1
|
Zhang J, Wang F, Yuan B, Yang L, Yang Y, Fang Q, Kuhn JH, Song Q, Ye G. A novel cripavirus of an ectoparasitoid wasp increases pupal duration and fecundity of the wasp's Drosophila melanogaster host. THE ISME JOURNAL 2021; 15:3239-3257. [PMID: 34007060 PMCID: PMC8528920 DOI: 10.1038/s41396-021-01005-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 02/03/2023]
Abstract
We identified a 9332-nucleotide-long novel picornaviral genome sequence in the transcriptome of an agriculturally important parasitoid wasp (Pachycrepoideus vindemmiae (Rondani, 1875)). The genome of the novel virus, Rondani's wasp virus 1 (RoWV-1), contains two long open reading frames encoding a nonstructural and a structural protein, respectively, and is 3'-polyadenylated. Phylogenetic analyses firmly place RoWV-1 into the dicistrovirid genus Cripavirus. We detected RoWV-1 in various tissues and life stages of the parasitoid wasp, with the highest virus load measured in the larval digestive tract. We demonstrate that RoWV-1 is transmitted horizontally from infected to uninfected wasps but not vertically to wasp offspring. Comparison of several important biological parameters between the infected and uninfected wasps indicates that RoWV-1 does not have obvious detrimental effects on wasps. We further demonstrate that RoWV-1 also infects Drosophila melanogaster (Meigen, 1830), the hosts of the pupal ectoparasitoid wasps, and thereby increases its pupal developmental duration and fecundity, but decreases the eclosion rate. Together, these results suggest that RoWV-1 may have a potential benefit to the wasp by increasing not only the number of potential wasp hosts but also the developmental time of the hosts to ensure proper development of wasp offspring.
Collapse
Affiliation(s)
- Jiao Zhang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fei Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Bo Yuan
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yi Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA.
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
2
|
Cheng RL, Li XF, Zhang CX. Novel Dicistroviruses in an Unexpected Wide Range of Invertebrates. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:423-431. [PMID: 33837925 DOI: 10.1007/s12560-021-09472-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Dicistroviruses are members of a rapidly growing family of small RNA viruses. Related sequences have been discovered in many environmental samples, indicating that our knowledge about dicistrovirus diversity and host range is still limited. In this study, we performed a systematic search against the publicly available transcriptome database, and identified large numbers of dicistrovirus-like sequences in a wide variety of eukaryotic species. The origins of these sequences were 108 invertebrates (including 77 insect species belonging to 18 orders) and 11 plants, revealing new associations between dicistroviruses and hosts. Finally, 83 transcripts corresponding to nearly-complete viral genomes were retrieved from the RNA-seq data, of which most sequences showed limited similarity to known dicistroviruses and might present previously unreported virus species. Phylogenetic analysis suggested that horizontal virus transfer has occurred between diverse hosts and has important implications for dicistrovirus evolution. The results will provide new insight into the hidden diversity of the Dicistroviridae, and help us to better understand the viral evolution, host range and the possible way of transmission.
Collapse
Affiliation(s)
- Ruo-Lin Cheng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Xiao-Feng Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, China
| | - Chuan-Xi Zhang
- Institute of Plant Virology, Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Meng E, Tang B, Li J, Fu L, Hou Y. The first complete genome sequence of an iflavirus from the endoparasitoid wasp Tetrastichus brontispae. Arch Virol 2021; 166:2333-2335. [PMID: 34075444 DOI: 10.1007/s00705-021-05118-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
The complete genome sequence of a novel iflavirus isolated from the gregarious and koinobiont endoparasitoid Tetrastichus brontispae, tentatively named "Tetrastichus brontispae RNA virus 3" (TbRV-3), was determined by total RNA and Sanger sequencing. The complete genome is 9998 nucleotides in length, 8934 nt of which encodes a putative polyprotein of 2978 amino acids. TbRV-3 was found to have a similar genome organization and to contain conserved domains and motifs found in other iflaviruses, with some variations. Phylogenetic analysis based on deduced amino acid sequences of the RdRp domain showed that TbRV-3 clustered with Dinocampus coccinellae paralysis virus (DcPV). However, the percent amino acid sequence identity of the putative capsid proteins of TbRV-3 and DcPV determined using BLASTp was below the species demarcation threshold (90%), suggesting that TbRV-3 is a new iflavirus. This is the first virus of the family Iflaviridae to be isolated from a wasp of the family Eulophidae.
