1
|
Samarskaya VO, Ryabov EV, Gryzunov N, Spechenkova N, Kuznetsova M, Ilina I, Suprunova T, Taliansky ME, Ivanov PA, Kalinina NO. The Temporal and Geographical Dynamics of Potato Virus Y Diversity in Russia. Int J Mol Sci 2023; 24:14833. [PMID: 37834280 PMCID: PMC10573581 DOI: 10.3390/ijms241914833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Potato virus Y, an important viral pathogen of potato, has several genetic variants and geographic distributions which could be affected by environmental factors, aphid vectors, and reservoir plants. PVY is transmitted to virus-free potato plants by aphids and passed on to the next vegetative generations through tubers, but the effects of tuber transmission in PVY is largely unknown. By using high-throughput sequencing, we investigated PVY populations transmitted to potato plants by aphids in different climate zones of Russia, namely the Moscow and Astrakhan regions. We analyzed sprouts from the tubers produced by field-infected plants to investigate the impact of tuber transmission on PVY genetics. We found a significantly higher diversity of PVY isolates in the Astrakhan region, where winters are shorter and milder and summers are warmer compared to the Moscow region. While five PVY types, NTNa, NTNb, N:O, N-Wi, and SYR-I, were present in both regions, SYRI-II, SYRI-III, and 261-4 were only found in the Astrakhan region. All these recombinants were composed of the genome sections derived from PVY types O and N, but no full-length sequences of such types were present. The composition of the PVY variants in the tuber sprouts was not always the same as in their parental plants, suggesting that tuber transmission impacts PVY genetics.
Collapse
Affiliation(s)
- Viktoriya O. Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.G.); (N.S.); (M.K.); (I.I.); (M.E.T.)
| | - Eugene V. Ryabov
- Department of Entomology, University of Maryland, College Park, MD 20742, USA;
| | - Nikita Gryzunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.G.); (N.S.); (M.K.); (I.I.); (M.E.T.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.G.); (N.S.); (M.K.); (I.I.); (M.E.T.)
| | - Maria Kuznetsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.G.); (N.S.); (M.K.); (I.I.); (M.E.T.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Irina Ilina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.G.); (N.S.); (M.K.); (I.I.); (M.E.T.)
| | | | - Michael E. Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.G.); (N.S.); (M.K.); (I.I.); (M.E.T.)
| | - Peter A. Ivanov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Natalia O. Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.G.); (N.S.); (M.K.); (I.I.); (M.E.T.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
2
|
Nishiguchi M, Ali ME, Kaya T, Kobayashi K. Plant virus disease control by vaccination and transgenic approaches: Current status and perspective. PLANT RNA VIRUSES 2023:373-424. [DOI: 10.1016/b978-0-323-95339-9.00028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
3
|
Glushkevich A, Spechenkova N, Fesenko I, Knyazev A, Samarskaya V, Kalinina NO, Taliansky M, Love AJ. Transcriptomic Reprogramming, Alternative Splicing and RNA Methylation in Potato ( Solanum tuberosum L.) Plants in Response to Potato Virus Y Infection. PLANTS (BASEL, SWITZERLAND) 2022; 11:635. [PMID: 35270104 PMCID: PMC8912425 DOI: 10.3390/plants11050635] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 05/05/2023]
Abstract
Plant-virus interactions are greatly influenced by environmental factors such as temperatures. In virus-infected plants, enhanced temperature is frequently associated with more severe symptoms and higher virus content. However, the mechanisms involved in controlling the temperature regulation of plant-virus interactions are poorly characterised. To elucidate these further, we analysed the responses of potato plants cv Chicago to infection by potato virus Y (PVY) at normal (22 °C) and elevated temperature (28 °C), the latter of which is known to significantly increase plant susceptibility to PVY. Using RNAseq analysis, we showed that single and combined PVY and heat-stress treatments caused dramatic changes in gene expression, affecting the transcription of both protein-coding and non-coding RNAs. Among the newly identified genes responsive to PVY infection, we found genes encoding enzymes involved in the catalysis of polyamine formation and poly ADP-ribosylation. We also identified a range of novel non-coding RNAs which were differentially produced in response to single or combined PVY and heat stress, that consisted of antisense RNAs and RNAs with miRNA binding sites. Finally, to gain more insights into the potential role of alternative splicing and epitranscriptomic RNA methylation during combined stress conditions, direct RNA nanopore sequencing was performed. Our findings offer insights for future studies of functional links between virus infections and transcriptome reprogramming, RNA methylation and alternative splicing.
Collapse
Affiliation(s)
- Anna Glushkevich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Igor Fesenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Andrey Knyazev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Viktoriya Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Natalia O. Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Andrew J. Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
4
|
Pantaleo V, Masuta C. Diversity of viral RNA silencing suppressors and their involvement in virus-specific symptoms. Adv Virus Res 2022; 113:1-23. [DOI: 10.1016/bs.aivir.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Fesenko I, Spechenkova N, Mamaeva A, Makhotenko AV, Love AJ, Kalinina NO, Taliansky M. Role of the methionine cycle in the temperature-sensitive responses of potato plants to potato virus Y. MOLECULAR PLANT PATHOLOGY 2021; 22:77-91. [PMID: 33146443 PMCID: PMC7749756 DOI: 10.1111/mpp.13009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 05/22/2023]
Abstract
Plant-virus interactions are greatly influenced by environmental factors such as temperatures. In virus-infected plants, enhanced temperature is frequently associated with more severe symptoms and higher virus content. However, the mechanisms involved in such regulatory effects remain largely uncharacterized. To provide more insight into the mechanisms whereby temperature regulates plant-virus interactions, we analysed changes in the proteome of potato cv. Chicago plants infected with potato virus Y (PVY) at normal (22 °C) and elevated temperature (28 °C), which is known to significantly increase plant susceptibility to the virus. One of the most intriguing findings is that the main enzymes of the methionine cycle (MTC) were down-regulated at the higher but not at normal temperatures. With good agreement, we found that higher temperature conditions triggered consistent and concerted changes in the level of MTC metabolites, suggesting that the enhanced susceptibility of potato plants to PVY at 28 °C may at least be partially orchestrated by the down-regulation of MTC enzymes and concomitant cycle perturbation. In line with this, foliar treatment of these plants with methionine restored accumulation of MTC metabolites and subverted the susceptibility to PVY at elevated temperature. These data are discussed in the context of the major function of the MTC in transmethylation processes.
Collapse
Affiliation(s)
- Igor Fesenko
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
| | - Nadezhda Spechenkova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
| | - Anna Mamaeva
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
| | - Antonida V. Makhotenko
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
- Belozersky Institute of Physico‐chemical BiologyLomonosov Moscow State UniversityMoscowRussian Federation
| | | | - Natalia O. Kalinina
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
- Belozersky Institute of Physico‐chemical BiologyLomonosov Moscow State UniversityMoscowRussian Federation
| | - Michael Taliansky
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
- The James Hutton InstituteInvergowrie, DundeeUK
| |
Collapse
|
6
|
Torrance L, Talianksy ME. Potato Virus Y Emergence and Evolution from the Andes of South America to Become a Major Destructive Pathogen of Potato and Other Solanaceous Crops Worldwide. Viruses 2020; 12:v12121430. [PMID: 33322703 PMCID: PMC7764287 DOI: 10.3390/v12121430] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The potato was introduced to Europe from the Andes of South America in the 16th century, and today it is grown worldwide; it is a nutritious staple food eaten by millions and underpins food security in many countries. Unknowingly, potato virus Y (PVY) was also introduced through trade in infected potato tubers, and it has become the most important viral pathogen of potato. Phylogenetic analysis has revealed the spread and emergence of strains of PVY, including strains causing economically important diseases in tobacco, tomato and pepper, and that the virus continues to evolve with the relatively recent emergence of new damaging recombinant strains. High-throughput, next-generation sequencing platforms provide powerful tools for detection, identification and surveillance of new PVY strains. Aphid vectors of PVY are expected to increase in incidence and abundance in a warmer climate, which will increase the risk of virus spread. Wider deployment of crop cultivars carrying virus resistance will be an important means of defence against infection. New cutting-edge biotechnological tools such as CRISPR and SIGS offer a means for rapid engineering of resistance in established cultivars. We conclude that in future, human activities and ingenuity should be brought to bear to control PVY and the emergence of new strains in key crops by increased focus on host resistance and factors driving virus evolution and spread.
