1
|
Steinerová K, Harding JCS, Parker SE, Wilson HL, Nery Finatto A, Seddon YM. Rearing pigs with play opportunities: the effects on disease resilience in pigs experimentally inoculated with PRRSV. Front Vet Sci 2024; 11:1460993. [PMID: 39355142 PMCID: PMC11443507 DOI: 10.3389/fvets.2024.1460993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 10/03/2024] Open
Abstract
Positive emotions can reduce disease susceptibility during infectious challenges in humans, and emerging evidence suggests similar effects in farm animals. Because play behaviour may support a positive emotional state in pigs, this study investigates whether rearing pigs with regular intermittent play opportunities enhances disease resilience when challenged with porcine reproductive and respiratory syndrome virus (PRRSV). Litters were assigned to either play (PLY; n = 5 L) or control (CON; n = 4 L) treatments at birth. In PLY, play was promoted with extra space and enrichment items for three hours daily from five days of age (doa). At weaning (25 ± 2 doa; mean ± SD), 28 pigs (14/treatment) were selected for a disease challenge, based on weight, sex, and sow. The pigs were transported to a disease containment facility and at 43 ± 2 doa (day 0 post-inoculation, DPI) inoculated with PRRSV. Skin lesions, blood, rectal temperature, clinical signs, body weight, and behaviour were collected pre- and post-inoculation. Play opportunities for PLY continued every other day until euthanasia of all pigs at 65 ± 2 doa (22 DPI). PLY pigs exhibited fewer skin lesions following transport and throughout the infection compared to CON. Although the viral load did not differ between treatments, PLY pigs had a lower probability of experiencing moderate and severe respiratory distress, with a shorter duration. PLY also performed better throughout the infection, showing higher ADG and greater feed efficiency. The immune response differed as well. PLY pigs had fewer monocytes on 8 DPI than CON, with levels returning to baseline by 21 DPI, whereas CON levels exceeded baseline. Regardless of day of infection, lymphocyte counts tended to be lower in PLY than in CON, and white blood cells and neutrophils were also lower, but only in slow-growing pigs. PLY pigs continued to play during the infection, demonstrating less sickness behaviour and emphasizing the rewarding properties of play. Results suggest that PLY pigs were less affected by PRRSV and developed increased resilience to PRRSV compared to CON. This study demonstrates that rearing pigs in an environment supporting positive experiences through provision of play opportunities can enhance resilience against common modern production challenges, underscoring the value of positive welfare in intensive pig farming.
Collapse
Affiliation(s)
- Karolína Steinerová
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John C. S. Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sarah E. Parker
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Heather L. Wilson
- Vaccine and Infectious Disease Organization, International Vaccine Centre (VIDO-InterVac), Saskatoon, SK, Canada
| | - Arthur Nery Finatto
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yolande M. Seddon
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Gong X, Ma T, Wang J, Cao X, Zhang Q, Wang Y, Song C, Lai M, Zhang C, Fang X, Chen X. Nucleocapsid protein residues 35, 36, and 113 are critical sites in up-regulating the Interleukin-8 production via C/EBPα pathway by highly pathogenic porcine reproductive and respiratory syndrome virus. Microb Pathog 2023; 184:106345. [PMID: 37714310 DOI: 10.1016/j.micpath.2023.106345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious and pathogenic agent that causes considerable economic damage in the swine industry. It regulates the inflammatory response, triggers inflammation-induced tissue damage, suppresses the innate immune response, and leads to persistent infection. Interleukin-8 (IL-8), a pro-inflammatory chemokine, plays a crucial role in inflammatory response during numerous bacteria and virus infections. However, the underlying mechanisms of IL-8 regulation during PRRSV infection are not well understood. In this study, we demonstrate that PRRSV-infected PAMs and Marc-145 cells release higher levels of IL-8. We screened the nucleocapsid protein, non-structural protein (nsp) 9, and nsp11 of PRRSV to enhance IL-8 promoter activity via the C/EBPα pathway. Furthermore, we identified that the amino acids Q35A, S36A, R113A, and I115A of the nucleocapsid protein play a crucial role in the induction of IL-8. Through reverse genetics, we generated two mutant viruses (rQ35-2A and rR113A), which showed lower induction of IL-8 in PAMs during infection. This finding uncovers a previously unrecognized role of the PRRSV nucleocapsid protein in modulating IL-8 production and provides insight into an additional mechanism by which PRRSV modulates immune responses and inflammation.
Collapse
Affiliation(s)
- Xingyu Gong
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Tianyi Ma
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Jingjing Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Xinran Cao
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266000, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Min Lai
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China.
