1
|
Mbencho MN, Hafza N, Cao LC, Mingo VN, Achidi EA, Ghogomu SM, Velavan TP. Incidence of Occult Hepatitis B Infection (OBI) and hepatitis B genotype characterization among blood donors in Cameroon. PLoS One 2024; 19:e0312126. [PMID: 39413100 PMCID: PMC11482724 DOI: 10.1371/journal.pone.0312126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Occult hepatitis B infection (OBI) is characterized by the presence of hepatitis B virus (HBV) DNA at low levels in serum (<200 IU/mL) with a negative hepatitis B surface antigen (HBsAg) test. OBI remains a major challenge to blood safety, particularly in HBV-endemic regions like Cameroon, where HBV detection relies solely on HBsAg testing. This cross-sectional study aimed to investigate the actual incidence and genotype characteristics of OBI in Cameroonian blood donors. METHODS Between March and June 2023, samples were collected from 288 HBsAg-negative blood donors aged 18 to 55 years and analysed for antibodies against the HBV core (anti-HBc) and surface antigens (anti-HBs). Following DNA extraction from the serum samples, qualitative nested PCR and quantitative real-time PCR were used to detect HBV viral DNA and viral load respectively. For positive samples, sequencing of a fragment of the S gene was performed to identify the circulating HBV genotypes. RESULTS The findings revealed that 58% (n = 167/288) of blood donors tested positive for anti-HBc, 29% (n = 83/288) tested positive for anti-HBs, and 26% (n = 75/288) being positive for both anti-HBc and anti-HBs. Occult hepatitis was confirmed in 4.5% of the blood donors, all of whom belonged to either HBV genotypes A or E, which are predominant in Cameroon. The amino acid substitution sA184V associated with HBsAg detection failure in genotype E was observed in 70% of OBI sequences, and the HBsAg immune escape variants (sT131N and sS143L) implicated in OBI were also observed. The mutation rtN139K in the reverse transcriptase (RT) domain of the overlapping HBV polymerase (P) gene was present in 17% of OBI-positive sequences of genotype E, likely contributing to masking HBsAg secretion. CONCLUSION The results suggest a considerable risk of transfusion-transmitted HBV in this region. Therefore, to ensure blood safety, nucleic acid testing (NAT) is recommended, as relying solely on HBsAg assays is insufficient to eliminate this risk.
Collapse
Affiliation(s)
- Macqueen Ngum Mbencho
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Molecular and Cell Biology Laboratory, University of Buea, Buea, Cameroon
| | - Nourhane Hafza
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Le Chi Cao
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Parasitology, Hue University of Medicine and Pharmacy (HUMP), Hue University, Hue, Vietnam
| | | | | | | | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
2
|
Li Y, Wang F, Zhou J, Li L, Song C, Chen E. Optimal Treatment Based on Interferon No Longer Makes Clinical Cure of Chronic Hepatitis B Far Away: An Evidence-Based Review on Emerging Clinical Data. Clin Pharmacol Ther 2024; 116:295-303. [PMID: 38686952 DOI: 10.1002/cpt.3287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Chronic hepatitis B (CHB) remains a major global public health problem. The functional cure is the ideal therapeutic target recommended by the latest guidelines, and pursuing a functional cure has become the key treatment end point of current therapy and for upcoming clinical trials. In this review, based on the latest published clinical research evidence, we analyzed the concept and connotation of clinical cures and elaborated on the benefits of clinical cures in detail. Secondly, we have summarized various potential treatment methods for achieving clinical cures, especially elaborating on the latest research progress of interferon-based optimized treatment strategies in achieving clinical cures. We also analyzed which populations can achieve clinical cures and conducted a detailed analysis of relevant virological and serological markers in screening clinical cure advantage populations and predicting clinical cure achievement. In addition, we also introduced the difficulties that may be encountered in the current pursuit of achieving a clinical cure.
Collapse
Affiliation(s)
- Yujing Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Fada Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Lanqing Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chengrun Song
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Padarath K, Deroubaix A, Naicker P, Stoychev S, Kramvis A. Comparative Proteomic Analysis of Huh7 Cells Transfected with Sub-Saharan African Hepatitis B Virus (Sub)genotypes Reveals Potential Oncogenic Factors. Viruses 2024; 16:1052. [PMID: 39066215 PMCID: PMC11281506 DOI: 10.3390/v16071052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
In sub-Saharan Africa (SSA), the (sub)genotypes A1, D3, and E of the hepatitis B virus (HBV) prevail. Individuals infected with subgenotype A1 have a 4.5-fold increased risk of HCC compared to those infected with other (sub)genotypes. The effect of (sub)genotypes on protein expression and host signalling has not been studied. Mass spectrometry was used to analyse the proteome of Huh7 cells transfected with replication-competent clones. Proteomic analysis revealed significantly differentially expressed proteins between SSA (sub)genotypes. Different (sub)genotypes have the propensity to dysregulate specific host signalling pathways. Subgenotype A1 resulted in dysregulation within the Ras pathway. Ras-associated protein, RhoC, was significantly upregulated in cells transfected with subgenotype A1 compared to those transfected with other (sub)genotypes, on both a proteomic (>1.5-fold) and mRNA level (p < 0.05). Two of the main cellular signalling pathways involving RHOC, MAPK and PI3K/Akt/mTOR, regulate cell growth, motility, and survival. Downstream signalling products of these pathways have been shown to increase MMP2 and MMP9 expression. An extracellular MMP2 and MMP9 ELISA revealed a non-significant increase in MMP2 and MMP9 in the cells transfected with A1 compared to the other (sub)genotypes (p < 0.05). The upregulated Ras-associated proteins have been implicated as oncoproteins in various cancers and could contribute to the increased hepatocarcinogenic potential of A1.
Collapse
Affiliation(s)
- Kiyasha Padarath
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
| | - Aurélie Deroubaix
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
- Life Sciences Imaging Facility, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Previn Naicker
- Future Production Chemicals, Council for Scientific and Industrial Research, Pretoria 0184, South Africa;
| | - Stoyan Stoychev
- ReSyn Biosciences, Johannesburg 2000, South Africa;
- Evosep Biosystems, 5230 Odense, Denmark
| | - Anna Kramvis
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
| |
Collapse
|
4
|
Hofmann S, Luther J, Plank V, Oswald A, Mai J, Simons I, Miller J, Falcone V, Hansen-Palmus L, Hengel H, Nassal M, Protzer U, Schreiner S. Arsenic trioxide impacts hepatitis B virus core nuclear localization and efficiently interferes with HBV infection. Microbiol Spectr 2024; 12:e0378823. [PMID: 38567974 PMCID: PMC11064512 DOI: 10.1128/spectrum.03788-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/14/2024] [Indexed: 05/03/2024] Open
Abstract
The key to a curative treatment of hepatitis B virus (HBV) infection is the eradication of the intranuclear episomal covalently closed circular DNA (cccDNA), the stable persistence reservoir of HBV. Currently, established therapies can only limit HBV replication but fail to tackle the cccDNA. Thus, novel therapeutic approaches toward curative treatment are urgently needed. Recent publications indicated a strong association between the HBV core protein SUMOylation and the association with promyelocytic leukemia nuclear bodies (PML-NBs) on relaxed circular DNA to cccDNA conversion. We propose that interference with the cellular SUMOylation system and PML-NB integrity using arsenic trioxide provides a useful tool in the treatment of HBV infection. Our study showed a significant reduction in HBV-infected cells, core protein levels, HBV mRNA, and total DNA. Additionally, a reduction, albeit to a limited extent, of HBV cccDNA could be observed. Furthermore, this interference was also applied for the treatment of an established HBV infection, characterized by a stably present nuclear pool of cccDNA. Arsenic trioxide (ATO) treatment not only changed the amount of expressed HBV core protein but also induced a distinct relocalization to an extranuclear phenotype during infection. Moreover, ATO treatment resulted in the redistribution of transfected HBV core protein away from PML-NBs, a phenotype similar to that previously observed with SUMOylation-deficient HBV core. Taken together, these findings revealed the inhibition of HBV replication by ATO treatment during several steps of the viral replication cycle, including viral entry into the nucleus as well as cccDNA formation and maintenance. We propose ATO as a novel prospective treatment option for further pre-clinical and clinical studies against HBV infection. IMPORTANCE The main challenge for the achievement of a functional cure for hepatitis B virus (HBV) is the covalently closed circular DNA (cccDNA), the highly stable persistence reservoir of HBV, which is maintained by further rounds of infection with newly generated progeny viruses or by intracellular recycling of mature nucleocapsids. Eradication of the cccDNA is considered to be the holy grail for HBV curative treatment; however, current therapeutic approaches fail to directly tackle this HBV persistence reservoir. The molecular effect of arsenic trioxide (ATO) on HBV infection, protein expression, and cccDNA formation and maintenance, however, has not been characterized and understood until now. In this study, we reveal ATO treatment as a novel and innovative therapeutic approach against HBV infections, repressing viral gene expression and replication as well as the stable cccDNA pool at low micromolar concentrations by affecting the cellular function of promyelocytic leukemia nuclear bodies.
Collapse
Affiliation(s)
- Samuel Hofmann
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility, EXC 2155), Hannover Medical School, Hannover, Germany
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Julius Luther
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Verena Plank
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Oswald
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Mai
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility, EXC 2155), Hannover Medical School, Hannover, Germany
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Ilka Simons
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julija Miller
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Valeria Falcone
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Lea Hansen-Palmus
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Michael Nassal
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility, EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Zhang C, An S, Lv R, Li K, Liu H, Li J, Tang Y, Cai Z, Huang T, Long L, Deng W. The dynamic variation position and predominant quasispecies of hepatitis B virus: Novel predictors of early hepatocarcinoma. Virus Res 2024; 341:199317. [PMID: 38242020 PMCID: PMC10831745 DOI: 10.1016/j.virusres.2024.199317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
To find the predictors of early HCC based on the dynamic changes of HBV quasispecies, this study utilizing the second-generation sequencing (NGS) and high-order multiplex droplet digital PCR (ddPCR) technology to examine the HBV quasispecies in serum of total 247 subjects recruited from high-incidence area of HCC. In the discovery stage, 15 non-synonymous Single Nucleotide Polymorphisms (SNPs) with higher variant proportion in HCC case group were founded (all P<0.05). Furthermore, the variant proportions in some of these SNPs were observed changing regularly within 5 years before the onset of HCC, and 5 of them located in HBX, 2 in HBS and 2 in HBC. The HBV predominant quasispecies and their consensus sequences were identified by genetic evolution analysis, in which the high HBS and HBC quasispecies heterogeneity were found associated with the forming of multifarious quasispecies clones, and the HBX gene had the highest proportion of predominant quasispecies (46.7 % in HBX vs 12.7 % and 13.8 % in HBS and HBC respectively) with the key variations (G1512A, A1630G, T1753C/G/A, A1762T and G1764A) determined. In the validation stage, we confirmed that the combined double mutations of G1512A+A1630G, A1762T+G1764A, and the combined triple mutations of T1753C/G/A + A1762T+G1764A, all expressed higher in early HCC cases when comparing with control group (all P<0.05). We also demonstrated the advantages of ddPCR using in multi-variations detection in large-sample for early HCC surveillance and screening. So we think that the dynamic of key HBV variation positions and their different combinations determined by quasispecies anlysis in this study can act as the novel predictors of early hepatocarcinoma and suitable to popularize and apply in HCC screening.