Collapse
Affiliation(s)
- Lesley Torrance
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
- The School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
- Correspondence:
| | - Michael E. Talianksy
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
7
|
Makarova S, Makhotenko A, Spechenkova N, Love AJ, Kalinina NO, Taliansky M. Interactive Responses of Potato ( Solanum tuberosum L.) Plants to Heat Stress and Infection With Potato Virus Y. Front Microbiol 2018; 9:2582. [PMID: 30425697 PMCID: PMC6218853 DOI: 10.3389/fmicb.2018.02582] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/10/2018] [Indexed: 11/13/2022] Open
Abstract
Potato (Solanum tuberosum) plants are exposed to diverse environmental stresses, which may modulate plant-pathogen interactions, and potentially cause further decreases in crop productivity. To provide new insights into interactive molecular responses to heat stress combined with virus infection in potato, we analyzed expression of genes encoding pathogenesis-related (PR) proteins [markers of salicylic acid (SA)-mediated plant defense] and heat shock proteins (HSPs), in two potato cultivars that differ in tolerance to elevated temperatures and in susceptibility to potato virus Y (PVY). In plants of cv. Chicago (thermosensitive and PVY-susceptible), increased temperature reduced PR gene expression and this correlated with enhancement of PVY infection (virus accumulation and symptom production). In contrast, with cv. Gala (thermotolerant and PVY resistant), which displayed a greater increase in PR gene expression in response to PVY infection, temperature affected neither PR transcript levels nor virus accumulation. HSP genes were induced by elevated temperature in both cultivars but to higher levels in the thermotolerant (Gala) cultivar. PVY infection did not alter expression of HSP genes in the Gala cultivar (possibly because of the low level of virus accumulation) but did induce expression of HSP70 and HSP90 in the susceptible cultivar (Chicago). These findings suggest that responses to heat stress and PVY infection in potato have some common underlying mechanisms, which may be integrated in a specific consolidated network that controls plant sensitivity to multiple stresses in a cultivar-specific manner. We also found that the SA pre-treatment subverted the sensitive combined (heat and PVY) stress phenotype in Chicago, implicating SA as a key component of such a regulatory network.
Collapse
Affiliation(s)
- Svetlana Makarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Antonida Makhotenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Natalia O. Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
8
|
Valli AA, Gallo A, Rodamilans B, López‐Moya JJ, García JA. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. MOLECULAR PLANT PATHOLOGY 2018; 19:744-763. [PMID: 28371183 PMCID: PMC6638112 DOI: 10.1111/mpp.12553] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways. The Helper Component Proteinase (HCPro) is an essential and well-characterized multitasking protein for which at least three independent functions have been described: (i) viral plant-to-plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.
Collapse
Affiliation(s)
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | | | - Juan José López‐Moya
- Center for Research in Agricultural Genomics (CRAG‐CSIC‐IRTA‐UAB‐UB), Campus UABBellaterraBarcelona08193Spain
| | | |
Collapse
|
9
|
Liu SR, Zhou JJ, Hu CG, Wei CL, Zhang JZ. MicroRNA-Mediated Gene Silencing in Plant Defense and Viral Counter-Defense. Front Microbiol 2017; 8:1801. [PMID: 28979248 PMCID: PMC5611411 DOI: 10.3389/fmicb.2017.01801] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 09/05/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs of approximately 20–24 nucleotides in length that serve as central regulators of eukaryotic gene expression by targeting mRNAs for cleavage or translational repression. In plants, miRNAs are associated with numerous regulatory pathways in growth and development processes, and defensive responses in plant–pathogen interactions. Recently, significant progress has been made in understanding miRNA-mediated gene silencing and how viruses counter this defense mechanism. Here, we summarize the current knowledge and recent advances in understanding the roles of miRNAs involved in the plant defense against viruses and viral counter-defense. We also document the application of miRNAs in plant antiviral defense. This review discusses the current understanding of the mechanisms of miRNA-mediated gene silencing and provides insights on the never-ending arms race between plants and viruses.