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China.
| |
Collapse
|
3
|
de Brito RCF, Holtham K, Roser J, Saunders JE, Wezel Y, Henderson S, Mauch T, Sanz-Bernardo B, Frossard JP, Bernard M, Lean FZX, Nunez A, Gubbins S, Suárez NM, Davison AJ, Francis MJ, Huether M, Benchaoui H, Salt J, Fowler VL, Jarvis MA, Graham SP. An attenuated herpesvirus vectored vaccine candidate induces T-cell responses against highly conserved porcine reproductive and respiratory syndrome virus M and NSP5 proteins that are unable to control infection. Front Immunol 2023; 14:1201973. [PMID: 37600784 PMCID: PMC10436000 DOI: 10.3389/fimmu.2023.1201973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains a leading cause of economic loss in pig farming worldwide. Existing commercial vaccines, all based on modified live or inactivated PRRSV, fail to provide effective immunity against the highly diverse circulating strains of both PRRSV-1 and PRRSV-2. Therefore, there is an urgent need to develop more effective and broadly active PRRSV vaccines. In the absence of neutralizing antibodies, T cells are thought to play a central role in controlling PRRSV infection. Herpesvirus-based vectors are novel vaccine platforms capable of inducing high levels of T cells against encoded heterologous antigens. Therefore, the aim of this study was to assess the immunogenicity and efficacy of an attenuated herpesvirus-based vector (bovine herpesvirus-4; BoHV-4) expressing a fusion protein comprising two well-characterized PRRSV-1 T-cell antigens (M and NSP5). Prime-boost immunization of pigs with BoHV-4 expressing the M and NSP5 fusion protein (vector designated BoHV-4-M-NSP5) induced strong IFN-γ responses, as assessed by ELISpot assays of peripheral blood mononuclear cells (PBMC) stimulated with a pool of peptides representing PRRSV-1 M and NSP5. The responses were closely mirrored by spontaneous IFN-γ release from unstimulated cells, albeit at lower levels. A lower frequency of M and NSP5 specific IFN-γ responding cells was induced following a single dose of BoHV-4-M-NSP5 vector. Restimulation using M and NSP5 peptides from PRRSV-2 demonstrated a high level of cross-reactivity. Vaccination with BoHV-4-M-NSP5 did not affect viral loads in either the blood or lungs following challenge with the two heterologous PRRSV-1 strains. However, the BoHV-4-M-NSP5 prime-boost vaccination showed a marked trend toward reduced lung pathology following PRRSV-1 challenge. The limited effect of T cells on PRRSV-1 viral load was further examined by analyzing local and circulating T-cell responses using intracellular cytokine staining and proliferation assays. The results from this study suggest that vaccine-primed T-cell responses may have helped in the control of PRRSV-1 associated tissue damage, but had a minimal, if any, effect on controlling PRRSV-1 viral loads. Together, these results indicate that future efforts to develop effective PRRSV vaccines should focus on achieving a balanced T-cell and antibody response.
Collapse
Affiliation(s)
| | | | | | - Jack E. Saunders
- The Pirbright Institute, Woking, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Yvonne Wezel
- The Vaccine Group Ltd., Plymouth, United Kingdom
| | | | - Thekla Mauch
- The Vaccine Group Ltd., Plymouth, United Kingdom
| | | | | | - Matthieu Bernard
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Fabian Z. X. Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Alejandro Nunez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | | | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | | | | | - Jeremy Salt
- The Vaccine Group Ltd., Plymouth, United Kingdom
| | | | - Michael A. Jarvis
- The Vaccine Group Ltd., Plymouth, United Kingdom
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
| | | |
Collapse
|
4
|
Han S, Oh D, Xie J, Nauwynck HJ. Susceptibility of perivenous macrophages to PRRSV-1 subtype 1 LV and PRRSV-1 subtype 3 Lena using a new vein explant model. Front Cell Infect Microbiol 2023; 13:1223530. [PMID: 37554354 PMCID: PMC10406384 DOI: 10.3389/fcimb.2023.1223530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Vessel pathology such as increased permeability and blue discoloration is frequently observed with highly pathogenic PRRSV strains. However, data concerning the viral replication in the environment of blood vessels are absent. In the present study, ex vivo models with swine ear and hind leg vein explants were established to study the interaction of PRRSV-1 subtype 1 reference strain LV and highly pathogenic subtype 3 strain Lena with perivenous macrophages. The replication characteristics of these two strains were compared in vein explants by immunofluorescence analysis. The explants maintained a good viability during 48 hours of in vitro culture. We found that CD163-positive macrophages were mainly present around the veins and their number gradually decreased with increasing distance from the veins and longer incubation time. More CD163+Sn- cells than CD163+Sn+ cells (6.6 times more) were observed in the vein explants. The Lena strain demonstrated a higher replication level than the LV strain, with approximately 1.4-fold more infected cells in the surrounding areas of the ear vein and 1.1-fold more infected cells in the leg vein explants at 48 hours post inoculation. In both LV and Lena inoculated vein explants, most infected cells were identified as CD163+Sn+ (> 94%). In this study, an ex vivo vein model was successfully established, and our findings will contribute to a better understanding of the vein pathology during viral infections (e.g., PRRS, classical and African swine fever).