Collapse
Affiliation(s)
- Chaojun Zhang
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Sanchun An
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Ruibo Lv
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Kezhi Li
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Guangxi Cancer Molecular Medicine Engineering Research Center, China
| | - Haizhou Liu
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Guangxi Cancer Molecular Medicine Engineering Research Center, China
| | - Jilin Li
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Guangxi Cancer Molecular Medicine Engineering Research Center, China
| | - Yanping Tang
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Guangxi Cancer Molecular Medicine Engineering Research Center, China
| | - Zhengmin Cai
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Guangxi Cancer Molecular Medicine Engineering Research Center, China
| | - Tianren Huang
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Guangxi Cancer Molecular Medicine Engineering Research Center, China.
| | - Long Long
- Big data College of Nanning normal University, Nanning, Guangxi 530100, China.
| | - Wei Deng
- Department of experimental research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Guangxi Cancer Molecular Medicine Engineering Research Center, China.
| |
Collapse
|
6
|
Potter BI, Thijssen M, Trovão NS, Pineda-Peña A, Reynders M, Mina T, Alvarez C, Amini-Bavil-Olyaee S, Nevens F, Maes P, Lemey P, Van Ranst M, Baele G, Pourkarim MR. Contemporary and historical human migration patterns shape hepatitis B virus diversity. Virus Evol 2024; 10:veae009. [PMID: 38361827 PMCID: PMC10868554 DOI: 10.1093/ve/veae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/16/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
Infection by hepatitis B virus (HBV) is responsible for approximately 296 million chronic cases of hepatitis B, and roughly 880,000 deaths annually. The global burden of HBV is distributed unevenly, largely owing to the heterogeneous geographic distribution of its subtypes, each of which demonstrates different severity and responsiveness to antiviral therapy. It is therefore crucial to the global public health response to HBV that the spatiotemporal spread of each genotype is well characterized. In this study, we describe a collection of 133 newly sequenced HBV strains from recent African immigrants upon their arrival in Belgium. We incorporate these sequences-all of which we determine to come from genotypes A, D, and E-into a large-scale phylogeographic study with genomes sampled across the globe. We focus on investigating the spatio-temporal processes shaping the evolutionary history of the three genotypes we observe. We incorporate several recently published ancient HBV genomes for genotypes A and D to aid our analysis. We show that different spatio-temporal processes underlie the A, D, and E genotypes with the former two having originated in southeastern Asia, after which they spread across the world. The HBV E genotype is estimated to have originated in Africa, after which it spread to Europe and the Americas. Our results highlight the use of phylogeographic reconstruction as a tool to understand the recent spatiotemporal dynamics of HBV, and highlight the importance of supporting vulnerable populations in accordance with the needs presented by specific HBV genotypes.
Collapse
Affiliation(s)
- Barney I Potter
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
| | - Marijn Thijssen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
| | - Nídia Sequeira Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Andrea Pineda-Peña
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT; Universidade Nova de Lisboa, UNL, Portugal Rua da Junqueira No 100, Lisbon 1349-008, Portugal
- Molecular Biology and Immunology Department, Fundacion Instituto de Inmunología de Colombia (FIDIC); Faculty of Animal Science, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Avenida 50 No. 26-20, Bogota 0609, Colombia
| | - Marijke Reynders
- Department of Laboratory Medicine, Medical Microbiology, AZ Sint-Jan Brugge-Oostende AV, Ruddershove 10, Bruges B-8000, Belgium
| | - Thomas Mina
- Nonis Lab Microbiology—Virology Unit, Gregori Afxentiou 5, Limassol 4003, Cyprus
| | - Carolina Alvarez
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
| | - Samad Amini-Bavil-Olyaee
- Cellular Sciences Department, Process Virology, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Frederik Nevens
- Department of Gastroenterology and Hepatology, University Hospital Leuven, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
| | - Marc Van Ranst
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
| | - Mahmoud Reza Pourkarim
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion, Hemmat Exp.Way, Tehran 14665-1157, Iran
| |
Collapse
|
7
|
Khan S, Anwer A, Sevak JK, Trehanpati N, Kazim SN. Cytokines Expression Compared to the Determinants of Cellular Apoptosis Prominently Attributes to the Deleterious Effects of 'A' Determinant Surface Gene Mutations in HBV Transfected Hepatoma Cell Line. Immunol Invest 2024; 53:224-240. [PMID: 38095846 DOI: 10.1080/08820139.2023.2288841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
BACKGROUND Previous studies have explored the role of AKT protein in anti-apoptotic/proliferative activities. However, there has been a lack of information regarding the role of Akt in association with cytokines expression in HBV-related (wild type HBV and HBV with mutations of 'a' determinant region) studies either in the case of HBV infection or in transfected hepatoma cells. The present study tries to determine the role of Akt and cytokines expression in the presence of small surface gene mutants in the hepatoma cell line. METHODS Mutations of 'a' determinant region, viz. sA128V and sG145R, were created in wild-type pHBV1.3 by site-directed mutagenesis and transfected in hepatoma cell line. Secretory levels of HBsAg in the wild type as well as in both the mutants were analyzed by ELISA. Apoptotic analysis of transfected cells was studied by flow cytometry. Expression analysis of Akt and cytokines (TNF-alpha, IL-6, and IFN-gamma) was done by qPCR. RESULTS The presence of significantly more alive cells in sG145R than sA128V transfected cells may be due to the up-regulation of the Akt gene expression. Cytokines expression was nearly similar between sA128V and wild-type pHBV1.3 transfected cells. Presence of sG145R showed dramatically high cytokines expression than sA128V and wild-type pHBV1.3. CONCLUSION Cytokines expression predominantly contributes to the detrimental effects associated with the 'a' determinant region mutations particularly sG145R mutant. It may also be inferred that mechanisms associated with cellular apoptosis apparently do not play any major role to assign the 'a' determinant small surface gene mutation(s) for their pathological outcome.
Collapse
Affiliation(s)
- Saniya Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ayesha Anwer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Jayesh Kumar Sevak
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupama Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
8
|
Lazarevic I, Banko A, Miljanovic D, Cupic M. Hepatitis B Surface Antigen Isoforms: Their Clinical Implications, Utilisation in Diagnosis, Prevention and New Antiviral Strategies. Pathogens 2024; 13:46. [PMID: 38251353 PMCID: PMC10818932 DOI: 10.3390/pathogens13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The hepatitis B surface antigen (HBsAg) is a multifunctional glycoprotein composed of large (LHB), middle (MHB), and small (SHB) subunits. HBsAg isoforms have numerous biological functions during HBV infection-from initial and specific viral attachment to the hepatocytes to initiating chronic infection with their immunomodulatory properties. The genetic variability of HBsAg isoforms may play a role in several HBV-related liver phases and clinical manifestations, from occult hepatitis and viral reactivation upon immunosuppression to fulminant hepatitis and hepatocellular carcinoma (HCC). Their immunogenic properties make them a major target for developing HBV vaccines, and in recent years they have been recognised as valuable targets for new therapeutic approaches. Initial research has already shown promising results in utilising HBsAg isoforms instead of quantitative HBsAg for correctly evaluating chronic infection phases and predicting functional cures. The ratio between surface components was shown to indicate specific outcomes of HBV and HDV infections. Thus, besides traditional HBsAg detection and quantitation, HBsAg isoform quantitation can become a useful non-invasive biomarker for assessing chronically infected patients. This review summarises the current knowledge of HBsAg isoforms, their potential usefulness and aspects deserving further research.
Collapse
Affiliation(s)
- Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.B.); (D.M.); (M.C.)
| | | | | | | |
Collapse
|
9
|
Osasona OG, Oguntoye OO, Arowosaye AO, Abdulkareem LO, Adewumi MO, Happi C, Folarin O. Patterns of hepatitis b virus immune escape and pol/rt mutations across clinical cohorts of patients with genotypes a, e and occult hepatitis b infection in Nigeria: A multi-centre study. Virulence 2023; 14:2218076. [PMID: 37262110 DOI: 10.1080/21505594.2023.2218076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/27/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023] Open
Abstract
Hepatitis B virus (HBV) immune escape and Pol/RT mutations account for HBV immunoprophylactic, therapeutic, and diagnostic failure globally. Little is known about circulating HBV immune escape and Pol/RT mutants in Nigeria. This study focused on narrowing the knowledge gap of the pattern and prevalence of the HBV mutants across clinical cohorts of infected patients in southwestern Nigeria. Ninety-five enrollees were purposively recruited across clinical cohorts of HBV-infected patients with HBsAg or anti-HBc positive serological outcome and occult HBV infection. Total DNA was extracted from patients' sera. HBV S and Pol gene-specific nested PCR amplification was carried out. The amplicons were further sequenced for serotypic, genotypic, phylogenetic, and mutational analysis. HBV S and Pol genes were amplified in 60 (63.2%) and 19 (20%) of HBV isolates, respectively. All the sixty HBV S gene and 14 of 19 Pol gene sequences were exploitable. The ayw4 serotype was predominant (95%) while ayw1 serotype was identified in 5% of isolates. Genotype E predominates in 95% of sequences, while genotype A, sub-genotype A3 was observed in 5%. Prevalence of HBV IEMs in the "a" determinant region was 29%. Commonest HBV IEM was S113T followed by G145A and D144E. The Pol/RT mutations rtV214A and rtI163V among others were identified in this study. This study provided data on the occurrence of existing and new HBV IEMs and Pol gene mutations in Nigeria.
Collapse
Affiliation(s)
- Oluwadamilola G Osasona
- African Centre of Excellence for the Genomics of Infectious Diseases, Redeemers University, Ede, Nigeria
| | | | - Abiola O Arowosaye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Lukman O Abdulkareem
- Department of Internal Medicine, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Moses O Adewumi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Christian Happi
- African Centre of Excellence for the Genomics of Infectious Diseases, Redeemers University, Ede, Nigeria
| | - Onikepe Folarin
- African Centre of Excellence for the Genomics of Infectious Diseases, Redeemers University, Ede, Nigeria
| |
Collapse
|
10
|
Panduro A, Roman S, Laguna-Meraz S, Jose-Abrego A. Hepatitis B Virus Genotype H: Epidemiological, Molecular, and Clinical Characteristics in Mexico. Viruses 2023; 15:2186. [PMID: 38005864 PMCID: PMC10675821 DOI: 10.3390/v15112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
The hepatitis B virus (HBV), comprising of ten genotypes (A-J), has been a silent threat against humanity, constituting a public health problem worldwide. In 2016, the World Health Organization set forth an impressive initiative for the global elimination of viral hepatitis by 2030. As the target date approaches, many nations, particularly in the Latin American region, face challenges in designing and implementing their respective elimination plan. This review aimed to portray the state of knowledge about the epidemiological, molecular, and clinical characteristics of HBV genotype H (HBV/H), endemic to Mexico. PubMed, Scopus, Web of Science, and Google Scholar were searched to compile scientific literature over 50 years (1970-2022). A total of 91 articles were organized into thematic categories, addressing essential aspects such as epidemiological data, risk factors, HBV genotype distribution, HBV mixed infections, clinical characteristics, and vaccination. The prevalence and its associated 95% confidence interval (95% CI) were estimated using the Metafor package in R programming language (version 4.1.2). We provide insights into the strengths and weaknesses in diagnostics and prevention measures that explain the current epidemiological profile of HBV/H. Training, research, and awareness actions are required to control HBV infections in Mexico. These actions should contribute to creating more specific clinical practice guides according to the region's characteristics. Mexico's elimination plan for HBV will require teamwork among the government health administration, researchers, physicians, specialists, and civil society advocates to overcome this task jointly.
Collapse
Affiliation(s)
- Arturo Panduro
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico; (S.L.-M.); (A.J.-A.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico; (S.L.-M.); (A.J.-A.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Saul Laguna-Meraz
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico; (S.L.-M.); (A.J.-A.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Alexis Jose-Abrego
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico; (S.L.-M.); (A.J.-A.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
11
|
Yuwen L, Zhang S, Chao J. Recent Advances in DNA Nanotechnology-Enabled Biosensors for Virus Detection. BIOSENSORS 2023; 13:822. [PMID: 37622908 PMCID: PMC10452139 DOI: 10.3390/bios13080822] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Virus-related infectious diseases are serious threats to humans, which makes virus detection of great importance. Traditional virus-detection methods usually suffer from low sensitivity and specificity, are time-consuming, have a high cost, etc. Recently, DNA biosensors based on DNA nanotechnology have shown great potential in virus detection. DNA nanotechnology, specifically DNA tiles and DNA aptamers, has achieved atomic precision in nanostructure construction. Exploiting the programmable nature of DNA nanostructures, researchers have developed DNA nanobiosensors that outperform traditional virus-detection methods. This paper reviews the history of DNA tiles and DNA aptamers, and it briefly describes the Baltimore classification of virology. Moreover, the advance of virus detection by using DNA nanobiosensors is discussed in detail and compared with traditional virus-detection methods. Finally, challenges faced by DNA nanobiosensors in virus detection are summarized, and a perspective on the future development of DNA nanobiosensors in virus detection is also provided.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.Y.); (S.Z.)
| | - Shifeng Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.Y.); (S.Z.)
| | - Jie Chao
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
12
|
Sirilert S, Khamrin P, Kumthip K, Malasao R, Maneekarn N, Tongsong T. Possible Association between Genetic Diversity of Hepatitis B Virus and Its Effect on the Detection Rate of Hepatitis B Virus DNA in the Placenta and Fetus. Viruses 2023; 15:1729. [PMID: 37632070 PMCID: PMC10458115 DOI: 10.3390/v15081729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Background: The prevalence of HBV infection and HBV genotypes varies from country to country, and the role of HBV genotypes in the presence of HBV in the placenta and fetus has never been explored. This study was conducted to (1) identify HBV genotypes, and their frequencies, that infected Northern Thai pregnant women; (2) evaluate the association between HBV genotypes and the detection rate of HBV DNA in the placenta and fetus; (3) evaluate the association between specific mutations of the HBV genome and HBV DNA detection in placental tissue; and (4) identify the mutation of the HBV genome that might occur between maternal blood, placenta, and cord blood. Methods: Stored samples of the maternal blood, placental tissue, and cord blood that were collected from 145 HBsAg-positive pregnant Thai women were analyzed to identify HBV DNA. Results: Approximately 25% of infected mothers had fetal HBV DNA detection, including cases with concomitant HBV DNA detection in the placenta (77.3%). A total of 11.7% of cases with placental detection had no HBV DNA detection in the maternal blood, indicating that the placenta could be a site of HBV accumulation. Of the 31 HBV-positive blood samples detected by nested PCR, the detected strains were subgenotype C1 (77.4%), subgenotype B9 (9.7%), and subgenotype C2, B2, B4, and recombinant B4/C2 (3.2% for each). Genotype B had a trend in increased risk of placental HBV DNA detection compared to genotype C, with a relative risk of 1.40 (95% CI: 1.07-1.84). No specific point mutation had a significant effect on HBV DNA detection in placental tissue. Mutation of C454T tended to enhance HBV DNA detection in placental tissue, whereas T400A tended to have a lower detection rate. No mutation was detected in different sample types collected from the same cases. Conclusions: HBV DNA detection in the fetus was identified in approximately 25% of HBV-positive mothers, associated with the presence of HBV in the placenta in most cases. The placenta could possibly be a site of HBV accumulation. Subgenotype C1 was the most common subgenotype, followed by subgenotype B9. HBV genotype B possibly had a higher trend in intrauterine detection than HBV genotype C. Mutation is unlikely to occur during intrauterine exposure.
