1
|
LaPointe A, Gale M, Kell AM. Orthohantavirus Replication in the Context of Innate Immunity. Viruses 2023; 15:1130. [PMID: 37243216 PMCID: PMC10220641 DOI: 10.3390/v15051130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Orthohantaviruses are rodent-borne, negative-sense RNA viruses that are capable of causing severe vascular disease in humans. Over the course of viral evolution, these viruses have tailored their replication cycles in such a way as to avoid and/or antagonize host innate immune responses. In the rodent reservoir, this results in life long asymptomatic infections. However, in hosts other than its co-evolved reservoir, the mechanisms for subduing the innate immune response may be less efficient or absent, potentially leading to disease and/or viral clearance. In the case of human orthohantavirus infection, the interaction of the innate immune response with viral replication is thought to give rise to severe vascular disease. The orthohantavirus field has made significant advancements in understanding how these viruses replicate and interact with host innate immune responses since their identification by Dr. Ho Wang Lee and colleagues in 1976. Therefore, the purpose of this review, as part of this special issue dedicated to Dr. Lee, was to summarize the current knowledge of orthohantavirus replication, how viral replication activates innate immunity, and how the host antiviral response, in turn, impacts viral replication.
Collapse
Affiliation(s)
- Autumn LaPointe
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| |
Collapse
|
2
|
Proprotein convertases regulate trafficking and maturation of key proteins within the secretory pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:1-54. [PMID: 36707198 DOI: 10.1016/bs.apcsb.2022.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proprotein Convertases (PCs) are serine endoproteases that regulate the homeostasis of protein substrates in the cell. The PCs family counts 9 members-PC1/3, PC2, PC4, PACE4, PC5/6, PC7, Furin, SKI-1/S1P, and PCSK9. The first seven PCs are known as Basic Proprotein Convertases due to their propensity to cleave after polybasic clusters. SKI-1/S1P requires the additional presence of hydrophobic residues for processing, whereas PCSK9 is catalytically dead after autoactivation and exerts its functions using mechanisms alternative to direct cleavage. All PCs traffic through the canonical secretory pathway, reaching different compartments where the various substrates reside. Despite PCs members do not share the same subcellular localization, most of the cellular organelles count one or more Proprotein Convertases, including ER, Golgi stack, endosomes, secretory granules, and plasma membranes. The widespread expression of these enzymes at the systemic level speaks for their importance in the homeostasis of a large number of biological functions. Among others, PCs cleave precursors of hormones and growth factors and activate receptors and transcription factors. Notably, dysregulation of the enzymatic activity of Proprotein Convertases is associated to major human pathologies, such as cardiovascular diseases, cancer, diabetes, infections, inflammation, autoimmunity diseases, and Parkinson. In the current COVID-19 pandemic, Furin has further attracted the attention as a key player for conferring high pathogenicity to SARS-CoV-2. Here, we review the Proprotein Convertases family and their most important substrates along the secretory pathway. Knowledge about the complex functions of PCs is important to identify potential drug strategies targeting this class of enzymes.
Collapse
|
3
|
Menke L, Sperber HS, Aji AK, Chiantia S, Schwarzer R, Sieben C. Advances in fluorescence microscopy for orthohantavirus research. Microscopy (Oxf) 2023:6987530. [PMID: 36639937 DOI: 10.1093/jmicro/dfac075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/30/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Orthohantaviruses are important zoonotic pathogens responsible for a considerable disease burden globally. Partly due to our incomplete understanding of orthohantavirus replication, there is currently no effective antiviral treatment available. Recently, novel microscopy techniques and cutting-edge, automated image analysis algorithms have emerged, enabling to study cellular, subcellular and even molecular processes in unprecedented detail and depth. To date, fluorescence light microscopy allows us to visualize viral and cellular components and macromolecular complexes in live cells which in turn enables the study of specific steps of the viral replication cycle such as particle entry or protein trafficking at high temporal and spatial resolution. In this review, we highlight how fluorescence microscopy has provided new insights and improved our understanding of orthohantavirus biology. We discuss technical challenges such as studying live infected cells, give alternatives with recombinant protein expression and highlight future opportunities for example the application of super-resolution microscopy techniques, which has shown great potential in studies of different cellular processes and viral pathogens.
Collapse
Affiliation(s)
- Laura Menke
- Nanoscale Infection Biology Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hannah S Sperber
- Institute for Translational HIV Research, University Hospital Essen, Essen, Germany
| | - Amit Koikkarah Aji
- University of Potsdam, Institute of Biochemistry and Biology, Department of Physical Biochemistry, Potsdam, Germany
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Department of Physical Biochemistry, Potsdam, Germany
| | - Roland Schwarzer
- Institute for Translational HIV Research, University Hospital Essen, Essen, Germany
| | - Christian Sieben
- Nanoscale Infection Biology Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
4
|
Ning T, Huang W, Min L, Yang Y, Liu S, Xu J, Zhang N, Xie SA, Zhu S, Wang Y. Pseudotyped Viruses for Orthohantavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:229-252. [PMID: 36920700 DOI: 10.1007/978-981-99-0113-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Orthohantaviruses, members of the Orthohantavirus genus of Hantaviridae family of the Bunyavirales order, are enveloped, negative-sense, single-stranded, tripartite RNA viruses. They are emerging zoonotic pathogens carried by small mammals including rodents, moles, shrews, and bats and are the etiologic agents of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) among humans. With the characteristics of low biological risk but strong operability, a variety of pseudotyped viruses have been constructed as alternatives to authentic orthohantaviruses to help delineate the roles of host factors in viral entry and other virus-host interactions, to assist in deciphering mechanisms of immune response and correlates of protection, to enhance our understanding of viral antigenic property, to characterize viral entry inhibitors, and to be developed as vaccines. In this chapter, we will discuss the general property of orthohantavirus, construction of pseudotyped orthohantaviruses based on different packaging systems, and their current applications.