Collapse
Affiliation(s)
- Shaojie Han
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | | |
Collapse
|
5
|
Wei Y, Dai G, Huang M, Wen L, Chen RA, Liu DX. Construction of an infectious cloning system of porcine reproductive and respiratory syndrome virus and identification of glycoprotein 5 as a potential determinant of virulence and pathogenicity. Front Microbiol 2023; 14:1227485. [PMID: 37547693 PMCID: PMC10397516 DOI: 10.3389/fmicb.2023.1227485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection of pigs causes a variety of clinical manifestations, depending on the pathogenicity and virulence of the specific strain. Identification and characterization of potential determinant(s) for the pathogenicity and virulence of these strains would be an essential step to precisely design and develop effective anti-PRRSV intervention. In this study, we report the construction of an infectious clone system based on PRRSV vaccine strain SP by homologous recombination technique, and the rescue of a chimeric rSP-HUB2 strain by replacing the GP5 and M protein-coding region from SP strain with the corresponding region from a highly pathogenic strain PRRSV-HUB2. The two recombinant viruses were shown to be genetically stable and share similar growth kinetics, with rSP-HUB2 exhibiting apparent growth and fitness advantages. Compared to in cells infected with PRRSV-rSP, infection of cells with rSP-HUB2 showed significantly more inhibition of the induction of type I interferon (IFN-β) and interferon stimulator gene 56 (ISG56), and significantly more promotion of the induction of proinflammatory cytokines IL-6, IL-8, ISG15 and ISG20. Further overexpression, deletion and mutagenesis studies demonstrated that amino acid residue F16 in the N-terminal region of the GP5 protein from HUB2 was a determinant for the phenotypic difference between the two recombinant viruses. This study provides evidence that GP5 may function as a potential determinant for the pathogenicity and virulence of highly pathogenic PRRSV.
Collapse
Affiliation(s)
- Yuqing Wei
- Guangdong Province Key Laboratory Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong, China
| | - Guo Dai
- Guangdong Province Key Laboratory Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, Guangdong, China
| | - Lianghai Wen
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, Guangdong, China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong, China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong, China
| |
Collapse
|
6
|
Guo Z, Chen F, Zhao S, Zhang Z, Zhang H, Bai L, Zhang Z, Li Y. IL-10 Promotes CXCL13 Expression in Macrophages Following Foot-and-Mouth Disease Virus Infection. Int J Mol Sci 2023; 24:ijms24076322. [PMID: 37047294 PMCID: PMC10093876 DOI: 10.3390/ijms24076322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Foot-and-mouth disease (FMD) is one of the most contagious livestock diseases in the world, posing a constant global threat to the animal trade and national economies. The chemokine C-X-C motif chemokine ligand 13 (CXCL13), a biomarker for predicting disease progression in some diseases, was recently found to be increased in sera from mice infected with FMD virus (FMDV) and to be associated with the progression and severity of the disease. However, it has not yet been determined which cells are involved in producing CXCL13 and the signaling pathways controlling CXCL13 expression in these cells. In this study, the expression of CXCL13 was found in macrophages and T cells from mice infected with FMDV, and CXCL13 was produced in bone-marrow-derived macrophages (BMDMs) by activating the nuclear factor-kappaB (NF-κB) and JAK/STAT pathways following FMDV infection. Interestingly, CXCL13 concentration was decreased in sera from interleukin-10 knock out (IL-10-/-) mice or mice blocked IL-10/IL-10R signaling in vivo after FMDV infection. Furthermore, CXCL13 was also decreased in IL-10-/- BMDMs and BMDMs treated with anti-IL-10R antibody following FMDV infection in vitro. Lastly, it was demonstrated that IL-10 regulated CXCL13 expression via JAK/STAT rather than the NF-κB pathway. In conclusion, the study demonstrated for the first time that macrophages and T cells were the cellular sources of CXCL13 in mice infected with FMDV; CXCL13 was produced in BMDMs via NF-κB and JAK/STAT pathways; and IL-10 promoted CXCL13 expression in BMDMs via the JAK/STAT pathway.
Collapse
Affiliation(s)
- Zijing Guo
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Fei Chen
- State Key Laboratory on Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China
| | - Shuaiyang Zhao
- State Key Laboratory on Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China
| | - Zhixiong Zhang
- State Key Laboratory on Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China
| | - Huijun Zhang
- State Key Laboratory on Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China
| | - Ling Bai
- State Key Laboratory on Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (Z.Z.); (Y.L.); Tel.: +86-028-85528276 (Z.Z. & Y.L.)