Collapse
Affiliation(s)
- Sirinart Sirilert
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (K.K.); (N.M.)
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (K.K.); (N.M.)
| | - Rungnapa Malasao
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (K.K.); (N.M.)
| | - Theera Tongsong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
13
|
Parizad EG, Imani Fooladi AA, Sedighian H, Behzadi E, Amani J, Khosravi A. Immune response induced by recombinant pres2/S-protein and a pres2-S-protein fused with a core 18-27 antigen fragment of hepatitis B virus compared to conventional HBV vaccine. Virus Genes 2023:10.1007/s11262-023-01995-z. [PMID: 37140777 DOI: 10.1007/s11262-023-01995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023]
Abstract
Although comprehensive vaccination is the cornerstone of public health programs to control hepatitis B virus (HBV) infections, 5% of people who receive the existing vaccine do not develop proper immunity against HBV. To overcome this challenge, researchers have tried using various protein fragments encoded by the virus genome to achieve better immunization rates. An important antigenic component of HBsAg called the preS2/S or M protein has also received much attention in this area. The gene sequences of preS2/S and Core18-27 peptide were extracted from the GenBank (NCBI). Final gene synthesis was conducted with pET28. Groups of BALB/c mice were immunized with 10 μg/ml of recombinant proteins and 1 μg/ml CPG7909 adjuvant. Serum levels of IF-γ, TNF-α, IL-2, IL-4, and IL-10 were measured by ELISA assay method on spleen cell cultures on day 45, and IgG1, IgG2a, and total IgG titers obtained from mice serum were quantified on days 14 and 45. Statistical analysis did not show any significant difference between the groups regarding IF-γ level. There were, however, significant differences in terms of IL-2 and IL-4 levels between the groups receiving preS2/S-C18-27 with and without adjuvant and the groups receiving both preS2/S and preS2/S-C18-27 (Plus Recomb-Plus Recomb: the group of mice that received both preS2/S and preS2/S-C18-27 simultaneously). The strongest total antibody production was induced by immunization with both recombinant proteins without CPG adjuvant. The groups that received both preS2/S and preS2/S-C18-27, whether with or without adjuvant, were significantly different from those that received the conventional vaccine considering most abundant interleukins. This difference suggested that higher levels of efficacy can be achieved by the use of multiple virus antigen fragments rather than using a single fragment.
Collapse
Affiliation(s)
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box 19395-5487, Tehran, Iran.
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box 19395-5487, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box 19395-5487, Tehran, Iran
| | - Afra Khosravi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
14
|
Sant'Anna TB, Araujo NM. Hepatitis B Virus Genotype D: An Overview of Molecular Epidemiology, Evolutionary History, and Clinical Characteristics. Microorganisms 2023; 11:1101. [PMID: 37317074 PMCID: PMC10221421 DOI: 10.3390/microorganisms11051101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 06/16/2023] Open
Abstract
The hepatitis B virus (HBV) genotype D (HBV/D) is the most extensively distributed genotype worldwide with distinct molecular and epidemiological features. This report provides an up-to-date review on the history of HBV/D subgenotyping and misclassifications, along with large-scale analysis of over 1000 HBV/D complete genome sequences, with the aim of gaining a thorough understanding of the global prevalence and geographic distribution of HBV/D subgenotypes. We have additionally explored recent paleogenomic findings, which facilitated the detection of HBV/D genomes dating back to the late Iron Age and provided new perspectives on the origins of modern HBV/D strains. Finally, reports on distinct disease outcomes and responses to antiviral therapy among HBV/D subgenotypes are discussed, further highlighting the complexity of this genotype and the importance of HBV subgenotyping in the management and treatment of hepatitis B.
Collapse
Affiliation(s)
- Thaís B Sant'Anna
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21041-250, RJ, Brazil
| | - Natalia M Araujo
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21041-250, RJ, Brazil
| |
Collapse
|
15
|
Targeting Human Proteins for Antiviral Drug Discovery and Repurposing Efforts: A Focus on Protein Kinases. Viruses 2023; 15:v15020568. [PMID: 36851782 PMCID: PMC9966946 DOI: 10.3390/v15020568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.
Collapse
|
16
|
Castro GM, Sosa MJ, Sicilia PE, Riberi MI, Moreno C, Cattaneo R, Debes JD, Barbás MG, Cudolá AE, Pisano MB, Ré VE. Acute and chronic HBV infection in central Argentina: High frequency of sub-genotype F1b, low detection of clinically relevant mutations and first evidence of HDV. Front Med (Lausanne) 2023; 9:1057194. [PMID: 36698842 PMCID: PMC9868314 DOI: 10.3389/fmed.2022.1057194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/16/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Genomic analysis of hepatitis B virus (HBV) identifies phylogenetic variants, which may lead to distinct biological and clinical behaviors. The satellite hepatitis D virus (HDV) may also influence clinical outcomes in patients with hepatitis B. The aim of this study was to investigate HBV genetic variants, including clinically relevant mutations, and HDV infection in acute and chronic hepatitis B patients in central Argentina. Methods A total of 217 adult HBV infected patients [acute (AHB): n = 79; chronic (CHB): n = 138] were studied; 67 were HBV/human immunodeficiency virus (HIV) coinfected. Clinical and demographic data were obtained from medical records. Serological markers were determined. Molecular detection of HBV and HDV was carried out by RT-Nested PCR, followed by sequencing and phylogenetic analysis. Results Overall, genotype (gt) F [sub-genotype (sgt) F1b] was the most frequently found. In AHB patients, the gts/sgts found were: F1b (74.7%) > A2 (13.9%) > F4 (7.6%) > C (2.5%) > A1 (1.3%). Among CHB patients: F1b (39.1%) > A2 (23.9%) > F4 (18.2%) > D (9.4%) > C and F6 (3.6% each) > A1, A3 and B2 (0.7% each). The distribution of sgt A2 and gt D was significantly different between HBV mono and HBV/HIV coinfected patients [A2: 15.9% vs. 35.7% (p < 0.05), respectively and D: 14.6% vs. 1.8% (p < 0.05), respectively]. Mutation frequency in basal core promoter/pre-Core (BCP/pC) region was 35.5% (77/217) [AHB: 20.3% (16/79), CHB: 44.2% (61/138)]. In the open reading frame (ORF) S, mutations associated with vaccine escape and diagnostic failure were detected in 7.8% of the sequences (17/217) [AHB: 3.8% (3/79), CHB: 10.1% (14/138)]. ORF-P amino acid substitutions associated with antiviral resistance were detected in 3.2% of the samples (7/217) [AHB: 1.3% (1/79), CHB 4.3%, (6/138)]. The anti-HDV seropositivity was 5.2% (4/77); one sample could be sequenced, belonging to gt HDV-1 associated with sgt HBV-D3. Discussion We detected an increase in the circulation of genotype F in Central Argentina, particularly among AHB patients, suggesting transmission advantages over the other genotypes. A low rate of mutations was detected, especially those with antiviral resistance implications, which is an encouraging result. The evidence of HDV circulation in our region, reported for the first time, alerts the health system for its search and diagnosis.
Collapse
Affiliation(s)
- Gonzalo M. Castro
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina,*Correspondence: Gonzalo M. Castro,
| | - María J. Sosa
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - Paola E. Sicilia
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - María I. Riberi
- Laboratorio de Virología, Servicio de Microbiología, Clínica Universitaria Reina Fabiola, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Moreno
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - Rodolfo Cattaneo
- Servicio de Gastroenterología, Hospital Rawson, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - José D. Debes
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - María G. Barbás
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - Analía E. Cudolá
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - María B. Pisano
- Laboratorio de Hepatitis Virales, Instituto de Virología “Dr. J. M. Vanella” (InViV)–CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Viviana E. Ré
- Laboratorio de Hepatitis Virales, Instituto de Virología “Dr. J. M. Vanella” (InViV)–CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
17
|
Mabunda N, Vieira L, Chelene I, Maueia C, Zicai AF, Duajá A, Chale F, Chambal L, Vubil A, Augusto O. Prevalence of hepatitis B virus and immunity status among healthcare workers in Beira City, Mozambique. PLoS One 2022; 17:e0276283. [PMID: 36240262 PMCID: PMC9565706 DOI: 10.1371/journal.pone.0276283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection can be prevented by vaccination. Exposure to blood or body fluids poses a high risk of transmission of HBV in health care workers (HCWs). This study aimed to determine the prevalence of markers of exposure, susceptibility, and protection to HBV infection in HCWs in Beira, Mozambique. METHODS A cross-sectional study was conducted between June and August 2020 in Beira City, Mozambique, in HCWs based on self-administered questionnaires and blood samples. Plasma samples were tested for HBV surface antigen (HBsAg), antibodies to HBV core antigen (anti-HBc), antibodies to HBsAg (anti-HBs) and HBV viral load (HBV DNA). RESULTS Most of the 315 HCWs in the study were nurses (125; 39.7%). Of the HCWs, 5.1% (16; 95% Confidence Interval (CI): 2.9 to 8.1%) were infected by HBV (HBsAg and/or HBV DNA positive). Occult HBV infection (OBI) (HBV DNA positive and HBsAg negative) was found in 0.3% (1; 95% CI: 0.0 to 1.8%) of participants; 27.9% (88; 95% CI: 23.1 to 33.2%) were susceptible (negative for all markers), 6.3% (20; 95% CI: 3.9 to 9.6) were immune due to natural infection (anti-HBs and anti-HBc positive only), while 60% (189; 95% CI: 54.4 to 65.5) were immune due to vaccination (anti-HBs positive only). CONCLUSION This study showed a high intermediate prevalence of chronic hepatitis B among healthcare workers in Beira City, Central Mozambique, and one-third of healthcare workers were susceptible to HBV infection. There is a need to implement a national hepatitis B screening and vaccination strategy among healthcare workers in Mozambique.
