1
|
Matsumoto Y, Honda T, Yasui F, Endo A, Sanada T, Toyama S, Takagi A, Munakata T, Kono R, Yamaji K, Yamamoto N, Saeki Y, Kohara M. Generation of a SARS-CoV-2-susceptible mouse model using adenovirus vector expressing human angiotensin-converting enzyme 2 driven by an elongation factor 1α promoter with leftward orientation. Front Immunol 2024; 15:1440314. [PMID: 39717778 PMCID: PMC11663739 DOI: 10.3389/fimmu.2024.1440314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/08/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction To analyze the molecular pathogenesis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a small animal model such as mice is needed: human angiotensin converting enzyme 2 (hACE2), the receptor of SARS-CoV-2, needs to be expressed in the respiratory tract of mice. Methods We conferred SARS-CoV-2 susceptibility in mice by using an adenoviral vector expressing hACE2 driven by an elongation factor 1α (EF1α) promoter with a leftward orientation. Results In this model, severe pneumonia like human COVID-19 was observed in SARS-CoV-2-infected mice, which was confirmed by dramatic infiltration of inflammatory cells in the lung with efficient viral replication. An early circulating strain of SARS-CoV-2 caused the most severe weight loss when compared to SARS-CoV-2 variants such as Alpha, Beta and Gamma, although histopathological findings, viral replication, and cytokine expression characteristics were comparable. Discussion We found that a distinct proteome of an early circulating strain infected lung characterized by elevated complement activation and blood coagulation, which were mild in other variants, can contribute to disease severity. Unraveling the specificity of early circulating SARS-CoV-2 strains is important in elucidating the origin of the pandemic.
Collapse
Affiliation(s)
- Yusuke Matsumoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tomoko Honda
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akinori Endo
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sakiko Toyama
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Asako Takagi
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tsubasa Munakata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Risa Kono
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kenzaburo Yamaji
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Naoki Yamamoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasushi Saeki
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
2
|
Harada E, Yoshida S, Imaizumi Y, Kawamura A, Ohtsuka T, Yoshida K. Dual-specificity tyrosine-regulated kinase 2 exerts anti-tumor effects by induction of G1 arrest in lung adenocarcinoma. Biochim Biophys Acta Gen Subj 2024; 1868:130600. [PMID: 38508285 DOI: 10.1016/j.bbagen.2024.130600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVES Lung cancer is a leading cause of cancer-related mortality and remains one of the most poorly prognosed disease worldwide. Therefore, it is necessary to identify novel molecular markers with potential therapeutic effects. Recent findings have suggested that dual-specificity tyrosine-regulated kinase 2 (DYRK2) plays a tumor suppressive role in colorectal, breast, and hepatic cancers; however, its effect and mechanism in lung cancer remain poorly understood. Therefore, this study aimed to investigate the tumor-suppressive role and molecular mechanism of DYRK2 in lung adenocarcinoma (LUAD) by in vitro experiments and xenograft models. MATERIALS AND METHODS The evaluation of DYRK2 expression was carried out using lung cancer cell lines and normal bronchial epithelial cells. Overexpression of DYRK2 was induced by an adenovirus vector, and cell proliferation was assessed through MTS assay and Colony Formation Assay. Cell cycle analysis was performed using flow cytometry. Additionally, proliferative capacity was evaluated in a xenograft model by subcutaneously implanting A549 cells into SCID mice (C·B17/Icr-scidjcl-scid/scid). RESULTS Immunoblotting assays showed that DYRK2 was downregulated in most LUAD cell lines. DYRK2 overexpression using adenovirus vectors significantly suppressed cell proliferation compared with that in the control group. Additionally, DYRK2 overexpression suppressed tumor growth in a murine subcutaneous xenograft model. Mechanistically, DYRK2 overexpression inhibited the proliferation of LUAD cells via p21-mediated G1 arrest, which was contingent on p53. CONCLUSION Taken together, these findings suggest that DYRK2 may serve as potential prognostic biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Eriko Harada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan; Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuta Imaizumi
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Akira Kawamura
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Ohtsuka
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Imaizumi Y, Yoshida S, Kanegae Y, Eto K, Yoshida K. Enforced dual-specificity tyrosine-regulated kinase 2 expression by adenovirus-mediated gene transfer inhibits tumor growth and metastasis of colorectal cancer. Cancer Sci 2022; 113:960-970. [PMID: 34932844 PMCID: PMC8898707 DOI: 10.1111/cas.15247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer is one of the most common gastrointestinal tumors with good outcomes; however, with distant metastasis, the outcomes are poor. Novel treatment methods are urgently needed. Our in vitro studies indicate that dual-specificity tyrosine-regulated kinase 2 (DYRK2) functions as a tumor suppressor in colorectal cancer by regulating cell survival, proliferation, and apoptosis induction. In addition, DYRK2 expression is decreased in tumor tissues compared to nontumor tissues in colorectal cancer, indicating a correlation with clinical prognosis. In this context, we devised a novel therapeutic strategy to overexpress DYRK2 in tumors by adenovirus-mediated gene transfer. The present study shows that overexpression of DYRK2 in colon cancer cell lines by adenovirus inhibits cell proliferation and induces apoptosis in vitro. Furthermore, in mouse subcutaneous xenograft and liver metastasis models, enforced expression of DYRK2 by direct or intravenous injection of adenovirus to the tumor significantly inhibits tumor growth. Taken together, these findings show that adenovirus-based overexpression of DYRK2 could be a novel gene therapy for liver metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Yuta Imaizumi