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (Z.Z.); (Y.L.); Tel.: +86-028-85528276 (Z.Z. & Y.L.)
| |
Collapse
|
7
|
Chen XX, Qiao S, Li R, Wang J, Li X, Zhang G. Evasion strategies of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1140449. [PMID: 37007469 PMCID: PMC10063791 DOI: 10.3389/fmicb.2023.1140449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
During the co-evolution of viruses and their hosts, viruses have developed various strategies for overcoming host immunological defenses so that they can proliferate efficiently. Porcine reproductive and respiratory syndrome virus (PRRSV), a significant virus to the swine industry across the world, typically establishes prolonged infection via diverse and complicated mechanisms, which is one of the biggest obstacles for controlling the associated disease, porcine reproductive and respiratory syndrome (PRRS). In this review, we summarize the latest research on how PRRSV circumvents host antiviral responses from both the innate and adaptive immune systems and how this virus utilizes other evasion mechanisms, such as the manipulation of host apoptosis and microRNA. A thorough understanding of the exact mechanisms of PRRSV immune evasion will help with the development of novel antiviral strategies against PRRSV.
Collapse
Affiliation(s)
- Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jing Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
8
|
Heterogeneity of Phenotypic and Functional Changes to Porcine Monocyte-Derived Macrophages Triggered by Diverse Polarizing Factors In Vitro. Int J Mol Sci 2023; 24:ijms24054671. [PMID: 36902099 PMCID: PMC10003195 DOI: 10.3390/ijms24054671] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Swine are attracting increasing attention as a biomedical model, due to many immunological similarities with humans. However, porcine macrophage polarization has not been extensively analyzed. Therefore, we investigated porcine monocyte-derived macrophages (moMΦ) triggered by either IFN-γ + LPS (classical activation) or by diverse "M2-related" polarizing factors: IL-4, IL-10, TGF-β, and dexamethasone. IFN-γ and LPS polarized moMΦ toward a proinflammatory phenotype, although a significant IL-1Ra response was observed. Exposure to IL-4, IL-10, TGF-β, and dexamethasone gave rise to four distinct phenotypes, all antithetic to IFN-γ and LPS. Some peculiarities were observed: IL-4 and IL-10 both enhanced expression of IL-18, and none of the "M2-related" stimuli induced IL-10 expression. Exposures to TGF-β and dexamethasone were characterized by enhanced levels of TGF-β2, whereas stimulation with dexamethasone, but not TGF-β2, triggered CD163 upregulation and induction of CCL23. Macrophages stimulated with IL-10, TGF-β, or dexamethasone presented decreased abilities to release proinflammatory cytokines in response to TLR2 or TLR3 ligands: IL-10 showed a powerful inhibitory activity for CXCL8 and TNF release, whereas TGF-β provided a strong inhibitory signal for IL-6 production. While our results emphasized porcine macrophage plasticity broadly comparable to human and murine macrophages, they also highlighted some peculiarities in this species.
Collapse
|
9
|
Ji Q, Qu G, Liu B, Bai Y, Wang G, Chen R, Zheng X, Zhang Z, Yang Y, Wu C. Evaluation of porcine GM-CSF during PRRSV infection in vitro and in vivo indicating a protective role of GM-CSF related with M1 biased activation in alveolar macrophage during PRRSV infection. Front Immunol 2022; 13:967338. [PMID: 36341451 PMCID: PMC9627285 DOI: 10.3389/fimmu.2022.967338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF), participates in diverse biological processes associated with innate and adaptive immunity, has unknown effects during PRRSV infection. Here, a double-antibody sandwich ELISA for pGM-CSF was developed in-house for evaluation of pGM-CSF level during PRRSV infection both in vitro and in vivo. In in vitro assay, it was notable that PRRSV-infected porcine alveolar macrophages (PAMs) yielded inconsistent pGM-CSF protein- and mRNA-level, suggesting a post-transcriptional inhibition of pGM-CSF mRNA was employed by PRRSV. Meanwhile, concurrent analysis of pGM-CSF levels in serum samples from PRRSV-infected piglets suggested that effect of PRRSV infection demonstrated minimum effect on pGM-CSF levels regardless of PRRSV virulence phenotypes. Moreover, in vitro treatment of PAMs with pGM-CSF prior PRRSV inoculation did not inhibit PRRSV replication in PAMs although genes downstream of pGM-CSF in PAMs could be upregulated by pGM-CSF treatment. Meanwhile, knockdown of pGM-CSF using siRNA did not enhance PRRSV replication as well. Intriguingly, therapeutic antibody treatment of HP-PRRSV-infected piglets led to significantly increased serum pGM-CSF levels, thus aligning with low pneumonia incidence and low intracellular PRRSV-RNA levels in PAMs of therapeutic antibody treated piglets. Furthermore, transcriptome analysis of PAMs from infected piglets revealed increased serum pGM-CSF levels correlated with activation of downstream signal of pGM-CSF in PAMs as evidenced by a M1-like phenotypes of gene expression pattern, implying a potential host-protective role played by pGM-CSF for PRRSV infection in vivo. In conclusion, our results demonstrated developments of a highly sensitive and specific ELISA for pGM-CSF and revealed a potential protective role conferred by pGM-CSF during PRRSV infection.
Collapse
Affiliation(s)
- Qi Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture & Forestry (A&F) University, Yangling, China
| | - Guanggang Qu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Bing Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture & Forestry (A&F) University, Yangling, China
| | - Yang Bai
- College of Life Science, Northwest Agriculture & Forestry (A&F) University, Yangling, China
| | - Guihua Wang
- Weinan Animal Disease Prevention and Control Center, Weinan, China
| | - Rui Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture & Forestry (A&F) University, Yangling, China
- Shaanxi Innolever Biotechnology Co., Ltd., Yangling, China
| | - Xu Zheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture & Forestry (A&F) University, Yangling, China
| | - Zhigang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture & Forestry (A&F) University, Yangling, China
| | - Yonglin Yang
- Department of Infectious Diseases, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
- *Correspondence: Yonglin Yang, ; Chunyan Wu,
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture & Forestry (A&F) University, Yangling, China
- *Correspondence: Yonglin Yang, ; Chunyan Wu,
| |
Collapse
|
10
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Ding C, Luo T, Qiu X. Non-Targeted Metabolomic Analysis of Chicken Kidneys in Response to Coronavirus IBV Infection Under Stress Induced by Dexamethasone. Front Cell Infect Microbiol 2022; 12:945865. [PMID: 35909955 PMCID: PMC9335950 DOI: 10.3389/fcimb.2022.945865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Stress in poultry can lead to changes in body metabolism and immunity, which can increase susceptibility to infectious diseases. However, knowledge regarding chicken responses to viral infection under stress is limited. Dexamethasone (Dex) is a synthetic glucocorticoid similar to that secreted by animals under stress conditions, and has been widely used to induce stress in chickens. Herein, we established a stress model in 7-day-old chickens injected with Dex to elucidate the effects of stress on IBV replication in the kidneys. The metabolic changes, immune status and growth of the chickens under stress conditions were comprehensively evaluated. Furthermore, the metabolic profile, weight gain, viral load, serum cholesterol levels, cytokines and peripheral blood lymphocyte ratio were compared in chickens treated with Dex and infected with IBV. An LC-MS/MS-based metabolomics method was used to examine differentially enriched metabolites in the kidneys. A total of 113 metabolites whose abundance was altered after Dex treatment were identified, most of which were lipids and lipid-like molecules. The principal metabolic alterations in chicken kidneys caused by IBV infection included fatty acid, valine, leucine and isoleucine metabolism. Dex treatment before and after IBV infection mainly affected the host’s tryptophan, phenylalanine, amino sugar and nucleotide sugar metabolism. In addition, Dex led to up-regulation of serum cholesterol levels and renal viral load in chickens, and to the inhibition of weight gain, peripheral blood lymphocytes and IL-6 production. We also confirmed that the exogenous cholesterol in DF-1 cells promoted the replication of IBV. However, whether the increase in viral load in kidney tissue is associated with the up-regulation of cholesterol levels induced by Dex must be demonstrated in future experiments. In conclusion, chick growth and immune function were significantly inhibited by Dex. Host cholesterol metabolism and the response to IBV infection are regulated by Dex. This study provides valuable insights into the molecular regulatory mechanisms in poultry stress, and should support further research on the intrinsic link between cholesterol metabolism and IBV replication under stress conditions.
Collapse
Affiliation(s)
- Jun Dai
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tingrong Luo
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- *Correspondence: Xusheng Qiu, ; Tingrong Luo,
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Xusheng Qiu, ; Tingrong Luo,
| |
Collapse
|
11
|
Analyses of the Impact of Immunosuppressive Cytokines on Porcine Macrophage Responses and Susceptibility to Infection to African Swine Fever Viruses. Pathogens 2022; 11:pathogens11020166. [PMID: 35215110 PMCID: PMC8876267 DOI: 10.3390/pathogens11020166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
African swine fever viruses (ASFV), currently a serious threat to the global pig industry, primarily target porcine macrophages. Macrophages are characterized by their remarkable plasticity, being able to modify their phenotype and functions in response to diverse stimuli. Since IL-10 and TGF-β polarize macrophages toward an anti-inflammatory phenotype, we analyzed their impact on porcine monocyte-derived macrophages’ (moMΦ) susceptibility to infection and their responses to two genotype I ASFV strains, virulent 26544/OG10 and attenuated NH/P68. At a low multiplicity of infection (MOI), NH/P68, but not 26544/OG10, presented a higher ability to infect moM(IL-10) compared to moMΦ and moM(TGF-β), but no differences were appreciated at a higher MOI. Both strains replicated efficiently in all moMΦ subsets, with no differences at later times post-infection. Both strains downregulated CD14 and CD16 expression on moMΦ, irrespective of the activation status. ASFV’s modulation of CD163 and MHC II DR expression and cytokine responses to NH/P68 or 26544/OG10 ASFV were not affected by either IL-10 or TGF-β pre-treatment. Our results revealed little impact of these anti-inflammatory cytokines on moMΦ interaction with ASFV, which likely reflects the ability of the virus to effectively modulate macrophage responses.
