1
|
Landry RL, Embers ME. The Probable Infectious Origin of Multiple Sclerosis. NEUROSCI 2023; 4:211-234. [PMID: 39483197 PMCID: PMC11523707 DOI: 10.3390/neurosci4030019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 11/03/2024] Open
Abstract
Multiple sclerosis (MS) is an immune inflammatory disease that causes demyelination of the white matter of the central nervous system. It is generally accepted that the etiology of MS is multifactorial and believed to be a complex interplay between genetic susceptibility, environmental factors, and infectious agents. While the exact cause of MS is still unknown, increasing evidence suggests that disease development is the result of interactions between genetically susceptible individuals and the environment that lead to immune dysregulation and CNS inflammation. Genetic factors are not sufficient on their own to cause MS, and environmental factors such as viral infections, smoking, and vitamin D deficiency also play important roles in disease development. Several pathogens have been implicated in the etiology of MS, including Epstein-Barr virus, human herpesvirus 6, varicella-zoster virus, cytomegalovirus, Helicobacter pylori, Chlamydia pneumoniae, and Borrelia burgdorferi. Although vastly different, viruses and bacteria can manipulate host gene expression, causing immune dysregulation, myelin destruction, and neuroinflammation. This review emphasizes the pathogenic triggers that should be considered in MS progression.
Collapse
Affiliation(s)
- Remi L Landry
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| | - Monica E Embers
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| |
Collapse
|
2
|
Wang Y, Wang M, Bao R, Wang L, Du X, Qiu S, Yang C, Song H. A novel humanized tri-receptor transgenic mouse model of HAdV infection and pathogenesis. J Med Virol 2023; 95:e29026. [PMID: 37578851 DOI: 10.1002/jmv.29026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Human adenovirus (HAdV) is a highly virulent respiratory pathogen that poses clinical challenges in terms of diagnostics and treatment. Currently, no effective therapeutic drugs or prophylactic vaccines are available for HAdV infections. One factor contributing to this deficiency is that existing animal models, including wild-type and single-receptor transgenic mice, are unsuitable for HAdV proliferation and pathology testing. In this study, a tri-receptor transgenic mouse model expressing the three best-characterized human cellular receptors for HAdV (hCAR, hCD46, and hDSG2) was generated and validated via analysis of transgene insertion, receptor mRNA expression, and protein abundance distribution. Following HAdV-7 infection, the tri-receptor mice exhibited high transcription levels at the early and late stages of the HAdV gene, as well as viral protein expression. Furthermore, the tri-receptor mice infected with HAdV exhibited dysregulated cytokine responses and multiple tissue lesions. This transgenic mouse model represents human HAdV infection and pathogenesis with more accuracy than any other reported animal model. As such, this model facilitates the comprehensive investigation of HAdV pathogenesis as well as the evaluation of potential vaccines and therapeutic modalities for HAdV.
Collapse
Affiliation(s)
- Yawei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Min Wang
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
- College of Public Heaith, China Medical University, Shenyang, China
| | - Renlong Bao
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ligui Wang
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xinying Du
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shaofu Qiu
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chaojie Yang
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Komaroff AL, Pellett PE, Jacobson S. Human Herpesviruses 6A and 6B in Brain Diseases: Association versus Causation. Clin Microbiol Rev 2020; 34:e00143-20. [PMID: 33177186 PMCID: PMC7667666 DOI: 10.1128/cmr.00143-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) and human herpesvirus 6B (HHV-6B), collectively termed HHV-6A/B, are neurotropic viruses that permanently infect most humans from an early age. Although most people infected with these viruses appear to suffer no ill effects, the viruses are a well-established cause of encephalitis in immunocompromised patients. In this review, we summarize the evidence that the viruses may also be one trigger for febrile seizures (including febrile status epilepticus) in immunocompetent infants and children, mesial temporal lobe epilepsy, multiple sclerosis (MS), and, possibly, Alzheimer's disease. We propose criteria for linking ubiquitous infectious agents capable of producing lifelong infection to any neurologic disease, and then we examine to what extent these criteria have been met for these viruses and these diseases.