- Department of BiochemistryThe Jikei University School of MedicineTokyoJapan
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
| | - Saishu Yoshida
- Department of BiochemistryThe Jikei University School of MedicineTokyoJapan
| | - Yumi Kanegae
- Core Research Facilities for Basic ScienceResearch Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
| | - Ken Eto
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
| | - Kiyotsugu Yoshida
- Department of BiochemistryThe Jikei University School of MedicineTokyoJapan
| |
Collapse
|
4
|
Kato Y, Tabata H, Sato K, Nakamura M, Saito I, Nakanishi T. Adenovirus Vectors Expressing Eight Multiplex Guide RNAs of CRISPR/Cas9 Efficiently Disrupted Diverse Hepatitis B Virus Gene Derived from Heterogeneous Patient. Int J Mol Sci 2021; 22:10570. [PMID: 34638909 PMCID: PMC8508944 DOI: 10.3390/ijms221910570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B virus (HBV) chronically infects more than 240 million people worldwide, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Genome editing using CRISPR/Cas9 could provide new therapies because it can directly disrupt HBV genomes. However, because HBV genome sequences are highly diverse, the identical target sequence of guide RNA (gRNA), 20 nucleotides in length, is not necessarily present intact in the target HBV DNA in heterogeneous patients. Consequently, possible genome-editing drugs would be effective only for limited numbers of patients. Here, we show that an adenovirus vector (AdV) bearing eight multiplex gRNA expression units could be constructed in one step and amplified to a level sufficient for in vivo study with lack of deletion. Using this AdV, HBV X gene integrated in HepG2 cell chromosome derived from a heterogeneous patient was cleaved at multiple sites and disrupted. Indeed, four targets out of eight could not be cleaved due to sequence mismatches, but the remaining four targets were cleaved, producing irreversible deletions. Accordingly, the diverse X gene was disrupted at more than 90% efficiency. AdV containing eight multiplex gRNA units not only offers multiple knockouts of genes, but could also solve the problems of heterogeneous targets and escape mutants in genome-editing therapy.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/physiology
- CRISPR-Cas Systems
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/virology
- Cell Line, Tumor
- Gene Editing/methods
- Genetic Vectors/genetics
- HEK293 Cells
- Hep G2 Cells
- Hepatitis B virus/genetics
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/therapy
- Hepatitis B, Chronic/virology
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/therapy
- Liver Neoplasms/virology
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Viral Regulatory and Accessory Proteins/genetics
- Viral Regulatory and Accessory Proteins/metabolism
- Virus Replication/genetics
Collapse
Affiliation(s)
- Yuya Kato
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo 141-0021, Japan; (Y.K.); (H.T.); (M.N.); (T.N.)
| | - Hirotaka Tabata
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo 141-0021, Japan; (Y.K.); (H.T.); (M.N.); (T.N.)
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kumiko Sato
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Mariko Nakamura
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo 141-0021, Japan; (Y.K.); (H.T.); (M.N.); (T.N.)
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Izumu Saito
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo 141-0021, Japan; (Y.K.); (H.T.); (M.N.); (T.N.)
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tomoko Nakanishi
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo 141-0021, Japan; (Y.K.); (H.T.); (M.N.); (T.N.)
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
5
|
Nakanishi T, Maekawa A, Suzuki M, Tabata H, Sato K, Mori M, Saito I. Construction of adenovirus vectors simultaneously expressing four multiplex, double-nicking guide RNAs of CRISPR/Cas9 and in vivo genome editing. Sci Rep 2021; 11:3961. [PMID: 33597562 PMCID: PMC7889857 DOI: 10.1038/s41598-021-83259-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Simultaneous expression of multiplex guide RNAs (gRNAs) is valuable for knockout of multiple genes and also for effective disruption of a gene by introducing multiple deletions. We developed a method of Tetraplex-guide Tandem for construction of cosmids containing four and eight multiplex gRNA-expressing units in one step utilizing lambda in vitro packaging. Using this method, we produced an adenovirus vector (AdV) containing four multiplex-gRNA units for two double-nicking sets. Unexpectedly, the AdV could stably be amplified to the scale sufficient for animal experiments with no detectable lack of the multiplex units. When the AdV containing gRNAs targeting the H2-Aa gene and an AdV expressing Cas9 nickase were mixed and doubly infected to mouse embryonic fibroblast cells, deletions were observed in more than 80% of the target gene even using double-nicking strategy. Indels were also detected in about 20% of the target gene at two sites in newborn mouse liver cells by intravenous injection. Interestingly, when one double-nicking site was disrupted, the other was simultaneously disrupted, implying that two genes in the same cell may simultaneously be disrupted in the AdV system. The AdVs expressing four multiplex gRNAs could offer simultaneous knockout of four genes or two genes by double-nicking cleavages with low off-target effect.
Collapse
Affiliation(s)
- Tomoko Nakanishi
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo, 141-0021, Japan.
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| | - Aya Maekawa
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo, 141-0021, Japan
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Mariko Suzuki
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Hirotaka Tabata
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo, 141-0021, Japan
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Kumiko Sato
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Mai Mori
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo, 141-0021, Japan
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Izumu Saito
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Foundation, Shinagawa-ku, Tokyo, 141-0021, Japan
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
- Department of Human Genetics, Institute of National Center for Child Health and Development, Setagaya-ku, Tokyo, 157-8535, Japan
| |
Collapse
|
6
|
Yokoyama-Mashima S, Yogosawa S, