1
|
Rede JE, Breitbart M, Lundquist C, Nagasaki K, Hewson I. Diverse RNA viruses discovered in multiple seagrass species. PLoS One 2024; 19:e0302314. [PMID: 39196976 PMCID: PMC11356395 DOI: 10.1371/journal.pone.0302314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/01/2024] [Indexed: 08/30/2024] Open
Abstract
Seagrasses are marine angiosperms that form highly productive and diverse ecosystems. These ecosystems, however, are declining worldwide. Plant-associated microbes affect critical functions like nutrient uptake and pathogen resistance, which has led to an interest in the seagrass microbiome. However, despite their significant role in plant ecology, viruses have only recently garnered attention in seagrass species. In this study, we produced original data and mined publicly available transcriptomes to advance our understanding of RNA viral diversity in Zostera marina, Zostera muelleri, Zostera japonica, and Cymodocea nodosa. In Z. marina, we present evidence for additional Zostera marina amalgavirus 1 and 2 genotypes, and a complete genome for an alphaendornavirus previously evidenced by an RNA-dependent RNA polymerase gene fragment. In Z. muelleri, we present evidence for a second complete alphaendornavirus and near complete furovirus. Both are novel, and, to the best of our knowledge, this marks the first report of a furovirus infection naturally occurring outside of cereal grasses. In Z. japonica, we discovered genome fragments that belong to a novel strain of cucumber mosaic virus, a prolific pathogen that depends largely on aphid vectoring for host-to-host transmission. Lastly, in C. nodosa, we discovered two contigs that belong to a novel virus in the family Betaflexiviridae. These findings expand our knowledge of viral diversity in seagrasses and provide insight into seagrass viral ecology.
Collapse
Affiliation(s)
- Jordan E. Rede
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States of America
| | - Carolyn Lundquist
- National Institute of Water and Atmospheric Research, Hamilton, New Zealand
- School of Environment, The University of Auckland, Auckland, New Zealand
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Nankoku, Kochi, Japan
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
2
|
Li T, Ye ZX, Huang YL, Chen JP, Zhang CX, Li JM. Complete genome sequence of a novel amalgavirus in sponge gourd, Luffa cylindrica. Arch Virol 2024; 169:160. [PMID: 38981875 DOI: 10.1007/s00705-024-06094-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
A novel monopartite dsRNA virus, tentatively named "sponge gourd amalgavirus 1" (SGAV1), was discovered by high-throughput sequencing in sponge gourd (Luffa cylindrica) displaying mosaic symptoms in Jiashan County, Zhejiang Province, China. The genome of SGAV1 is 3,447 nucleotides in length and contains partially overlapping open reading frames (ORFs) encoding a putative replication factory matrix-like protein and a fusion protein, respectively. The fusion protein of SGAV1 shares 57.07% identity with the homologous protein of salvia miltiorrhiza amalgavirus 1 (accession no. DAZ91057.1). Phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) protein suggests that SGAV1 belongs to the genus Amalgavirus of the family Amalgaviridae. Moreover, analysis of SGAV1-derived small interfering RNAs indicated that SGAV1 was actively replicating in the host plant. Semi-quantitative RT-PCR showed higher levels of SGAV1 expression in leaves than in flowers and fruits. This is the first report of a novel amalgavirus found in sponge gourd in China.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yao-Liang Huang
- Jiashan Agro-Tech Extension and Service Center, Jiashan, 314199, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Cao Y, Wang J, Hou W, Ding Y, Zhu Y, Zheng J, Huang Q, Cao Z, Xie R, Wei Q, Qin H. Colorectal cancer-associated T cell receptor repertoire abnormalities are linked to gut microbiome shifts and somatic cell mutations. Gut Microbes 2023; 15:2263934. [PMID: 37795995 PMCID: PMC10557533 DOI: 10.1080/19490976.2023.2263934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023] Open
Abstract
As with many diseases, tumor formation in colorectal cancer (CRC) is multifactorial and involves immune, environmental factors and various genetics that contribute to disease development. Accumulating evidence suggests that the gut microbiome is linked to the occurrence and development of CRC, and these microorganisms are important for immune maturation. However, a systematic perspective integrating microbial profiling, T cell receptor (TCR) and somatic mutations in humans with CRC is lacking. Here, we report distinct features of the expressed TCRβ repertoires in the peripheral blood of and CRC patients (n = 107) and healthy donors (n = 30). CRC patients have elevated numbers of large TCRβ clones and they have very low TCR diversity. The metagenomic sequencing data showed that the relative abundance of Fusobacterium nucleatum (F. nucleatum), Escherichia coli and Dasheen mosaic virus were elevated consistently in CRC patients (n = 97) compared to HC individuals (n = 30). The abundance of Faecalibacterium prausnitzii and Roseburia intestinalis was reduced in CRC (n = 97) compared to HC (n = 30). The correlation between somatic mutations of target genes (16 genes, n = 79) and TCR clonality and microbial biomarkers in CRC had been investigated. Importantly, we constructed a random forest classifier (contains 15 features) based on microbiome and TCR repertoires, which can be used as a clinical detection method to screen patients for CRC. We also analysis of F. nucleatum-specific TCR repertoire characteristics. Collectively, our large-cohort multi-omics data aimed to identify novel biomarkers to inform clinical decision-making in the detection and diagnosis of CRC, which is of possible etiological and diagnostic significance.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Jifeng Wang
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Weiliang Hou
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Yanqiang Ding
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yefei Zhu
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Jiayi Zheng
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Qiongyi Huang
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Zhan Cao
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Ruting Xie
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
4
|
Yang J, Lan PX, Wang Y, Li JM, Li R, Wylie S, Chen XJ, Yang GH, Cai H, Li F. Virome Analysis of Aconitum carmichaelii Reveals Infection by Eleven Viruses, including Two Potentially New Species. Int J Mol Sci 2023; 24:15558. [PMID: 37958540 PMCID: PMC10650655 DOI: 10.3390/ijms242115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Aconitum carmichaelii is a herbaceous herb indigenous to China that has been cultivated for traditional medicine for centuries. Virus-like symptoms of A. carmichaelii plants were observed on leaves in some A. carmichaelii plantations in Zhanyi and Wuding Counties, Yunnan Province, southwest China. High-throughput sequencing (HTS) was performed on 28 symptomatic plants, and the results revealed infection with 11 viruses, including 2 novel viruses and 9 previously described viruses: Aconitum amalgavirus 1 (AcoAV-1), aconite virus A (AcVA), cucumber mosaic virus (CMV), currant latent virus (CuLV), apple stem grooving virus (ASGV), chilli veinal mottle virus (ChiVMV), tomato spotted wilt orthotospovirus (TSWV), tobacco vein distorting virus (TVDV), and potato leafroll virus (PLRV). Two novel viruses tentatively named Aconitum potyvirus 1 and Aconitum betapartitivirus 1, were supported by sequence and phylogenetic analysis results of their genomes. We proposed the names Potyvirus aconiti and Betapartitivirus aconiti. RT-PCR assays of 142 plants revealed the predominance and widespread distribution of CMV, AcVA, and AcoPV-1 in plantations. The detection of isolates of CuLV, ASGV, ChiVMV, TSWV, TVDV, and PLRV infections for the first time in A. carmichaelii expands their known host ranges.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Ping-Xiu Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yun Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Jin-Ming Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Ruhui Li
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD 20705, USA
| | - Steve Wylie
- Plant Biotechnology Research Group (Virology), Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Xiao-Jiao Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Gen-Hua Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Hong Cai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Fan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Jo Y, Choi H, Lee BC, Hong JS, Kim SM, Cho WK. Exploring Tomato Fruit Viromes through Transcriptome Data Analysis. Viruses 2023; 15:2139. [PMID: 38005817 PMCID: PMC10674750 DOI: 10.3390/v15112139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
This study delves into the complex landscape of viral infections in tomatoes (Solanum lycopersicum) using available transcriptome data. We conducted a virome analysis, revealing 219 viral contigs linked to four distinct viruses: tomato chlorosis virus (ToCV), southern tomato virus (STV), tomato yellow leaf curl virus (TYLCV), and cucumber mosaic virus (CMV). Among these, ToCV predominated in contig count, followed by STV, TYLCV, and CMV. A notable finding was the prevalence of coinfections, emphasizing the concurrent presence of multiple viruses in tomato plants. Despite generally low viral levels in fruit transcriptomes, STV emerged as the primary virus based on viral read count. We delved deeper into viral abundance and the contributions of RNA segments to replication. While initially focused on studying the impact of sound treatment on tomato fruit transcriptomes, the unexpected viral presence underscores the importance of considering viruses in plant research. Geographical variations in virome communities hint at potential forensic applications. Phylogenetic analysis provided insights into viral origins and genetic diversity, enhancing our understanding of the Korean tomato virome. In conclusion, this study advances our knowledge of the tomato virome, stressing the need for robust pest control in greenhouse-grown tomatoes and offering insights into virus management and crop protection.
Collapse
Affiliation(s)
- Yeonhwa Jo
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Hoseong Choi
- Plant Health Center, Seoul National University, Seoul 08826, Republic of Korea;
| | - Bong Choon Lee
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Jin-Sung Hong
- Department of Applied Biology, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Sang-Min Kim
- Crop Foundation Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
6
|
Yuan Z, Li Z, Lu Y, Cao M, Hong N, Wang G, Cai L. Molecular characterization of a novel amalgavirus infecting lilium spp. in China. Arch Virol 2023; 168:181. [PMID: 37314504 DOI: 10.1007/s00705-023-05806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 06/15/2023]
Abstract
A novel plant virus with a double-stranded (ds) RNA genome was detected in Lilium spp. in China by high-throughput sequencing and tentatively named "lily amalgavirus 2" (LAV2). The genomic RNA of LAV2 is 3432 nucleotides (nt) in length and contains two open reading frames (ORFs) that putatively encode a '1 + 2' fusion protein of 1053 amino acids (aa), generated by a '+1' programmed ribosomal frameshift (PRF). ORF1 encodes a putative 386-aa protein of unknown function, and ORF2 overlaps ORF1 by 350 nt and encodes a putative 783-aa protein with conserved RNA-dependent RNA polymerase (RdRp) motifs. The '+1' ribosomal frameshifting motif, UUU_CGN, which is highly conserved among amalgaviruses, is also found in LAV2. Sequence analysis showed that the complete genome shared 46.04%-51.59% nucleotide sequence identity with those of members of the genus Amalgavirus and had the most similarity (51.59% sequence identity) to lily amalgavirus 1 (accession no. OM782323). Phylogenetic analysis based on RdRp amino acid sequences showed that LAV2 clustered with members of the genus Amalgavirus. Overall, our data suggest that LAV2 is a new member of the genus Amalgavirus.
Collapse
Affiliation(s)
- Zhihao Yuan
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhenfeng Li
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yuexia Lu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Mengji Cao
- National Citrus Engineering Research Center, Southwest University, 400712, Chongqing, China
| | - Ni Hong
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Guoping Wang
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Li Cai
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
7
|
Hao X, Zheng Y, Cui B, Xiang B. Localization of southern tomato virus (STV) in tomato tissues. JOURNAL OF PLANT DISEASES AND PROTECTION : SCIENTIFIC JOURNAL OF THE GERMAN PHYTOMEDICAL SOCIETY (DPG) 2023; 130:1-5. [PMID: 37361930 PMCID: PMC10011777 DOI: 10.1007/s41348-023-00729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/01/2023] [Indexed: 06/28/2023]
Abstract
Southern tomato virus (STV) is a dsRNA virus, which belongs to the newly formed Amalgavirus genus of the Amalgaviridae family. Currently there is no report regarding the presence of STV in tomato tissues. In this study, we performed in situ hybridization to examine the distribution of STV in host tissues. STV was found in the leaves, stems, seeds, shoot apexes and root tips of tomato and localized in the cortex tissue, vascular tissues, pith, seed coat, endosperm, cotyledon (including inner cotyledons and outer cotyledons), hypocotyls and radicles of infected tomato tissues. In addition, STV was detected in the apical part of the stems and roots for the first time. This indicates that STV is a systemic infectious virus.