Collapse
Affiliation(s)
- Anthony L Komaroff
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip E Pellett
- Department of Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Steven Jacobson
- Virology/Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Cavallo S. Immune-mediated genesis of multiple sclerosis. J Transl Autoimmun 2020; 3:100039. [PMID: 32743522 PMCID: PMC7388381 DOI: 10.1016/j.jtauto.2020.100039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is widely acknowledged to be an autoimmune disease affecting the neuronal myelin structure of the CNS. Autoantigens recognized as the target of this autoimmune process are: myelin basal protein, anti-proteolipid protein, antimyelin-associated glycoprotein and antimyelin-based oligodendrocytic basic protein. Ample evidence supports the idea of a dysregulation of immunological tolerance towards self-antigens of neuronal myelin structure triggered by one or more viral or bacterial microbial agents in predisposed HLA gene subjects. Genetic predisposition to MS has been highlighted by numerous studies associating the disease to specific HLA haplotypes. Moreover, a wide range of evidence supports the fact that MS may be consequence of one or more viral or bacterial infections such as measles virus, EBV, HHV6, HZV, Chlamydia pneumoniae, Helicobacter Pylori, and other microbial agents. Microbiota elements also seems to have a role on the determinism of the disease as a pathogenic or protective factor. The autoimmune pathogenetic process could arise when a molecular mimicry between a foreign microbial antigen and an auto-antigen occurs in an HLA gene subject competent for that particular antigen. The antigen-presenting cells in this case would induce the activation of a specific Th clone causing a cross-reaction between a foreign antigen and an autoantigen resulting in an autoimmune response. A multifactorial ethiopathogenetic model based on immunomediation is a reliable hypothesis for multiple sclerosis. Evidence found in the scientific literature makes it possible to reconstruct this etiopathogenetic hypothesis for MS. HLA gene predisposition, correlation with infections, molecular mimicry and other immunological data are reported.
Collapse
Affiliation(s)
- Salvatore Cavallo
- Expert Doctor in Non-Conventional Medicine, Professor and Member of the Board of the MMS, MMS (Medicina di Modulazione Dei Sistemi) Roma, Salvatore Cavallo Via G.B. Pergolesi, 28, 75100, Matera, Italy
| |
Collapse
|
5
|
Pormohammad A, Azimi T, Falah F, Faghihloo E. Relationship of human herpes virus 6 and multiple sclerosis: A systematic review and meta-analysis. J Cell Physiol 2017. [PMID: 28631829 DOI: 10.1002/jcp.26000] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infection with human herpes viruses has been suggested to contribute to multiple sclerosis (MS), while interaction between human herpes 6 (HHV6) and MS remain unclear yet. Here, we conducted a meta-analysis on the relationship of HHV6 infection and MS. All related studies were collected from major databases. The analyses were performed by STATA 14 and Comprehensive Meta-Analysis V2.0 softwares. Pooled odds ratios (ORs) and 95%CIs were calculated from the raw data of the including studies by the random effects models when I2 > 50% and fix model when I2 < 50%. Thirty nine studies were included in the meta-analysis that 34 studies used molecular assays and 7 studies used serological assays for diagnosis of HHV6 infected cases. The relationship of HHV6 and MS was significant in healthy control group by yielding a summary OR of (2.23 [1.5-3.3], p = 0.06). A significant HHV6 association with MS were in the studies with >6 score that used serum/blood sample with OR of (6.7 [95%CI 4.8-8.6], p < 0.00001) and in serological studies, IgM positive titer in other neurological diseases (OND) control group was significant with OR of (8.3 [95%CI 3-24.07], p < 0.00001). This study has been showed that there were significant relationship between MS and HHV6 infection.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fateme Falah
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Ly PT, Tang SJ, Roca X. Alternative polyadenylation expands the mRNA isoform repertoire of human CD46. Gene 2017; 625:21-30. [PMID: 28476687 DOI: 10.1016/j.gene.2017.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 11/28/2022]
Abstract
Alternative polyadenylation is a prevalent mechanism regulating mammalian gene expression. While tandem 3'-Untranslated-Region (3'UTR) polyadenylation changes expression levels, Intronic PolyAdenylation generates shorter transcripts encoding truncated proteins. Intronic PolyAdenylation regulates 20% of genes and is especially common in receptor tyrosine-kinase transcripts, generating soluble repressors. Here we report that human CD46, encoding a TransMembrane repressor of complement and T-cell co-stimulator, expresses multiple isoforms by alternative polyadenylation. We provide evidence for polyadenylation at several introns by RT-PCR of 5' intronic fragments, and by increase in such isoforms via functional U1 knockdown. We mapped various Intronic PolyAdenylation Sites by 3' Rapid Amplification of cDNA Ends (3'RACE), which could generate soluble or membrane-bound but tail-less CD46. Intronic PolyAdenylation could add to the source of soluble CD46 isoforms in fluids and tissues, which increase in cancers and autoimmune syndromes. Furthermore, 3'RACE identified three PolyAdenylation Sites within the last intron and exon, whose transcripts with shortened 3'UTRs could support higher CD46 expression. Finally, 3'RACE revealed that the CD46 Pseudogene only expresses short transcripts by early polyadenylation in intron 2. Overall, we report a wide variety of CD46 mRNA isoforms which could generate new protein isoforms, adding to the diverse physiological and pathological roles of CD46.
Collapse
Affiliation(s)
- Phuong Thao Ly
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore; The Neuroscience and Behavioral Disorders Programme, Duke-NUS Graduate Medical School, Singapore
| | - Sze Jing Tang
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
7
|
Alzamel N, Bayrou C, Decreux A, Desmecht D. Soluble forms of CD46 are detected in Bos taurus plasma and neutralize BVDV, the bovine pestivirus. Comp Immunol Microbiol Infect Dis 2016; 49:39-46. [PMID: 27865262 DOI: 10.1016/j.cimid.2016.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 07/19/2016] [Accepted: 09/02/2016] [Indexed: 11/20/2022]
Abstract
The pestivirus bovine viral diarrhea virus (BVDV) is known to bind to the CD46 molecule, which subsequently promotes entry of the virus. Mapping of the BVD-virion-binding site has shown that two peptides, 66EQIV69 and 82GQVLAL87, located on antiparallel beta sheets in the most distal complement control protein module (CCP1), provide the attachment platform. In the present study, we reveal new CD46-encoding transcripts that are predicted to encode CCP1-containing soluble forms. Further, we show that the serum of most adult cattle contains soluble CD46 (sCD46) and that a recombinant soluble isoform neutralizes BVDV infectivity in an in vitro assay. We have then established an ELISA for determination of plasma sCD46 in a large cohort of animals. Overall, serum sCD46 amounts to 8±18ng/mL (mean±SD, n=440), with a IC [95-105] ranging from 6,4 to 9,8ng/mL and extreme values between 0 and 178ng/mL. We found that sCD46 is not detectable in fetal and neonatal sera and that its plasma concentration increases progressively up to adulthood. We also detected high- and low-sCD46 performers and show that this phenotype does not depend of environment. As modern rearing techniques make it possible to disseminate genetically-determined phenotypes very quickly in a population, a large-scale study examining whether high-sCD46 animals provide epidemiological protection against BVDV infection and transmission should be undertaken.
Collapse
Affiliation(s)
- Nidal Alzamel
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, Belgium
| | - Calixte Bayrou
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, Belgium
| | - Annabelle Decreux
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, Belgium
| | - Daniel Desmecht
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, Belgium.
| |
Collapse
|
8
|
Possible role of human herpesvirus 6 as a trigger of autoimmune disease. ScientificWorldJournal 2013; 2013:867389. [PMID: 24282390 PMCID: PMC3825270 DOI: 10.1155/2013/867389] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/09/2013] [Indexed: 01/08/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) infection is common and has a worldwide distribution. Recently, HHV-6A and HHV-6B have been reclassified into two distinct species based on different biological features (genetic, antigenic, and cell tropism) and disease associations. A role for HHV-6A/B has been proposed in several autoimmune disorders (AD), including multiple sclerosis (MS), autoimmune connective tissue diseases, and Hashimoto's thyroiditis. The focus of this review is to discuss the above-mentioned AD associated with HHV-6 and the mechanisms proposed for HHV-6A/B-induced autoimmunity. HHV-6A/B could trigger autoimmunity by exposing high amounts of normally sequestered cell antigens, through lysis of infected cells. Another potential trigger is represented by molecular mimicry, with the synthesis of viral proteins that resemble cellular molecules, as a mechanism of immune escape. The virus could also induce aberrant expression of histocompatibility molecules thereby promoting the presentation of autoantigens. CD46-HHV-6A/B interaction is a new attractive mechanism proposed: HHV-6A/B (especially HHV-6A) could participate in neuroinflammation in the context of MS by promoting inflammatory processes through CD46 binding. Although HHV-6A/B has the ability to trigger all the above-mentioned mechanisms, more studies are required to fully elucidate the possible role of HHV-6A/B as a trigger of AD.
Collapse
|
9
|
Yamamoto H, Fara AF, Dasgupta P, Kemper C. CD46: the 'multitasker' of complement proteins. Int J Biochem Cell Biol 2013; 45:2808-20. [PMID: 24120647 DOI: 10.1016/j.biocel.2013.09.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 09/23/2013] [Accepted: 09/30/2013] [Indexed: 12/12/2022]
Abstract
Complement is undeniably quintessential for innate immunity by detecting and eliminating infectious microorganisms. Recent work, however, highlights an equally profound impact of complement on the induction and regulation of a wide range of immune cells. In particular, the complement regulator CD46 emerges as a key sensor of immune activation and a vital modulator of adaptive immunity. In this review, we summarize the current knowledge of CD46-mediated signalling events and their functional consequences on immune-competent cells with a specific focus on those in CD4(+) T cells. We will also discuss the promises and challenges that potential therapeutic modulation of CD46 may hold and pose.
Collapse
Affiliation(s)
- Hidekazu Yamamoto
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London SE1 9RT, UK; The Urology Centre, Guy's and St. Thomas' NHS Foundations Trust, London SE1 9RT, UK
| | | | | | | |
Collapse
|
10
|
Dagna L, Pritchett JC, Lusso P. Immunomodulation and immunosuppression by human herpesvirus 6A and 6B. Future Virol 2013; 8:273-287. [PMID: 24163703 PMCID: PMC3806647 DOI: 10.2217/fvl.13.7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Like other members of the Herpesviridae family, human herpesvirus (HHV)-6A and HHV-6B have developed a wide variety of strategies to modulate or suppress host immune responses and, thereby, facilitate their own spread and persistence in vivo. Long considered two variants of the same virus, HHV-6A and HHV-6B have recently been reclassified as distinct viral species, although the established nomenclature has been maintained. In this review, we summarize the distinctive profiles of interaction of these two viruses with the human immune system. Both HHV-6A and HHV-6B display a tropism for CD4+ T lymphocytes, but they can also infect, in a productive or nonproductive fashion, other cells of the immune system. However, there are important differences regarding the ability of each virus to infect cytotoxic effector cells, as HHV-6A has been shown to productively infect several of these cells, whereas HHV-6B infects them inefficiently at best. In addition to direct cytopathic effects, both HHV-6A and HHV-6B can interfere with immunologic functions to varying degrees via cytokine modulation, including blockade of IL-12 production by professional antigen-presenting cells, modulation of cell-surface molecules essential for T-cell activation, and expression of viral chemokines and chemokine receptors. Some of these effects are related to signaling through and downregulation of the viral receptor, CD46, a key molecule linking innate and adaptive immune responses. Increasing attention has recently been focused on the importance of viral interactions with dendritic cells, which may serve both as targets of virus-mediated immunosuppression and as vehicles for viral transfer to CD4+ T cells. Our deepening knowledge of the mechanisms developed by HHV-6A and HHV-6B to evade immunologic control may lead to new strategies for the prevention and treatment of the diseases associated with these viruses. Moreover, elucidation of these viral mechanisms may uncover new avenues to therapeutically manipulate or modulate the immune system in immunologically mediated human diseases.
Collapse
Affiliation(s)
- Lorenzo Dagna
- Department of Medicine & Clinical Immunology, Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | | | - Paolo Lusso
- Viral Pathogenesis Section, Laboratory of Immunoregulation, NIAID, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Wang H, Beyer I, Persson J, Song H, Li Z, Richter M, Cao H, van Rensburg R, Yao X, Hudkins K, Yumul R, Zhang XB, Yu M, Fender P, Hemminki A, Lieber A. A new human DSG2-transgenic mouse model for studying the tropism and pathology of human adenoviruses. J Virol 2012; 86:6286-302. [PMID: 22457526 PMCID: PMC3372198 DOI: 10.1128/jvi.00205-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/16/2012] [Indexed: 12/12/2022] Open
Abstract
We have recently reported that a group of human adenoviruses (HAdVs) uses desmoglein 2 (DSG2) as a receptor for infection. Among these are the widely distributed serotypes HAdV-B3 and HAdV-B7, as well as a newly emerged strain derived from HAdV-B14. These serotypes do not infect rodent cells and could not up until now be studied in small-animal models. We therefore generated transgenic mice containing the human DSG2 locus. These mice expressed human DSG2 (hDSG2) at a level and in a pattern similar to those found for humans and nonhuman primates. As an initial application of hDSG2-transgenic mice, we used a green fluorescent protein (GFP)-expressing HAdV-B3 vector (Ad3-GFP) and studied GFP transgene expression by quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemistry subsequent to intranasal and intravenous virus application. After intranasal application, we found efficient transduction of bronchial and alveolar epithelial cells in hDSG2-transgenic mice. Intravenous Ad3-GFP injection into hDSG2-transgenic mice resulted in hDSG2-dependent transduction of epithelial cells in the intestinal and colon mucosa. Our findings give an explanation for clinical symptoms associated with infection by DSG2-interacting HAdVs and provide a rationale for using Ad3-derived vectors in gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua Cao
- Division of Medical Genetics
| | | | | | - Kelly Hudkins
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | - Xiao-Bing Zhang
- Loma Linda University, Department of Medicine, Division of Regenerative Medicine, Loma Linda, California, USA
| | - Mujun Yu
- Medical Laboratory Associates, Seattle, Washington, USA
| | - Pascal Fender
- Unit of Virus Host Cell Interactions, UMI3265, CNRS/EMBL/UJF, Grenoble, France
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Research Program, Transplantation Laboratory & Haartman Institute, University of Helsinki, Helsinki, Finland
| | - André Lieber
- Division of Medical Genetics
- Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Abstract
Following primary infection, human herpesvirus 6 (HHV-6) establishes a persistent infection for life. HHV-6 reactivation has been associated with transplant rejection, delayed engraftment, encephalitis, muscular dystrophy, and drug-induced hypersensitivity syndrome. The poor understanding of the targets and outcome of the cellular immune response to HHV-6 makes it difficult to outline the role of HHV-6 in human disease. To fill in this gap, we characterized CD4 T cell responses to HHV-6 using peripheral blood mononuclear cell (PBMC) and T cell lines generated from healthy donors. CD4(+) T cells responding to HHV-6 in peripheral blood were observed at frequencies below 0.1% of total T cells but could be expanded easily in vitro. Analysis of cytokines in supernatants of PBMC and T cell cultures challenged with HHV-6 preparations indicated that gamma interferon (IFN-γ) and interleukin-10 (IL-10) were appropriate markers of the HHV-6 cellular response. Eleven CD4(+) T cell epitopes, all but one derived from abundant virion components, were identified. The response was highly cross-reactive between HHV-6A and HHV-6B variants. Seven of the CD4(+) T cell epitopes do not share significant homologies with other known human pathogens, including the closely related human viruses human herpesvirus 7 (HHV-7) and human cytomegalovirus (HCMV). Major histocompatibility complex (MHC) tetramers generated with these epitopes were able to detect HHV-6-specific T cell populations. These findings provide a window into the immune response to HHV-6 and provide a basis for tracking HHV-6 cellular immune responses.
Collapse
|
13
|
Garcia-Montojo M, Martinez A, De Las Heras V, Dominguez-Mozo MI, Cenit MDC, López-Cavanillas M, Garcia-Martinez A, Arias-Leal AM, Gomez de la Concha E, Urcelay E, Arroyo R, Alvarez-Lafuente R. Herpesvirus active replication in multiple sclerosis: a genetic control? J Neurol Sci 2011; 311:98-102. [PMID: 21962857 DOI: 10.1016/j.jns.2011.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/01/2011] [Accepted: 09/05/2011] [Indexed: 11/30/2022]
Abstract
Although the etiology of multiple sclerosis (MS) is unknown, it is generally believed that genetic, immunologic, and environmental factors are involved. The objectives of this study were: 1. to analyze if a genetic control could explain why HHV-6 would be able to actively replicate in a subset of MS patients but not in controls; 2. to study if MS patients with HHV-6 active replication are clinically different from those without HHV-6 active replication. A total of 195 MS patients and 195 controls were analyzed for two SNPs at the MHC2TA locus and two SNPs at the CD46 locus. Furthermore, the MS cohort was analyzed by PCR for the detection of HHV-6 genomes in five serum samples collected every six months along two-year follow-up. We found that 59/195 (30.2%) MS patients had at least one HHV-6 positive serum sample. No statistical significant difference was found for the two genes when the comparison was made between MS patients and controls; however, a statistical significance was found for the two polymorphisms of MHC2TA when we compared MS patients with active replication and controls (p=0.0000004 for rs4774C and p=0.011 for rs3087456G). Furthermore, increased significant differences were found for MHC2TA and CD46 when we compared interferon beta responders and non-responders within MS patients. In conclusion, we describe a gene-environment interaction in MS patients between HHV-6 and MHC2TA and CD46 that should be further studied to clarify if that interaction could be a genetic control. The results show that MS patients without HHV-6 active replication are better responders to interferon beta treatment than those with HHV-6 active replication.
Collapse
|
14
|
Ni Choileain S, Astier AL. CD46 processing: a means of expression. Immunobiology 2011; 217:169-75. [PMID: 21742405 DOI: 10.1016/j.imbio.2011.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/06/2011] [Accepted: 06/13/2011] [Indexed: 12/15/2022]
Abstract
CD46 is a ubiquitously expressed type I transmembrane protein, first identified as a regulator of complement activation, and later as an entry receptor for a variety of pathogens. The last decade has also revealed the role of CD46 in regulating the adaptive immune response, acting as an additional costimulatory molecule for human T cells and inducing their differentiation into Tr1 cells, a subset of regulatory T cells. Interestingly, CD46 regulatory pathways are defective in T cells from patients with multiple sclerosis, asthma and rheumatoid arthritis, illustrating its importance in regulating T cell homeostasis. Indeed, CD46 expression at the cell surface is tightly regulated in many different cell types, highlighting its importance in several biological processes. Notably, CD46 is the target of enzymatic processing, being cleaved by metalloproteinases and by the presenilin/gamma secretase complex. This processing is required for its functions, at least in T cells. This review will summarize the latest updates on the regulation of CD46 expression and on its effects on T cell activation.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- MRC Centre for Inflammation Research, Centre for MS Research, University of Edinburgh, UK
| | | |
Collapse
|
15
|
Ni Choileain S, Astier AL. CD46 plasticity and its inflammatory bias in multiple sclerosis. Arch Immunol Ther Exp (Warsz) 2011; 59:49-59. [PMID: 21267793 DOI: 10.1007/s00005-010-0109-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/16/2010] [Indexed: 01/13/2023]
Abstract
Known as a link to the adaptive immune system, a complement regulator, a "pathogen magnet" and more recently as an inducer of autophagy, CD46 is the human receptor that refuses to be put in a box. This review summarizes the current roles of CD46 during immune responses and highlights the role of CD46 as both a promoter and attenuator of the immune response. In patients with multiple sclerosis (MS), CD46 responses are overwhelmingly pro-inflammatory with notable defects in cytokine and chemokine production. Understanding the role of CD46 as an inflammatory regulator is a distant goal considering the darkness in which its regulatory mechanisms reside. Further research into the regulation of CD46 expression through its internalization and processing will undoubtedly extend our knowledge of how the balance is tipped in favor of inflammation in MS patients.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
16
|
Alvarez-Lafuente R, Blanco-Kelly F, Garcia-Montojo M, Martínez A, De Las Heras V, Dominguez-Mozo MI, Bartolome M, Garcia-Martinez A, De la Concha EG, Urcelay E, Arroyo R. CD46 in a Spanish cohort of multiple sclerosis patients: genetics, mRNA expression and response to interferon-beta treatment. Mult Scler 2010; 17:513-20. [PMID: 21177319 DOI: 10.1177/1352458510393263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND In a prior study of our group we found an up-regulation of CD46 expression in a cohort of Spanish multiple sclerosis (MS) patients. OBJECTIVE To evaluate the potential role of CD46 in the response to interferon-beta treatment in MS patients through the analysis of five tagging single nucleotide polymorphisms (SNPs) and measurement of mRNA. METHODS A total of 406 MS patients and 513 control patients were analysed for five SNPs at the CD46 locus. Furthermore, 163 MS patients and 163 matched control patients were analysed by RT-PCR for the CD46 mRNA expression in three blood samples (basal, and at 6 and 12 months of interferon-beta treatment) collected in the course of a 1-year follow-up. RESULTS Two genotypes of rs2724385 polymorphism (AT and TT) could be markers of response to interferon-beta therapy in MS patients (p=0.007 and p=0.006, respectively). Furthermore, the frequency of interferon-beta responders was 44.4% (32/72) in MS patients with an increased CD46 mRNA expression, vs. 65.9% (60/91) in patients with a decreased CD46 mRNA expression (p=0.006). CONCLUSION The present study shows that CD46 could be associated with the response to interferon-beta therapy; however, the genetic results should be replicated in an independent cohort and further studies are needed to confirm the role of CD46.
Collapse
|
17
|
Alvarez-Lafuente R, Garcia-Montojo M, De Las Heras V, Dominguez-Mozo MI, Bartolome M, Arroyo R. CD46 expression and HHV-6 infection in patients with multiple sclerosis. Acta Neurol Scand 2009; 120:246-50. [PMID: 19456309 DOI: 10.1111/j.1600-0404.2009.01163.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the possible association between the levels of the CD46 expression, and the presence and viral load of HHV-6 in patients with multiple sclerosis (MS). METHODS We collected blood and serum samples of 103 patients with MS and the same number of healthy blood donors (HBD); total DNA and RNA was extracted from peripheral blood mononuclear cells (PBMCs) and serum, and then analyzed using quantitative real-time PCR for the detection of CD46 transcripts and HHV-6 genomes; the expression of rRNA18s was used for the calculation of the relative expression of CD46. RESULTS Almost 80% of patients with MS had increased levels of CD46 in comparison with HBD, and a positive correlation was also found between the over-expression of CD46 in patients with MS and the HHV-6 DNA prevalence and viral load in the blood and serum. DISCUSSION Therefore, the up-regulation of CD46 expression in patients with MS with HHV-6 infection could constitute an immunopathogenic factor that should be further investigated to elucidate its role in MS.
Collapse
|
18
|
Alvarez-Lafuente R, Martinez A, Garcia-Montojo M, Mas A, De Las Heras V, Dominguez-Mozo MI, Maria Del Carmen C, López-Cavanillas M, Bartolome M, Gomez de la Concha E, Urcelay E, Arroyo R. MHC2TA rs4774C and HHV-6A active replication in multiple sclerosis patients. Eur J Neurol 2009; 17:129-35. [PMID: 19659749 DOI: 10.1111/j.1468-1331.2009.02758.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE In a previous report, a strong gene-environment interaction between human herpesvirus 6A (HHV6A) active replication and MHC2TA rs4774C was demonstrated. The objectives of this study were: (i) to reappraise the association that was found in the previous study; (ii) to evaluate if MS patients with minor allele C and HHV-6A active infection had different clinical behavior; and (iii) to analyze the possible association of MHC2TA rs4774C with Epstein-Barr virus (EBV). METHODS A total of 149 MS patients were analyzed both at the MHC2TA locus and by HHV-6A status in serum. We studied a G/C polymorphism (rs4774) by a TaqMan Assay-on-Demand. HHV-6A genomes in serum were evaluated by quantitative PCR. A control group of 562 healthy Spanish individuals was included for comparative purposes in the genetic analyses. A battery of clinical data was collected for all the MS patients included in the study. RESULTS (i) MHC2TA/HHV-6A interaction: we found the same strong association of the rs4774C allele with HHV-6A active replication than in the previous study (P = 0.0001). (ii) CLINICAL DATA the two main statistical significant differences for MS patients with HHV-6A active infection and minor allele C were: (a) a significant number of them were not free of progression (EDSS = 0) 2 years after the diagnosis (P = 0.01); (b) only a third of them responded to interferon beta treatment (P = 0.05). CONCLUSIONS This study has verified previous results about the strong gene-environment interaction between HHV6A active replication and MHC2TA rs4774C. Furthermore, a different clinical behavior for MS patients with HHV-6A active infection and minor allele C was found.