Collapse
Affiliation(s)
- E Meng
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Rural Revitalization Research, Dezhou University, Dezhou, 253023, China
| | - Baozhen Tang
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingyi Li
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,The People's Government of Hedi Town, Yangquan, 045011, China
| | - Lang Fu
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Cusumano A, Volkoff AN. Influence of parasitoid-associated viral symbionts on plant-insect interactions and biological control. CURRENT OPINION IN INSECT SCIENCE 2021; 44:64-71. [PMID: 33866043 DOI: 10.1016/j.cois.2021.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Insect parasitoids have evolved symbiotic interactions with several viruses and thousands of parasitoid species have established mutualistic associations with polydnaviruses (PDVs). While PDVs have often been described as virulence factors allowing development of immature parasitoids inside their herbivore hosts, there is increasing awareness that PDVs can affect plant-insect interactions. We review recent literature showing that PDVs alter not only host physiology, but also feeding patterns and composition of herbivore's oral secretions. In turn PDV-induced changes in herbivore phenotype affect plant responses to herbivory with consequences ranging from differential expression of plant defense-related genes to wider ecological effects across multiple trophic levels. In this opinion paper we also highlight important missing gaps to fully understand the role of PDVs and other parasitoid-associated viral symbionts in a plant-insect interaction perspective. Because PDVs negatively impact performance and survival of herbivore pests, we conclude arguing that PDV genomes offer potential opportunities for biological control.
Collapse
Affiliation(s)
- Antonino Cusumano
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy.
| | | |
Collapse
|
5
|
Genome sequence of a novel member of the order Picornavirales from the endoparasitoid wasp Diversinervus elegans. Arch Virol 2020; 166:295-297. [PMID: 33067649 DOI: 10.1007/s00705-020-04824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Here, we report a novel RNA virus from an encyrtid endoparasitoid wasp (Diversinervus elegans). This virus has a genome of 8845 nucleotides in length with a poly(A) tail. It contains one open reading frame (ORF) encoding a single polyprotein that shares the most significant similarity to the polyproteins of dicistroviruses. Phylogenetic analysis suggested that this virus belongs to the family Dicistroviridae from the order Picornavirales, but its genomic organization is distinct from that of the other known dicistroviruses, which have two ORFs. Consequently, we propose that this virus is a member of a new species in the order Picornavirales, and have named it "Diversinervus elegans virus" (DEV).
Collapse
|
6
|
Lüthi MN, Vorburger C, Dennis AB. A Novel RNA Virus in the Parasitoid Wasp Lysiphlebus fabarum: Genomic Structure, Prevalence, and Transmission. Viruses 2020; 12:E59. [PMID: 31947801 PMCID: PMC7019493 DOI: 10.3390/v12010059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/19/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
We report on a novel RNA virus infecting the wasp Lysiphlebus fabarum, a parasitoid of aphids. This virus, tentatively named "Lysiphlebus fabarum virus" (LysV), was discovered in transcriptome sequences of wasps from an experimental evolution study in which the parasitoids were allowed to adapt to aphid hosts (Aphis fabae) with or without resistance-conferring endosymbionts. Based on phylogenetic analyses of the viral RNA-dependent RNA polymerase (RdRp), LysV belongs to the Iflaviridae family in the order of the Picornavirales, with the closest known relatives all being parasitoid wasp-infecting viruses. We developed an endpoint PCR and a more sensitive qPCR assay to screen for LysV in field samples and laboratory lines. These screens verified the occurrence of LysV in wild parasitoids and identified the likely wild-source population for lab infections in Western Switzerland. Three viral haplotypes could be distinguished in wild populations, of which two were found in the laboratory. Both vertical and horizontal transmission of LysV were demonstrated experimentally, and repeated sampling of laboratory populations suggests that the virus can form persistent infections without obvious symptoms in infected wasps.