Collapse
Affiliation(s)
| | - Lúcia Vieira
- Instituto Nacional de Saúde, Delegação Provincial de Sofala, Beira, Mozambique
- Universidade Católica de Moçambique, Beira, Mozambique
| | | | - Cremildo Maueia
- Instituto Nacional de Saúde, Marracuene, Mozambique
- Division of Medical Virology, Departament of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
| | | | - Ana Duajá
- Instituto Nacional de Saúde, Delegação Provincial de Sofala, Beira, Mozambique
| | - Falume Chale
- Instituto Nacional de Saúde, Delegação Provincial de Sofala, Beira, Mozambique
| | - Lúcia Chambal
- Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
- Hospital Central de Maputo, Maputo, Mozambique
| | - Adolfo Vubil
- Instituto Nacional de Saúde, Marracuene, Mozambique
| | - Orvalho Augusto
- Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
- Department of Global Health, University of Washington, Seattle, Washington, DC, United States of America
| |
Collapse
|
18
|
HBx 128–133 Deletion Affecting HBV Mother-to-Child Transmission Weakens HBV Replication via Reducing HBx Level and CP/ENII Transcriptional Activity. Viruses 2022; 14:v14091887. [PMID: 36146694 PMCID: PMC9506584 DOI: 10.3390/v14091887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Some infants born to hepatitis B surface antigen (HBsAg)-positive mothers, especially born to hepatitis B e antigen (HBeAg)-positive mothers, can still be infected with hepatitis B virus (HBV) through mother-to-child transmission (MTCT) of HBV and develop chronic HBV infection. At present, the virological factors affecting HBV MTCT are still unclear. In this study, we found that the mutation rates of amino acids in the HBV X region were high, and there were obvious differences between the immunoprophylaxis success group and the immunoprophylaxis failure group of HBeAg-positive mothers. Specifically, the mutation rate of HBx 128–133 deletion (x128–133del) or corresponding nucleotide 1755–1772 deletion (nt1755–1772del) in the immunoprophylaxis success group was significantly higher than that in the immunoprophylaxis failure group. Furthermore, we found that x128–133del could weaken HBV replication by reducing the level of the HBx protein due to the increased proteasome-dependent degradation of HBx protein, and the transcriptional activity of HBV core promoter (CP)/enhancer II (ENII) due to the attenuated binding capacity of hepatocyte nuclear factor 4α (HNF4α) to HBV CP/ENII. This study suggests that x128–133del may contribute to immunoprophylaxis success, which may be helpful in clarifying the virological mechanism affecting HBV MTCT and formulating an optimal immunization strategy for children born to HBeAg-positive mothers.
Collapse
|
19
|
Goto A, Rodriguez-Esteban R, Scharf SH, Morris GM. Understanding the genetics of viral drug resistance by integrating clinical data and mining of the scientific literature. Sci Rep 2022; 12:14476. [PMID: 36008431 PMCID: PMC9403226 DOI: 10.1038/s41598-022-17746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Drug resistance caused by mutations is a public health threat for existing and emerging viral diseases. A wealth of evidence about these mutations and their clinically associated phenotypes is scattered across the literature, but a comprehensive perspective is usually lacking. This work aimed to produce a clinically relevant view for the case of Hepatitis B virus (HBV) mutations by combining a chronic HBV clinical study with a compendium of genetic mutations systematically gathered from the scientific literature. We enriched clinical mutation data by systematically mining 2,472,725 scientific articles from PubMed Central in order to gather information about the HBV mutational landscape. By performing this analysis, we were able to identify mutational hotspots for each HBV genotype (A-E) and gene (C, X, P, S), as well as the location of disulfide bonds associated with these mutations. Through a modelling study, we also identified a mutation position common in both the clinical data and the literature that is located at the binding pocket for a known anti-HBV drug, namely entecavir. The results of this novel approach show the potential of integrated analyses to assist in the development of new drugs for viral diseases that are more robust to resistance. Such analyses should be of particular interest due to the increasing importance of viral resistance in established and emerging viruses, such as for newly developed drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- An Goto
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | | | | | - Garrett M Morris
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.
| |
Collapse
|
20
|
Lai MW, Chang YL, Cheng PJ, Chueh HY, Chang SC, Yeh CT. Absence of chronicity in infants born to immunized mothers with occult HBV infection in Taiwan. J Hepatol 2022; 77:63-70. [PMID: 35176439 DOI: 10.1016/j.jhep.2022.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS In the Taiwanese population born in the universal vaccination era, HBsAg carrier rates have fallen below 2%, while approximately 5% develop occult hepatitis B infection (OBI). However, the potential for transmission from mothers with OBI to their infants has not been well studied. We aimed to investigate whether mothers with OBI could transmit HBV to their babies. METHODS A total of 253 pregnant women who were born after July 1986 and had been fully vaccinated against HBV during infancy were recruited from a tertiary hospital in Northern Taiwan. HBV serology and DNA levels were determined. Babies born to mothers with OBI were followed-up until 1 year of age. The surface genes were sequenced. RESULTS HBV infection was documented in 18 vaccinated mothers, 2 of whom were HBsAg-reactive (0.79 %). Seventeen were positive for HBV DNA, among whom 16 (6.32%) presented with OBI with a median DNA level of 145 IU/ml (interquartile range: 37.8-657.3 IU/ml). Eleven babies born to 10 mothers with OBI were recruited. Three babies were HBsAg-reactive, and 2 were positive for HBV DNA (17.0 and 212.0 IU/ml). Seven mothers with OBI carried multiple surface gene variants. Two transiently infected babies harbored variants originating from their mother's HBV quasi-species. All infants received complete hepatitis B vaccines. At 12 months of age, none of the babies were positive for HBsAg or HBV DNA. CONCLUSIONS It was possible for mothers with OBI to transmit HBV to their babies, who consequently harbored surface gene variants originating from their mothers' minor variants. Viremia was cleared 1 year after completing the hepatitis B vaccination series. LAY SUMMARY Since initiating the hepatitis B vaccination program in Taiwan, the rate of young individuals (i.e. born after 1986) carrying the HBV surface antigen has fallen below 2%, although around 5% of vaccinated individuals develop occult HBV infections. Herein, we show that pregnant mothers with occult HBV infections can transmit HBV to their offspring. However, no infant had sustained infection at 1 year of age having completed a full HBV vaccination series.
Collapse
Affiliation(s)
- Ming-Wei Lai
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Yao-Lung Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Po-Jen Cheng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ho-Yen Chueh
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shun-Chih Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Department of Hepatogastroenterology, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
21
|
Association of Pre-S/S and Polymerase Mutations with Acute and Chronic Hepatitis B Virus Infections in Patients from Rio de Janeiro, Brazil. Viruses 2022; 14:v14071375. [PMID: 35891356 PMCID: PMC9315576 DOI: 10.3390/v14071375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Several hepatitis B virus (HBV)-related factors, including the viral load, genotype, and genomic mutations, have been linked to the development of liver diseases. Therefore, in this study we aimed to investigate the influence of HBV genetic variability during acute and chronic infection phases. A real-time nested PCR was used to detect HBV DNA in all samples (acute, n = 22; chronic, n = 49). All samples were sequenced for phylogenetic and mutation analyses. Genotype A, sub-genotype A1, was the most common genotype in the study population. A total of 190 mutations were found in the pre-S/S gene area and the acute profile revealed a greater number of nucleotide mutations (p < 0.05). However, both profiles contained nucleotide mutations linked to immune escape and an increased risk of hepatocellular carcinomas (acute, A7T; chronic, A7Q). Furthermore, 17 amino acid substitutions were identified in the viral polymerase region, including the drug resistance mutations lamivudine and entecavir (rtL180M), with statistically significant differences between the mutant and wild type strains. Owing to the natural occurrence of these mutations, it is important to screen for resistance mutations before beginning therapy.
Collapse
|
22
|
Kumar R. Review on hepatitis B virus precore/core promoter mutations and their correlation with genotypes and liver disease severity. World J Hepatol 2022; 14:708-718. [PMID: 35646275 PMCID: PMC9099108 DOI: 10.4254/wjh.v14.i4.708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/04/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Of 350 million people worldwide are chronically infected with hepatitis B virus (HBV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC) later in life. HBV is the most diverse DNA virus, and its genome is composed of four open reading frames: Presurface antigen/surface antigen gene (preS/S), precore/core gene (preC/C), polymerase gene (P), and the X gene (X). HBV produces quasispecies naturally or in response to antiviral agents because of the absence of proofreading activity amid reverse transcription and a high replication rate. The virus has 10 genotypes (A to J) with different geographical distributions. There are various HBV mutations in the HBV genome, including preC/C mutations, preS/S mutations, P gene mutations, and X gene mutations. The core promoter region plays a vital part in the replication, morphogenesis and pathogenesis of the virus. The precore region also plays a crucial role in viral replication. Both core promoter and precore mutations rescue the virus from host immune surveillance and result in the formation of mutated strains that may have altered pathogenicity. preC/C mutations are associated with liver disease progression. Precore mutations stop hepatitis B e antigen (HBeAg) production and basal core promoter mutations downregulate HBeAg production. Mutations in the basal core promoter are also associated with increased HBV replication and an increased incidence of advanced liver diseases such as cirrhosis and HCC. The emergence of antiviral-resistant mutations is the main reason for treatment failure. This review focuses mainly on preC/C promoter mutations and their correlation with genotypes and liver disease severity. Thorough perception and knowledge of HBV genetic variety and mutants could be vital to discover techniques for the prognosis and control of HBV infection.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of School Education, Haryana Government, Panchkula 134109, Haryana, India
| |
Collapse
|
23
|
Araujo NM, Osiowy C. Hepatitis B Virus Genotype G: The Odd Cousin of the Family. Front Microbiol 2022; 13:872766. [PMID: 35432294 PMCID: PMC9009205 DOI: 10.3389/fmicb.2022.872766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
With a widespread distribution but low prevalence worldwide, the hepatitis B virus (HBV) genotype G (HBV/G) is a recently described genotype for which the origin and biology are poorly understood. Some unique features make HBV/G the most peculiar of all genotypes. In this review, we reflect on the major milestones in HBV/G research, highlighting the main aspects of its discovery, molecular epidemiology, and virological and clinical characteristics. We also illustrate common pitfalls in the routine detection, which may lead to underestimated rates of HBV/G infection. Large-scale analysis of data from dozens of articles was further performed, with the aim of gaining comprehensive insights into the epidemiological aspects of HBV/G. Finally, we point out recent findings on HBV/G origins and discuss new perspectives regarding the evolutionary history of HBV/G and the plausibility of an African geographic re-emergence of this genotype.
Collapse
Affiliation(s)
- Natalia M. Araujo
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Carla Osiowy
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- *Correspondence: Carla Osiowy,
| |
Collapse
|
24
|
Athamneh RY, Arıkan A, Sayan M, Mahafzah A, Sallam M. Variable Proportions of Phylogenetic Clustering and Low Levels of Antiviral Drug Resistance among the Major HBV Sub-Genotypes in the Middle East and North Africa. Pathogens 2021; 10:1333. [PMID: 34684283 PMCID: PMC8540944 DOI: 10.3390/pathogens10101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health threat in the Middle East and North Africa (MENA). Phylogenetic analysis of HBV can be helpful to study the putative transmission links and patterns of inter-country spread of the virus. The objectives of the current study were to analyze the HBV genotype/sub-genotype (SGT) distribution, reverse transcriptase (RT), and surface (S) gene mutations and to investigate the domestic transmission of HBV in the MENA. All HBV molecular sequences collected in the MENA were retrieved from GenBank as of 30 April 2021. Determination of genotypes/SGT, RT, and S mutations were based on the Geno2pheno (hbv) 2.0 online tool. For the most prevalent HBV SGTs, maximum likelihood phylogenetic analysis was conducted to identify the putative phylogenetic clusters, with approximate Shimodaira-Hasegawa-like likelihood ratio test values ≥ 0.90, and genetic distance cut-off values ≤ 0.025 substitutions/site as implemented in Cluster Picker. The total number of HBV sequences used for genotype/SGT determination was 4352 that represented a total of 20 MENA countries, with a majority from Iran (n = 2103, 48.3%), Saudi Arabia (n = 503, 11.6%), Tunisia (n = 395, 9.1%), and Turkey (n = 267, 6.1%). Genotype D dominated infections in the MENA (86.6%), followed by genotype A (4.1%), with SGT D1 as the most common in 14 MENA countries and SGT D7 dominance in the Maghreb. The highest prevalence of antiviral drug resistance was observed against lamivudine (4.5%) and telbivudine (4.3%). The proportion of domestic phylogenetic clustering was the highest for SGT D7 (61.9%), followed by SGT D2 (28.2%) and genotype E (25.7%). The largest fraction of domestic clusters with evidence of inter-country spread within the MENA was seen in SGT D7 (81.3%). Small networks (containing 3-14 sequences) dominated among domestic phylogenetic clusters. Specific patterns of HBV genetic diversity were seen in the MENA with SGT D1 dominance in the Levant, Iran, and Turkey; SGT D7 dominance in the Maghreb; and extensive diversity in Saudi Arabia and Egypt. A low prevalence of lamivudine, telbivudine, and entecavir drug resistance was observed in the region, with almost an absence of resistance to tenofovir and adefovir. Variable proportions of phylogenetic clustering indicated prominent domestic transmission of SGT D7 (particularly in the Maghreb) and relatively high levels of virus mobility in SGT D1.