Collapse
Affiliation(s)
- Xiaojun Hao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Xinjiang Production and Construction Corps Key Laboratory of Special Fruitsand Vegetables Cultivation Physiology and Germplasm Resources Utilization, College of Agriculture, Shihezi University, Shihezi, 832003 China
| | - Yinying Zheng
- Key Laboratory of Agriculture Biotechnology of Shihezi University, College of Life Sciences, Shihezi University, Shihezi, 832003 China
| | - Baiming Cui
- Key Laboratory of Agriculture Biotechnology of Shihezi University, College of Life Sciences, Shihezi University, Shihezi, 832003 China
| | - Benchun Xiang
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Xinjiang Production and Construction Corps Key Laboratory of Special Fruitsand Vegetables Cultivation Physiology and Germplasm Resources Utilization, College of Agriculture, Shihezi University, Shihezi, 832003 China
| |
Collapse
|
8
|
Ayllón MA, Vainio EJ. Mycoviruses as a part of the global virome: Diversity, evolutionary links and lifestyle. Adv Virus Res 2023; 115:1-86. [PMID: 37173063 DOI: 10.1016/bs.aivir.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Knowledge of mycovirus diversity, evolution, horizontal gene transfer and shared ancestry with viruses infecting distantly related hosts, such as plants and arthropods, has increased vastly during the last few years due to advances in the high throughput sequencing methodologies. This also has enabled the discovery of novel mycoviruses with previously unknown genome types, mainly new positive and negative single-stranded RNA mycoviruses ((+) ssRNA and (-) ssRNA) and single-stranded DNA mycoviruses (ssDNA), and has increased our knowledge of double-stranded RNA mycoviruses (dsRNA), which in the past were thought to be the most common viruses infecting fungi. Fungi and oomycetes (Stramenopila) share similar lifestyles and also have similar viromes. Hypothesis about the origin and cross-kingdom transmission events of viruses have been raised and are supported by phylogenetic analysis and by the discovery of natural exchange of viruses between different hosts during virus-fungus coinfection in planta. In this review we make a compilation of the current information on the genome organization, diversity and taxonomy of mycoviruses, discussing their possible origins. Our focus is in recent findings suggesting the expansion of the host range of many viral taxa previously considered to be exclusively fungal, but we also address factors affecting virus transmissibility and coexistence in single fungal or oomycete isolates, as well as the development of synthetic mycoviruses and their use in investigating mycovirus replication cycles and pathogenicity.
Collapse
Affiliation(s)
- María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain; Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
9
|
Sidharthan VK, Rajeswari V, Vanamala G, Baranwal VK. Revisiting the amalgaviral landscapes in plant transcriptomes expands the host range of plant amalgaviruses. Virology 2022; 577:65-73. [PMID: 36308887 DOI: 10.1016/j.virol.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/19/2022]
Abstract
Plant amalgaviruses are monopartite, double-stranded RNA viruses, capable of vertical transmission through seeds. An attempt to revisit plant transcriptome-assembled contigs for amalgaviral sequences identified 40 putative novel amalgaviruses in 35 plant species, nearly doubling the number of plant amalgaviruses. Of the 35 plant species, 33 are reported to host amalgaviruses for the first time, including a pteridophytic and two gymnospermic species. Coding-complete genomes of all identified viruses were recovered and the putative +1 programmed ribosomal frameshift (PRF) sites were determined. Genomes of 35 identified amalgaviruses contained the conserved +1 PRF motif 'UUU_CGN', while variant versions were predicted in five genomes. Phylogenetic analysis grouped pteridophyte- and gymnosperm-infecting amalgaviruses together in divergent sub-clades while few of the related angiosperm-infecting amalgaviruses infect members of the same plant family, reiterating the co-evolution of plant amalgaviruses and their hosts. The current study paves way for further studies on understanding biological properties of identified viruses.
Collapse
Affiliation(s)
- V Kavi Sidharthan
- Division of Genetics and Tree Improvement, Institute of Forest Biodiversity (ICFRE), Hyderabad, India.
| | - V Rajeswari
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Gayatri Vanamala
- Division of Genetics and Tree Improvement, Institute of Forest Biodiversity (ICFRE), Hyderabad, India
| | - V K Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
10
|
Molecular Detection of Southern Tomato Amalgavirus Prevalent in Tomatoes and Its Genomic Characterization with Global Evolutionary Dynamics. Viruses 2022; 14:v14112481. [PMID: 36366579 PMCID: PMC9693158 DOI: 10.3390/v14112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Southern tomato amalgavirus (STV) is a cryptic pathogen that is abundant in tomato production fields and intensifies the resurgence of tomato yellow stunt disease (ToYSD), together with other phytoviruses. Here, we mapped the geographical and genomic diversity, phylogenetics, and evolutionary dynamics of STV. We found that STV prevailed across China and Pakistan, with a maximum average rate of infection of 43.19% in Beijing, China, and 40.08% in Punjab, Pakistan. Subsequently, we amplified, cloned, and annotated the complete genome sequences of STV isolates from Solanum lycopersicum L. in China (OP548653 and OP548652) and Pakistan (MT066231) using Sanger and next-generation sequencing (NGS). These STV isolates displayed close evolutionary relationships with others from Asia, America, and Europe. Whole-genome-based molecular diversity analysis showed that STV populations had 33 haplotypes with a gene diversity (Hd) of 0.977 and a nucleotide diversity (π) of 0.00404. The genetic variability of RNA-dependent RNA-polymerase (RdRp) was higher than that of the putative coat protein (CP) p42. Further analysis revealed that STV isolates were likely to be recombinant but with a lower-to-moderate level of confidence. With a variable distribution pattern of positively and negatively selected sites, negative selection pressure predominantly acted on p42 and RdRp. These findings elaborated on the molecular variability and evolutionary trends among STV populations across major tomato-producing regions of the world.
Collapse
|
11
|
Moubset O, François S, Maclot F, Palanga E, Julian C, Claude L, Fernandez E, Rott P, Daugrois JH, Antoine-Lorquin A, Bernardo P, Blouin AG, Temple C, Kraberger S, Fontenele RS, Harkins GW, Ma Y, Marais A, Candresse T, Chéhida SB, Lefeuvre P, Lett JM, Varsani A, Massart S, Ogliastro M, Martin DP, Filloux D, Roumagnac P. Virion-Associated Nucleic Acid-Based Metagenomics: A Decade of Advances in Molecular Characterization of Plant Viruses. PHYTOPATHOLOGY 2022; 112:2253-2272. [PMID: 35722889 DOI: 10.1094/phyto-03-22-0096-rvw] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the last decade, viral metagenomic studies have resulted in the discovery of thousands of previously unknown viruses. These studies are likely to play a pivotal role in obtaining an accurate and robust understanding of how viruses affect the stability and productivity of ecosystems. Among the metagenomics-based approaches that have been developed since the beginning of the 21st century, shotgun metagenomics applied specifically to virion-associated nucleic acids (VANA) has been used to disentangle the diversity of the viral world. We summarize herein the results of 24 VANA-based studies, focusing on plant and insect samples conducted over the last decade (2010 to 2020). Collectively, viruses from 85 different families were reliably detected in these studies, including capsidless RNA viruses that replicate in fungi, oomycetes, and plants. Finally, strengths and weaknesses of the VANA approach are summarized and perspectives of applications in detection, epidemiological surveillance, environmental monitoring, and ecology of plant viruses are provided. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Oumaima Moubset
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | | - François Maclot
- Plant Pathology Laboratory, Terra, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | - Essowè Palanga
- Institut Togolais de Recherche Agronomique (ITRA-CRASS), B.P. 129, Kara, Togo
| | - Charlotte Julian
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Lisa Claude
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Emmanuel Fernandez
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Philippe Rott
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Jean-Heinrich Daugrois
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | | | | - Arnaud G Blouin
- Plant Pathology Laboratory, Terra, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
- Plant Protection Department, Agroscope, 1260, Nyon, Switzerland
| | - Coline Temple
- Plant Pathology Laboratory, Terra, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, U.S.A
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, U.S.A
| | - Gordon W Harkins
- South African Medical Research Council Capacity Development Unit, South African National Bioinformatics, Institute, University of the Western Cape, South Africa
| | - Yuxin Ma
- Univ. Bordeaux, INRAE, UMR BFP, 33140 Villenave d'Ornon, France
| | - Armelle Marais
- Univ. Bordeaux, INRAE, UMR BFP, 33140 Villenave d'Ornon, France
| | | | | | | | | | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, U.S.A
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Sébastien Massart
- Plant Pathology Laboratory, Terra, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | | | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Denis Filloux
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
12
|
Li Y, Liu S, Guo K, Ding W, Wang R. Virome of Pseudostellaria heterophylla: Identification and characterization of three novel carlaviruses and one novel amalgavirus associated with viral diseases of Pseudostellaria heterophylla. Front Microbiol 2022; 13:955089. [PMID: 36246219 PMCID: PMC9559581 DOI: 10.3389/fmicb.2022.955089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Pseudostellaria heterophylla is a traditional Chinese herbal medicine, which has been cultivated for hundreds of years. Viral diseases of P. heterophylla occur widely and limit the yield and quality of this medicinal plant. In this study, five leaf samples of P. heterophylla with typical viral symptoms were collected from four main producing regions that are distributed in Fujian, Guizhou, and Anhui Provinces in China and analyzed by next-generation sequencing. Comprehensive bioinformatics analyses revealed that nine viruses in five genera Carlavirus, Potyvirus, Fabavirus, Cucumovirus, and Amalgavirus infected P. heterophylla. Among these viruses, three novel and two known carlaviruses, tentatively designated Pseudostellaria heterophylla carlavirus 1, 2, and 3 (PhCV1, PhCV2, and PhCV3), Jasmine virus C isolate Ph (Ph-JVC) and Stevia carlavirus 1 isolate Ph (Ph-StCV1), respectively, were first identified in P. heterophylla. PhCV1-3 share a similar genomic organization and clear sequence homology with members in the genus Carlavirus and could potentially be classified as new species of this genus. One novel amalgavirus, tentatively designated P. heterophylla amalgavirus 1 (PhAV1), was first identified in P. heterophylla. It had a typical genomic organization of the genus Amalgavirus. In PhAV1, the + 1 programmed ribosomal frameshifting, which is prevalent in most amalgaviruses, was identified and used in the expression of RNA-dependent RNA polymerase (RdRp). Combined with a phylogenetic analysis, PhAV1 could potentially be classified as new species of the genus Amalgavirus. In addition, multiple Broad bean wilt virus 2 (BBWV2) variants, Turnip mosaic virus (TuMV), and Cucumber mosaic virus (CMV), which have been reported in P. heterophylla, were also detected in this study. The distribution of PhCV1-3, Ph-JVC, Ph-StCV1, TuMV, BBWV2, and CMV in four production regions in Fujian, Guizhou, and Anhui Provinces was determined. This study increased our understanding of P. heterophylla virome and provided valuable information for the development of a molecular diagnostic technique and control of viral diseases in P. heterophylla.