Collapse
Affiliation(s)
- Sheng-Rui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefei, China
| | - Jing-Jing Zhou
- College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefei, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
10
|
Li H, Ma D, Jin Y, Tu Y, Liu L, Leng C, Dong J, Wang T. Helper component-proteinase enhances the activity of 1-deoxy-D-xylulose-5-phosphate synthase and promotes the biosynthesis of plastidic isoprenoids in Potato virus Y-infected tobacco. PLANT, CELL & ENVIRONMENT 2015; 38:2023-34. [PMID: 25736930 DOI: 10.1111/pce.12526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
Virus-infected plants show strong morphological and physiological alterations. Many physiological processes in chloroplast are affected, including the plastidic isoprenoid biosynthetic pathway [the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway]; indeed, isoprenoid contents have been demonstrated to be altered in virus-infected plants. In this study, we found that the levels of photosynthetic pigments and abscisic acid (ABA) were altered in Potato virus Y (PVY)-infected tobacco. Using yeast two-hybrid assays, we demonstrated an interaction between virus protein PVY helper component-proteinase (HC-Pro) and tobacco chloroplast protein 1-deoxy-D-xylulose-5-phosphate synthase (NtDXS). This interaction was confirmed using bimolecular fluorescence complementation (BiFC) assays and pull-down assays. The Transket_pyr domain (residues 394-561) of NtDXS was required for interaction with HC-Pro, while the N-terminal region of HC-Pro (residues 1-97) was necessary for interaction with NtDXS. Using in vitro enzyme activity assays, PVY HC-Pro was found to promote the synthase activity of NtDXS. We observed increases in photosynthetic pigment contents and ABA levels in transgenic plants with HC-Pro accumulating in the chloroplasts. During virus infection, the enhancement of plastidic isoprenoid biosynthesis was attributed to the enhancement of DXS activity by HC-Pro. Our study reveals a new role of HC-Pro in the host plant metabolic system and will contribute to the study of host-virus relationships.
Collapse
Affiliation(s)
- Heng Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dongyuan Ma
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongsheng Jin
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yayi Tu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liping Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunxu Leng
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiangli Dong
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tao Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Abstract
Transgenic resistance to plant viruses is an important technology for control of plant virus infection, which has been demonstrated for many model systems, as well as for the most important plant viruses, in terms of the costs of crop losses to disease, and also for many other plant viruses infecting various fruits and vegetables. Different approaches have been used over the last 28 years to confer resistance, to ascertain whether particular genes or RNAs are more efficient at generating resistance, and to take advantage of advances in the biology of RNA interference to generate more efficient and environmentally safer, novel "resistance genes." The approaches used have been based on expression of various viral proteins (mostly capsid protein but also replicase proteins, movement proteins, and to a much lesser extent, other viral proteins), RNAs [sense RNAs (translatable or not), antisense RNAs, satellite RNAs, defective-interfering RNAs, hairpin RNAs, and artificial microRNAs], nonviral genes (nucleases, antiviral inhibitors, and plantibodies), and host-derived resistance genes (dominant resistance genes and recessive resistance genes), and various factors involved in host defense responses. This review examines the above range of approaches used, the viruses that were tested, and the host species that have been examined for resistance, in many cases describing differences in results that were obtained for various systems developed in the last 20 years. We hope this compilation of experiences will aid those who are seeking to use this technology to provide resistance in yet other crops, where nature has not provided such.
Collapse
Affiliation(s)
| | - Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Alazem M, Lin NS. Roles of plant hormones in the regulation of host-virus interactions. MOLECULAR PLANT PATHOLOGY 2015; 16:529-40. [PMID: 25220680 PMCID: PMC6638471 DOI: 10.1111/mpp.12204] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hormones are tuners of plant responses to biotic and abiotic stresses. They are involved in various complicated networks, through which they modulate responses to different stimuli. Four hormones primarily regulate plant defence to pathogens: salicylic acid (SA), jasmonic acid (JA), ethylene (Et) and abscisic acid (ABA). In susceptible plants, viral infections result in hormonal disruption, which manifests as the simultaneous induction of several antagonistic hormones. However, these antagonistic hormones may exhibit some sequential accumulation in resistant lines. Virus propagation is usually restricted by the activation of the small interfering RNA (siRNA) antiviral machinery and/or SA signalling pathway. Several studies have investigated these two systems, using different model viruses. However, the roles of hormones other than SA, especially those with antagonistic properties, such as ABA, have been neglected. Increasing evidence indicates that hormones control components of the small RNA system, which regulates many processes (including the siRNA antiviral machinery and the microRNA system) at the transcriptional or post-transcriptional level. Consequently, cross-talk between the antagonistic SA and ABA pathways modulates plant responses at multiple levels. In this review, we summarize recent findings on the different roles of hormones in the regulation of plant-virus interactions, which are helping us to elucidate the fine tuning of viral and plant systems by hormones.