Collapse
Affiliation(s)
- Rabaa Y. Athamneh
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus; (R.Y.A.); (A.A.)
| | - Ayşe Arıkan
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus; (R.Y.A.); (A.A.)
- DESAM, Near East University, Nicosia 99138, Cyprus;
| | - Murat Sayan
- DESAM, Near East University, Nicosia 99138, Cyprus;
- Clinical Laboratory, PCR Unit, Faculty of Medicine, Kocaeli University, İzmit 41380, Turkey
| | - Azmi Mahafzah
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, the University of Jordan, Amman 11942, Jordan;
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
| | - Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, the University of Jordan, Amman 11942, Jordan;
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, 22184 Malmö, Sweden
| |
Collapse
|
25
|
The Baltimore Classification of Viruses 50 Years Later: How Does It Stand in the Light of Virus Evolution? Microbiol Mol Biol Rev 2021; 85:e0005321. [PMID: 34259570 DOI: 10.1128/mmbr.00053-21] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fifty years ago, David Baltimore published a brief conceptual paper delineating the classification of viruses by the routes of genome expression. The six "Baltimore classes" of viruses, with a subsequently added 7th class, became the conceptual framework for the development of virology during the next five decades. During this time, it became clear that the Baltimore classes, with relatively minor additions, indeed cover the diversity of virus genome expression schemes that also define the replication cycles. Here, we examine the status of the Baltimore classes 50 years after their advent and explore their links with the global ecology and biology of the respective viruses. We discuss an extension of the Baltimore scheme and why many logically admissible expression-replication schemes do not appear to be realized in nature. Recent phylogenomic analyses allow tracing the complex connections between the Baltimore classes and the monophyletic realms of viruses. The five classes of RNA viruses and reverse-transcribing viruses share an origin, whereas both the single-stranded DNA viruses and double-stranded DNA (dsDNA) viruses evolved on multiple independent occasions. Most of the Baltimore classes of viruses probably emerged during the earliest era of life evolution, at the stage of the primordial pool of diverse replicators, and before the advent of modern-like cells with large dsDNA genomes. The Baltimore classes remain an integral part of the conceptual foundation of biology, providing the essential structure for the logical space of information transfer processes, which is nontrivially connected with the routes of evolution of viruses and other replicators.
Collapse
|
26
|
Phan NMH, Faddy HM, Flower RL, Dimech WJ, Spann KM, Roulis EV. Low Genetic Diversity of Hepatitis B Virus Surface Gene amongst Australian Blood Donors. Viruses 2021; 13:1275. [PMID: 34208852 PMCID: PMC8310342 DOI: 10.3390/v13071275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
Variants in the small surface gene of hepatitis B virus (HBV), which codes for viral surface antigen (HBsAg), can affect the efficacy of HBsAg screening assays and can be associated with occult HBV infection (OBI). This study aimed to characterise the molecular diversity of the HBV small surface gene from HBV-reactive Australian blood donors. HBV isolates from 16 HBsAg-positive Australian blood donors' plasma were sequenced and genotyped by phylogenies of viral coding genes and/or whole genomes. An analysis of the genetic diversity of eight HBV small surface genes from our 16 samples was conducted and compared with HBV sequences from NCBI of 164 international (non-Australian) blood donors. Genotypes A-D were identified in our samples. The region of HBV small surface gene that contained the sequence encoding the 'a' determinant had a greater genetic diversity than the remaining part of the gene. No escape mutants or OBI-related variants were observed in our samples. Variant call analysis revealed two samples with a nucleotide deletion leading to truncation of polymerase and/or large/middle surface amino acid sequences. Overall, we found that HBV small surface gene sequences from Australian donors demonstrated a lower level of genetic diversity than those from non-Australian donor population included in the study.
Collapse
Affiliation(s)
- Ngoc Minh Hien Phan
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia; (H.M.F.); (R.L.F.); (K.M.S.); (E.V.R.)
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland 4059, Australia
| | - Helen M. Faddy
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia; (H.M.F.); (R.L.F.); (K.M.S.); (E.V.R.)
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland 4059, Australia
- School of Health and Behavioural Sciences, University of Sunshine Coast, Petrie, Queensland 4502, Australia
| | - Robert L. Flower
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia; (H.M.F.); (R.L.F.); (K.M.S.); (E.V.R.)
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland 4059, Australia
| | - Wayne J. Dimech
- Scientific & Business Relations, National Serology Reference Laboratory, Fitzroy, Victoria 3065, Australia;
| | - Kirsten M. Spann
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia; (H.M.F.); (R.L.F.); (K.M.S.); (E.V.R.)
| | - Eileen V. Roulis
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia; (H.M.F.); (R.L.F.); (K.M.S.); (E.V.R.)
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland 4059, Australia
| |
Collapse
|
27
|
Marlet J, Lier C, Roch E, Moreau A, Combe B, Handala L, Lefeuvre S, Maugey M, Elkrief L, d'Alteroche L, Potier P, Brand D, Gaudy-Graffin C. Evolution and phenotypic characterization of whole HBV genome in compliant patients experiencing unexplained entecavir treatment failure. Antiviral Res 2021; 192:105106. [PMID: 34214504 DOI: 10.1016/j.antiviral.2021.105106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/29/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
Entecavir treatment failure can be observed in compliant patients despite an absence of detectable resistance mutations by Pol/RT Sanger sequencing. We hypothesized that these unexplained treatment failures could rely on other mechanisms of viral resistance, especially on mutations selected outside of the Pol/RT domain. Partial virological response to entecavir was observed in three patients treated with immunosuppressive drugs, without selection of Pol/RT resistance mutations. Mutations selected in the whole HBV genome during entecavir treatment and potentially associated with resistance were searched for using deep sequencing and characterized using a phenotypic resistance assay. Mutations Q206K (pre-core/core), Q120K (pre-S1/pre-S2, T-cell epitope) and A300E (spacer domain) were selected during entecavir treatment in patient #1 but were not associated with an increased level of resistance to entecavir or an increase in HBV replication capacity. Core promoter mutations T1753G, A1762T and G1764A were present as major mutations before and after treatment in patient #1. HBs Ag immune escape mutations were present as major mutations before and after treatment in patients #2 (sK122R, sT126I, sP127S and sG145R) and #3 (sM133I). We demonstrated that PVR to entecavir does not require selection of any resistance mutation in the whole HBV genome. Our results demonstrate that major mutations can be selected outside of the Pol/RT domain before or during entecavir treatment. These mutations could contribute to entecavir treatment failure by other mechanisms than an increased level of resistance.
Collapse
Affiliation(s)
- Julien Marlet
- INSERM U1259, Université de Tours et CHRU de Tours, France; Service de Bactériologie-Virologie-Hygiène, CHRU de Tours, France.
| | - Clément Lier
- INSERM U1259, Université de Tours et CHRU de Tours, France; Service de Bactériologie-Virologie-Hygiène, CHRU de Tours, France
| | | | - Alain Moreau
- INSERM U1259, Université de Tours et CHRU de Tours, France
| | - Benjamin Combe
- INSERM U1259, Université de Tours et CHRU de Tours, France
| | - Lynda Handala
- INSERM U1259, Université de Tours et CHRU de Tours, France
| | | | - Morgan Maugey
- INSERM U1259, Université de Tours et CHRU de Tours, France
| | - Laure Elkrief
- Service D'Hépato-gastroentérologie, CHRU de Tours, France
| | | | - Pascal Potier
- Service D'Hépato-gastroentérologie, CHR D'Orléans, France
| | - Denys Brand
- INSERM U1259, Université de Tours et CHRU de Tours, France; Service de Bactériologie-Virologie-Hygiène, CHRU de Tours, France
| | - Catherine Gaudy-Graffin
- INSERM U1259, Université de Tours et CHRU de Tours, France; Service de Bactériologie-Virologie-Hygiène, CHRU de Tours, France
| |
Collapse
|
28
|
Yaralı E, Erdem A. Cobalt Phthalocyanine-Ionic Liquid Composite Modified Electrodes for the Voltammetric Detection of DNA Hybridization Related to Hepatitis B Virus. MICROMACHINES 2021; 12:753. [PMID: 34206863 PMCID: PMC8306960 DOI: 10.3390/mi12070753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
In this study, cobalt phthalocyanine (CoPc) and ionic liquid (IL) modified pencil graphite electrodes (PGEs) were designed and implemented to detect sequence-selective DNA hybridization related to the Hepatitis B virus (HBV). The surface characterization of CoPc-IL-PGEs was investigated by scanning electron microscopy (SEM), and the electrochemical behavior of electrodes were studied by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The voltammetric detection of hybridization was investigated by evaluating the guanine oxidation signal, measured by differential pulse voltammetry (DPV) technique. The implementation of our biosensor to serum samples was also examined using fetal bovine serum (FBS). The detection limit was established as 0.19 µg/mL in phosphate buffer solution (PBS) (pH 7.40) and 2.48 µg/mL in FBS medium. The selectivity of our assay regarding HBV DNA hybridization in FBS medium was tested in the presence of other DNA sequences. With this aim, the hybridization of DNA probe with non-complementary (NC) or mismatched DNA sequence (MM), or in the presence of mixture samples containing DNA target NC (1:1) or DNA target MM (1:1), was studied based on the changes in guanine signal.
Collapse
Affiliation(s)
- Ece Yaralı
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey;
- Department of Materials Science and Engineering, Graduate School of Natural and Applied Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Arzum Erdem
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey;
- Department of Materials Science and Engineering, Graduate School of Natural and Applied Science, Ege University, Bornova, Izmir 35100, Turkey
| |
Collapse
|
29
|
Zheng B, Liu XL, Fan R, Bai J, Wen H, Du LT, Jiang GQ, Wang CY, Fan XT, Ye YN, Qian YS, Wang YC, Liu GJ, Deng GH, Shen F, Hu HP, Wang H, Zhang QZ, Ru LL, Zhang J, Gao YH, Xia J, Yan HD, Liang MF, Yu YL, Sun FM, Gao YJ, Sun J, Zhong CX, Wang Y, Kong F, Chen JM, Zheng D, Yang Y, Wang CX, Wu L, Hou JL, Liu JF, Wang HY, Chen L. The Landscape of Cell-Free HBV Integrations and Mutations in Cirrhosis and Hepatocellular Carcinoma Patients. Clin Cancer Res 2021; 27:3772-3783. [PMID: 33947693 DOI: 10.1158/1078-0432.ccr-21-0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/09/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Intratumoral hepatitis B virus (HBV) integrations and mutations are related to hepatocellular carcinoma (HCC) progression. Circulating cell-free DNA (cfDNA) has shown itself as a powerful noninvasive biomarker for cancer. However, the HBV integration and mutation landscape on cfDNA remains unclear. EXPERIMENTAL DESIGN A cSMART (Circulating Single-Molecule Amplification and Resequencing Technology)-based method (SIM) was developed to simultaneously investigate HBV integration and mutation landscapes on cfDNA with HBV-specific primers covering the whole HBV genome. Patients with HCC (n = 481) and liver cirrhosis (LC; n = 517) were recruited in the study. RESULTS A total of 6,861 integration breakpoints including TERT and KMT2B were discovered in HCC cfDNA, more than in LC. The concentration of circulating tumor DNA (ctDNA) was positively correlated with the detection rate of these integration hotspots and total HBV integration events in cfDNA. To track the origin of HBV integrations in cfDNA, whole-genome sequencing (WGS) was performed on their paired tumor tissues. The paired comparison of WGS data from tumor tissues and SIM data from cfDNA confirmed most recurrent integration events in cfDNA originated from tumor tissue. The mutational landscape across the whole HBV genome was first generated for both HBV genotype C and B. A region from nt1100 to nt1500 containing multiple HCC risk mutation sites (OR > 1) was identified as a potential HCC-related mutational hot zone. CONCLUSIONS Our study provides an in-depth delineation of HBV integration/mutation landscapes at cfDNA level and did a comparative analysis with their paired tissues. These findings shed light on the possibilities of noninvasive detection of virus insertion/mutation.