Collapse
Affiliation(s)
- Martina N. Lüthi
- Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; (C.V.); (A.B.D.)
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Christoph Vorburger
- Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; (C.V.); (A.B.D.)
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Alice B. Dennis
- Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; (C.V.); (A.B.D.)
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
7
|
Mailliot J, Martin F. Viral internal ribosomal entry sites: four classes for one goal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9. [PMID: 29193740 DOI: 10.1002/wrna.1458] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
To ensure efficient propagation, viruses need to rapidly produce viral proteins after cell entrance. Since viral genomes do not encode any components of the protein biosynthesis machinery, viral proteins must be produced by the host cell. To hi-jack the host cellular translation, viruses use a great variety of distinct strategies. Many single-stranded positive-sensed RNA viruses contain so-called internal ribosome entry sites (IRESs). IRESs are structural RNA motifs that have evolved to specific folds that recruit the host ribosomes on the viral coding sequences in order to synthesize viral proteins. In host canonical translation, recruitment of the translation machinery components is essentially guided by the 5' cap (m7 G) of mRNA. In contrast, IRESs are able to promote efficient ribosome assembly internally and in cap-independent manner. IRESs have been categorized into four classes, based on their length, nucleotide sequence, secondary and tertiary structures, as well as their mode of action. Classes I and II require the assistance of cellular auxiliary factors, the eukaryotic intiation factors (eIF), for efficient ribosome assembly. Class III IRESs require only a subset of eIFs whereas Class IV, which are the more compact, can promote translation without any eIFs. Extensive functional and structural investigations of IRESs over the past decades have allowed a better understanding of their mode of action for viral translation. Because viral translation has a pivotal role in the infectious program, IRESs are therefore attractive targets for therapeutic purposes. WIREs RNA 2018, 9:e1458. doi: 10.1002/wrna.1458 This article is categorized under: Translation > Ribosome Structure/Function Translation > Translation Mechanisms RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Justine Mailliot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Illkirch-Graffenstaden, France
| | - Franck Martin
- Institut de Biologie Moléculaire et Cellulaire, "Architecture et Réactivité de l'ARN" CNRS UPR9002, Université De Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Qian C, Liang D, Liu Y, Wang P, Kausar S, Wei G, Zhu B, Wang L, Liu C. Identification of a small pacifastin protease inhibitor from Nasonia vitripennis venom that inhibits humoral immunity of host ( Musca domestica ). Toxicon 2017; 131:54-62. [DOI: 10.1016/j.toxicon.2017.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 11/27/2022]
|
9
|
Qian C, Fang Q, Wang L, Ye GY. Molecular Cloning and Functional Studies of Two Kazal-Type Serine Protease Inhibitors Specifically Expressed by Nasonia vitripennis Venom Apparatus. Toxins (Basel) 2015; 7:2888-905. [PMID: 26248077 PMCID: PMC4549731 DOI: 10.3390/toxins7082888] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/29/2015] [Accepted: 07/27/2015] [Indexed: 12/21/2022] Open
Abstract
Two cDNA sequences of Kazal-type serine protease inhibitors (KSPIs) in Nasonia vitripennis, NvKSPI-1 and NvKSPI-2, were characterized and their open reading frames (ORFs) were 198 and 264 bp, respectively. Both NvKSPI-1 and NvKSPI-2 contained a typical Kazal-type domain. Real-time quantitative PCR (RT-qPCR) results revealed that NvKSPI-1 and NvKSPI-2 mRNAs were mostly detected specifically in the venom apparatus, while they were expressed at lower levels in the ovary and much lower levels in other tissues tested. In the venom apparatus, both NvKSPI-1 and NvKSPI-2 transcripts were highly expressed on the fourth day post eclosion and then declined gradually. The NvKSPI-1 and NvKSPI-2 genes were recombinantly expressed utilizing a pGEX-4T-2 vector, and the recombinant products fused with glutathione S-transferase were purified. Inhibition of recombinant GST-NvKSPI-1 and GST-NvKSPI-2 to three serine protease inhibitors (trypsin, chymotrypsin, and proteinase K) were tested and results showed that only NvKSPI-1 could inhibit the activity of trypsin. Meanwhile, we evaluated the influence of the recombinant GST-NvKSPI-1 and GST-NvKSPI-2 on the phenoloxidase (PO) activity and prophenoloxidase (PPO) activation of hemolymph from a host pupa, Musca domestica. Results showed PPO activation in host hemolymph was inhibited by both recombinant proteins; however, there was no significant inhibition on the PO activity. Our results suggested that NvKSPI-1 and NvKSPI-2 could inhibit PPO activation in host hemolymph and trypsin activity in vitro.