Collapse
Affiliation(s)
- Tingting Ning
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Yi Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Junxuan Xu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Nan Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Si-An Xie
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China.
| | - Youchun Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. .,Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming, China.
| |
Collapse
|
5
|
Zhao Y, Zhao N, Cai Y, Zhang H, Li J, Liu J, Ye C, Wang Y, Dang Y, Li W, Liu H, Zhang L, Li Y, Zhang L, Cheng L, Dong Y, Xu Z, Lei Y, Lu L, Wang Y, Ye W, Zhang F. An algal lectin griffithsin inhibits Hantaan virus infection in vitro and in vivo. Front Cell Infect Microbiol 2022; 12:881083. [PMID: 36579342 PMCID: PMC9791197 DOI: 10.3389/fcimb.2022.881083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Hantaan virus (HTNV) is the etiological pathogen of hemorrhagic fever with renal syndrome in East Asia. There are currently no effective therapeutics approved for HTNV and other hantavirus infections. We found that griffithsin (GRFT), an algae-derived lectin with broad-spectrum antiviral activity against various enveloped viruses, can inhibit the growth and spread of HTNV. In vitro experiments using recombinant vesicular stomatitis virus (rVSV) with HTNV glycoproteins as a model revealed that the GRFT inhibited the entry of rVSV-HTNV-G into host cells. In addition, we demonstrated that GRFT prevented authentic HTNV infection in vitro by binding to the viral N-glycans. In vivo experiments showed that GRFT partially protected the suckling mice from death induced by intracranial exposure to HTNV. These results demonstrated that GRFT can be a promising agent for inhibiting HTNV infection.
Collapse
Affiliation(s)
- Yajing Zhao
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China,Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Ningbo Zhao
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China,Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Yanxing Cai
- Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou, China,Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and BSL-3 Facility, Fudan University, Shanghai, China
| | - Hui Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Jia Li
- Department of Neurology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Jiaqi Liu
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Airforce Medical University, Xi’an, Shaanxi, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Yamei Dang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Wanying Li
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China,Department of Pathogenic Biology, School of Preclinical Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - He Liu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Lianqing Zhang
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yuexiang Li
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and BSL-3 Facility, Fudan University, Shanghai, China
| | - Yingjuan Wang
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China,*Correspondence: Fanglin Zhang, ; Wei Ye, ; Yingjuan Wang,
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China,*Correspondence: Fanglin Zhang, ; Wei Ye, ; Yingjuan Wang,
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University, Xi’an, Shaanxi, China,*Correspondence: Fanglin Zhang, ; Wei Ye, ; Yingjuan Wang,
| |
Collapse
|
6
|
Rothenberger S, Hurdiss DL, Walser M, Malvezzi F, Mayor J, Ryter S, Moreno H, Liechti N, Bosshart A, Iss C, Calabro V, Cornelius A, Hospodarsch T, Neculcea A, Looser T, Schlegel A, Fontaine S, Villemagne D, Paladino M, Schiegg D, Mangold S, Reichen C, Radom F, Kaufmann Y, Schaible D, Schlegel I, Zitt C, Sigrist G, Straumann M, Wolter J, Comby M, Sacarcelik F, Drulyte I, Lyoo H, Wang C, Li W, Du W, Binz HK, Herrup R, Lusvarghi S, Neerukonda SN, Vassell R, Wang W, Adler JM, Eschke K, Nascimento M, Abdelgawad A, Gruber AD, Bushe J, Kershaw O, Knutson CG, Balavenkatraman KK, Ramanathan K, Wyler E, Teixeira Alves LG, Lewis S, Watson R, Haeuptle MA, Zürcher A, Dawson KM, Steiner D, Weiss CD, Amstutz P, van Kuppeveld FJM, Stumpp MT, Bosch BJ, Engler O, Trimpert J. The trispecific DARPin ensovibep inhibits diverse SARS-CoV-2 variants. Nat Biotechnol 2022; 40:1845-1854. [PMID: 35864170 PMCID: PMC9750863 DOI: 10.1038/s41587-022-01382-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/02/2022] [Indexed: 01/14/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Sylvia Rothenberger
- Spiez Laboratory, Austrasse, Spiez, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Daniel L Hurdiss
- Department Biomolecular Health Sciences, Division Infectious Diseases & Immunology - Virology section, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Marcel Walser
- Molecular Partners AG, Zurich-Schlieren, Switzerland
| | | | - Jennifer Mayor
- Spiez Laboratory, Austrasse, Spiez, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Sarah Ryter
- Spiez Laboratory, Austrasse, Spiez, Switzerland
| | - Hector Moreno
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | | | | | - Chloé Iss
- Molecular Partners AG, Zurich-Schlieren, Switzerland
| | | | | | | | | | - Thamar Looser
- Molecular Partners AG, Zurich-Schlieren, Switzerland
| | - Anja Schlegel
- Molecular Partners AG, Zurich-Schlieren, Switzerland
| | | | | | | | | | | | | | - Filip Radom
