaptation of their SIVsmm precursors to humans. In summary, we identified a phenotypic trait of SIVsmm that may have facilitated its successful zoonotic transmission to humans and the emergence of HIV-2.IMPORTANCE HIV-2 groups A to I resulted from nine independent cross-species transmission events of SIVsmm to humans and differ considerably in their prevalence and geographic spread. Thus, detailed characterization of these viruses offers a valuable means to elucidate immune evasion mechanisms and human-specific adaptations determining viral spread. In a systematic comparison of rare and epidemic HIV-2 groups and their simian SIVsmm counterparts, we found that the ability of Nef to downmodulate the primary viral entry receptor CD4 and the T cell receptor CD3 is conserved, while effects on CD28, CD74, and major histocompatibility complex class I surface expression vary considerably. Furthermore, we show that not only the Env proteins of HIV-2 groups A, AB, F, and I but also those of some SIVsmm isolates antagonize human tetherin. This finding helps to explain why SIVsmm has been able to cross the species barrier to humans on at least nine independent occasions.
Collapse
|
15
|
Abstract
The Global Virus Network (GVN) was established in 2011 to strengthen research and responses to emerging viral causes of human disease and to prepare against new viral pandemics. There are now 40 GVN Centers of Excellence and 6 Affiliate laboratories in 24 countries. The 2017 meeting was held from September 25–27 in Melbourne, Australia, and was hosted by the Peter Doherty Institute for Infection and Immunity and the Institut Pasteur. This report highlights the recent accomplishments of GVN researchers in several important areas of medical virology, including the recent Zika epidemic, infections by human papillomavirus, influenza, HIV, hepatitis C, HTLV-1, and chikungunya viruses, and new and emerging viruses in the Australasia region. Plans for the 2018 meeting also are noted. The GVN is an international research network comprised of 40 Centers of Excellence and 6 Affiliates in 24 countries. The 2017 Global Virus Network (GVN) Meeting was held in Melbourne, Australia from September 25–27. New data were presented on various aspects of medical virology, therapies, and emerging viruses in the Australasia region. International collaboration is critical to developing new and effective viral vaccines and therapeutics. The 2018 international GVN meeting will be held on November 28–30 in Annecy, France.
Collapse
|