Collapse
|
12
|
Comparative Phenotypic and Functional Analyses of the Effects of IL-10 or TGF-β on Porcine Macrophages. Animals (Basel) 2021; 11:ani11041098. [PMID: 33921388 PMCID: PMC8069609 DOI: 10.3390/ani11041098] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Macrophages play a central role in innate immune response to both infectious and non-infectious stressors. They respond to different agonists modifying their phenotype and functions. In humans and mice, the regulatory cytokines IL-10 or TGF-β are both known to drive macrophage polarization into an anti-inflammatory phenotype, referred to as M2c. However, the immune systems of animal species each have their own peculiarities and the M2c subsets has never been investigated in pigs. A deep knowledge of the porcine immune system is required to design vaccines or control strategies against pathogens, which are a major constraint to pork production. Due to anatomical, physiological, and immunological similarities, swine are attracting increasing attention as a model for human diseases. To better characterize porcine macrophages, we evaluated the effects of IL-10 or TGF-β on the phenotype and function of monocyte-derived macrophages. Both cytokines downregulated the expression of MHC II DR and CD14. IL-10, but not TGF-β, statistically significantly reduced the ability of macrophages to respond to Toll-like receptor 2 (TLR2) or TLR4 agonists. Whilst these data suggest differentiation to an M2c-like immunosuppressive phenotype, the responses, and differences between IL-10 and TGF-β also reveals species-specific differences. Abstract Macrophages are phagocytic cells involved in maintaining tissue homeostasis and defense against pathogens. Macrophages may be polarized into different functionally specialized subsets. M2c macrophages arise following stimulation with IL-10 or TGF-β and mediate anti-inflammatory and tissue repair functions. M2c macrophages remain poorly characterized in the pig, thus we investigated the impact of these regulatory cytokines on porcine monocyte-derived macrophages (moMΦ). The phenotype and functionality of these cells was characterized though confocal microscopy, flow cytometry, ELISA, and RT-qPCR. Both cytokines induced CD14 and MHC II DR down-regulation and reduced IL-6, TNF-α, and CD14 expression, suggestive of an anti-inflammatory phenotype. Interestingly, neither IL-10 or TGF-β were able to trigger IL-10 induction or release by moMΦ. Differences between these cytokines were observed: stimulation with IL-10, but not TGF-β, induced up-regulation of both CD16 and CD163 on moMΦ. In addition, IL-10 down-regulated expression of IL-1β and IL-12p40 4h post-stimulation and induced a stronger impairment of moMΦ ability to respond to either TLR2 or TLR4 agonists. Overall, our results provide an overview of porcine macrophage polarization by two immunosuppressive cytokines, revealing differences between IL-10 and TGF-β, and reporting some peculiarity of swine, which should be considered in translational studies.
Collapse
|
13
|
Takenouchi T, Morozumi T, Wada E, Suzuki S, Nishiyama Y, Sukegawa S, Uenishi H. Dexamethasone enhances CD163 expression in porcine IPKM immortalized macrophages. In Vitro Cell Dev Biol Anim 2021; 57:10-16. [PMID: 33447967 PMCID: PMC7862206 DOI: 10.1007/s11626-020-00535-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/24/2020] [Indexed: 01/21/2023]
Abstract
In our previous study, we established a unique porcine macrophage cell line, immortalized porcine kidney-derived macrophages (IPKM). The purpose of the present study was to further elucidate the characteristics of IPKM. CD163 is a scavenger receptor for the hemoglobin-haptoglobin complex and is used as a phenotypic marker of anti-inflammatory M2 macrophages. The expression of CD163 is enhanced by dexamethasone (DEX), a potent steroidal anti-inflammatory drug, in human and rodent macrophages in vitro. Therefore, we investigated the effects of DEX on CD163 expression in porcine IPKM. Treatment with DEX markedly enhanced CD163 expression in the IPKM. In addition, we found that SB203580, a selective inhibitor of p38 mitogen-activated protein kinase (MAPK), blocked the effects of DEX, suggesting that the p38 MAPK signaling pathway is involved in the regulation of the DEX-induced enhancement of CD163 expression. Since CD163 is considered to be a putative receptor for the porcine reproductive and respiratory syndrome virus (PRRSV), the effects of DEX on the infection of IPKM by PRRSV were evaluated. Although the IPKM were susceptible to infection by the Fostera PRRSV vaccine strain, DEX treatment did not affect the propagation of the virus in the IPKM. This suggests that the DEX-induced enhancement of CD163 expression alone is not sufficient to facilitate the infection of IPKM by PRRSV.
Collapse
Affiliation(s)
- Takato Takenouchi
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan.
| | - Takeya Morozumi
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, 300-2646, Japan
| | - Emi Wada
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, 300-2646, Japan
| | - Shunichi Suzuki
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yasutaka Nishiyama
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, 300-2646, Japan
| | - Shin Sukegawa
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, 300-2646, Japan
| | - Hirohide Uenishi
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
14
|
Morozumi T, Takenouchi T, Wada E, Uenishi H, Nishiyama Y. Susceptibility of immortalized porcine kidney macrophages to porcine reproductive and respiratory syndrome virus-2 infection. J Virol Methods 2020; 288:114026. [PMID: 33238183 DOI: 10.1016/j.jviromet.2020.114026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) displays restricted tropism to porcine alveolar macrophages in nature. Meanwhile, non-porcine cell lines derived from African green monkey kidney cell lines are permissive to PRRSV, resulting in their widespread use in PRRSV research. Furthermore, genetically modified cell lines expressing receptors targeted by PRRSV have been established. We previously established porcine immortalized kidney-derived macrophages (IPKMs) that maintained typical macrophage function. In the present study, we demonstrated the advantages of IPKMs for PRRSV research. IPKMs expressed receptors for PRRSV such as CD163 and CD169. The efficiency of virus isolation from field biological samples was higher for IPKMs than for MARC-145 cells. Five different clusters of North American type PRRSV were propagated in IPKMs. Four field strains continuously produced progeny viruses during 10 continuous passages. The efficiency of virus isolation from field biological samples and continuous progeny virus production in the sequential passages using IPKMs indicated that these cells are good vessels for PRRSV research.
Collapse
Affiliation(s)
- Takeya Morozumi
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan.
| | - Takato Takenouchi
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Emi Wada
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan
| | - Hirohide Uenishi
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Yasutaka Nishiyama
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan
| |
Collapse
|
15
|
Coinfections and their molecular consequences in the porcine respiratory tract. Vet Res 2020; 51:80. [PMID: 32546263 PMCID: PMC7296899 DOI: 10.1186/s13567-020-00807-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 01/15/2023] Open
Abstract
Understudied, coinfections are more frequent in pig farms than single infections. In pigs, the term “Porcine Respiratory Disease Complex” (PRDC) is often used to describe coinfections involving viruses such as swine Influenza A Virus (swIAV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), and Porcine CircoVirus type 2 (PCV2) as well as bacteria like Actinobacillus pleuropneumoniae, Mycoplasma hyopneumoniae and Bordetella bronchiseptica. The clinical outcome of the various coinfection or superinfection situations is usually assessed in the studies while in most of cases there is no clear elucidation of the fine mechanisms shaping the complex interactions occurring between microorganisms. In this comprehensive review, we aimed at identifying the studies dealing with coinfections or superinfections in the pig respiratory tract and at presenting the interactions between pathogens and, when possible, the mechanisms controlling them. Coinfections and superinfections involving viruses and bacteria were considered while research articles including protozoan and fungi were excluded. We discuss the main limitations complicating the interpretation of coinfection/superinfection studies, and the high potential perspectives in this fascinating research field, which is expecting to gain more and more interest in the next years for the obvious benefit of animal health.
Collapse
|
16
|
Molecular and Cellular Mechanisms for PRRSV Pathogenesis and Host Response to Infection. Virus Res 2020; 286:197980. [PMID: 32311386 PMCID: PMC7165118 DOI: 10.1016/j.virusres.2020.197980] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
PRRSV has evolved to arm with various strategies to modify host antiviral response. Viral modulation of homeostatic cellular processes provides favorable conditions for PRRSV survival during infection. PRRSV modulation of cellular processes includes pathways for interferons, apoptosis, microRNAs, cytokines, autophagy, and viral genome recombination.
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous amounts of economic losses to the swine industry for more than three decades, but its control is still unsatisfactory. A significant amount of information is available for host cell-virus interactions during infection, and it is evident that PRRSV has evolved to equip various strategies to disrupt the host antiviral system and provide favorable conditions for survival. The current study reviews viral strategies for modulations of cellular processes including innate immunity, apoptosis, microRNAs, inflammatory cytokines, and other cellular pathways.