- Molecular Partners AG, Zurich-Schlieren, Switzerland
| | | | | | - Iris Schlegel
- Molecular Partners AG, Zurich-Schlieren, Switzerland
| | - Christof Zitt
- Molecular Partners AG, Zurich-Schlieren, Switzerland
| | | | | | - Julia Wolter
- Molecular Partners AG, Zurich-Schlieren, Switzerland
| | - Marco Comby
- Molecular Partners AG, Zurich-Schlieren, Switzerland
| | | | - Ieva Drulyte
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Heyrhyoung Lyoo
- Department Biomolecular Health Sciences, Division Infectious Diseases & Immunology - Virology section, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Chunyan Wang
- Department Biomolecular Health Sciences, Division Infectious Diseases & Immunology - Virology section, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Wentao Li
- Department Biomolecular Health Sciences, Division Infectious Diseases & Immunology - Virology section, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Wenjuan Du
- Department Biomolecular Health Sciences, Division Infectious Diseases & Immunology - Virology section, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Rachel Herrup
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Sabrina Lusvarghi
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Sabari Nath Neerukonda
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Russell Vassell
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Wei Wang
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Julia M Adler
- Freie Universität Berlin, Institut für Virologie, Berlin, Germany
| | - Kathrin Eschke
- Freie Universität Berlin, Institut für Virologie, Berlin, Germany
| | | | - Azza Abdelgawad
- Freie Universität Berlin, Institut für Virologie, Berlin, Germany
| | - Achim D Gruber
- Freie Universität Berlin, Institut für Tierpathologie, Berlin, Germany
| | - Judith Bushe
- Freie Universität Berlin, Institut für Tierpathologie, Berlin, Germany
| | - Olivia Kershaw
- Freie Universität Berlin, Institut für Tierpathologie, Berlin, Germany
| | - Charles G Knutson
- Novartis Institutes for BioMedical Research, PK Sciences, Cambridge, MA, USA
| | | | | | - Emanuel Wyler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Seth Lewis
- Molecular Partners AG, Zurich-Schlieren, Switzerland
| | | | | | | | | | | | - Carol D Weiss
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | | | - Frank J M van Kuppeveld
- Department Biomolecular Health Sciences, Division Infectious Diseases & Immunology - Virology section, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Berend-Jan Bosch
- Department Biomolecular Health Sciences, Division Infectious Diseases & Immunology - Virology section, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Jakob Trimpert
- Freie Universität Berlin, Institut für Virologie, Berlin, Germany
| |
Collapse
|
7
|
Gallo G, Kotlik P, Roingeard P, Monot M, Chevreux G, Ulrich RG, Tordo N, Ermonval M. Diverse susceptibilities and responses of human and rodent cells to orthohantavirus infection reveal different levels of cellular restriction. PLoS Negl Trop Dis 2022; 16:e0010844. [PMID: 36223391 PMCID: PMC9591050 DOI: 10.1371/journal.pntd.0010844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/24/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Orthohantaviruses are rodent-borne emerging viruses that may cause severe diseases in humans but no apparent pathology in their small mammal reservoirs. However, the mechanisms leading to tolerance or pathogenicity in humans and persistence in rodent reservoirs are poorly understood, as is the manner in which they spread within and between organisms. Here, we used a range of cellular and molecular approaches to investigate the interactions of three different orthohantaviruses-Puumala virus (PUUV), responsible for a mild to moderate form of hemorrhagic fever with renal syndrome in humans, Tula virus (TULV) with low pathogenicity, and non-pathogenic Prospect Hill virus (PHV)-with human and rodent host cell lines. Besides the fact that cell susceptibility to virus infection was shown to depend on the cell type and virus strain, the three orthohantaviruses were able to infect Vero E6 and HuH7 human cells, but only the former secreted infectious particles. In cells derived from PUUV reservoir, the bank vole (Myodes glareolus), PUUV achieved a complete viral cycle, while TULV did not enter the cells and PHV infected them but did not produce infectious particles, reflecting differences in host specificity. A search for mature virions by electron microscopy (EM) revealed that TULV assembly occurred in part at the plasma membrane, whereas PHV particles were trapped in autophagic vacuoles in cells of the heterologous rodent host. We described differential interactions of orthohantaviruses with cellular factors, as supported by the cellular distribution of viral nucleocapsid protein with cell compartments, and proteomics identification of cellular partners. Our results also showed that interferon (IFN) dependent gene expression was regulated in a cell and virus species dependent manner. Overall, our study highlighted the complexity of the host-virus relationship and demonstrated that orthohantaviruses are restricted at different levels of the viral cycle. In addition, the study opens new avenues to further investigate how these viruses differ in their interactions with cells to evade innate immunity and how it depends on tissue type and host species.