Collapse
|
13
|
Yang J, Lan PX, Li JM, Chen XJ, Tan GL, Wei TY, Li RH, Li F. Complete genome sequence of Aconitum amalgavirus 1, a distinct member of the genus Amalgavirus. Arch Virol 2022; 167:2351-2353. [PMID: 35842550 DOI: 10.1007/s00705-022-05521-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
Abstract
A novel virus named Aconitum amalgavirus 1 (AcoAV-1) was identified in Chinese aconite (Aconitum carmichaelii) plants. The complete genome of AcoAV-1 is 3,370 nucleotides long, containing two partially overlapping open reading frames encoding a putative coat protein and a RNA-dependent RNA polymerase, respectively. Its fusion protein shares 34.9%-50.7% amino acid sequence identity with other amalgaviruses. Phylogenetic analysis showed that this virus formed a clade with blueberry latent virus and four other related viruses, suggesting that it belongs to the genus Amalgavirus in the family Amalgaviridae.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Ping-Xiu Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Jin-Ming Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiao-Jiao Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Guan-Lin Tan
- Modern Education Technology Center, Yunnan Agricultural University, Kunming, 650201, China
| | - Tai-Yun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ru-Hui Li
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA.
| | - Fan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
14
|
The full-length genome sequence of a novel amalgavirus in Lilium spp. in China. Arch Virol 2022; 167:2103-2107. [PMID: 35834002 DOI: 10.1007/s00705-022-05523-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
Abstract
We report for the first time the complete genome sequence of a novel amalgavirus, tentatively designated as 'lily amalgavirus 1' (LAV-1), isolated from Lilium spp. in China. LAV-1 is a 3448-nt double-stranded RNA virus that encodes two putative proteins. Open reading frame 1 (ORF1) encodes a 394-aa protein with unknown function. ORF2 encodes a putative RNA-dependent RNA polymerase (RdRp) of 895 aa. The two ORFs putatively encode a '1 + 2' fusion protein generated by a '+1' programmed ribosomal frameshift (PRF). BLASTp analysis revealed that the complete genome sequence of LAV-1 shares 48.23-59.80% sequence identity (query sequence coverage > 77%) with those of members of the genus Amalgavirus, with the highest nucleotide sequence identity of 59.80% with that of Allium cepa amalgavirus 1 (query sequence coverage, 87%). The genome structure, phylogenetic relationships, and sequence similarities to other plant amalgaviruses suggest that LAV-1 is a new member of the genus Amalgavirus.
Collapse
|
15
|
García-Estrada RS, Diaz-Lara A, Aguilar-Molina VH, Tovar-Pedraza JM. Viruses of Economic Impact on Tomato Crops in Mexico: From Diagnosis to Management-A Review. Viruses 2022; 14:1251. [PMID: 35746722 PMCID: PMC9228091 DOI: 10.3390/v14061251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Tomato is the most economically important vegetable crop worldwide and the second most important for Mexico. However, viral diseases are among the main limiting factors that affect the productivity of this crop, causing total losses in some cases. This review provides key information and findings on the symptoms, distribution, transmission, detection, and management of diseases caused by viruses of major importance in tomato crops in Mexico. Currently, about 25 viruses belonging to nine different families have been reported infecting tomato in Mexico, but not all of them cause economically significant diseases. Viruses of economic importance include tomato brown rugose fruit virus (ToBRFV), tomato spotted wilt virus (TSWV), tomato yellow leaf curl virus (TYLCV), pepino mosaic virus (PepMV), and tomato marchitez virus (ToMarV). The topics discussed here will provide updated information about the status of these plant viruses in Mexico as well as diverse management strategies that can be implemented according to the specific circumstances of each viral pathosystem. Additionally, a list of tomato-affecting viruses not present in Mexico that are continuous threats to the crop health is included.
Collapse
Affiliation(s)
- Raymundo Saúl García-Estrada
- Laboratorio de Fitopatología, Coordinación Regional Culiacán, Centro de Investigación en Alimentación y Desarrollo, Culiacán 80110, Mexico;
| | - Alfredo Diaz-Lara
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Santiago de Querétaro 76130, Mexico; (A.D.-L.); (V.H.A.-M.)
| | - Vivian Hayde Aguilar-Molina
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Santiago de Querétaro 76130, Mexico; (A.D.-L.); (V.H.A.-M.)
| | - Juan Manuel Tovar-Pedraza
- Laboratorio de Fitopatología, Coordinación Regional Culiacán, Centro de Investigación en Alimentación y Desarrollo, Culiacán 80110, Mexico;
| |
Collapse
|
16
|
Vendrell-Mir P, Perroud PF, Haas FB, Meyberg R, Charlot F, Rensing SA, Nogué F, Casacuberta JM. A vertically transmitted amalgavirus is present in certain accessions of the bryophyte Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1786-1797. [PMID: 34687260 DOI: 10.1111/tpj.15545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
In the last few years, next-generation sequencing techniques have started to be used to identify new viruses infecting plants. This has allowed to rapidly increase our knowledge on viruses other than those causing symptoms in economically important crops. Here we used this approach to identify a virus infecting Physcomitrium patens that has the typical structure of the double-stranded RNA endogenous viruses of the Amalgaviridae family, which we named Physcomitrium patens amalgavirus 1, or PHPAV1. PHPAV1 is present only in certain accessions of P. patens, where its RNA can be detected throughout the cell cycle of the plant. Our analysis demonstrates that PHPAV1 can be vertically transmitted through both paternal and maternal germlines, in crosses between accessions that contain the virus with accessions that do not contain it. This work suggests that PHPAV1 can replicate in genomic backgrounds different from those that actually contain the virus and opens the door for future studies on virus-host coevolution.
Collapse
Affiliation(s)
- Pol Vendrell-Mir
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| | - Pierre-François Perroud
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Rabea Meyberg
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Florence Charlot
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Josep M Casacuberta
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
17
|
Galipienso L, Elvira-González L, Velasco L, Herrera-Vásquez JÁ, Rubio L. Detection of Persistent Viruses by High-Throughput Sequencing in Tomato and Pepper from Panama: Phylogenetic and Evolutionary Studies. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112295. [PMID: 34834658 PMCID: PMC8620285 DOI: 10.3390/plants10112295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
High-throughput sequencing from symptomatic tomato and pepper plants collected in Panama rendered the complete genome of the southern tomato virus (isolate STV_Panama) and bell pepper endornavirus (isolate BPEV_Panama), and almost-complete genomes of three other BPEV isolates. Tomato chlorosis virus, tomato mosaic virus, and impatiens necrotic spot virus were also detected. Analysis of the complete genome of STV and BPEV worldwide isolates revealed nucleotide diversities of 0.004246 and 0.070523, respectively. Bayesian phylogenetic analysis showed two main groups for each virus (I and II), and several subgroups for BPEV (IA, IB, IC, IIA and IIB). Isolate STV_Panama clustered with NC_12-03-08 from USA and Tom3-T from France (99.97% nucleotide identity) in Group I and BPEV_Panama was close to the Canadian isolate BPEV_Ontario (99.66% nucleotide identity) in Subgroup IB. No correlation was observed between geographic and genetic distances for both viruses. Panamanian BPEV isolates were divergent, belonging to Groups I and II (nucleotide identities > 87.33%). Evolutionary analysis showed purifying selection in all encoding regions of both viruses, being stronger in the overlapping region of both STV genes. Finally, recombination was detected in BPEV but not in STV. This is the first report of STV and BPEV in Panama.
Collapse
Affiliation(s)
- Luis Galipienso
- Plant Protection and Biotechnology Center of the Valencian Institute of Agricultural Research, 46113 Moncada, Valencia, Spain;
| | - Laura Elvira-González
- Subtropical and Mediterranean Horticulture Institute (LaMayora), 29010 Algarrobo-Costa, Málaga, Spain;
| | - Leonardo Velasco
- Churriana Center of Andalusian Institute of Agricultural Research, 29140 Churriana, Málaga, Spain;
| | | | - Luis Rubio
- Plant Protection and Biotechnology Center of the Valencian Institute of Agricultural Research, 46113 Moncada, Valencia, Spain;
| |
Collapse
|
18
|
Zhang K, Zhuang X, Xu H, Gan H, He Z, Chen J. Development of polyclonal antibodies-based serological methods and a DIG-labelled DNA probe-based molecular method for detection of the Vicia cryptic virus-M in field plants. J Virol Methods 2021; 299:114331. [PMID: 34648821 DOI: 10.1016/j.jviromet.2021.114331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/12/2021] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Abstract
Vicia cryptic virus M (VCV-M), a member of the genus Amalgavirus of the family Amalgaviridae, was first identified in 2009 in a Vicia faba Linn. planting in Hangzhou, Zhejiang Province, China. However, there has been no further research on the biological features of VCV-M to date and the viral particles and coat protein (CP) have not been identified. The putative CP of VCV-M was predicted from the viral genomic RNA. In this study, a recombinant version of the putative CP of VCV-M (His-CPVCV-M) was produced and used to prepare a polyclonal antiserum against the His-CPVCV-M. Using this antiserum, a Western blot, an immuno-dot-blot and an enzyme-linked immunosorbent assay were developed for testing field samples of V. faba for the presence of VCV-M. Additionally, a digoxigenin (DIG)-labelled DNA probe-based Northern blot assay was established for VCV-M genome detection in field samples. The results showed that both the serological and nucleic acid assays could accurately and sensitively detect VCV-M in V. faba. This research represented the first confirmed expression of the putative CP of VCV-M in infected V. faba tissues. The serological and nucleic acid assays provided two complementary methods for VCV-M detection which could contribute to seed quality control and production increases of V. faba crops.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plant Pathology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xinjian Zhuang
- Department of Plant Pathology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Hongmei Xu
- Department of Plant Pathology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Haifeng Gan
- Department of Plant Pathology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Zhen He
- Department of Plant Pathology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Jiahuan Chen
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| |
Collapse
|
19
|
Known and New Emerging Viruses Infecting Blueberry. PLANTS 2021; 10:plants10102172. [PMID: 34685980 PMCID: PMC8539497 DOI: 10.3390/plants10102172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
Blueberry (Vaccinium spp.) plants are exposed to existing and emerging viruses as a result of expanding acreage of blueberry plantations across the world, primarily in North America. Since blueberry is cultivated in areas where there are wild Vaccinium spp., there is increasing risk of virus movement between wild and cultivated blueberries. This is theoretically possible because viruses can spread from commercial cultivars to native species and vice versa causing the spread of existing and new viruses. The occurrence of these viruses in blueberry can be devastating to the industry considering the cost for cultivation and production of this perennial crop. However, the advent of high-throughput sequencing and bioinformatic sequence analysis have allowed for rapid identification of known and novel viruses in any crop including blueberry, thus facilitating proper intervention in response to serious viral diseases. In this paper, we aim to focus on the current status of known and novel viruses emerging in blueberry worldwide, which may impact the blueberry industry.
Collapse
|
20
|
Vučurović A, Kutnjak D, Mehle N, Stanković I, Pecman A, Bulajić A, Krstić B, Ravnikar M. Detection of Four New Tomato Viruses in Serbia Using Post Hoc High-Throughput Sequencing Analysis of Samples From a Large-Scale Field Survey. PLANT DISEASE 2021; 105:2325-2332. [PMID: 33761774 DOI: 10.1094/pdis-09-20-1915-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tomato production worldwide is affected by numerous plant virus species. The early and accurate detection of viruses is a critical step for disease control. However, the simultaneous detection of the most known tomato viruses can be difficult because of the high number and diversity of tomato-infecting viruses. Here, we have identified four new viruses in Serbia by applying target-independent small RNA high-throughput sequencing (HTS). HTS was applied on pools of samples and separate samples, in total comprising 30 tomato samples that exhibited (severe) virus-like symptoms and were collected in Serbia during three annual surveys (2011 to 2013). These samples had previously tested negative for the presence of 16 tomato viruses using targeted detection methods. Three divergent complete genome sequences of Physostegia chlorotic mottled virus were obtained from different localities, indicating for the first time that this virus is widespread in Serbia and might represent an emergent viral pathogen of tomato. The tomato torrado virus was detected at one locality with devastating yield losses. The southern tomato virus was detected at two localities, and the spinach latent virus was detected at one locality. In addition, we detected the presence of one already-known virus in Serbia, the tomato spotted wilt orthotospovirus. All the HTS results were subsequently confirmed by targeted detection methods. In this study, the successful application of post hoc HTS testing of a limited number of pooled samples resulted in the discovery of new viruses. Thus, our results encourage the use of HTS in research and diagnostic laboratories, including laboratories that have limited resources to resolve disease etiology.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- Institute of Phytomedicine, Department of Phytopathology, University of Belgrade-Faculty of Agriculture, 11080 Belgrade, Serbia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Ivana Stanković
- Institute of Phytomedicine, Department of Phytopathology, University of Belgrade-Faculty of Agriculture, 11080 Belgrade, Serbia
| | - Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Aleksandra Bulajić
- Institute of Phytomedicine, Department of Phytopathology, University of Belgrade-Faculty of Agriculture, 11080 Belgrade, Serbia
| | - Branka Krstić
- Institute of Phytomedicine, Department of Phytopathology, University of Belgrade-Faculty of Agriculture, 11080 Belgrade, Serbia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- University of Nova Gorica, 5000 Nova Gorica, Slovenia
| |
Collapse
|
21
|
Rivarez MPS, Vučurović A, Mehle N, Ravnikar M, Kutnjak D. Global Advances in Tomato Virome Research: Current Status and the Impact of High-Throughput Sequencing. Front Microbiol 2021; 12:671925. [PMID: 34093492 PMCID: PMC8175903 DOI: 10.3389/fmicb.2021.671925] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses cause a big fraction of economically important diseases in major crops, including tomato. In the past decade (2011–2020), many emerging or re-emerging tomato-infecting viruses were reported worldwide. In this period, 45 novel viral species were identified in tomato, 14 of which were discovered using high-throughput sequencing (HTS). In this review, we first discuss the role of HTS in these discoveries and its general impact on tomato virome research. We observed that the rate of tomato virus discovery is accelerating in the past few years due to the use of HTS. However, the extent of the post-discovery characterization of viruses is lagging behind and is greater for economically devastating viruses, such as the recently emerged tomato brown rugose fruit virus. Moreover, many known viruses still cause significant economic damages to tomato production. The review of databases and literature revealed at least 312 virus, satellite virus, or viroid species (in 22 families and 39 genera) associated with tomato, which is likely the highest number recorded for any plant. Among those, here, we summarize the current knowledge on the biology, global distribution, and epidemiology of the most important species. Increasing knowledge on tomato virome and employment of HTS to also study viromes of surrounding wild plants and environmental samples are bringing new insights into the understanding of epidemiology and ecology of tomato-infecting viruses and can, in the future, facilitate virus disease forecasting and prevention of virus disease outbreaks in tomato.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,School for Viticulture and Enology, University of Nova Gorica, Nova Gorica, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
22
|
Elvira González L, Peiró R, Rubio L, Galipienso L. Persistent Southern Tomato Virus (STV) Interacts with Cucumber Mosaic and/or Pepino Mosaic Virus in Mixed- Infections Modifying Plant Symptoms, Viral Titer and Small RNA Accumulation. Microorganisms 2021; 9:689. [PMID: 33810543 PMCID: PMC8066132 DOI: 10.3390/microorganisms9040689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
Southern tomato virus (STV) is a persistent virus that was, at the beginning, associated with some tomato fruit disorders. Subsequent studies showed that the virus did not induce apparent symptoms in single infections. Accordingly, the reported symptoms could be induced by the interaction of STV with other viruses, which frequently infect tomato. Here, we studied the effect of STV in co- and triple-infections with Cucumber mosaic virus (CMV) and Pepino mosaic virus (PepMV). Our results showed complex interactions among these viruses. Co-infections leaded to a synergism between STV and CMV or PepMV: STV increased CMV titer and plant symptoms at early infection stages, whereas PepMV only exacerbated the plant symptoms. CMV and PepMV co-infection showed an antagonistic interaction with a strong decrease of CMV titer and a modification of the plant symptoms with respect to the single infections. However, the presence of STV in a triple-infection abolished this antagonism, restoring the CMV titer and plant symptoms. The siRNAs analysis showed a total of 78 miRNAs, with 47 corresponding to novel miRNAs in tomato, which were expressed differentially in the plants that were infected with these viruses with respect to the control mock-inoculated plants. These miRNAs were involved in the regulation of important functions and their number and expression level varied, depending on the virus combination. The number of vsiRNAs in STV single-infected tomato plants was very small, but STV vsiRNAs increased with the presence of CMV and PepMV. Additionally, the rates of CMV and PepMV vsiRNAs varied depending on the virus combination. The frequencies of vsiRNAs in the viral genomes were not uniform, but they were not influenced by other viruses.
Collapse
Affiliation(s)
- Laura Elvira González
- Biotechnology and Plant Protection Center, Valencian Institute of Agricultural Research (IVIA), 46113 Valencia, Spain; (L.E.G.); (L.R.)
- Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Rosa Peiró
- Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Luis Rubio
- Biotechnology and Plant Protection Center, Valencian Institute of Agricultural Research (IVIA), 46113 Valencia, Spain; (L.E.G.); (L.R.)
| | - Luis Galipienso
- Biotechnology and Plant Protection Center, Valencian Institute of Agricultural Research (IVIA), 46113 Valencia, Spain; (L.E.G.); (L.R.)
| |
Collapse
|
23
|
Mahillon M, Decroës A, Caulier S, Tiendrebeogo A, Legrève A, Bragard C. Genomic and biological characterization of a novel partitivirus infecting Fusarium equiseti. Virus Res 2021; 297:198386. [PMID: 33716183 DOI: 10.1016/j.virusres.2021.198386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
This study describes a new mycovirus infecting a strain from the Fusarium incarnatum-equiseti species complex. Based on phylogenetic and genomic analyses, this virus belongs to the recently proposed genus "Zetapartitivirus" in the family Partitiviridae. The name "Fusarium equiseti partitivirus 1″ (FePV1) is therefore suggested for this novel viral species. Similar to other partitiviruses, FePV1 genome is composed by two dsRNA segments that exhibit each one large ORF encoding for an RdRp and a CP, respectively. A smaller dsRNA was also detected in infected mycelium and could be a satellite RNA of FePV1. In addition to characterized zetapartitiviruses, other FePV1-related sequences were retrieved from online databases and their significance is discussed. Following conidial isolation, an FePV1-free isogenic line of the fungal host was obtained. In comparison with the original infected strain, this line showed higher growth, biomass production and pathogenicity on tomato, advocating that FePV1 induces hypovirulence on its host.
Collapse
Affiliation(s)
- Mathieu Mahillon
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Alain Decroës
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Simon Caulier
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Assiata Tiendrebeogo
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium; Natural System, Agrosystem and Environmental Engineering, Phytopathology, Nazi Boni University, Bobo-Dioulasso, Burkina-Faso
| | - Anne Legrève
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
24
|
Frequent asymptomatic infection with tobacco ringspot virus on melon fruit. Virus Res 2020; 293:198266. [PMID: 33347906 DOI: 10.1016/j.virusres.2020.198266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022]
Abstract
Melon is one of the most popular fruits worldwide and has been bred into various cultivars. RNA-sequencing using healthy melon fruit was performed to determine differences in gene expression among cultivars. Unexpected RNA-seq results revealed that viruses asymptomatically infected fruits at a high frequency (16 of 21 fruits examined were infected) and that viral transcripts highly accumulated in comparison with host transcripts (15 %-75 % of total reads). Their nucleotide sequences and phylogenetic analyses indicated that more than 10 novel isolates of tobacco ringspot virus (TRSV) were found in melon fruits. Asymptomatic infection with TRSV on melon fruits was confirmed by both immunoblot and RT-PCR analyses. Numerous isolates of TRSV generated and maintained in melon fields, and this is likely due to their asymptomatic infections. This TRSV melon isolate infected Nicotiana benthamiana plants with stunting and yellowing symptoms. This is the first report of frequent and asymptomatic infection of TRSV in consumable melon fruits.
Collapse
|
25
|
Charon J, Marcelino VR, Wetherbee R, Verbruggen H, Holmes EC. Metatranscriptomic Identification of Diverse and Divergent RNA Viruses in Green and Chlorarachniophyte Algae Cultures. Viruses 2020; 12:v12101180. [PMID: 33086653 PMCID: PMC7594059 DOI: 10.3390/v12101180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Our knowledge of the diversity and evolution of the virosphere will likely increase dramatically with the study of microbial eukaryotes, including the microalgae within which few RNA viruses have been documented. By combining total RNA sequencing with sequence and structural-based homology detection, we identified 18 novel RNA viruses in cultured samples from two major groups of microbial algae: the chlorophytes and the chlorarachniophytes. Most of the RNA viruses identified in the green algae class Ulvophyceae were related to the Tombusviridae and Amalgaviridae viral families commonly associated with land plants. This suggests that the evolutionary history of these viruses extends to divergence events between algae and land plants. Seven Ostreobium sp-associated viruses exhibited sequence similarity to the mitoviruses most commonly found in fungi, compatible with horizontal virus transfer between algae and fungi. We also document, for the first time, RNA viruses associated with chlorarachniophytes, including the first negative-sense (bunya-like) RNA virus in microalgae, as well as a distant homolog of the plant virus Virgaviridae, potentially signifying viral inheritance from the secondary chloroplast endosymbiosis that marked the origin of the chlorarachniophytes. More broadly, these data suggest that the scarcity of RNA viruses in algae results from limited investigation rather than their absence.
Collapse
Affiliation(s)
- Justine Charon
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (V.R.M.)
| | - Vanessa Rossetto Marcelino
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (V.R.M.)
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Richard Wetherbee
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; (R.W.); (H.V.)
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; (R.W.); (H.V.)
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (V.R.M.)
- Correspondence: ; Tel.: +61-2-9351-5591
| |
Collapse
|
26
|
Charon J, Marcelino VR, Wetherbee R, Verbruggen H, Holmes EC. Metatranscriptomic Identification of Diverse and Divergent RNA Viruses in Green and Chlorarachniophyte Algae Cultures. Viruses 2020; 12:v12101180. [PMID: 33086653 DOI: 10.1101/2020.06.08.141184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/26/2023] Open
Abstract
Our knowledge of the diversity and evolution of the virosphere will likely increase dramatically with the study of microbial eukaryotes, including the microalgae within which few RNA viruses have been documented. By combining total RNA sequencing with sequence and structural-based homology detection, we identified 18 novel RNA viruses in cultured samples from two major groups of microbial algae: the chlorophytes and the chlorarachniophytes. Most of the RNA viruses identified in the green algae class Ulvophyceae were related to the Tombusviridae and Amalgaviridae viral families commonly associated with land plants. This suggests that the evolutionary history of these viruses extends to divergence events between algae and land plants. Seven Ostreobium sp-associated viruses exhibited sequence similarity to the mitoviruses most commonly found in fungi, compatible with horizontal virus transfer between algae and fungi. We also document, for the first time, RNA viruses associated with chlorarachniophytes, including the first negative-sense (bunya-like) RNA virus in microalgae, as well as a distant homolog of the plant virus Virgaviridae, potentially signifying viral inheritance from the secondary chloroplast endosymbiosis that marked the origin of the chlorarachniophytes. More broadly, these data suggest that the scarcity of RNA viruses in algae results from limited investigation rather than their absence.