Collapse
Affiliation(s)
- Mazen Alazem
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, 11529, Taiwan
| | | |
Collapse
|
13
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
14
|
Palukaitis P, Groen SC, Carr JP. The Rumsfeld paradox: some of the things we know that we don't know about plant virus infection. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:513-9. [PMID: 23820310 DOI: 10.1016/j.pbi.2013.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 05/06/2023]
Abstract
Plant-infecting viruses cause significant crop losses around the world and the majority of emerging threats to crop production have a viral etiology. Significant progress has been made and continues to be made in understanding how viruses induce disease and overcome some forms of resistance-particularly resistance based on RNA silencing. However, it is still not clear how other antiviral mechanisms work, how viruses manage to exploit their hosts so successfully, or how viruses affect the interactions of susceptible plants with other organisms and if this is advantageous to the virus, the host, or both. In this article we explore these questions.
Collapse
Affiliation(s)
- Peter Palukaitis
- Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, Republic of Korea
| | | | | |
Collapse
|
15
|
Wang MB, Masuta C, Smith NA, Shimura H. RNA silencing and plant viral diseases. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1275-85. [PMID: 22670757 DOI: 10.1094/mpmi-04-12-0093-cr] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.
Collapse
Affiliation(s)
- Ming-Bo Wang
- CSIRO Division of Plant Industry, Canberra, Australia.
| | | | | | | |
Collapse
|
16
|
Nakahara KS, Masuta C, Yamada S, Shimura H, Kashihara Y, Wada TS, Meguro A, Goto K, Tadamura K, Sueda K, Sekiguchi T, Shao J, Itchoda N, Matsumura T, Igarashi M, Ito K, Carthew RW, Uyeda I. Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proc Natl Acad Sci U S A 2012; 109:10113-8. [PMID: 22665793 PMCID: PMC3382489 DOI: 10.1073/pnas.1201628109] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RNA silencing (RNAi) induced by virus-derived double-stranded RNA (dsRNA), which is in a sense regarded as a pathogen-associated molecular pattern (PAMP) of viruses, is a general plant defense mechanism. To counteract this defense, plant viruses express RNA silencing suppressors (RSSs), many of which bind to dsRNA and attenuate RNAi. We showed that the tobacco calmodulin-like protein, rgs-CaM, counterattacked viral RSSs by binding to their dsRNA-binding domains and sequestering them from inhibiting RNAi. Autophagy-like protein degradation seemed to operate to degrade RSSs with the sacrifice of rgs-CaM. These RSSs could thus be regarded as secondary viral PAMPs. This study uncovered a unique defense system in which an rgs-CaM-mediated countermeasure against viral RSSs enhanced host antiviral RNAi in tobacco.