Collapse
Affiliation(s)
- Cen Qian
- College of Life Science, Anhui Agricultural University, Hefei 230036, China.
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qi Fang
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lei Wang
- College of Life Science, Anhui Agricultural University, Hefei 230036, China.
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Qian C, Liu Y, Fang Q, Min-Li Y, Liu SS, Ye GY, Li YM. Venom of the ectoparasitoid, Nasonia vitripennis, influences gene expression in Musca domestica hemocytes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 83:211-231. [PMID: 23818091 DOI: 10.1002/arch.21107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Insect hosts have evolved potent innate immunity against invasion by parasitoid wasps. Host/parasitoids live in co-evolutionary relationships. Nasonia vitripennis females inject venom into their dipteran hosts just prior to laying eggs on the host's outer integument. The parasitoid larvae are ectoparasitoids because they feed on their hosts within the puparium, but do not enter the host body. We investigated the influence of N. vitripennis venom on the gene expression profile of hemocytes of their hosts, pupae of the housefly, Musca domestica. We prepared venom by isolating venom glands and treated experimental host pupae with venom. We used suppression subtractive hybridization (SSH) to determine the influence of venom on hemocyte gene expression. At 1 h post treatment, we recorded decreases in transcript levels of 133 EST clones derived from forward a subtractive library of host hemocytes and upregulation in transcript levels of 111 EST clones from the reverse library. These genes are related to immune and stress response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, and transcription/translation regulation. We verified the reliability of our data with reverse transcription quantitative real-time PCR analysis of randomly selected genes, and with assays of enzyme activities. These analyses showed that the expression level of all selected genes were downregulated after venom treatment. Outcomes of our experiments support the hypothesis that N. vitripennis venom influences the gene expression in host hemocytes. We conclude that the actions of venom on host gene expression influence host biology in ways that benefit the development and emergence of the next generation of parasitoids.
Collapse
Affiliation(s)
- Cen Qian
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
11
|
Moreau SJM. "It stings a bit but it cleans well": venoms of Hymenoptera and their antimicrobial potential. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:186-204. [PMID: 23073394 DOI: 10.1016/j.jinsphys.2012.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 06/01/2023]
Abstract
Venoms from Hymenoptera display a wide range of functions and biological roles. These notably include manipulation of the host, capture of prey and defense against competitors and predators thanks to endocrine and immune systems disruptors, neurotoxic, cytolytic and pain-inducing venom components. Recent works indicate that many hymenopteran species, whatever their life style, have also evolved a venom with properties which enable it to regulate microbial infections, both in stinging and stung animals. In contrast to biting insects and their salivary glands, stinging Hymenoptera seem to constitute an under-exploited ecological niche for agents of vector-borne disease. Few parasitic or mutualistic microorganisms have been reported to be hosted by venom-producing organs or to be transmitted to stung animals. This may result from the presence of potent antimicrobial molecules in venoms, histological features of venom apparatuses and selective effects of venoms on immune defenses of targeted organisms. The present paper reviews for the first time the venom antimicrobial potential of solitary and social Hymenoptera in molecular, ecological, and evolutionary perspectives.