Collapse
Affiliation(s)
- Giulia Gallo
- Institut Pasteur, Université Paris Cité, Département de Virologie, Unité des Stratégies Antivirales, Paris, France
- Sorbonne Université, Ecole Doctorale Complexité du Vivant, Paris, France
- * E-mail: (ME); (GG)
| | - Petr Kotlik
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Philippe Roingeard
- INSERM U1259 et plateforme IBISA de Microscopie Electronique, Université et CHRU de Tours, Tours, France
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Biomics Platform, C2RT, Paris, France
| | | | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Partner site Hamburg-Lübeck-Borstel-Riems, German Centre for Infection Research (DZIF), Greifswald-Insel Riems, Germany
| | - Noël Tordo
- Institut Pasteur, Université Paris Cité, Département de Virologie, Unité des Stratégies Antivirales, Paris, France
- Institut Pasteur de Guinée, Conakry, Guinée
| | - Myriam Ermonval
- Institut Pasteur, Université Paris Cité, Département de Virologie, Unité des Stratégies Antivirales, Paris, France
- * E-mail: (ME); (GG)
| |
Collapse
|
8
|
Simpson J, Spann KM, Phipps S. MLKL Regulates Rapid Cell Death-independent HMGB1 Release in RSV Infected Airway Epithelial Cells. Front Cell Dev Biol 2022; 10:890389. [PMID: 35712662 PMCID: PMC9194532 DOI: 10.3389/fcell.2022.890389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV)-induced bronchiolitis is a significant contributor to infant morbidity and mortality. Previously, we identified that necroptosis, a pro-inflammatory form of cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3, and mixed lineage kinase domain like protein (MLKL), occurs in RSV-infected human airway epithelial cells (hAECs), mediating the release of the alarmin high mobility group box 1 (HMGB1). Here, we show that RSV infection of hAECs induces the biphasic release of HMGB1 at 6 (“early”) and 24 (“late”) hours post infection (hpi). The early phase of HMGB1 release at 6 hpi is cell death-independent, however, this release is nonetheless attenuated by inhibition of MLKL (primarily associated with necroptosis). The early release of HMGB1 promotes the late phase of HMGB1 release via the activation of RAGE (receptor for advanced glycation endproducts) and occurs with cell death. Treatment of hAECS with exogenous HMGB1 combined with a pan-caspase inhibitor induces hAEC necroptosis, and is attenuated by the RAGE antagonist, FPS-ZM1. Together, these findings demonstrate that RSV infection of hAECs leads to the early release of HMGB1, followed by a paracrine feed-forward amplification loop that further increases HMGB1 levels and promotes cell death. As the inhibition of MLKL or targeting of HMGB1/RAGE pathway attenuates the release of pro-inflammatory HMGB1 and decreases viral load, this suggests that the pharmacological targeting of these pathways may be of benefit for the treatment of severe RSV bronchiolitis.
Collapse
Affiliation(s)
- Jennifer Simpson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Science, University of Queensland, Brisbane, QLD, Australia
| | - Kirsten M. Spann
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Science, University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Brisbane, QLD, Australia
- *Correspondence: Simon Phipps,
| |
Collapse
|
9
|
Welke RW, Sperber HS, Bergmann R, Koikkarah A, Menke L, Sieben C, Krüger DH, Chiantia S, Herrmann A, Schwarzer R. Characterization of Hantavirus N Protein Intracellular Dynamics and Localization. Viruses 2022; 14:v14030457. [PMID: 35336863 PMCID: PMC8954124 DOI: 10.3390/v14030457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hantaviruses are enveloped viruses that possess a tri-segmented, negative-sense RNA genome. The viral S-segment encodes the multifunctional nucleocapsid protein (N), which is involved in genome packaging, intracellular protein transport, immunoregulation, and several other crucial processes during hantavirus infection. In this study, we generated fluorescently tagged N protein constructs derived from Puumalavirus (PUUV), the dominant hantavirus species in Central, Northern, and Eastern Europe. We comprehensively characterized this protein in the rodent cell line CHO-K1, monitoring the dynamics of N protein complex formation and investigating co-localization with host proteins as well as the viral glycoproteins Gc and Gn. We observed formation of large, fibrillar PUUV N protein aggregates, rapidly coalescing from early punctate and spike-like assemblies. Moreover, we found significant spatial correlation of N with vimentin, actin, and P-bodies but not with microtubules. N constructs also co-localized with Gn and Gc albeit not as strongly as the glycoproteins associated with each other. Finally, we assessed oligomerization of N constructs, observing efficient and concentration-dependent multimerization, with complexes comprising more than 10 individual proteins.
Collapse
Affiliation(s)
- Robert-William Welke
- Department of Molecular Biophysics, Humboldt University, 10115 Berlin, Germany; (R.-W.W.); (R.B.); (A.H.)
| | - Hannah Sabeth Sperber
- Institute for Translational HIV Research, University Hospital Essen, 45147 Essen, Germany;
| | - Ronny Bergmann
- Department of Molecular Biophysics, Humboldt University, 10115 Berlin, Germany; (R.-W.W.); (R.B.); (A.H.)
| | - Amit Koikkarah
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; (A.K.); (S.C.)
| | - Laura Menke
- Nanoscale Infection Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (L.M.); (C.S.)
| | - Christian Sieben
- Nanoscale Infection Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (L.M.); (C.S.)
- Institute for Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Detlev H. Krüger
- Institut für Virologie, Charité–Universitätsmedizin Berlin, Gliedkörperschaft der Freien Universität Berlin und der Humboldt-Universität zu Berlin, 10117 Berlin, Germany;
| | - Salvatore Chiantia
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; (A.K.); (S.C.)
| | - Andreas Herrmann
- Department of Molecular Biophysics, Humboldt University, 10115 Berlin, Germany; (R.-W.W.); (R.B.); (A.H.)