Collapse
Affiliation(s)
- Justine Charon
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Vanessa Rossetto Marcelino
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Richard Wetherbee
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
27
|
Identification of Viruses and Viroids Infecting Tomato and Pepper Plants in Vietnam by Metatranscriptomics. Int J Mol Sci 2020; 21:ijms21207565. [PMID: 33066322 PMCID: PMC7593927 DOI: 10.3390/ijms21207565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022] Open
Abstract
Tomato (Lycopersicum esculentum L.) and pepper (Capsicum annuum L.) plants belonging to the family Solanaceae are cultivated worldwide. The rapid development of next-generation sequencing (NGS) technology facilitates the identification of viruses and viroids infecting plants. In this study, we carried out metatranscriptomics using RNA sequencing followed by bioinformatics analyses to identify viruses and viroids infecting tomato and pepper plants in Vietnam. We prepared a total of 16 libraries, including eight tomato and eight pepper libraries derived from different geographical regions in Vietnam. We identified a total of 602 virus-associated contigs, which were assigned to 18 different virus species belonging to nine different viral genera. We identified 13 different viruses and two viroids infecting tomato plants and 12 viruses and two viroids infecting pepper plants with viruses as dominantly observed pathogens. Our results showed that multiple infection of different viral pathogens was common in both plants. Moreover, geographical region and host plant were two major factors to determine viral populations. Taken together, our results provide the comprehensive overview of viral pathogens infecting two important plants in the family Solanaceae grown in Vietnam.
Collapse
|
28
|
Mata CP, Rodríguez JM, Suzuki N, Castón JR. Structure and assembly of double-stranded RNA mycoviruses. Adv Virus Res 2020; 108:213-247. [PMID: 33837717 DOI: 10.1016/bs.aivir.2020.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycoviruses are a diverse group that includes ssRNA, dsRNA, and ssDNA viruses, with or without a protein capsid, as well as with a complex envelope. Most mycoviruses are transmitted by cytoplasmic interchange and are thought to lack an extracellular phase in their infection cycle. Structural analysis has focused on dsRNA mycoviruses, which usually package their genome in a 120-subunit T=1 icosahedral capsid, with a capsid protein (CP) dimer as the asymmetric unit. The atomic structure is available for four dsRNA mycovirus from different families: Saccharomyces cerevisiae virus L-A (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). Their capsids show structural variations of the same framework, with asymmetric or symmetric CP dimers respectively for ScV-L-A and PsV-F, dimers of similar domains of a single CP for PcV, or of two different proteins for RnQV1. The CP dimer is the building block, and assembly proceeds through dimers of dimers or pentamers of dimers, in which the genome is packed as ssRNA by interaction with CP and/or viral polymerase. These capsids remain structurally undisturbed throughout the viral cycle. The T=1 capsid participates in RNA synthesis, organizing the viral polymerase (1-2 copies) and a single loosely packaged genome segment. It also acts as a molecular sieve, to allow the passage of viral transcripts and nucleotides, but to prevent triggering of host defense mechanisms. Due to the close mycovirus-host relationship, CP evolved to allocate peptide insertions with enzyme activity, as reflected in a rough outer capsid surface.
Collapse
Affiliation(s)
- Carlos P Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Javier M Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
29
|
Bejerman N, Roumagnac P, Nemchinov LG. High-Throughput Sequencing for Deciphering the Virome of Alfalfa ( Medicago sativa L.). Front Microbiol 2020; 11:553109. [PMID: 33042059 PMCID: PMC7518122 DOI: 10.3389/fmicb.2020.553109] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Alfalfa (Medicago sativa L.), also known as lucerne, is a major forage crop worldwide. In the United States, it has recently become the third most valuable field crop, with an estimated value of over $9.3 billion. Alfalfa is naturally infected by many different pathogens, including viruses, obligate parasites that reproduce only inside living host cells. Traditionally, viral infections of alfalfa have been considered by breeders, growers, producers and researchers to be diseases of limited importance, although they are widespread in all major cultivation areas. However, over the past few years, due to the rapid development of high-throughput sequencing (HTS), viral metagenomics, bioinformatics tools for interpreting massive amounts of HTS data and the increasing accessibility of public data repositories for transcriptomic discoveries, several emerging viruses of alfalfa with the potential to cause serious yield losses have been described. They include alfalfa leaf curl virus (family Geminiviridae), alfalfa dwarf virus (family Rhabdoviridae), alfalfa enamovirus 1 (family Luteoviridae), alfalfa virus S (family Alphaflexiviridae) and others. These discoveries have called into question the assumed low economic impact of viral diseases in alfalfa and further suggested their possible contribution to the severity of complex infections involving multiple pathogens. In this review, we will focus on viruses of alfalfa recently described in different laboratories on the basis of the above research methodologies.
Collapse
Affiliation(s)
| | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France.,BGPI, INRAE, CIRAD, Institut Agro, Université Montpellier, Montpellier, France
| | - Lev G Nemchinov
- Molecular Plant Pathology Laboratory, USDA-ARS-BARC, Beltsville, MD, United States
| |
Collapse
|
30
|
Dolja VV, Krupovic M, Koonin EV. Deep Roots and Splendid Boughs of the Global Plant Virome. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:23-53. [PMID: 32459570 DOI: 10.1146/annurev-phyto-030320-041346] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Land plants host a vast and diverse virome that is dominated by RNA viruses, with major additional contributions from reverse-transcribing and single-stranded (ss) DNA viruses. Here, we introduce the recently adopted comprehensive taxonomy of viruses based on phylogenomic analyses, as applied to the plant virome. We further trace the evolutionary ancestry of distinct plant virus lineages to primordial genetic mobile elements. We discuss the growing evidence of the pivotal role of horizontal virus transfer from invertebrates to plants during the terrestrialization of these organisms, which was enabled by the evolution of close ecological associations between these diverse organisms. It is our hope that the emerging big picture of the formation and global architecture of the plant virome will be of broad interest to plant biologists and virologists alike and will stimulate ever deeper inquiry into the fascinating field of virus-plant coevolution.
Collapse
Affiliation(s)
- Valerian V Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331-2902, USA;
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
31
|
Geographically distant isolates of the persistent southern tomato virus (STV) show very low genetic diversity in the putative coat protein gene. Virus Genes 2020; 56:668-672. [PMID: 32737756 DOI: 10.1007/s11262-020-01785-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Southern tomato virus (STV) from genus Amalgavirus (Family Amalgaviridae) is a persistent virus infecting tomato crops worldwide. Information on genetic diversity and evolutionary mechanisms for plant persistent viruses are very scarce in comparison with plant acute viruses. In this work, the putative coat protein gene of worldwide STV isolates was analyzed showing very low nucleotide diversity (< 0.0100). Phylogenetic analysis separated STV isolates into two clades, but no correlation was found between genetic and geographic distances. Also, no recombination events among STV isolates were detected. Comparison of synonymous and nonsynonymous substitutions indicated negative selection at the amino acid level.
Collapse
|
32
|
Zhang K, Xu H, Zhuang X, Zang Y, Chen J. First report of vicia cryptic virus M infecting cowpea (Vigna unguiculata) in China. PLANT DISEASE 2020; 105:234. [PMID: 32734848 DOI: 10.1094/pdis-05-20-1148-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cowpea (Vigna unguiculata) is a crop grown worldwide as a protein source for food and feed (Lonardi et al. 2019). During the summer of 2019, noticeable virus-like symptoms such as mosaic, leaf narrowing, stunt and chlorosis were observed on cowpeas 'Xianfeng' planted in Yangzhou city and its suburbs, Jiangsu Province, East China (Supplementary Fig. S1A). The total RNA was extracted from both symptomatic and asymptomatic plants by RNAiso Plus (TaKaRa, Dalian, China) and sRNAs were separated and recovered by gel purification. The NEBNext Ultra II RNA Library Prep Kit for Illumina (NEB, UK) was used for sRNA library construction. The library was sequenced with the paired-end method on the Illumina Hiseq 2000 platform (Sangon, Shanghai, China). The obtained sequencing files were treated with Illumina's CASAVA pipeline (version 1.8). The reads resulting from sequencing were further processed with adaptor removing, and the most abundant sRNAs were distributed from 21-24 nt (Supplementary Fig. S1B). The de novo assembly was performed with the Velvet Software 0.7.31 (k=17), and the obtained contigs (∼12,000, Contigs > 500 bp) were used perform a BLAST search against the GenBank viral reference database. Fifteen contigs with high similarities of 98.61% to 99.64% and coverage of 94% to the reported vicia cryptic virus M (VCV-M) genomic sequence (GenBank accession No. EU371896) were identified. Other common viruses, such as cowpea mosaic virus (CPMV), cowpea aphid-borne mosaic virus (CABMV), and cucumber mosaic virus (CMV), were also included (Unpublished).VCV-M belongs to the genus Amalgavirus, family Amalgaviridae (Nibert et al. 2016). Amalgaviruses are efficiently transmitted through seeds but not mechanically or by grafting (Sabanadzovic et al. 2009). To confirm the presence of VCV-M in the collected plants, total RNA was isolated and the first-strand cDNA was prepared by M-MLV reverse transcriptase (TaKaRa, Dalian, China) using specific primers. Primers (Supplementary Table SI) were designed according to the assembled contigs. Polymerase chain reaction (PCR) was performed to amplify the targeted genomic fragment of VCV-M, and the predicted 3,434 bp amplicon was obtained from five cowpea plants (Supplementary Fig. S1C). A randomly selected amplicon was purified with the TIANgel Midi Purification Kit (Tiangen, Beijing, China) and cloned to pMD19-T (TaKaRa, Dalian, China) for sequencing (Sangon, Shanghai, China). The obtained consensus sequence (GenBank accession No. MN015673) was analyzed and showed 99.39% similarity with the reported VCV-M genome (GenBank accession No. EU371896). To confirm the occurrence and distribution of VCV-M infection, 17 cowpea samples of different cultivars (4 with yellowing and stunt symptoms and 13 without visible symptoms) were collected from different regions of Jiangsu Province and tested using RT-PCR with specific primers (Supplementary Fig. S1C). They were further tested by western blot (WB) detection as described previously (Zhang et al. 2017). Specific CPVCV-M antiserum was obtained by immunizing the New Zealand white rabbits with the prokaryotic expressed recombinant His-CPVCV-M protein (HuaBio, Hangzhou, China). WB results (Supplementary Fig. S1D) and RT-PCR resulted in five samples that were positive out of a total of 17 samples, suggesting the VCV-M infection is common in cowpea plants. To determine whether the VCV-M was the causal agent or contributor to the observed symptoms, we investigated the presence of other cowpea-infecting viruses (CPMV, CABMV, and CMV) in these samples through RT-PCR with specific primers for each virus (Supplementary Table SI) and ELISA with commercial kits. RT-PCR and ELISA detection results showed mixed infection by VCV-M/CPMV (n = 1), VCV-M/CABMV (n = 1), VCV-M/CMV (n = 1), or VCV-M/CPMV/CABMV/CMV (n = 2). The VCV-M/CABMV co-infected sample was asymptomatic. Taken together, the symptoms on cowpea could not be attributed to one particular viral infection. To further confirm VCV-M infection, we selected four samples (two positive and two negative, as determined by RT-PCR and WB) for northern blot assay. The probe was prepared with the DIG Random Labeling and Detection Kit I (POD) for color detection with DAB (BOSTER, Wuhan, China). The Northern blot assay was performed as previously described with minor modifications (Prosniak et al. 2001). The results (Supplementary Fig. S1E) confirmed the accuracy of previous RT-PCR and WB analyses. To our knowledge, this is the first report of VCV-M infection of cowpea plants in China. Although it is commonly accepted that VCV-M causes no symptoms, the roles of such viruses in affecting their hosts' biological characteristics, which are often influenced by co-infection conditions, remains unclear.