Collapse
Affiliation(s)
- Bo Zheng
- National Center for Liver Cancer, Shanghai, PR China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, PR China
| | - Xiao-Long Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, PR China
| | - Rong Fan
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Jian Bai
- Berry Oncology Corporation. Beijing, PR China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Lu-Tao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, PR China.,The Clinical Research Center of Shandong Province for Clinical Laboratory, Jinan, PR China
| | - Guo-Qing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, PR China
| | | | - Xiao-Tang Fan
- Dept of Hepatology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Yi-Nong Ye
- The Department of Infectious Disease, the First People's Hospital of Foshan, Foshan City, PR China
| | - Yun-Song Qian
- Hepatology Department, Ningbo Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, PR China
| | - Ying-Chao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, PR China
| | | | - Guo-Hong Deng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Feng Shen
- Department of Hepatic Surgery IV, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, PR China
| | - He-Ping Hu
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, PR China
| | - Hui Wang
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, PR China
| | | | - Lan-Lan Ru
- Berry Oncology Corporation. Beijing, PR China
| | - Jing Zhang
- Berry Oncology Corporation. Beijing, PR China
| | - Yan-Hang Gao
- The First Hospital of Jilin University, Jilin, PR China
| | - Jie Xia
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hua-Dong Yan
- Hepatology Department, Ningbo Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, PR China
| | - Min-Feng Liang
- The Department of Infectious Disease, the First People's Hospital of Foshan, Foshan City, PR China
| | - Yan-Long Yu
- Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, PR China
| | - Fu-Ming Sun
- Berry Oncology Corporation. Beijing, PR China
| | - Yu-Jing Gao
- Xuzhou Infectious Diseases Hospital, Xuzhou, PR China
| | - Jian Sun
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Chun-Xiu Zhong
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yin Wang
- Berry Oncology Corporation. Beijing, PR China
| | - Fei Kong
- The First Hospital of Jilin University, Jilin, PR China
| | - Jin-Ming Chen
- Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, PR China
| | - Dan Zheng
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yuan Yang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, PR China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, PR China
| | - Chuan-Xin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, PR China.,The Clinical Research Center of Shandong Province for Clinical Laboratory, Jinan, PR China
| | - Lin Wu
- Berry Oncology Corporation. Beijing, PR China.
| | - Jin-Lin Hou
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Jing-Feng Liu
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Jinan District, Fuzhou City, PR China.
| | - Hong-Yang Wang
- National Center for Liver Cancer, Shanghai, PR China. .,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, PR China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, PR China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, PR China
| | - Lei Chen
- National Center for Liver Cancer, Shanghai, PR China. .,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, PR China
| |
Collapse
|
30
|
Araujo NM, Teles SA, Spitz N. Comprehensive Analysis of Clinically Significant Hepatitis B Virus Mutations in Relation to Genotype, Subgenotype and Geographic Region. Front Microbiol 2020; 11:616023. [PMID: 33381105 PMCID: PMC7767914 DOI: 10.3389/fmicb.2020.616023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) is a highly variable DNA virus due to its unique life cycle, which involves an error-prone reverse transcriptase. The high substitution rate drives the evolution of HBV by generating genetic variants upon which selection operates. HBV mutants with clinical implications have been documented worldwide, indicating the potential for spreading and developing their own epidemiology. However, the prevalence of such mutants among the different HBV genotypes and subgenotypes has not been systematically analyzed. In the current study, we performed large-scale analysis of 6,479 full-length HBV genome sequences from genotypes A-H, with the aim of gaining comprehensive insights into the relationships of relevant mutations associated with immune escape, antiviral resistance and hepatocellular carcinoma (HCC) development with HBV (sub)genotypes and geographic regions. Immune escape mutations were detected in 10.7% of the sequences, the most common being I/T126S (1.8%), G145R (1.2%), M133T (1.2%), and Q129R (1.0%). HBV genotype B showed the highest rate of escape mutations (14.7%) while genotype H had no mutations (P < 0.001). HCC-associated mutations were detected in 33.7% of the sequences, with significantly higher frequency of C1653T, T1753V and A1762T/G1764A in genotype G than C (P < 0.001). The overall frequencies of lamivudine-, telbivudine-, adefovir-, and entecavir-resistant mutants were 7.3, 7.2, 0.5, and 0.2%, respectively, while only 0.05% showed reduced susceptibility to tenofovir. In particular, the highest frequency of lamivudine-resistant mutations was observed in genotype G and the lowest frequency in genotype E (32.5 and 0.3%; P < 0.001). The prevalence of HBV mutants was also biased by geographic location, with North America identified as one of the regions with the highest rates of immune escape, antiviral resistance, and HCC-associated mutants. The collective findings were discussed in light of natural selection and the known characteristics of HBV (sub)genotypes. Our data provide relevant information on the prevalence of clinically relevant HBV mutations, which may contribute to further improvement of diagnostic procedures, immunization programs, therapeutic protocols, and disease prognosis.
Collapse
Affiliation(s)
- Natalia M Araujo
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Sheila A Teles
- Faculty of Nursing, Federal University of Goias, Goiânia, Brazil
| | - Natália Spitz
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Sun H, Chang L, Yan Y, Wang L. Hepatitis B virus pre-S region: Clinical implications and applications. Rev Med Virol 2020; 31. [PMID: 33314434 DOI: 10.1002/rmv.2201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) infection is a major threat to global public health, which can result in many acute and chronic liver diseases. HBV, a member of the family Hepadnaviridae, is a small enveloped DNA virus containing a circular genome of 3.2 kb. Located upstream of the S-open-reading frame of the HBV genome is the pre-S region, which is vital to the viral life cycle. The pre-S region has high variability and many mutations in the pre-S region are associated with several liver diseases, such as fulminant hepatitis (FH), liver cirrhosis (LC), and hepatocellular carcinoma (HCC). In addition, the pre-S region has been applied in the development of several pre-S-based materials and systems to prevent or treat HBV infection. In conclusion, the pre-S region plays an essential role in the occurrence, diagnosis, and treatment of HBV-related liver diseases, which may provide a novel perspective for the study of HBV infection and relevant diseases.
Collapse
Affiliation(s)
- Huizhen Sun
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Le Chang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Ying Yan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| |
Collapse
|
32
|
Li Q, Wang J, Lu M, Qiu Y, Lu H. Acute-on-Chronic Liver Failure From Chronic-Hepatitis-B, Who Is the Behind Scenes. Front Microbiol 2020; 11:583423. [PMID: 33365018 PMCID: PMC7750191 DOI: 10.3389/fmicb.2020.583423] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is an acute syndrome accompanied with decompensation of cirrhosis, organ failure with high 28-day mortality rate. Systemic inflammation is the main feature of ACLF, and poor outcome is closely related with exacerbated systemic inflammatory responses. It is well known that severe systemic inflammation is an important event in chronic hepatitis B (CHB)-ACLF, which eventually leads to liver injury. However, the initial CHB-ACLF events are unclear; moreover, the effect of these events on host immunity as well as that of immune imbalance on CHB-ACLF progression are unknown. Here, we investigate the initial events of ACLF progression, discuss possible mechanisms underlying ACLF progression, and provide a new model for ACLF prediction and treatment. We review the characteristics of ACLF, and consider its plausible immune predictors and alternative treatment strategies.
Collapse
Affiliation(s)
- Qian Li
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| | - Jun Wang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Yuanwang Qiu
- Department of Hepatology, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| |
Collapse
|
33
|
The evolution and clinical impact of hepatitis B virus genome diversity. Nat Rev Gastroenterol Hepatol 2020; 17:618-634. [PMID: 32467580 DOI: 10.1038/s41575-020-0296-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
The global burden of hepatitis B virus (HBV) is enormous, with 257 million persons chronically infected, resulting in more than 880,000 deaths per year worldwide. HBV exists as nine different genotypes, which differ in disease progression, natural history and response to therapy. HBV is an ancient virus, with the latest reports greatly expanding the host range of the Hepadnaviridae (to include fish and reptiles) and casting new light on the origins and evolution of this viral family. Although there is an effective preventive vaccine, there is no cure for chronic hepatitis B, largely owing to the persistence of a viral minichromosome that is not targeted by current therapies. HBV persistence is also facilitated through aberrant host immune responses, possibly due to the diverse intra-host viral populations that can respond to host-mounted and therapeutic selection pressures. This Review summarizes current knowledge on the influence of HBV diversity on disease progression and treatment response and the potential effect on new HBV therapies in the pipeline. The mechanisms by which HBV diversity can occur both within the individual host and at a population level are also discussed.
Collapse
|
34
|
Complex genetic encoding of the hepatitis B virus on-drug persistence. Sci Rep 2020; 10:15574. [PMID: 32968103 PMCID: PMC7511938 DOI: 10.1038/s41598-020-72467-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Tenofovir disoproxil fumarate (TDF) is one of the nucleotide analogs capable of inhibiting the reverse transcriptase (RT) activity of HIV and hepatitis B virus (HBV). There is no known HBV resistance to TDF. However, detectable variation in duration of HBV persistence in patients on TDF therapy suggests the existence of genetic mechanisms of on-drug persistence that reduce TDF efficacy for some HBV strains without affording actual resistance. Here, the whole genome of intra-host HBV variants (N = 1,288) was sequenced from patients with rapid (RR, N = 5) and slow response (SR, N = 5) to TDF. Association of HBV genomic and protein polymorphic sites to RR and SR was assessed using phylogenetic analysis and Bayesian network methods. We show that, in difference to resistance to nucleotide analogs, which is mainly associated with few specific mutations in RT, the HBV on-TDF persistence is defined by genetic variations across the entire HBV genome. Analysis of the inferred 3D-structures indicates no difference in affinity of TDF binding by RT encoded by intra-host HBV variants that rapidly decline or persist in presence of TDF. This finding suggests that effectiveness of TDF recognition and binding does not contribute significantly to on-drug persistence. Differences in patterns of genetic associations to TDF response between HBV genotypes B and C and lack of a single pattern of mutations among intra-host variants sensitive to TDF indicate a complex genetic encoding of the trait. We hypothesize that there are many genetic mechanisms of on-drug persistence, which are differentially available to HBV strains. These pervasive mechanisms are insufficient to prevent viral inhibition completely but may contribute significantly to robustness of actual resistance. On-drug persistence may reduce the overall effectiveness of therapy and should be considered for development of more potent drugs.
Collapse
|
35
|
Verso MG, Costantino C, Marrella A, Immordino P, Vitale F, Amodio E. Kinetics of Anti-Hepatitis B Surface Antigen Titers in Nurse Students after a Two-Year Follow-Up. Vaccines (Basel) 2020; 8:E467. [PMID: 32839391 PMCID: PMC7563960 DOI: 10.3390/vaccines8030467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Infection caused by hepatitis B virus (HBV) can be prevented through a safe and effective vaccine. This study analysed the kinetics of serum antibodies against hepatitis B surface antigen (HBsAg) (anti-HBs) titers in relation to previous vaccine boosters in Italian nursing students who were followed up for two years. Serum anti-HBs titers were evaluated at the first visit, after vaccine booster (if required) and at visit after two years. Overall, 483 students (mean age = 21.7 years; SD = 3.7) with median anti-HBs IgG titer of 6 mUI/mL (interquartile range (IQR) = 0-34) were enrolled. A total of 254 (52.5%) students with a titer lower than 10 mIU/mL were offered an anti-HBV booster at the first visit. Among these students, an exponential relation between anti-HBs IgG titer, one month after HBV booster and anti-HBs IgG titer two years later was found (y = 3.32 exp (0.0045x); R2 = 0.48; p < 0.001). Students with anti-HBV titer higher than 10 mIU/mL (N = 229) were followed up, and anti-HBs IgG titers at follow-up visit linearly correlated with anti-HBV baseline titers (y = 0.86x + 26.2; R2 = 0.67; p < 0.001). A decrease in anti-HBs titers can be expected a few years after the anti-HBV booster dose. This reduction is more pronounced than that observed in students not administered the booster dose and is exponential with respect to basal titers assessed after the booster dose.
Collapse
Affiliation(s)
- Maria Gabriella Verso
- Occupational Health Unit, Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy
| | - Claudio Costantino
- Section of Hygiene, Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (C.C.); (A.M.); (P.I.); (F.V.); (E.A.)
| | - Alessandro Marrella
- Section of Hygiene, Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (C.C.); (A.M.); (P.I.); (F.V.); (E.A.)
| | - Palmira Immordino
- Section of Hygiene, Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (C.C.); (A.M.); (P.I.); (F.V.); (E.A.)
| | - Francesco Vitale
- Section of Hygiene, Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (C.C.); (A.M.); (P.I.); (F.V.); (E.A.)
| | - Emanuele Amodio
- Section of Hygiene, Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (C.C.); (A.M.); (P.I.); (F.V.); (E.A.)
| |
Collapse
|
36
|
Lazarevic I, Banko A, Miljanovic D, Cupic M. Biological features of hepatitis B virus strains associated with fulminant hepatitis. Future Virol 2020. [DOI: 10.2217/fvl-2020-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accumulating evidence suggests that hepatitis B virus (HBV) biological features may influence the course and clinical manifestations of infection and possibly the development of fulminant hepatitis (FH). Since HBV is not a cytocidal virus, virus-induced liver damage results from an interplay between the virus replication and the host's defense. Therefore, viral factors contributing to enhanced replication, induction of a stronger immune attack or apoptosis of hepatocytes could be crucial in development of FH. Numerous mutations in basal core promoter, pre-C, C and S regions of the HBV genome contribute to development of FH by different mechanisms, including enhanced viral replication, the loss of a decoy for immune response, unbalanced expression of viral proteins and retention of unprocessed cytotoxic proteins in hepatocytes.