- Biophysikalische Chemie, Freie Universität, 14195 Berlin, Germany
| | - Roland Schwarzer
- Institute for Translational HIV Research, University Hospital Essen, 45147 Essen, Germany;
- Correspondence:
| |
Collapse
|
10
|
Stévenin V, Giai Gianetto Q, Duchateau M, Matondo M, Enninga J, Chang YY. Purification of infection-associated macropinosomes by magnetic isolation for proteomic characterization. Nat Protoc 2021; 16:5220-5249. [PMID: 34697468 DOI: 10.1038/s41596-021-00610-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Macropinocytosis refers to the nonselective uptake of extracellular molecules into many different types of eukaryotic cells within large fluid-filled vesicles named macropinosomes. Macropinosomes are relevant for a wide variety of cellular processes, such as antigen sampling in immune cells, homeostasis in the kidney, cell migration or pathogen uptake. Understanding the molecular composition of the different macropinosomes formed during these processes has helped to differentiate their regulations from other endocytic events. Here, we present a magnetic purification protocol that segregates scarce macropinosomes from other endocytic vesicles at a high purity and in a low-cost and unbiased manner. Our protocol takes advantage of moderate-sized magnetic beads of 100 nm in diameter coupled to mass-spectrometry-based proteomic analysis. Passing the cell lysate through a table-top magnet allows the quick retention of the bead-containing macropinosomes. Unlike other cell-fractionation-based methodologies, our protocol minimizes sample loss and production cost without prerequisite knowledge of the macropinosomes and with minimal laboratory experience. We describe a detailed procedure for the isolation of infection-associated macropinosomes during bacterial invasion and the optimization steps to readily adapt it to various studies. The protocol can be performed in 3 d to provide highly purified and enriched macropinosomes for qualitative proteomic composition analysis.
Collapse
Affiliation(s)
- Virginie Stévenin
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit and CNRS UMR 3691, Paris, France.
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
- Université de Paris, Ecole Doctorale BioSPC, Paris, France.
| | - Quentin Giai Gianetto
- Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, USR 2000 CNRS, Paris, France
- Hub Bioinformatics et Biostatistics, Computational Biology Department, USR CNRS, Institut Pasteur, Paris, France
| | - Magalie Duchateau
- Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, USR 2000 CNRS, Paris, France
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, USR 2000 CNRS, Paris, France
| | - Jost Enninga
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit and CNRS UMR 3691, Paris, France
| | - Yuen-Yan Chang
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit and CNRS UMR 3691, Paris, France.
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Liu W, Tang D, Xu XX, Liu YJ, Jiu Y. How Physical Factors Coordinate Virus Infection: A Perspective From Mechanobiology. Front Bioeng Biotechnol 2021; 9:764516. [PMID: 34778236 PMCID: PMC8585752 DOI: 10.3389/fbioe.2021.764516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Pandemics caused by viruses have threatened lives of thousands of people. Understanding the complicated process of viral infection provides significantly directive implication to epidemic prevention and control. Viral infection is a complex and diverse process, and substantial studies have been complemented in exploring the biochemical and molecular interactions between viruses and hosts. However, the physical microenvironment where infections implement is often less considered, and the role of mechanobiology in viral infection remains elusive. Mechanobiology focuses on sensation, transduction, and response to intracellular and extracellular physical factors by tissues, cells, and extracellular matrix. The intracellular cytoskeleton and mechanosensors have been proven to be extensively involved in the virus life cycle. Furthermore, innovative methods based on micro- and nanofabrication techniques are being utilized to control and modulate the physical and chemical cell microenvironment, and to explore how extracellular factors including stiffness, forces, and topography regulate viral infection. Our current review covers how physical factors in the microenvironment coordinate viral infection. Moreover, we will discuss how this knowledge can be harnessed in future research on cross-fields of mechanobiology and virology.
Collapse
Affiliation(s)
- Wei Liu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Daijiao Tang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Xin Xu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Hägele S, Nusshag C, Müller A, Baumann A, Zeier M, Krautkrämer E. Cells of the human respiratory tract support the replication of pathogenic Old World orthohantavirus Puumala. Virol J 2021; 18:169. [PMID: 34404450 PMCID: PMC8369447 DOI: 10.1186/s12985-021-01636-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Transmission of all known pathogenic orthohantaviruses (family Hantaviridae) usually occurs via inhalation of aerosols contaminated with viral particles derived from infected rodents and organ manifestation of infections is characterized by lung and kidney involvement. Orthohantaviruses found in Eurasia cause hemorrhagic fever with renal syndrome (HFRS) and New World orthohantaviruses cause hantavirus cardiopulmonary syndrome (HCPS). However, cases of infection with Old World orthohantaviruses with severe pulmonary manifestations have also been observed. Therefore, human airway cells may represent initial targets for orthohantavirus infection and may also play a role in the pathogenesis of infections with Eurasian orthohantaviruses. METHODS We analyzed the permissiveness of primary endothelial cells of the human pulmonary microvasculature and of primary human epithelial cells derived from bronchi, bronchioles and alveoli for Old World orthohantavirus Puumala virus (PUUV) in vitro. In addition, we examined the expression of orthohantaviral receptors in these cell types. To minimize donor-specific effects, cells from two different donors were tested for each cell type. RESULTS Productive infection with PUUV was observed for endothelial cells of the microvasculature and for the three tested epithelial cell types derived from different sites of the respiratory tract. Interestingly, infection and particle release were also detected in bronchial and bronchiolar epithelial cells although expression of the orthohantaviral receptor integrin β3 was not detectable in these cell types. In addition, replication kinetics and viral release demonstrate enormous donor-specific variations. CONCLUSIONS The human respiratory epithelium is among the first targets of orthohantaviral infection and may contribute to virus replication, dissemination and pathogenesis of HFRS-causing orthohantaviruses. Differences in initial pulmonary infection due to donor-specific factors may play a role in the observed broad variance of severity and symptoms of orthohantavirus disease in patients. The absence of detectable levels of integrin αVβ3 surface expression on bronchial and small airway epithelial cells indicates an alternate mode of orthohantaviral entry in these cells that is independent from integrin β3.
Collapse
Affiliation(s)
- Stefan Hägele
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Alexander Müller
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Alexandra Baumann
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Meier K, Thorkelsson SR, Quemin ERJ, Rosenthal M. Hantavirus Replication Cycle-An Updated Structural Virology Perspective. Viruses 2021; 13:1561. [PMID: 34452426 PMCID: PMC8402763 DOI: 10.3390/v13081561] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Hantaviruses infect a wide range of hosts including insectivores and rodents and can also cause zoonotic infections in humans, which can lead to severe disease with possible fatal outcomes. Hantavirus outbreaks are usually linked to the population dynamics of the host animals and their habitats being in close proximity to humans, which is becoming increasingly important in a globalized world. Currently there is neither an approved vaccine nor a specific and effective antiviral treatment available for use in humans. Hantaviruses belong to the order Bunyavirales with a tri-segmented negative-sense RNA genome. They encode only five viral proteins and replicate and transcribe their genome in the cytoplasm of infected cells. However, many details of the viral amplification cycle are still unknown. In recent years, structural biology methods such as cryo-electron tomography, cryo-electron microscopy, and crystallography have contributed essentially to our understanding of virus entry by membrane fusion as well as genome encapsidation by the nucleoprotein. In this review, we provide an update on the hantavirus replication cycle with a special focus on structural virology aspects.
Collapse
Affiliation(s)
- Kristina Meier
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
| | - Sigurdur R. Thorkelsson
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology, University of Hamburg, 22607 Hamburg, Germany;
| | - Emmanuelle R. J. Quemin
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology, University of Hamburg, 22607 Hamburg, Germany;
| | - Maria Rosenthal
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| |
Collapse
|
14
|
Mayor J, Engler O, Rothenberger S. Antiviral Efficacy of Ribavirin and Favipiravir against Hantaan Virus. Microorganisms 2021; 9:microorganisms9061306. [PMID: 34203936 PMCID: PMC8232603 DOI: 10.3390/microorganisms9061306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Ecological changes, population movements and increasing urbanization promote the expansion of hantaviruses, placing humans at high risk of virus transmission and consequent diseases. The currently limited therapeutic options make the development of antiviral strategies an urgent need. Ribavirin is the only antiviral used currently to treat hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus (HTNV), even though severe side effects are associated with this drug. We therefore investigated the antiviral activity of favipiravir, a new antiviral agent against RNA viruses. Both ribavirin and favipiravir demonstrated similar potent antiviral activity on HTNV infection. When combined, the efficacy of ribavirin is enhanced through the addition of low dose favipiravir, highlighting the possibility to provide better treatment than is currently available.
Collapse
Affiliation(s)
- Jennifer Mayor
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland;
- Spiez Laboratory, Federal Office for Civil Protection, CH-3700 Spiez, Switzerland;
| | - Olivier Engler
- Spiez Laboratory, Federal Office for Civil Protection, CH-3700 Spiez, Switzerland;
| | - Sylvia Rothenberger
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland;
- Spiez Laboratory, Federal Office for Civil Protection, CH-3700 Spiez, Switzerland;
- Correspondence: ; Tel.: +41-213145103
| |
Collapse
|
15
|
Identification of Novel Antiviral Compounds Targeting Entry of Hantaviruses. Viruses 2021; 13:v13040685. [PMID: 33923413 PMCID: PMC8074185 DOI: 10.3390/v13040685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Hemorrhagic fever viruses, among them orthohantaviruses, arenaviruses and filoviruses, are responsible for some of the most severe human diseases and represent a serious challenge for public health. The current limited therapeutic options and available vaccines make the development of novel efficacious antiviral agents an urgent need. Inhibiting viral attachment and entry is a promising strategy for the development of new treatments and to prevent all subsequent steps in virus infection. Here, we developed a fluorescence-based screening assay for the identification of new antivirals against hemorrhagic fever virus entry. We screened a phytochemical library containing 320 natural compounds using a validated VSV pseudotype platform bearing the glycoprotein of the virus of interest and encoding enhanced green fluorescent protein (EGFP). EGFP expression allows the quantitative detection of infection and the identification of compounds affecting viral entry. We identified several hits against four pseudoviruses for the orthohantaviruses Hantaan (HTNV) and Andes (ANDV), the filovirus Ebola (EBOV) and the arenavirus Lassa (LASV). Two selected inhibitors, emetine dihydrochloride and tetrandrine, were validated with infectious pathogenic HTNV in a BSL-3 laboratory. This study provides potential therapeutics against emerging virus infection, and highlights the importance of drug repurposing.