Collapse
Affiliation(s)
- Kun Zhang
- Yangzhou University, 38043, Plant pathology, No. 88 of University South Road, Yangzhou, China, 225009;
| | - Hongmei Xu
- Yangzhou University, 38043, Plant pathology, Yangzhou, China;
| | - Xinjian Zhuang
- Yangzhou University, 38043, Plant pathology, Yangzhou, China;
| | - Ying Zang
- Yangzhou University, 38043, Plant pathology, Yangzhou, China;
| | - Jiahuan Chen
- Yangzhou University, 38043, Department of the Pharmacy, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China;
| |
Collapse
|
33
|
I. Sardi S, H. Carvalho R, C. Pacheco LG, P. d. Almeida JP, M. d. A. Belitardo EM, S. Pinheiro C, S. Campos G, R. G. R. Aguiar E. High-Quality Resolution of the Outbreak-Related Zika Virus Genome and Discovery of New Viruses Using Ion Torrent-Based Metatranscriptomics. Viruses 2020; 12:v12070782. [PMID: 32708079 PMCID: PMC7411838 DOI: 10.3390/v12070782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 01/13/2023] Open
Abstract
Arboviruses, including the Zika virus, have recently emerged as one of the most important threats to human health. The use of metagenomics-based approaches has already proven valuable to aid surveillance of arboviral infections, and the ability to reconstruct complete viral genomes from metatranscriptomics data is key to the development of new control strategies for these diseases. Herein, we used RNA-based metatranscriptomics associated with Ion Torrent deep sequencing to allow for the high-quality reconstitution of an outbreak-related Zika virus (ZIKV) genome (10,739 nt), with extended 5'-UTR and 3'-UTR regions, using a newly-implemented bioinformatics approach. Besides allowing for the assembly of one of the largest complete ZIKV genomes to date, our strategy also yielded high-quality complete genomes of two arthropod-infecting viruses co-infecting C6/36 cell lines, namely: Alphamesonivirus 1 strain Salvador (20,194 nt) and Aedes albopictus totivirus-like (4618 nt); the latter likely represents a new viral species. Altogether, our results demonstrate that our bioinformatics approach associated with Ion Torrent sequencing allows for the high-quality reconstruction of known and unknown viral genomes, overcoming the main limitation of RNA deep sequencing for virus identification.
Collapse
Affiliation(s)
- Silvia I. Sardi
- Laboratory of Virology, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia 40.110-100, Brazil; (S.I.S.); (R.H.C.); (G.S.C.)
| | - Rejane H. Carvalho
- Laboratory of Virology, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia 40.110-100, Brazil; (S.I.S.); (R.H.C.); (G.S.C.)
| | - Luis G. C. Pacheco
- Post-Graduate Program in Biotechnology, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia 40.110-100, Brazil; (L.G.C.P.); (C.S.P.)
| | - João P. P. d. Almeida
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte (UFMG), Minas Gerais 31270-901, Brazil;
| | - Emilia M. M. d. A. Belitardo
- Post-Graduate Program in Immunology, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia 40.110-100, Brazil;
| | - Carina S. Pinheiro
- Post-Graduate Program in Biotechnology, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia 40.110-100, Brazil; (L.G.C.P.); (C.S.P.)
| | - Gúbio S. Campos
- Laboratory of Virology, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia 40.110-100, Brazil; (S.I.S.); (R.H.C.); (G.S.C.)
| | - Eric R. G. R. Aguiar
- Post-Graduate Program in Biotechnology, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia 40.110-100, Brazil; (L.G.C.P.); (C.S.P.)
- Virus Bioinformatics Laboratory, Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900, Brazil
- Correspondence:
| |
Collapse
|
34
|
Description of a Novel Mycovirus in the Phytopathogen Fusarium culmorum and a Related EVE in the Yeast Lipomyces starkeyi. Viruses 2020; 12:v12050523. [PMID: 32397544 PMCID: PMC7290986 DOI: 10.3390/v12050523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/20/2022] Open
Abstract
A new mycovirus was found in the Fusarium culmorum strain A104-1 originally sampled on wheat in Belgium. This novel virus, for which the name Fusarium culmorum virus 1 (FcV1) is suggested, is phylogenetically related to members of the previously proposed family ‘’Unirnaviridae’’. FcV1 has a monopartite dsRNA genome of 2898 bp that harbors two large non-overlapping ORFs. A typical -1 slippery motif is found at the end of ORF1, advocating that ORF2 is translated by programmed ribosomal frameshifting. While ORF2 exhibits a conserved replicase domain, ORF1 encodes for an undetermined protein. Interestingly, a hypothetically transcribed gene similar to unirnaviruses ORF1 was found in the genome of Lipomyces starkeyi, presumably resulting from a viral endogenization in this yeast. Conidial isolation and chemical treatment were unsuccessful to obtain a virus-free isogenic line of the fungal host, highlighting a high retention rate for FcV1 but hindering its biological characterization. In parallel, attempt to horizontally transfer FcV1 to another strain of F. culmorum by dual culture failed. Eventually, a screening of other strains of the same fungal species suggests the presence of FcV1 in two other strains from Europe.
Collapse
|
35
|
Takahashi H, Fukuhara T, Kitazawa H, Kormelink R. Virus Latency and the Impact on Plants. Front Microbiol 2019; 10:2764. [PMID: 31866963 PMCID: PMC6908805 DOI: 10.3389/fmicb.2019.02764] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/12/2019] [Indexed: 11/15/2022] Open
Abstract
Plant viruses are thought to be essentially harmful to the lives of their cultivated crop hosts. In most cases studied, the interaction between viruses and cultivated crop plants negatively affects host morphology and physiology, thereby resulting in disease. Native wild/non-cultivated plants are often latently infected with viruses without any clear symptoms. Although seemingly non-harmful, these viruses pose a threat to cultivated crops because they can be transmitted by vectors and cause disease. Reports are accumulating on infections with latent plant viruses that do not cause disease but rather seem to be beneficial to the lives of wild host plants. In a few cases, viral latency involves the integration of full-length genome copies into the host genome that, in response to environmental stress or during certain developmental stages of host plants, can become activated to generate and replicate episomal copies, a transition from latency to reactivation and causation of disease development. The interaction between viruses and host plants may also lead to the integration of partial-length segments of viral DNA genomes or copy DNA of viral RNA genome sequences into the host genome. Transcripts derived from such integrated viral elements (EVEs) may be beneficial to host plants, for example, by conferring levels of virus resistance and/or causing persistence/latency of viral infections. Studies on viral latency in wild host plants might help us to understand and elucidate the underlying mechanisms of latency and provide insights into the raison d’être for viruses in the lives of plants.
Collapse
Affiliation(s)
- Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences and Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
36
|
Ma Y, Marais A, Lefebvre M, Faure C, Candresse T. Metagenomic analysis of virome cross-talk between cultivated Solanum lycopersicum and wild Solanum nigrum. Virology 2019; 540:38-44. [PMID: 31734382 DOI: 10.1016/j.virol.2019.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/03/2023]
Abstract
Wild plants and weeds growing close to crops constitute a potential reservoir for future epidemies or for the emergence of novel viruses but the frequency and directionality of viral flow between cultivated and wild plants remains poorly documented in many cases. Here, we studied the diversity of viral populations between tomato (Solanum lycopersicum) and neighboring european black nightshade (Solanum nigrum) using high throughput sequencing (HTS) based metagenomics. A large variability in virome richness with only 17.9% shared Operational Taxonomy Units between tomato and nightshade, but this richness could not be linked to a particular host or to local conditions. A detailed population analysis based on assembled contigs for potato virus Y (PVY), broad wilt bean virus 1 and a new ilarvirus tentatively named Solanum nigrum ilarvirus 1 provides information on the circulation of these viruses between these two Solanum species and enriches our knowledge of the tomato virome.
Collapse
Affiliation(s)
- Yuxin Ma
- UMR 1332 BFP, INRA, Univ. Bordeaux, CS20032, 33882, Villenave d'Ornon Cedex, France
| | - Armelle Marais
- UMR 1332 BFP, INRA, Univ. Bordeaux, CS20032, 33882, Villenave d'Ornon Cedex, France
| | - Marie Lefebvre
- UMR 1332 BFP, INRA, Univ. Bordeaux, CS20032, 33882, Villenave d'Ornon Cedex, France
| | - Chantal Faure
- UMR 1332 BFP, INRA, Univ. Bordeaux, CS20032, 33882, Villenave d'Ornon Cedex, France
| | - Thierry Candresse
- UMR 1332 BFP, INRA, Univ. Bordeaux, CS20032, 33882, Villenave d'Ornon Cedex, France.
| |
Collapse
|
37
|
Fukuhara T, Tabara M, Koiwa H, Takahashi H. Effect of asymptomatic infection with southern tomato virus on tomato plants. Arch Virol 2019; 165:11-20. [PMID: 31620899 DOI: 10.1007/s00705-019-04436-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
Southern tomato virus (STV) is often found infecting healthy tomato plants (Solanum lycopersicum). In this study, we compared STV-free and STV-infected plants of cultivar M82 to determine the effect of STV infection on the host plant. STV-free plants exhibited a short and bushy phenotype, whereas STV-infected plants were taller. STV-infected plants produced more fruit than STV-free plants, and the germination rate of seeds from STV-infected plants was higher than that of seeds from STV-free plants. This phenotypic difference was also observed in progeny plants (siblings) derived from a single STV-infected plant in which the transmission rate of STV to progeny plants via the seeds was approximately 86%. These results suggest that the interaction between STV and host plants is mutualistic. Transcriptome analysis revealed that STV infection affects gene expression in the host plant and results in downregulation of genes involved in ethylene biosynthesis and signaling. STV-infected tomato plants might thus be artificially selected due to their superior traits as a crop.
Collapse
Affiliation(s)
- Toshiyuki Fukuhara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan. .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
| | - Midori Tabara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Hisashi Koiwa
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.,Molecular and Environmental Plant Sciences, Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai, 980-0845, Japan
| |
Collapse
|
38
|
Jamal A, Sato Y, Shahi S, Shamsi W, Kondo H, Suzuki N. Novel Victorivirus from a Pakistani Isolate of Alternaria alternata Lacking a Typical Translational Stop/Restart Sequence Signature. Viruses 2019; 11:E577. [PMID: 31242660 PMCID: PMC6631646 DOI: 10.3390/v11060577] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/27/2023] Open
Abstract
The family Totiviridae currently contains five genera Totivirus, Victorivirus, Leishmavirus, Trichomonasvirus, and Giardiavirus. Members in this family generally have a set of two-open reading frame (ORF) elements in their genome with the 5'-proximal ORF (ORF1) encoding a capsid protein (CP) and the 3'-proximal one (ORF2) for RNA-dependent RNA polymerase (RdRp). How the downstream open reading frames (ORFs) are expressed is genus-specific. All victoriviruses characterized thus far appear to use the stop/restart translation mechanism, allowing for the expression of two separate protein products from bicitronic genome-sized viral mRNA, while the totiviruses use a -1 ribosomal frame-shifting that leads to a fusion product of CP and RdRp. We report the biological and molecular characterization of a novel victorivirus termed Alternaria alternata victorivirus 1 (AalVV1) isolated from Alternaria alternata in Pakistan. The phylogenetic and molecular analyses showed AalVV1 to be distinct from previously reported victoriviruses. AalVV1 appears to have a sequence signature required for the -1 frame-shifting at the ORF1/2 junction region, rather than a stop/restart key mediator. By contrast, SDS-polyacrylamide gel electrophoresis and peptide mass fingerprinting analyses of purified virion preparations suggested the expression of two protein products, not a CP-RdRp fusion product. How these proteins are expressed is discussed in this study. Possible effects of infection by this virus were tested in two fungal species: A. alternata and RNA silencing proficient and deficient strains of Cryphonectria parasitica, a model filamentous fungus. AalVV1 showed symptomless infection in all of these fungal strains, even in the RNA silencing deficient C. parasitica strain.