Collapse
Affiliation(s)
- Ivana Lazarevic
- Institute of Microbiology & Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Ana Banko
- Institute of Microbiology & Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Danijela Miljanovic
- Institute of Microbiology & Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Maja Cupic
- Institute of Microbiology & Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| |
Collapse
|
37
|
Li Y, Shen C, Yang L, Yang Y, Wang M, Li S, Chen F, Yang M, Peng L, Ma J, Duan Z, Li L, Liu Y. Intra-host diversity of hepatitis B virus during mother-to-child transmission: the X gene may play a key role in virus survival in children after transmission. Arch Virol 2020; 165:1279-1288. [PMID: 32240369 DOI: 10.1007/s00705-020-04597-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/21/2020] [Indexed: 12/23/2022]
Abstract
Mother-to-child transmission of hepatitis B virus (HBV) is the main route of transmission in Asia, and characterization of HBV quasispecies is needed to further understand virus evolution and adaptation. To understand changes in HBV during mother-to-child transmission, we enrolled nine pairs of mothers and children in the study, including a set of twins. Three groups were infected with HBV genotype C, and six groups were infected with HBV genotype B. The full-length HBV genome was amplified by PCR from serum samples before antiviral treatment, the whole viral genomes from each pair were sequenced, and the complexity and diversity of the quasispecies were analyzed. The entropy of transmitted HBV in children was found to be lower than their mothers, suggesting that there was a bottleneck effect during HBV transmission from the mother to the child. Selective evolution was shown by calculating πN and πS in the whole genomes, and the highest values were obtained for the X gene, which plays a role in viral replication and immune escape. All genotype C patients and only one genotype B pair had a πN/πS greater than 1 ratio, indicating that positive selection had occurred. In addition, quasispecies were found to be different between the twin children despite having the same mother, indicating that virus evolution is host-specific.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Infectious Diseases, Shenzhen Third People's Hospital, University of South China, Shenzhen, 518112, China
| | - Chenguang Shen
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Liuqing Yang
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Yang Yang
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Miao Wang
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Shanqin Li
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Feng Chen
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Min Yang
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Ling Peng
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Jinmin Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhongping Duan
- Difficult and complicated liver diseases and artificial liver center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Liqiang Li
- BGI-Shenzhen, Shenzhen, 518083, China.
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.
| | - Yingxia Liu
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China.
| |
Collapse
|
38
|
Deng H, Liang S, Xu M, Zhuo L, Gao H, Chen K, Shi Y, Li H, Jiao Q, Lin L, Lei Y, Liu H. Clinical efficacy and safety in telbivudine- or tenofovir-treated hepatitis B e antigen-positive pregnant women. Antivir Ther 2020; 25:33-41. [PMID: 32049069 DOI: 10.3851/imp3345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Telbivudine (LdT) and tenofovir (TDF) are widely used in pregnant women to prevent vertical transmission; however, limited data are available on the differences in clinical efficacy and safety between the two drugs. METHODS A total of 307 hepatitis B e antigen (HBeAg)-positive pregnant women with complete follow-up data were enrolled, the patients with alanine aminotransferase (ALT) levels <1×ULN at baseline were enrolled to cohort 1 for treatment from 28 ±4 weeks gestation to delivery, while ALT levels >1×ULN at baseline were enrolled to cohort 2 for treatment from 28 ±4 weeks gestation and continued after delivery. The clinical efficacy and safety was compared in LdT- and TDF-treated patients. In addition, 32 patients in cohort 1 were analysed for nucleoside analogue (NA)-related resistance mutations at baseline and after delivery. RESULTS The results showed that HBV DNA levels were significantly lower at delivery than at baseline (P<0.001), but the decreases in HBV DNA, ALT, total bilirubin and total bile acid levels did not differ between the LdT- and TDF-treated patients at different time points (P>0.05) in the two cohorts. However, gastrointestinal adverse effects (vomiting) occurred more frequently in TDF-treated than LdT-treated patients (6.6% versus 0.0%; P=0.001). The results of NA-related resistance mutations analysis in cohort 1 revealed that short-term LdT or TDF treatment did not significantly change the NA-related resistance mutations (P>0.05). CONCLUSIONS This study revealed that the clinical efficacy in LdT- or TDF-treated HBeAg-positive Chinese pregnant women is similar, and gastrointestinal adverse effects occurred more frequently in TDF-treated patients.
Collapse
Affiliation(s)
- Haohui Deng
- Department of Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shuzhen Liang
- Community Health Service Center of Lin He Street, Guangzhou, China
| | - Min Xu
- Department of Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Li Zhuo
- Department of Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hongbo Gao
- Department of Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Keng Chen
- Department of Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuming Shi
- Department of Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huihui Li
- Department of Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Jiao
- Department of Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liansheng Lin
- Department of Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan Lei
- Department of Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huiyuan Liu
- Department of Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
Domingo E. Long-term virus evolution in nature. VIRUS AS POPULATIONS 2020. [PMCID: PMC7153321 DOI: 10.1016/b978-0-12-816331-3.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Viruses spread to give rise to epidemics and pandemics, and some key parameters that include virus and host population numbers determine virus persistence or extinction in nature. Viruses evolve at different rates depending on the polymerase copying fidelity during genome replication and a number of environmental influences. Calculated rates of evolution in nature vary depending on the time interval between virus isolations. In particular, intrahost evolution is generally more rapid that interhost evolution, and several possible mechanisms for this difference are considered. The mechanisms by which the error-prone viruses evolve are very unlikely to render the operation of a molecular clock (constant rate of incorporation of mutations in the evolving genomes), although a clock is assumed in many calculations. Several computational tools permit the alignment of viral sequences and the establishment of phylogenetic relationships among viruses. The evolution of the virus in the form of dynamic mutant clouds in each infected individual, together with multiple environmental parameters renders the emergence and reemergence of viral pathogens an unpredictable event, another facet of biological complexity.
Collapse
|
40
|
Usman Z, Mijočević H, Karimzadeh H, Däumer M, Al-Mathab M, Bazinet M, Frishman D, Vaillant A, Roggendorf M. Kinetics of hepatitis B surface antigen quasispecies during REP 2139-Ca therapy in HBeAg-positive chronic HBV infection. J Viral Hepat 2019; 26:1454-1464. [PMID: 31323705 DOI: 10.1111/jvh.13180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/22/2019] [Indexed: 12/18/2022]
Abstract
Chronic HBV infection results in various clinical manifestations due to different levels of immune response. In recent years, hepatitis B treatment has improved by long-term administration of nucleos(t)ide analogues (NUCs) and peg-interferon. Nucleic acid polymers (NAPs; REP 2139-Ca and REP 2139-Mg) are new antiviral drugs that block the assembly of subviral particles, thus preventing the release of HBsAg and allowing its clearance and restoration of functional control of infection when combined with various immunotherapies. In the REP 102 study (NCT02646189), 9 of 12 patients showed substantial reduction of HBsAg and seroconversion to anti-HBs in response to REP 2139-Ca, whereas 3 of 12 patients did not show responses (>1 log reduction of HBsAg and HBV DNA from baseline). We characterized the dynamic changes of HBV quasispecies (QS) within the major hydrophilic region (MHR) of the 'pre-S/S' open reading frame including the 'a' determinant in responders and nonresponders of the REP 102 study and four untreated matched controls. HBV QS complexity at baseline varied slightly between responders and nonresponders (P = .28). However, these responders showed significant decline in viral complexity (P = .001) as REP 2139-Ca therapy progressed but no significant change in complexity was observed among the nonresponders (P = .99). The MHR mutations were more frequently observed in responders than in nonresponders and matched controls. No mutations were observed in 'a' determinant of major QS population which may interfere with the detection of HBsAg by diagnostic assays. No specific mutations were found within the MHR which could explain patients' poor HBsAg response during REP 2139-Ca therapy.
Collapse
Affiliation(s)
- Zainab Usman
- Department of Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Hrvoje Mijočević
- Institute of Virology, Technische Universität München, Munich, Germany
| | - Hadi Karimzadeh
- Institute of Virology, Technische Universität München, Munich, Germany.,Department of Medicine II, University Hospital Munich-Grosshadern, Munich, Germany
| | - Martin Däumer
- Institute of Immunology and Genetics, Kaiserslautern, Germany
| | - Mamun Al-Mathab
- Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | - Dmitrij Frishman
- Department of Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising, Germany.,Laboratory of Bioinformatics, RASA research center, St Petersburg State Polytechnical University, Saint Petersburg, Russia
| | | | | |
Collapse
|
41
|
Yin Y, He K, Wu B, Xu M, Du L, Liu W, Liao P, Liu Y, He M. A systematic genotype and subgenotype re-ranking of hepatitis B virus under a novel classification standard. Heliyon 2019; 5:e02556. [PMID: 31687483 PMCID: PMC6820102 DOI: 10.1016/j.heliyon.2019.e02556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background and aim It is commonly noticed that chaotic and inefficient subgenotyping are universally used academically and clinically, a standardized HBV genotype/subgenotype classification criterion is urgently acquired. Sequence similarity, which was commonly used for the last three decades, should be upgraded by phylogenetic analysis in genotyping of recombinant-free HBV strains. Methods In this study, 4,429 HBV whole-genome sequences were employed to reconstruct the phylogeny of HBV using Bayesian inference. After excluding recombinant sequences, calculating partitioned evolutionary models, excluding recombinant sequences, reconstructing phylogenetic trees, and performing a correlation analysis of genetic distances, geographical distribution and serotypes, we systematically redefined the genotypes and subgenotypes of HBV. Results Compared to previous taxonomy, fourteen subgenotypes (A5-A7; B5-B9; C2-C4, C7; and D6-D7) were revised in the new standard. Now the HBV is divided into ten genotypes (A-J) and 24 subgenotypes (A1-A3; B1-B5; C1-C6; D1-D6; and F1-F4). Conclusion Our robust genotype/subgenotype new taxonomy has objectively re-molded the current shape of HBV classification. We believe that all future hepatitis B related researches or diagnosis will be benefited under the new HBV genotyping/subgenotyping standards.
Collapse
Affiliation(s)
- Yonghua Yin
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.,Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
| | - Kai He
- The Kyoto University Museum, Kyoto University, Kyoto 606-8501, Japan
| | - Bingting Wu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.,Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
| | - Min Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.,Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
| | - Lianming Du
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei Liu
- College of Life Science & Technology, Southwest Minzu University, Chengdu 610225, China
| | - Pu Liao
- Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400013, China
| | - Yu Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.,Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
| | - Miao He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.,Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
| |
Collapse
|
42
|
Persons with Intellectual Disability: A Potential Reservoir of Invasive Strains of Hepatitis B Virus. HEPATITIS MONTHLY 2019. [DOI: 10.5812/hepatmon.85661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
43
|
Lazarevic I, Banko A, Miljanovic D, Cupic M. Immune-Escape Hepatitis B Virus Mutations Associated with Viral Reactivation upon Immunosuppression. Viruses 2019; 11:v11090778. [PMID: 31450544 PMCID: PMC6784188 DOI: 10.3390/v11090778] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) reactivation occurs as a major complication of immunosuppressive therapy among persons who have recovered from acute hepatitis and those who have controlled chronic infection. Recent literature data emphasize the presence of a high degree of S gene variability in HBV isolates from patients who developed reactivation. In reactivated HBV, the most frequently detected mutations belong to the second loop of “a” determinant in HBsAg. These mutations were identified to be immune escape and responsible for vaccine- and diagnostic-escape phenomena. Their emergence clearly provides survival in the presence of a developed humoral immune response and is often associated with impaired serological diagnosis of HBV reactivation. The knowledge of their existence and roles can elucidate the process of reactivation and strongly highlights the importance of HBV DNA detection in monitoring all patients with a history of HBV infection who are undergoing immunosuppression. This review discusses the possible influence of the most frequently found immune-escape mutations on HBV reactivation.