Collapse
|
16
|
Primary differentiated respiratory epithelial cells respond to apical measles virus infection by shedding multinucleated giant cells. Proc Natl Acad Sci U S A 2021; 118:2013264118. [PMID: 33836570 DOI: 10.1073/pnas.2013264118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Measles virus (MeV) is highly infectious by the respiratory route and remains an important cause of childhood mortality. However, the process by which MeV infection is efficiently established in the respiratory tract is controversial with suggestions that respiratory epithelial cells are not susceptible to infection from the apical mucosal surface. Therefore, it has been hypothesized that infection is initiated in lung macrophages or dendritic cells and that epithelial infection is subsequently established through the basolateral surface by infected lymphocytes. To better understand the process of respiratory tract initiation of MeV infection, primary differentiated respiratory epithelial cell cultures were established from rhesus macaque tracheal and nasal tissues. Infection of these cultures with MeV from the apical surface was more efficient than from the basolateral surface with shedding of viable MeV-producing multinucleated giant cell (MGC) syncytia from the surface. Despite presence of MGCs and infectious virus in supernatant fluids after apical infection, infected cells were not detected in the adherent epithelial sheet and transepithelial electrical resistance was maintained. After infection from the basolateral surface, epithelial damage and large clusters of MeV-positive cells were observed. Treatment with fusion inhibitory peptides showed that MeV production after apical infection was not dependent on infection of the basolateral surface. These results are consistent with the hypothesis that MeV infection is initiated by apical infection of respiratory epithelial cells with subsequent infection of lymphoid tissue and systemic spread.
Collapse
|
17
|
Macropinocytosis and Clathrin-Dependent Endocytosis Play Pivotal Roles for the Infectious Entry of Puumala Virus. J Virol 2020; 94:JVI.00184-20. [PMID: 32350075 DOI: 10.1128/jvi.00184-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/25/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses from the family Hantaviridae are encountered as emerging pathogens causing two life-threatening human zoonoses: hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), with case fatality rates of up to 50%. Here, we comprehensively investigated entry of the Old World hantavirus Puumala virus (PUUV) into mammalian cells, showing that upon treatment with pharmacological inhibitors of macropinocytosis and clathrin-mediated endocytosis, PUUV infections are greatly reduced. We demonstrate that the inhibitors did not interfere with viral replication and that RNA interference, targeting cellular mediators of macropinocytosis, decreases PUUV infection levels significantly. Moreover, we established lipophilic tracer staining of PUUV particles and show colocalization of stained virions and markers of macropinosomes. Finally, we report a significant increase in the fluid-phase uptake of cells infected with PUUV, indicative of a virus-triggered promotion of macropinocytosis.IMPORTANCE The family Hantaviridae comprises a diverse group of virus species and is considered an emerging global public health threat. Individual hantavirus species differ considerably in terms of their pathogenicity but also in their cell biology and host-pathogen interactions. In this study, we focused on the most prevalent pathogenic hantavirus in Europe, Puumala virus (PUUV), and investigated the entry and internalization of PUUV into mammalian cells. We show that both clathrin-mediated endocytosis and macropinocytosis are cellular pathways exploited by the virus to establish productive infections and demonstrate that pharmacological inhibition of macropinocytosis or a targeted knockdown using RNA interference significantly reduced viral infections. We also found indications of an increase of macropinocytic uptake upon PUUV infection, suggesting that the virus triggers specific cellular mechanisms in order to stimulate its own internalization, thus facilitating infection.