Collapse
Affiliation(s)
- Atif Jamal
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
- Crop Diseases Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan.
| | - Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| | - Sabitree Shahi
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| | - Wajeeha Shamsi
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| |
Collapse
|
39
|
Nerva L, Vigani G, Di Silvestre D, Ciuffo M, Forgia M, Chitarra W, Turina M. Biological and Molecular Characterization of Chenopodium quinoa Mitovirus 1 Reveals a Distinct Small RNA Response Compared to Those of Cytoplasmic RNA Viruses. J Virol 2019; 93:e01998-18. [PMID: 30651361 PMCID: PMC6430534 DOI: 10.1128/jvi.01998-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
Indirect evidence of mitochondrial viruses in plants comes from discovery of genomic fragments integrated into the nuclear and mitochondrial DNA of a number of plant species. Here, we report the existence of replicating mitochondrial virus in plants: from transcriptome sequencing (RNA-seq) data of infected Chenopodium quinoa, a plant species commonly used as a test plant in virus host range experiments, among other virus contigs, we could assemble a 2.7-kb contig that had highest similarity to mitoviruses found in plant genomes. Northern blot analyses confirmed the existence of plus- and minus-strand RNA corresponding to the mitovirus genome. No DNA corresponding to the genomic RNA was detected, excluding the endogenization of such virus. We have tested a number of C. quinoa accessions, and the virus was present in a number of commercial varieties but absent from a large collection of Bolivian and Peruvian accessions. The virus could not be transmitted mechanically or by grafting, but it is transmitted vertically through seeds at a 100% rate. Small RNA analysis of a C. quinoa line carrying the mitovirus and infected by alfalfa mosaic virus showed that the typical antiviral silencing response active against cytoplasmic viruses (21- to 22-nucleotide [nt] vsRNA peaks) is not active against CqMV1, since in this specific case the longest accumulating vsRNA length is 16 nt, which is the same as that corresponding to RNA from mitochondrial genes. This is evidence of a distinct viral RNA degradation mechanism active inside mitochondria that also may have an antiviral effect.IMPORTANCE This paper reports the first biological characterization of a bona fide plant mitovirus in an important crop, Chenopodium quinoa, providing data supporting that mitoviruses have the typical features of cryptic (persistent) plant viruses. We, for the first time, demonstrate that plant mitoviruses are associated with mitochondria in plants. In contrast to fungal mitoviruses, plant mitoviruses are not substantially affected by the antiviral silencing pathway, and the most abundant mitovirus small RNA length is 16 nt.
Collapse
Affiliation(s)
- L Nerva
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
| | - G Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - D Di Silvestre
- Institute for Biomedical Technology, CNR, Segrate, Milan, Italy
| | - M Ciuffo
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
| | - M Forgia
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - W Chitarra
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
| | - M Turina
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
| |
Collapse
|
40
|
Detection and Characterization of Cucumis melo Cryptic Virus, Cucumis melo Amalgavirus 1, and Melon Necrotic Spot Virus in Cucumis melo. Viruses 2019; 11:v11010081. [PMID: 30669373 PMCID: PMC6356274 DOI: 10.3390/v11010081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/06/2019] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
Three RNA viruses—Cucumis melo cryptic virus (CmCV), Cucumis melo amalgavirus 1 (CmAV1), and melon necrotic spot virus (MNSV)—were identified from a melon (Cucumis melo) transcriptome dataset. CmCV has two dsRNA genome segments; dsRNA-1 is 1592 bp in size, containing a conserved RNA-dependent RNA polymerase (RdRp), and dsRNA-2 is 1715 bp in size, and encodes a coat protein (CP). The sequence alignment and phylogenetic analyses of the CmCV RdRp and CP indicated CmCV clusters with approved or putative deltapartitiviruses in well-supported monophyletic clade. The RdRp of CmCV shared an amino acid sequence identity of 60.7% with the closest RdRp of beet cryptic virus 3, and is <57% identical to other partitiviruses. CmAV1 is a nonsegmented dsRNA virus with a genome of 3424 bp, including two partially overlapping open reading frames (ORFs) encoding a putative CP and RdRp. The sequence alignment and phylogenetic analyses of CmAV1 RdRp revealed that it belongs to the genus Amalgavirus in the family Amalgaviridae. The RdRp of CmAV1 shares 57.7% of its amino acid sequence identity with the most closely related RdRp of Phalaenopsis equestris amalgavirus 1, and is <47% identical to the other reported amalgaviruses. These analyses suggest that CmCV and CmAV1 are novel species in the genera Amalgavirus and Deltapartitivirus, respectively. These findings enrich our understanding of new plant dsRNA virus species.
Collapse
|
41
|
Lee JS, Goh CJ, Park D, Hahn Y. Identification of a novel plant RNA virus species of the genus Amalgavirus in the family Amalgaviridae from chia (Salvia hispanica). Genes Genomics 2019; 41:10.1007/s13258-019-00782-1. [PMID: 30649686 DOI: 10.1007/s13258-019-00782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Chia (Salvia hispanica) is a flowering plant in the family Lamiaceae, which produces seeds that are a rich source of various nutritional compounds. OBJECTIVE To identify a novel RNA virus potentially associated with chia. METHODS Transcriptome data obtained from developing chia seeds were assembled into contigs. Sequence contigs containing an open reading frame (ORF) that showed amino acid identities with a viral RNA-dependent RNA polymerase (RdRp) were identified and analyzed. RESULTS A genomic sequence of a novel plant RNA virus named Salvia hispanica RNA virus 1 (ShRV1) was identified in a chia seed transcriptome dataset. The ShRV1 genome sequence has two ORFs that showed high sequence identities with ORFs of known members of the genus Amalgavirus in the family Amalgaviridae. Amalgaviridae is a family of positive-sense double-stranded non-segmented RNA viruses that infect plants, fungi, and animals. The ShRV1 genome encodes two proteins: a putative replication factory matrix-like protein from ORF1 and an RdRp from the fused ORF of ORF1 and ORF2 by a + 1 programmed ribosomal frameshifting (PRF) mechanism. A conserved + 1 PRF motif sequence UUU_CGU was found at the ORF1/ORF2 boundary. A comparison of 31 amalgavirus ORF1 + 2 fusion proteins revealed that only three positions were repeatedly used as a + 1 PRF site during amalgavirus evolution. CONCLUSION ShRV1 is a novel virus found to be associated with chia and may be useful for studying the molecular features of amalgaviruses.
Collapse
Affiliation(s)
- Ji Seok Lee
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Chul Jun Goh
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Dongbin Park
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea.
| |
Collapse
|
42
|
Roossinck MJ. Evolutionary and ecological links between plant and fungal viruses. THE NEW PHYTOLOGIST 2019; 221:86-92. [PMID: 30084143 DOI: 10.1111/nph.15364] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 86 I. Introduction 86 II. Lineages shared by plant and fungal viruses 87 III. Virus transmission between plants and fungi 90 IV. Additional plant virus families identified in fungi by metagenomics 91 Acknowledgements 91 References 91 SUMMARY: Plants and microorganisms have been interacting in both positive and negative ways for millions of years. They are also frequently infected with viruses that can have positive or negative impacts. A majority of virus families with members that infect fungi have counterparts that infect plants, and in some cases the phylogenetic analyses of these virus families indicate transmission between the plant and fungal kingdoms. These similarities reflect the host relationships; fungi are evolutionarily more closely related to animals than to plants but share very few viral signatures with animal viruses. The details of several of these interactions are described, and the evolutionary implications of viral cross-kingdom interactions and horizontal gene transfer are proposed.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
43
|
Wolf YI, Kazlauskas D, Iranzo J, Lucía-Sanz A, Kuhn JH, Krupovic M, Dolja VV, Koonin EV. Origins and Evolution of the Global RNA Virome. mBio 2018; 9:e02329-18. [PMID: 30482837 PMCID: PMC6282212 DOI: 10.1128/mbio.02329-18] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 01/12/2023] Open
Abstract
Viruses with RNA genomes dominate the eukaryotic virome, reaching enormous diversity in animals and plants. The recent advances of metaviromics prompted us to perform a detailed phylogenomic reconstruction of the evolution of the dramatically expanded global RNA virome. The only universal gene among RNA viruses is the gene encoding the RNA-dependent RNA polymerase (RdRp). We developed an iterative computational procedure that alternates the RdRp phylogenetic tree construction with refinement of the underlying multiple-sequence alignments. The resulting tree encompasses 4,617 RNA virus RdRps and consists of 5 major branches; 2 of the branches include positive-sense RNA viruses, 1 is a mix of positive-sense (+) RNA and double-stranded RNA (dsRNA) viruses, and 2 consist of dsRNA and negative-sense (-) RNA viruses, respectively. This tree topology implies that dsRNA viruses evolved from +RNA viruses on at least two independent occasions, whereas -RNA viruses evolved from dsRNA viruses. Reconstruction of RNA virus evolution using the RdRp tree as the scaffold suggests that the last common ancestors of the major branches of +RNA viruses encoded only the RdRp and a single jelly-roll capsid protein. Subsequent evolution involved independent capture of additional genes, in particular, those encoding distinct RNA helicases, enabling replication of larger RNA genomes and facilitating virus genome expression and virus-host interactions. Phylogenomic analysis reveals extensive gene module exchange among diverse viruses and horizontal virus transfer between distantly related hosts. Although the network of evolutionary relationships within the RNA virome is bound to further expand, the present results call for a thorough reevaluation of the RNA virus taxonomy.IMPORTANCE The majority of the diverse viruses infecting eukaryotes have RNA genomes, including numerous human, animal, and plant pathogens. Recent advances of metagenomics have led to the discovery of many new groups of RNA viruses in a wide range of hosts. These findings enable a far more complete reconstruction of the evolution of RNA viruses than was attainable previously. This reconstruction reveals the relationships between different Baltimore classes of viruses and indicates extensive transfer of viruses between distantly related hosts, such as plants and animals. These results call for a major revision of the existing taxonomy of RNA viruses.