Collapse
Affiliation(s)
- Kenji S. Nakahara
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Chikara Masuta
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Syouta Yamada
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hanako Shimura
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yukiko Kashihara
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Tomoko S. Wada
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Ayano Meguro
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kazunori Goto
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kazuki Tadamura
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kae Sueda
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Toru Sekiguchi
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Jun Shao
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Noriko Itchoda
- Plant Breeding and Production Division, Agricultural Research Institute, Hokuren Federation of Agricultural Cooperatives, Naganuma, Hokkaido 069-1317, Japan
| | - Takeshi Matsumura
- Plant Molecular Technology Research Group, Research Institute of Genome-Based Biofactory, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan
| | - Manabu Igarashi
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, 001-0020, Japan; and
| | - Kimihito Ito
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, 001-0020, Japan; and
| | - Richard W. Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Ichiro Uyeda
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
17
|
Abstract
Cucumber mosaic virus (CMV) is an important virus because of its agricultural impact in the Mediterranean Basin and worldwide, and also as a model for understanding plant-virus interactions. This review focuses on those areas where most progress has been made over the past decade in our understanding of CMV. Clearly, a deep understanding of the role of the recently described CMV 2b gene in suppression of host RNA silencing and viral virulence is the most important discovery. These findings have had an impact well beyond the virus itself, as the 2b gene is an important tool in the studies of eukaryotic gene regulation. Protein 2b was shown to be involved in most of the steps of the virus cycle and to interfere with several basal host defenses. Progress has also been made concerning the mechanisms of virus replication and movement. However, only a few host proteins that interact with viral proteins have been identified, making this an area of research where major efforts are still needed. Another area where major advances have been made is CMV population genetics, where contrasting results were obtained. On the one hand, CMV was shown to be prone to recombination and to show high genetic diversity based on sequence data of different isolates. On the other hand, populations did not exhibit high genetic variability either within plants, or even in a field and the nearby wild plants. The situation was partially clarified with the finding that severe bottlenecks occur during both virus movement within a plant and transmission between plants. Finally, novel studies were undertaken to elucidate mechanisms leading to selection in virus population, according to the host or its environment, opening a new research area in plant-virus coevolution.
Collapse
|
18
|
Jovel J, Walker M, Sanfaçon H. Salicylic acid-dependent restriction of Tomato ringspot virus spread in tobacco is accompanied by a hypersensitive response, local RNA silencing, and moderate systemic resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:706-18. [PMID: 21281112 DOI: 10.1094/mpmi-09-10-0224] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tomato ringspot virus (ToRSV, a Nepovirus sp.) systemically infects many herbaceous plants. Viral RNA accumulates in symptomatic leaves and in young, asymptomatic leaves that emerge late in infection. Here, we show that systemic infection by ToRSV is restricted in tobacco. After an initial hypersensitive response in inoculated leaves, only a few plants showed limited systemic symptoms. Viral RNA did not usually accumulate to detectable levels in asymptomatic leaves. ToRSV-derived small-interfering RNAs and PR1a transcripts were only detected in tissues that contained viral RNA, indicating local induction of RNA silencing and salicylic acid (SA)-dependent defense responses. Lesion size and viral systemic spread were reduced with SA pretreatment but enhanced in NahG transgenic lines deficient in SA accumulation, suggesting that SA-dependent mechanisms play a key role in limiting ToRSV spread in tobacco. Restriction of virus infection was enhanced in transgenic lines expressing the P1-HC-Pro suppressor of silencing. Knocking down the SA-inducible RNA-dependent RNA polymerase 1 exacerbated the necrotic reaction but did not affect viral systemic spread. ToRSV-infected tobacco plants were susceptible to reinoculation by ToRSV or Tobacco mosaic virus, although a small reduction in lesion size was observed. This moderate systemic resistance suggests inefficient induction or spread of RNA silencing and systemic acquired resistance signal molecules.
Collapse
Affiliation(s)
- Juan Jovel
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food, Canada
| | | | | |
Collapse
|
19
|
|
20
|
Wang J, Turina M, Medina V, Falk BW. Synergistic interaction between the Potyvirus, Turnip mosaic virus and the Crinivirus, Lettuce infectious yellows virus in plants and protoplasts. Virus Res 2009; 144:163-70. [PMID: 19409943 DOI: 10.1016/j.virusres.2009.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 04/10/2009] [Accepted: 04/24/2009] [Indexed: 11/24/2022]
Abstract
Lettuce infectious yellows virus (LIYV), the type member of the genus Crinivirus in the family Closteroviridae, is specifically transmitted by the sweet potato whitefly (Bemisia tabaci) in a semipersistent manner. LIYV infections result in a low virus titer in plants and protoplasts, impeding reverse genetic efforts to analyze LIYV gene/protein functions. We found that synergistic interactions occurred in mixed infections of LIYV and Turnip mosaic virus (TuMV) in Nicotiana benthamiana plants, and these resulted in enhanced accumulation of LIYV. Furthermore, we examined the ability of transgenic plants and protoplasts expressing only the TuMV P1/HC-Pro sequence to enhance the accumulation of LIYV. LIYV RNA and protein titers increased by as much as 8-fold in these plants and protoplasts relative to control plants. LIYV infections remained phloem-limited in P1/HC-Pro transgenic plants, suggesting that enhanced accumulation of LIYV in these plants was due primarily to increased replication efficiency, not to greater spread.