Collapse
|
19
|
Abstract
Streptococcus pyogenes (group A Streptococcus) is a human pathogen that causes a wide variety of diseases ranging from uncomplicated superficial infections to severe infections such as streptococcal toxic shock syndrome and necrotizing fasciitis. These bacteria interact with several host cell receptors, one of which is the cell surface complement regulator CD46. In this study, we demonstrate that infection of epithelial cells with S. pyogenes leads to the shedding of CD46 at the same time as the bacteria induce apoptosis and cell death. Soluble CD46 attached to the streptococcal surface, suggesting that bacteria might bind available extracellular CD46 as a strategy to survive and avoid host defenses. The protective role of human CD46 was demonstrated in ex vivo whole-blood assays showing that the growth of S. pyogenes was enhanced in blood from mice expressing human CD46. Finally, in vivo experimental infection showed that bacteremia levels, arthritis frequency, and mortality were higher in CD46 transgenic mice than in nontransgenic mice. Taken together, these results argue that bacterial exploitation of human CD46 enhances bacterial survival and represents a novel pathogenic mechanism that contributes to the severity of group A streptococcal disease.
Collapse
|
20
|
Alvarez-Lafuente R, García-Montojo M, De Las Heras V, Domínguez-Mozo MI, Bartolome M, Benito-Martin MS, Arroyo R. Herpesviruses and human endogenous retroviral sequences in the cerebrospinal fluid of multiple sclerosis patients. Mult Scler 2008; 14:595-601. [PMID: 18566025 DOI: 10.1177/1352458507086425] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To analyze the possible role of human herpesvirus (HHVs) and human endogenous retroviruses (HERVs) infection in multiple sclerosis (MS) pathogenesis. METHODS A total of 92 cerebrospinal fluid (CSF) samples were collected: 48 from MS patients at the first clinically evident demyelinating event, 23 from patients with other inflammatory neurological diseases (OINDs) and 21 from patients with other non-inflammatory neurological diseases (ONINDs). Total DNA and RNA were isolated, and the prevalences and viral loads of herpes simplex virus (HSV), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), HHV-6, HERV-H and HERV-W in the CSF of MS patients and controls were evaluated using a quantitative real-time polymerase chain reaction assay. RESULTS (i) For HSV, 1/48 (2.1%, 86 copies/ml of CSF) MS patients and 1/23 (4.3%, 115.2 copies/ml of CSF) OIND patients (a myelitis case) had HSV sequences in the CSF; (ii) for EBV, only 1/48 (2.1%, 72 copies/ml of CSF) MS patients was positive for EBV; (iii) for HHV-6, only 5/48 (10.4%) MS patients had HHV-6 genomes in their CSF (128.1 copies/ml of CSF); (iv) we did not find any positive cases for VZV, CMV, HERV-H and HERV-W among MS patients or controls; (v) no cases of co-infections were found; (vi) the whole prevalence of HHVs was 7/48 (14.6%) for MS patients and 1/44 (2.3%) for controls (p = 0.038). CONCLUSION The findings described here show that HHV infection is more frequent in the CSF of MS patients than in patients with other neurological diseases; however, only HHV-6 seems to be involved in the pathogenesis of MS in a subset of patients.
Collapse
|
21
|
Purification of infectious human herpesvirus 6A virions and association of host cell proteins. Virol J 2007; 4:101. [PMID: 17949490 PMCID: PMC2164960 DOI: 10.1186/1743-422x-4-101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 10/19/2007] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Viruses that are incorporating host cell proteins might trigger autoimmune diseases. It is therefore of interest to identify possible host proteins associated with viruses, especially for enveloped viruses that have been suggested to play a role in autoimmune diseases, like human herpesvirus 6A (HHV-6A) in multiple sclerosis (MS). RESULTS We have established a method for rapid and morphology preserving purification of HHV-6A virions, which in combination with parallel analyses with background control material released from mock-infected cells facilitates qualitative and quantitative investigations of the protein content of HHV-6A virions. In our iodixanol gradient purified preparation, we detected high levels of viral DNA by real-time PCR and viral proteins by metabolic labelling, silver staining and western blots. In contrast, the background level of cellular contamination was low in the purified samples as demonstrated by the silver staining and metabolic labelling analyses. Western blot analyses showed that the cellular complement protein CD46, the receptor for HHV-6A, is associated with the purified and infectious virions. Also, the cellular proteins clathrin, ezrin and Tsg101 are associated with intact HHV-6A virions. CONCLUSION Cellular proteins are associated with HHV-6A virions. The relevance of the association in disease and especially in autoimmunity will be further investigated.