Collapse
|
18
|
Multifunctional carboxymethyl chitosan derivatives-layered double hydroxide hybrid nanocomposites for efficient drug delivery to the posterior segment of the eye. Acta Biomater 2020; 104:104-114. [PMID: 31931169 DOI: 10.1016/j.actbio.2020.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/25/2019] [Accepted: 01/08/2020] [Indexed: 01/17/2023]
Abstract
Efficient ocular drug delivery to the posterior segment of the eye by topical administration is a great challenge to pharmacologists. To explore drug delivery system of organic-inorganic hybrid nanocomposites for the efficient delivery of dexamethasone disodium phosphate (DEXP), a targeted hybrid nanocomposite based on layered double hydroxide (LDH) and functional carboxymethyl chitosan (CMCS) derivatives was designed. A special substrate of peptide transporter-1 (PepT-1) and glutathione was modified on CMCS. CMCS-glutathione-glycylsarcosine (CMCG-GS) and CMCS-glutathione-valyl-valine (CMCG-VV)-LDH hybrid nanocomposites were prepared and structurally confirmed. The in vitro experiments on human conjunctival epithelial cells showed noncytotoxicity (LDH concentration ≤100.0 µg/mL) and enhanced permeability for hybrid nanocomposites. Additionally, cellular uptake of the CMCG-GS-DEXP-LDH (10:1) nanocomposite eye drops involved clathrin-mediated endocytosis and PepT-1 mediated actively targeting transport. Results of the in vivo precorneal retention study showed an 8.35-fold, 2.87-fold and 2.58-fold increase of AUC0-6 h, Cmax and MRT for CMCG-GS-DEXP-LDH (10:1) hybrid nanocomposite eye drops, respectively, compared to that of the commercial product. Fluorescence imaging of fluorescein isothiocyanate isome (FITC)-loaded LDH hybrid nanocomposites demonstrated that FITC could diffuse into the choroid-retina with the shelter of LDH and CMCG-GS. The presence of a strong fluorescence signal of FITC-conjugated LDH hybrid nanocomposites in the sclera revealed that integral LDH nanocarrier reached the sclera. In the tissue distribution evaluation of rabbit's eyes, DEXP of CMCG-GS-DEXP-LDH (10:1) nanocomposites group retained in the target of the choroid-retina for 3 h with final concentration at 120.04 ng/g. Furthermore, the results of fluorescence imaging and tissue distribution suggested that the intraocular transport pathway for the hybrid nanocomposites is the conjunctival-scleral route. Consequently, the developed hybrid nanocomposites offer a simple and efficient strategy for topically administered drug delivery to the posterior segment of the eye. STATEMENT OF SIGNIFICANCE: Efficient ocular drug delivery to the posterior segment of the eye by topical administration is a great challenge to pharmacologists. In this manuscript, hybrid nanocomposite based on layered double hydroxide (LDH) and functional carboxymethyl chitosan (CMCS) derivatives were designed. The multifunctional properties of these hybrid nanocomposites were attributed to active targeting, bioadhesive capacity and penetration enhancement. Visualization of transport routes of fluorescein isothiocyanate-conjugated LDH hybrid nanocomposites demonstrated that the integral LDH nanocarrier reached the sclera through the conjunctival-scleral pathway, and the loaded drug could further diffuse to the retina. The multifunctional CMCS derivatives-LDH hybrid nanocomposites could be applied for the efficient drug delivery to the posterior segment of the eye through noninvasive topical instillation.
Collapse
|
19
|
Mayor J, Torriani G, Rothenberger S, Engler O. T-cell immunoglobulin and mucin (TIM) contributes to the infection of human airway epithelial cells by pseudotype viruses containing Hantaan virus glycoproteins. Virology 2020; 543:54-62. [PMID: 32056847 DOI: 10.1016/j.virol.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022]
Abstract
Hantaviruses are rodent-borne hemorrhagic fever viruses leading to serious diseases. Viral attachment and entry represent the first steps in virus transmission and are promising targets for antiviral therapeutic intervention. Here we investigated receptor use in human airway epithelium of the Old and New World hantaviruses Hantaan virus (HTNV) and Andes virus (ANDV). Using a biocontained recombinant vesicular stomatitis virus pseudotype platform, we provide first evidence for a role of the cellular phosphatidylserine (PS) receptors of the T-cell immunoglobulin and mucin (TIM) protein family in HTNV and ANDV infection. In line with previous studies, HTNV, but not ANDV, was able to use glycosaminoglycan heparan sulfate and αvβ3 integrin as co-receptors. In sum, our studies demonstrate for the first time that hantaviruses make use of apoptotic mimicry for infection of human airway epithelium, which may explain why these viruses can easily break the species barrier.
Collapse
Affiliation(s)
- Jennifer Mayor
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011, Lausanne, Switzerland; Spiez Laboratory, CH-3700, Spiez, Switzerland
| | - Giulia Torriani
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011, Lausanne, Switzerland
| | - Sylvia Rothenberger
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011, Lausanne, Switzerland; Spiez Laboratory, CH-3700, Spiez, Switzerland.
| | | |
Collapse
|
20
|
Mittler E, Dieterle ME, Kleinfelter LM, Slough MM, Chandran K, Jangra RK. Hantavirus entry: Perspectives and recent advances. Adv Virus Res 2019; 104:185-224. [PMID: 31439149 DOI: 10.1016/bs.aivir.2019.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hantaviruses are important zoonotic pathogens of public health importance that are found on all continents except Antarctica and are associated with hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. Despite the significant disease burden they cause, no FDA-approved specific therapeutics or vaccines exist against these lethal viruses. The lack of available interventions is largely due to an incomplete understanding of hantavirus pathogenesis and molecular mechanisms of virus replication, including cellular entry. Hantavirus Gn/Gc glycoproteins are the only viral proteins exposed on the surface of virions and are necessary and sufficient to orchestrate virus attachment and entry. In vitro studies have implicated integrins (β1-3), DAF/CD55, and gC1qR as candidate receptors that mediate viral attachment for both Old World and New World hantaviruses. Recently, protocadherin-1 (PCDH1) was demonstrated as a requirement for cellular attachment and entry of New World hantaviruses in vitro and lethal HPS in vivo, making it the first clade-specific host factor to be identified. Attachment of hantavirus particles to cellular receptors induces their internalization by clathrin-mediated, dynamin-independent, or macropinocytosis-like mechanisms, followed by particle trafficking to an endosomal compartment where the fusion of viral and endosomal membranes can occur. Following membrane fusion, which requires cholesterol and acid pH, viral nucleocapsids escape into the cytoplasm and launch genome replication. In this review, we discuss the current mechanistic understanding of hantavirus entry, highlight gaps in our existing knowledge, and suggest areas for future inquiry.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maria Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lara M Kleinfelter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Megan M Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|