Collapse
Affiliation(s)
- Jinbo Wang
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
21
|
Siddiqui SA, Sarmiento C, Kiisma M, Koivumäki S, Lemmetty A, Truve E, Lehto K. Effects of viral silencing suppressors on tobacco ringspot virus infection in two Nicotiana species. J Gen Virol 2008; 89:1502-1508. [PMID: 18474567 DOI: 10.1099/vir.0.83621-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
This study investigated the effects of silencing suppressors derived from six different viruses (P1, P19, P25, HcPro, AC2 and 2b), expressed in transgenic Nicotiana tabacum and Nicotiana benthamiana plants, on the infection pattern of tobacco ringspot virus (TRSV) potato calico strain. In N. benthamiana, this virus produced an initial infection with severe systemic symptoms, but the infection was strongly reduced within a few weeks as the plant recovered from the infection. P25 and HcPro silencing suppressors effectively prevented recovery in this host, allowing continuous accumulation of the viral RNA as well as of the virus-specific small interfering RNAs, in the systemically infected leaves. In the P1-, P19-, AC2- or 2b-expressing transgenic N. benthamiana, the recovery was not complete. Susceptibility of N. tabacum to this virus was temperature sensitive. At lower temperatures, up to 25 degrees C, the plants became systemically infected, but at higher temperatures, the infections were limited to the inoculated leaves. In these preventative conditions, all silencing suppressor transgenes (except P25, which was expressed at very low levels) allowed the establishment of systemic infections. Very strong and consistent systemic infections were observed in HcPro- and AC2-expressing plants.
Collapse
Affiliation(s)
- Shahid Aslam Siddiqui
- Laboratory of Plant Physiology and Molecular Biology, University of Turku, FIN-20014 Turku, Finland
| | - Cecilia Sarmiento
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 19086 Tallinn, Estonia
| | - Mariliis Kiisma
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 19086 Tallinn, Estonia
| | - Satu Koivumäki
- Laboratory of Genetics, University of Turku, FIN-20014 Turku, Finland
| | - Anne Lemmetty
- MTT Agrifood Research Finland, FIN-31600 Jokioinen, Finland
| | - Erkki Truve
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 19086 Tallinn, Estonia
| | - Kirsi Lehto
- Laboratory of Plant Physiology and Molecular Biology, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
22
|
Siddiqui SA, Sarmiento C, Truve E, Lehto H, Lehto K. Phenotypes and functional effects caused by various viral RNA silencing suppressors in transgenic Nicotiana benthamiana and N. tabacum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:178-87. [PMID: 18184062 DOI: 10.1094/mpmi-21-2-0178] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
RNA silencing suppressor genes derived from six virus genera were transformed into Nicotiana benthamiana and N. tabacum plants. These suppressors were P1 of Rice yellow mottle virus (RYMV), P1 of Cocksfoot mottle virus, P19 of Tomato bushy stunt virus, P25 of Potato virus X, HcPro of Potato virus Y (strain N), 2b of Cucumber mosaic virus (strain Kin), and AC2 of African cassava mosaic virus (ACMV). HcPro caused the most severe phenotypes in both Nicotiana spp. AC2 also produced severe effects in N. tabacum but a much milder phenotype in N. benthamiana, although both HcPro and AC2 affected the leaf tissues of the two Nicotiana spp. in similar ways, causing hyperplasia and hypoplasia, respectively. P1-RYMV caused high lethality in the N. benthamiana plants but only mild effects in the N. tabacum plants. Phenotypic alterations produced by the other transgenes were minor in both species. Interestingly, the suppressors had very different effects on crucifer-infecting Tobamovirus (crTMV) infections. AC2 enhanced both spread and brightness of the crTMV-green fluorescent protein (GFP) lesions, whereas 2b and both P1 suppressors enhanced spread but not brightness of these lesions. P19 promoted spread of the infection into new foci within the infiltrated leaf, whereas HcPro and P25 suppressed the spread of crTMV-GFP lesions.
Collapse
Affiliation(s)
- Shahid Aslam Siddiqui
- 1Laboratory of Plant Physiology and Molecular Biology, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | |
Collapse
|