Collapse
|
22
|
Fotheringham J, Williams EL, Akhyani N, Jacobson S. Human Herpesvirus 6 (HHV-6) Induces Dysregulation of Glutamate Uptake and Transporter Expression in Astrocytes. J Neuroimmune Pharmacol 2007; 3:105-16. [DOI: 10.1007/s11481-007-9084-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
|
23
|
De Filippis L, Foglieni C, Silva S, Vescovi AL, Lusso P, Malnati MS. Differentiated human neural stem cells: a new ex vivo model to study HHV-6 infection of the central nervous system. J Clin Virol 2007; 37 Suppl 1:S27-32. [PMID: 17276364 DOI: 10.1016/s1386-6532(06)70008-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND HHV-6 is the etiologic agent of exanthem subitum, a pediatric illness that may be associated with clinical and laboratory signs of central nervous system involvement. The absence of suitable experimental models has so far hampered the elucidation of the mechanisms of HHV-6-mediated neural cell damage. Recently, the growing knowledge in neurobiology has permitted the establishment of long-term cultures of human neural stem cells (hNSC) that, by virtue of their self-renewal capacity and multipotentiality, provide a valuable tool for the study of neurodegenerative disorders. OBJECTIVES AND STUDY DESIGN We studied the effects of HHV-6 infection in differentiated cultures of hNSC derived from the telencephalic and diencephalic regions of a 13.5 week post conception (pcw) fetal brain. The prototypic HHV-6 strain GS (subgroup A) was used. RESULTS hNSC were differentiated ex vivo to obtain mixed cultures encompassing astrocytes, neurons and oligodendrocytes. These differentiated hNSC cultures were found to be susceptible to productive HHV-6A infection, resulting in the formation of syncytia associated with phenotypic alterations. CONCLUSION These results demonstrate that hNSC may provide a physiologically relevant model to investigate the pathogenic role of HHV-6 in central nervous system disorders.
Collapse
Affiliation(s)
- Lidia De Filippis
- Stem Cell Research Institute, DIBIT, San Raffaele Scientific Institute 20132 Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Alvarez-Lafuente R, García-Montojo M, De las Heras V, Bartolomé M, Arroyo R. Clinical parameters and HHV-6 active replication in relapsing—remitting multiple sclerosis patients. J Clin Virol 2006; 37 Suppl 1:S24-6. [PMID: 17276363 DOI: 10.1016/s1386-6532(06)70007-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Although the etiology of multiple sclerosis (MS) remains uncertain, clinical, epidemiological, and laboratory findings suggest that environmental factors may be involved in the disease. OBJECTIVE This study was undertaken in order to investigate the possible relation of human herpesvirus-6 (HHV-6) in relapsing-remitting MS (RRMS). STUDY DESIGN A one-year follow-up study was performed analyzing serum samples of 63 patients with RRMS and 63 healthy blood donors (HBD) by a quantitative real time PCR, to measure HHV-6 prevalence and viral load. Clinical data (starting age and EDSS increase) were collected. RESULTS (i) We found 25.4% of RRMS patients with at least one positive serum sample along the one year follow-up. (ii) 19.1% of RRMS samples in relapse had HHV-6 active infection vs. 7.9% of RRMS samples in remission. (iii) We only found variant A. (iv) RRMS patients with HHV-6 active replication initiated the disease 1.9 years earlier, and they had a higher EDSS increase. CONCLUSIONS A higher HHV-6A frequency of active infection seems to be related with the exacerbations in a subset of RRMS patients. Regarding the relationship between HHV-6A active infection and the clinical data in RRMS patients, further investigations are needed.
Collapse
|
25
|
Alvarez-Lafuente R, De Las Heras V, Bartolomé M, García-Montojo M, Arroyo R. Human herpesvirus 6 and multiple sclerosis: a one-year follow-up study. Brain Pathol 2006; 16:20-7. [PMID: 16612979 PMCID: PMC8095909 DOI: 10.1111/j.1750-3639.2006.tb00558.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND This study was undertaken in order to investigate the possible relation of HHV-6 and EBV in relapsing-remitting MS (RRMS). MATERIALS AND METHODS A one-year follow up study was performed analysing peripheral blood mononuclear cells and serum samples of 57 patients with RRMS and 57 healthy blood donors (HBD) by a quantitative real time PCR, to detect HHV-6 and EBV. Clinical data (starting age and EDSS increase) were collected. RESULTS We did not find any statistically significant difference for EBV between RRMS patients and HBD. Regarding HHV-6: i) There was a higher prevalence of HHV-6 in RRMS patients than in controls: 80.7% versus 29.8% respectively. ii) HHV-6 active replication seems to be related to exacerbations. iii) Only variant A was detected among RRMS patients with HHV-6 active replication. iv) Although some difference was found when we compared clinical data in RRMS patients with and without HHV-6 active replication, the results did not reach statistical significance. CONCLUSIONS A higher HHV-6A frequency of active infection (reactivation or new infection) would lead to a more frequent exposure of HHV-6A antigens to the immune system of RRMS patients; this active replication of HHV-6A seems to be specifically related with the exacerbations in a subset of RRMS patients.
Collapse
|
26
|
HHV-6 and the Central Nervous System. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s0168-7069(06)12016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|