Collapse
Affiliation(s)
- Sébastien J M Moreau
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, 37200 Tours, France.
| |
Collapse
|
12
|
Abstract
This chapter describes the different RNA viruses that have been detected at least once in parasitoid wasps. It could be wondered whether the other families of parasitoids are really absent, or if this is due to the fact that inadequate techniques were used to detect viruses. In fact, several different methods have been used: TEM of the venom glands of females, extraction of nucleic acids, followed by DNAse digestion to eliminate the polydnavirus or ascovirus genome, RT-PCR with primers specific of RdRp or data mining in an EST library. To resolve this problem of detecting RNA viruses, a systematic search for viruses in parasitoids should be carried out using a combination of these different methods. Only a few hymenopteran species are known to be infected by RNA viruses, although thousands of species are known to carry polydnaviruses or VLPs. This could suggest that the presence of polydnaviruses or VLPs may block infections with other viruses.
Collapse
|
13
|
Hertz MI, Thompson SR. In vivo functional analysis of the Dicistroviridae intergenic region internal ribosome entry sites. Nucleic Acids Res 2011; 39:7276-88. [PMID: 21646337 PMCID: PMC3167618 DOI: 10.1093/nar/gkr427] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Some viral and cellular messages use an alternative mechanism to initiate protein synthesis that involves internal recruitment of the ribosome to an internal ribosome entry site (IRES). The Dicistroviridae intergenic regions (IGR) have been studied as model IRESs to understand the mechanism of IRES-mediated translation. In this study, the in vivo activity of IGR IRESs were compared. Our analysis demonstrates that Class I and II IGR IRESs have comparable translation efficiency in yeast and that Class II is significantly more active in mammalian cells. Furthermore, while Class II IGR IRES activity was enhanced in yeast grown at a higher temperature, temperature did not affect IGR IRES activity in mammalian cells. This suggests that Class II IRESs may not function optimally with yeast ribosomes. Examination of chimeric IGR IRESs, established that the IRES strength and temperature sensitivity are mediated by the ribosome binding domain. In addition, the sequence of the first translated codon is also an important determinant of IRES activity. Our findings provide us with a comprehensive overview of IGR IRES activities and allow us to begin to understand the differences between Classes I and II IGR IRESs.
Collapse
Affiliation(s)
- Marla I Hertz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
14
|
Mechanism of translation initiation by Dicistroviridae IGR IRESs. Virology 2011; 411:355-61. [PMID: 21284991 DOI: 10.1016/j.virol.2011.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 01/04/2011] [Indexed: 01/02/2023]
Abstract
The Dicistroviridae is a growing virus family characterized by a dicistronic genome, wherein each open reading frame (ORF) is translated from an independent internal ribosome entry site (IRES). The 5' IRES that translates the first open reading frame (ORF1) is similar to the picornaviral IRESs. However the second IRES, referred to as the intergenic region (IGR) IRES, - translates ORF2 by and uses an unusual mechanism of initiating protein synthesis. It folds into a compact RNA structure that can bind directly to 40S ribosomal subunits and form 80S complexes to initiate translation in the absence of any initiation factors. Despite its unusual mechanism, the IGR IRES has proven to be an elegant model for elucidating initiation mechanisms employed by IRESs, as well as making it a powerful research tool with diverse applications.
Collapse
|