Collapse
|
17
|
Feng H, Fan J, Lin L, Liu Y, Chai D, Yang J. Immunomodulatory Effects of Phosphorylated Radix Cyathulae officinalis Polysaccharides in Immunosuppressed Mice. Molecules 2019; 24:E4150. [PMID: 31731832 PMCID: PMC6891547 DOI: 10.3390/molecules24224150] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
This research aimed to investigate the immunomodulatory effects of phosphorylated Radix Cyathulae officinalis Kuan polysaccharides (pRCPS) in immunosuppressed mice, improving their cellular and humoral immune function. Our results showed that pRCPS increased serum immunoglobulin (IgG, IgA, IgM) concentrations significantly, enhanced splenocyte proliferation, and the thymus and spleen indices. pRCPS also promoted phagocytosis in peritoneal macrophages and enhanced cytokine (IFN-γ, IL-2, -4, -5, -6, and -10) serum levels. Importantly, pRCPS increased the proportions of selected T cell subpopulations (CD3+, CD4+, and the CD4+ to CD8+ ratio). Our results revealed that phosphorylation of the polysaccharides promoted their immune-enhancing effects. Thus, pRCPS can enhance cellular and humoral immunity and could be used as an immune-enhancing agent to overcome cyclophosphamide (CY)-induced immunosuppression.
Collapse
Affiliation(s)
- Haibo Feng
- College of Life Science and Technology, Southwest Minzu University, Chengdu, Sichuan 6100041, China
| | - Jing Fan
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan 610051, China;
| | - Lang Lin
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China; (L.L.); (Y.L.); (D.C.); (J.Y.)
| | - Yunjie Liu
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China; (L.L.); (Y.L.); (D.C.); (J.Y.)
| | - Dongkun Chai
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China; (L.L.); (Y.L.); (D.C.); (J.Y.)
| | - Jie Yang
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China; (L.L.); (Y.L.); (D.C.); (J.Y.)
| |
Collapse
|
18
|
Bordet E, Blanc F, Tiret M, Crisci E, Bouguyon E, Renson P, Maisonnasse P, Bourge M, Leplat JJ, Giuffra E, Jouneau L, Schwartz-Cornil I, Bourry O, Bertho N. Porcine Reproductive and Respiratory Syndrome Virus Type 1.3 Lena Triggers Conventional Dendritic Cells 1 Activation and T Helper 1 Immune Response Without Infecting Dendritic Cells. Front Immunol 2018; 9:2299. [PMID: 30333837 PMCID: PMC6176214 DOI: 10.3389/fimmu.2018.02299] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/17/2018] [Indexed: 12/03/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome virus (PRRSV) is an arterivirus responsible for highly contagious infection and huge economic losses in pig industry. Two species, PRRSV-1 and PRRSV-2 are distinguished, PRRSV-1 being more prevalent in Europe. PRRSV-1 can further be divided in subtypes. PRRSV-1.3 such as Lena are more pathogenic than PRRSV-1.1 such as Lelystad or Flanders13. PRRSV-1.3 viruses trigger a higher Th1 response than PRRSV-1.1, although the role of the cellular immune response in PRRSV clearance remains ill defined. The pathogenicity as well as the T cell response inductions may be differentially impacted according to the capacity of the virus strain to infect and/or activate DCs. However, the interactions of PRRSV with in vivo-differentiated-DC subtypes such as conventional DC1 (cDC1), cDC2, and monocyte-derived DCs (moDC) have not been thoroughly investigated. Here, DC subpopulations from Lena in vivo infected pigs were analyzed for viral genome detection. This experiment demonstrates that cDC1, cDC2, and moDC are not infected in vivo by Lena. Analysis of DC cytokines production revealed that cDC1 are clearly activated in vivo by Lena. In vitro comparison of 3 Europeans strains revealed no infection of the cDC1 and cDC2 and no or little infection of moDC with Lena, whereas the two PRRSV-1.1 strains infect none of the 3 DC subtypes. In vitro investigation of T helper polarization and cytokines production demonstrate that Lena induces a higher Th1 polarization and IFNγ secretion than FL13 and LV. Altogether, this work suggests an activation of cDC1 by Lena associated with a Th1 immune response polarization.
Collapse
Affiliation(s)
- Elise Bordet
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Fany Blanc
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mathieu Tiret
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elisa Crisci
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Edwige Bouguyon
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Patricia Renson
- Virologie et Immunologie Porcines, Agence Nationale de Sécurité Sanitaire, Ploufragan, France.,Université Bretagne Loire, Rennes, France.,Union des Groupements de Producteurs de Viande de Bretagne (UGPVB), Rennes, France
| | - Pauline Maisonnasse
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mickael Bourge
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Jacques Leplat
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elisabetta Giuffra
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luc Jouneau
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Isabelle Schwartz-Cornil
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Bourry
- Virologie et Immunologie Porcines, Agence Nationale de Sécurité Sanitaire, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Nicolas Bertho
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|