Collapse
Affiliation(s)
- Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Adriana Lucía-Sanz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
- Centro Nacional de Biotecnología, Madrid, Spain
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Mart Krupovic
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
44
|
Pecman A, Kutnjak D, Mehle N, Žnidarič MT, Gutiérrez-Aguirre I, Pirnat P, Adams I, Boonham N, Ravnikar M. High-Throughput Sequencing Facilitates Characterization of a "Forgotten" Plant Virus: The Case of a Henbane Mosaic Virus Infecting Tomato. Front Microbiol 2018; 9:2739. [PMID: 30510545 PMCID: PMC6254090 DOI: 10.3389/fmicb.2018.02739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/26/2018] [Indexed: 01/17/2023] Open
Abstract
High-throughput sequencing has dramatically broadened the possibilities for plant virus research and diagnostics, enabling discovery of new or obscure viruses, and virus strains and rapid sequencing of their genomes. In this research, we employed high-throughput sequencing to discover a new virus infecting tomato, Henbane mosaic virus (Potyvirus, Potyviridae), which was first discovered at the beginning of 20th century in the United Kingdom in cultivated henbane. A field tomato plant with severe necrotic symptoms of unknown etiology was sampled in Slovenia and high-throughput sequencing analysis using small RNA and ribosomal RNA depleted total RNA approaches revealed a mixed infection with Potato virus M (Carlavirus, Betaflexiviridae), Southern tomato virus (Amalgavirus, Amalgamaviridae) and henbane mosaic virus in the sample. The complete genomic sequence of henbane mosaic virus was assembled from the sequencing reads. By re-inoculation of the infected material on selected test plants, henbane mosaic virus was isolated and a host range analysis was performed, demonstrating the virus was pathogenic on several plant species. Due to limited metadata in public repositories, the taxonomic identification of the virus isolate was initially putative. Thus, in the next step, we used small RNA sequencing to determine genomic sequences of four historic isolates of the virus, obtained from different virus collections. Phylogenetic analyses performed using this new sequence information enabled us to taxonomically position Henbane mosaic virus as a member of the Potyvirus genus within the chili veinal mottle virus phylogenetic cluster and define the relationship of the new tomato isolate with the historic ones, indicating the existence of at least four putative strains of the virus. The first detection of henbane mosaic virus in tomato and demonstration of its pathogenicity on this host is important for plant protection and commercial tomato production. Since the virus was initially present in a mixed infection, and its whole genome was not sequenced, it has probably been overlooked in routine diagnostics. This study confirms the applicability of a combination of high-throughput sequencing and classic plant virus characterization methods for identification and phylogenetic classification of obscure viruses and historical viral isolates, for which no or limited genome sequence data is available.
Collapse
Affiliation(s)
- Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Ian Adams
- Fera Science Ltd., York, United Kingdom
| | - Neil Boonham
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Wine Research Centre, University of Nova Gorica, Nova Gorica, Slovenia
| |
Collapse
|
45
|
Turco S, Golyaev V, Seguin J, Gilli C, Farinelli L, Boller T, Schumpp O, Pooggin MM. Small RNA-Omics for Virome Reconstruction and Antiviral Defense Characterization in Mixed Infections of Cultivated Solanum Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:707-723. [PMID: 29424662 DOI: 10.1094/mpmi-12-17-0301-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In plants, RNA silencing-based antiviral defense generates viral small RNAs (sRNAs) faithfully representing the viral genomes. We employed sRNA sequencing and bioinformatics (sRNA-omics) to characterize antiviral defense and to reconstruct the full genomic sequences and their variants in the evolving viral quasispecies in cultivated solanaceous plants carrying mixed infections. In naturally infected Solanum tuberosum (potato), one case study revealed a virome comprising Potato virus Y (genus Potyvirus) and Potato virus X (genus Potexvirus), which was reconstructed by de novo-assembling separate genome-size sRNA contigs. Another case study revealed a virome comprising NTN and O strains of Potato virus Y, whose sRNAs assembled in chimeric contigs, which could be disentangled on the basis of reference genome sequences. Both viromes were stable in vegetative potato progeny. In a cross-protection trial of Solanum lycopersicum (tomato), the supposedly protective mild strain CH2 of Pepino mosaic virus (genus Potexvirus) was tested for protection against strain LP of the same virus. Reciprocal mechanical inoculations eventually resulted in co-infection of all individual plants with CH2 and LP strains, reconstructed as separate sRNA contigs. LP invasions into CH2-preinfected plants and vice versa were accompanied by alterations of consensus genome sequences in viral quasispecies, indicating a potential risk of cross-protection measures. Additionally, the study also revealed, by reconstruction from sRNAs, the presence of the mechanically nontransmissible Southern tomato virus (genus Amalgavirus) in some plants. Our in-depth analysis of sRNA sizes, 5'-nucleotide frequencies and hotspot maps revealed similarities in sRNA-generating mechanisms in potato and tomato, differential silencing responses to virome components and potential for sRNA-directed cross-targeting between viral strains which could not, however, prevent the formation of stable viromes.
Collapse
Affiliation(s)
- Silvia Turco
- 1 Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland
| | - Victor Golyaev
- 1 Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland
| | - Jonathan Seguin
- 1 Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland
| | | | | | - Thomas Boller
- 1 Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland
| | | | - Mikhail M Pooggin
- 1 Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland
- 5 INRA, UMR BGPI, 34398 Montpellier, France
| |
Collapse
|
46
|
Park D, Goh CJ, Kim H, Hahn Y. Identification of Two Novel Amalgaviruses in the Common Eelgrass ( Zostera marina) and in Silico Analysis of the Amalgavirus +1 Programmed Ribosomal Frameshifting Sites. THE PLANT PATHOLOGY JOURNAL 2018; 34:150-156. [PMID: 29628822 PMCID: PMC5880360 DOI: 10.5423/ppj.nt.11.2017.0243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
The genome sequences of two novel monopartite RNA viruses were identified in a common eelgrass (Zostera marina) transcriptome dataset. Sequence comparison and phylogenetic analyses revealed that these two novel viruses belong to the genus Amalgavirus in the family Amalgaviridae. They were named Zostera marina amalgavirus 1 (ZmAV1) and Zostera marina amalgavirus 2 (ZmAV2). Genomes of both ZmAV1 and ZmAV2 contain two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. The fusion protein (ORF1+2) of ORF1 and ORF2, which mediates RNA replication, was produced using the +1 programmed ribosomal frameshifting (PRF) mechanism. The +1 PRF motif sequence, UUU_CGN, which is highly conserved among known amalgaviruses, was also found in ZmAV1 and ZmAV2. Multiple sequence alignment of the ORF1+2 fusion proteins from 24 amalgaviruses revealed that +1 PRF occurred only at three different positions within the 13-amino acid-long segment, which was surrounded by highly conserved regions on both sides. This suggested that the +1 PRF may be constrained by the structure of fusion proteins. Genome sequences of ZmAV1 and ZmAV2, which are the first viruses to be identified in common eelgrass, will serve as useful resources for studying evolution and diversity of amalgaviruses.
Collapse
Affiliation(s)
| | | | | | - Yoonsoo Hahn
- Corresponding author. Phone) +82-2-820-5812, FAX) +82-2-825-5206, E-mail)
| |
Collapse
|
47
|
Martínez RT, de Almeida MMS, Rodriguez R, de Oliveira AS, Melo FL, Resende RO. Identification and genome analysis of tomato chlorotic spot virus and dsRNA viruses from coinfected vegetables in the Dominican Republic by high-throughput sequencing. Virol J 2018; 15:24. [PMID: 29373979 PMCID: PMC5787326 DOI: 10.1186/s12985-018-0931-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/12/2018] [Indexed: 12/28/2022] Open
Abstract
The Tomato chlorotic spot virus (TCSV) was first reported in the 1980s, having its occurrence limited to Brazil and Argentina. Due to an apparent mild severity in the past, molecular studies concerning TCSV were neglected. However, TCSV has disseminated over the USA and Caribbean countries. In Dominican Republic TCSV has been recently reported on important cultivated crops such as pepper and beans. In this work, we provide the first complete genome of a TCSV isolate from symptomatic plants in Dominican Republic, which was obtained by high-throughput sequencing. In addition, three dsRNA viruses from different virus families were identified coinfecting these plants Bell pepper endornavirus (BPEV), Southern tomato virus (STV) and Pepper cryptic virus 2 (PCV-2). Phylogenetic analysis showed that the Dominican Republic TCSV isolate has a close relationship with other TCSV isolates and a reassortant isolate between TCSV and Groundnut ringspot virus (GRSV), all found in USA. BPEV, STV and PCV-2 isolates from Dominican Republic were close related to corresponding American isolates. The possible biological implications of these virus-mixed infections are discussed.
Collapse
Affiliation(s)
- Reina Teresa Martínez
- Universidad Autónoma de Santo Domingo-UASD and Instituto Dominicano de Investigaciones Agropecuarias y Florestales – IDIAF, Santo Domingo, Dominican Republic
| | | | - Rosalba Rodriguez
- Universidad Autónoma de Santo Domingo-UASD, Santo Domingo, Dominican Republic
| | | | - Fernando Lucas Melo
- Departamento de Biologia Celular, Universidade de Brasília, Brasilia, Brazil
| | | |
Collapse
|
48
|
Physiological traits of endornavirus-infected and endornavirus-free common bean (Phaseolus vulgaris) cv Black Turtle Soup. Arch Virol 2018; 163:1051-1056. [DOI: 10.1007/s00705-018-3702-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/25/2017] [Indexed: 11/26/2022]
|
49
|
A neo-virus lifestyle exhibited by a (+)ssRNA virus hosted in an unrelated dsRNA virus: Taxonomic and evolutionary considerations. Virus Res 2018; 244:75-83. [DOI: 10.1016/j.virusres.2017.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/04/2017] [Accepted: 11/05/2017] [Indexed: 12/21/2022]
|
50
|
Zaagueri T, Miozzi L, Mnari-Hattab M, Noris E, Accotto GP, Vaira AM. Deep Sequencing Data and Infectivity Assays Indicate that Chickpea Chlorotic Dwarf Virus is the Etiological Agent of the "Hard Fruit Syndrome" of Watermelon. Viruses 2017; 9:E311. [PMID: 29068372 PMCID: PMC5707518 DOI: 10.3390/v9110311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/13/2017] [Accepted: 10/21/2017] [Indexed: 11/25/2022] Open
Abstract
Chickpea chlorotic dwarf virus (CpCDV), a polyphagous mastrevirus, family Geminiviridae, has been recently linked to the onset of the "hard fruit syndrome" of watermelon, first described in Tunisia, that makes fruits unmarketable due to the presence of white hard portions in the flesh, chlorotic mottling on the rind, and an unpleasant taste. To investigate the etiological agent of this disease, total RNA extracted from symptomatic watermelon fruits was subjected to small RNA sequencing through next generation sequencing (NGS) techniques. Data obtained showed the presence of CpCDV and two other viral species. However, following validation through polymerase chain reaction (PCR), CpCDV was the only viral species consistently detected in all samples. Watermelon seedlings were then challenged by an agroinfectious CpCDV clone; several plants proved to be CpCDV-infected, and were able to produce fruits. CpCDV infected and replicated in watermelon fruits and leaves, leading to abnormality in fruits and in seed production, similar to those described in field. These results indicate that CpCDV is the etiological agent of the "hard fruit syndrome" of watermelon.
Collapse
Affiliation(s)
- Takoua Zaagueri
- Laboratoire de Biotechnologie Appliquée à l'Agriculture, Institut National de la Recherche Agronomique de Tunisie (INRAT), Université de Carthage, El Rue Hedi Karray Menzah, 1004 Tunis, Tunisia.
- Institute for Sustainable Plant Protection (IPSP), CNR, 10135 Turin, Italy.
| | - Laura Miozzi
- Institute for Sustainable Plant Protection (IPSP), CNR, 10135 Turin, Italy.
| | - Monia Mnari-Hattab
- Laboratoire de Biotechnologie Appliquée à l'Agriculture, Institut National de la Recherche Agronomique de Tunisie (INRAT), Université de Carthage, El Rue Hedi Karray Menzah, 1004 Tunis, Tunisia.
| | - Emanuela Noris
- Institute for Sustainable Plant Protection (IPSP), CNR, 10135 Turin, Italy.
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection (IPSP), CNR, 10135 Turin, Italy.
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection (IPSP), CNR, 10135 Turin, Italy.
| |
Collapse
|