Collapse
Affiliation(s)
- Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia.
| | - Ana Banko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Danijela Miljanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Maja Cupic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| |
Collapse
|
44
|
Large-scale viral genome analysis identifies novel clinical associations between hepatitis B virus and chronically infected patients. Sci Rep 2019; 9:10529. [PMID: 31324819 PMCID: PMC6642195 DOI: 10.1038/s41598-019-46609-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Despite the high global prevalence of chronic hepatitis B (CHB) infection, datasets covering the whole hepatitis B viral genome from large patient cohorts are lacking, greatly limiting our understanding of the viral genetic factors involved in this deadly disease. We performed deep sequencing of viral samples from patients chronically infected with HBV to investigate the association between viral genome variation and patients' clinical characteristics. We discovered novel viral variants strongly associated with viral load and HBeAg status. Patients with viral variants C1817T and A1838G had viral loads nearly three orders of magnitude lower than patients without those variants. These patients consequently experienced earlier viral suppression while on treatment. Furthermore, we identified novel variants that either independently or in combination with precore mutation G1896A were associated with the transition from HBeAg positive to the negative phase of infection. These observations are consistent with the hypothesis that mutation of the HBeAg open reading frame is an important factor driving CHB patient's HBeAg status. This analysis provides a detailed picture of HBV genetic variation in the largest patient cohort to date and highlights the diversity of plausible molecular mechanisms through which viral variation affects clinical phenotype.
Collapse
|
45
|
Asín-Prieto E, Parra-Guillen ZP, Mantilla JDG, Vandenbossche J, Stuyckens K, de Trixhe XW, Perez-Ruixo JJ, Troconiz IF. Immune network for viral hepatitis B: Topological representation. Eur J Pharm Sci 2019; 136:104939. [PMID: 31195071 DOI: 10.1016/j.ejps.2019.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
The liver is a well-known immunotolerogenic environment, which provides the adequate setting for liver infectious pathogens persistence such as the hepatitis B virus (HBV). Consequently, HBV infection can derive in the development of chronic disease in a proportion of the patients. If this situation persists in time, chronic hepatitis B (CHB) would end in cirrhosis, hepatocellular carcinoma and eventually, the death of the patient. It is thought that this immunotolerogenic environment is the result of complex interactions between different elements of the immune system and the viral biology. Therefore, the purpose of this work is to unravel the mechanisms implied in the development of CHB and to design a tool able to help in the study of adequate therapies. Firstly, a conceptual framework with the main components of the immune system and viral dynamics was constructed providing an overall insight on the pathways and interactions implied in this disease. Secondly, a review of the literature was performed in a modular fashion: (i) viral dynamics, (ii) innate immune response, (iii) humoral and (iv) cellular adaptive immune responses and (v) tolerogenic aspects. Finally, the information collected was integrated into a single topological representation that could serve as the plan for the systems pharmacology model architecture. This representation can be considered as the previous unavoidable step to the construction of a quantitative model that could assist in biomarker and target identification, drug design and development, dosing optimization and disease progression analysis.
Collapse
Affiliation(s)
- Eduardo Asín-Prieto
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Zinnia P Parra-Guillen
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - José David Gómez Mantilla
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | | | - Kim Stuyckens
- Global Clinical Pharmacology, Janssen R&D, Beerse, Belgium
| | | | | | - Iñaki F Troconiz
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
46
|
Jourdain G, Ngo-Giang-Huong N, Khamduang W. Current progress in the prevention of mother-to-child transmission of hepatitis B and resulting clinical and programmatic implications. Infect Drug Resist 2019; 12:977-987. [PMID: 31118703 PMCID: PMC6499137 DOI: 10.2147/idr.s171695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
There is currently no cure for hepatitis B chronic infections. Because new hepatitis B infections result mainly from perinatal transmission, preventing mother-to-child transmission is essential to reach by 2030 the goal of hepatitis B elimination set by the World Health Organization. The universal administration of hepatitis B vaccine to all infants, regardless of maternal status, starting with the birth dose, is the cornerstone of the strategy for elimination. Additional interventions, such as hepatitis B immune globulin administered to newborns and antiviral prophylaxis administered to hepatitis B infected pregnant women, may contribute to reaching the goal earlier. Hepatitis B immune globulin may remain out for reach of many pregnant women in low- and middle-income countries due to cost and logistic issues, but antivirals are cheap and do not require a cold chain for distribution. However, it has been observed that some viruses harbor mutations associated with escape from vaccine-elicited antibodies following immunization or administration of hepatitis B immune globulin. Also, resistance associated mutations have been described for several drugs used for treatment of hepatitis B infected patients as well as for the prevention of mother-to-child transmission. Whether these mutations have the potential to compromise the prevention of mother-to-child transmission or future treatment of the mother is a question of importance. We propose a review of important recent studies assessing tenofovir disoproxil fumarate for the prevention of mother-to-child transmission, and provides detailed information on the mutations possibly relevant in this setting.
Collapse
Affiliation(s)
- Gonzague Jourdain
- Unit 174-PHPT, Institut de recherche pour le développement (IRD), Marseille, France.,Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Nicole Ngo-Giang-Huong
- Unit 174-PHPT, Institut de recherche pour le développement (IRD), Marseille, France.,Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Woottichai Khamduang
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
47
|
A novel hepatitis B virus recombinant genotype D4/E identified in a South African population. Heliyon 2019; 5:e01477. [PMID: 31008405 PMCID: PMC6453802 DOI: 10.1016/j.heliyon.2019.e01477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/08/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background Genetic diversity is a characteristic trait of the hepatitis B virus (HBV) and has been associated with different clinical outcomes. In South Africa, HBV infection is a major public health concern. Most HBV infections are caused by genotype A strains. However rare cases of infection with HBV genotype D have been reported. The purpose of this study was to investigate the molecular characteristics of a rare HBV subgenotype D4 isolate. Methods The full-length genome of isolate ZADGM6964 was amplified in a one-step polymerase chain reaction. The amplified product was purified and cloned into a pGEM®-T Easy Vector System to investigate the genetic diversity of the viral quasi-populations. The primary isolate and clones were then directly sequenced and analysed using an array of bioinformatics software. Results Phylogenetic analysis showed that the primary isolate and cloned sequences formed a monophyletic cluster away from subgenotype D4 reference strains. Further recombination analysis revealed that isolate ZADGM6964 was in fact a D4/E recombinant strain with breakpoints identified within the X and overlapping pre-Core/Core open reading frames with a >70% bootstrap confidence level. The recombinant genotype D4/E was found to be unique from other D/E strains archived in the genetic database, GenBank. Conclusion This study represents the first ever report on the isolation and molecular characterization of an HBV D4/E recombinant strain in South Africa. The findings provide evidence of further HBV genetic diversity in South Africa than has been previously reported.
Collapse
|
48
|
Holzmayer V, Hance R, Defechereux P, Grant R, Kuhns MC, Cloherty G, Rodgers MA. Identification of hepatitis B virus genotype I in Thailand. J Med Virol 2019; 91:717-721. [PMID: 30351478 PMCID: PMC6618046 DOI: 10.1002/jmv.25346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022]
Abstract
The rare hepatitis B virus genotype I (HBV-I) classification includes complex A/G/C/U recombinants identified amongst the individuals from China, India, Laos, and Vietnam. Herein we report the first HBV-I specimen from Thailand, with detectable HBsAg despite a 10-amino-acid truncation. This HBV-I genome has a similar recombinant pattern to reference strains, including a C region that branches basal to references, suggesting a premodern era recombination event gave rise to HBV-I. With an average sequence divergence from other genotypes ranging from 7.66% (standard deviation [SD], 0.42%; C) to 14.27% (SD, 0.31%; H), this new genome supports the HBV-I classification as a unique genotype.
Collapse
Affiliation(s)
- Vera Holzmayer
- Abbott Laboratories, Infectious Disease Research, Abbott ParkIllinois
| | - Robert Hance
- University of California San FranciscoSan FranciscoCalifornia
| | | | - Robert Grant
- University of California San FranciscoSan FranciscoCalifornia
| | - Mary C. Kuhns
- Abbott Laboratories, Infectious Disease Research, Abbott ParkIllinois
| | - Gavin Cloherty
- Abbott Laboratories, Infectious Disease Research, Abbott ParkIllinois
| | - Mary A. Rodgers
- Abbott Laboratories, Infectious Disease Research, Abbott ParkIllinois
| |
Collapse
|
49
|
Mijočević H, Karimzadeh H, Seebach J, Usman Z, Al-Mahtab M, Bazinet M, Vaillant A, Roggendorf M. Variants of hepatitis B virus surface antigen observed during therapy with nucleic acid polymer REP 2139-Ca have no influence on treatment outcome and its detection by diagnostic assays. J Viral Hepat 2019; 26:485-495. [PMID: 30450662 DOI: 10.1111/jvh.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022]
Abstract
The treatment of patients suffering from HBeAg-positive chronic hepatitis B with REP 2139-Ca resulted in potent reductions in HBsAg and HBV DNA, seroconversion to anti-HBs and the establishment of functional control of infection. In this cohort of 12 patients, we investigated whether differences between HBsAg sequences might explain the lack of response to REP 2139-Ca observed in 3 of 12 patients. We also assessed if the reduction or complete loss of HBsAg in serum observed during therapy were caused by mutations in the "a" determinant preventing the detection of HBsAg by standard diagnostic assays. The complete pre-S/S open reading frame (ORF) was sequenced and pre-S1, pre-S2 and S amino acid sequences were analysed. We found no major differences between pre-S1, pre-S2 and S sequences in responders and nonresponders correlated with low reduction in HBsAg. In addition, we found no mutations in the "a" determinant that would significantly affect the reactivity of HBsAg in diagnostic assays. These results demonstrate that the amino acid sequence of complete pre-S/S ORF has no direct influence on response to REP 2139-Ca therapy.
Collapse
Affiliation(s)
- Hrvoje Mijočević
- Institute of Virology, Technische Universität München, Munich, Germany
| | - Hadi Karimzadeh
- Institute of Virology, Technische Universität München, Munich, Germany.,Department of Medicine II, University Hospital Munich-Grosshadern, Munich, Germany
| | - Judith Seebach
- Institute of Virology, Technische Universität München, Munich, Germany
| | - Zainab Usman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Mamun Al-Mahtab
- Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | | | | |
Collapse
|
50
|
Mei F, Ren J, Long L, Li J, Li K, Liu H, Tang Y, Fang X, Wu H, Xiao C, Huang T, Deng W. Analysis of HBV X gene quasispecies characteristics by next-generation sequencing and cloning-based sequencing and its association with hepatocellular carcinoma progression. J Med Virol 2019; 91:1087-1096. [PMID: 30712269 DOI: 10.1002/jmv.25421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES This study aimed to describe the differences between next-generation sequencing (NGS) and cloning-based sequencing (CBS) in HBX quasispecies research and primitively investigate the relationship between the dominant HBX quasispecies and hepatocellular carcinoma (HCC). METHODS A total of 12 serum samples were collected. Serum hepatitis B virus (HBV) DNA was extracted, and the HBV X-region (HBX) was amplified by nested polymerase chain reaction (PCR). The PCR products were simultaneously tested with NGS and CBS to detect quasispecies of the HBX. RESULTS A total of 9348 eligible quasispecies sequences were obtained by NGS, which were much larger than the 98 of that by CBS. By the phylogenetic tree, the dominant quasispecies sequence of each sample could be found, although they had several nucleotides differences between the dominant quasispecies sequences found by CBS and NGS. By comparing the quasispecies heterogeneity, it was found that the quasispecies complexity value of HBV X-region obtained by NGS was higher than CBS (P < 0.05). The diversity values, including d, dS, dN, an d d N/ dS obtained by NGS were lower than by CBS (all of P < 0.01). The relativity of Spearman(rs) in d, dS, and dN were statistically significant (rs_ d = 0.865, P = 0.001; rs_ dS = 0.722, P = 0.014; and rs_ dN = 0.738, P = 0.011, respectively). There were 21 different bases between the HBX quasispecies of case A and control B. CONCLUSION The results of this can be used as guidance when researchers plan to choose a suitable method to study quasispecies, especially the HBV X gene quasispecies. Some high-risk mutations of HBX quasispecies were also found in this study and their relationship with HCC need deeper exploration.
Collapse
Affiliation(s)
- Fanbiao Mei
- Experimental Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jingjing Ren
- Experimental Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Long Long
- The Faculty of Big Data, Guangxi Teachers Education University, Nanning, Guangxi, China
| | - Jilin Li
- Experimental Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kezhi Li
- Experimental Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haizhou Liu
- Experimental Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yanping Tang
- Experimental Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiang Fang
- Experimental Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hanghang Wu
- Experimental Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chanchan Xiao
- Experimental Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tianren Huang
- Experimental Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Deng
- Experimental Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|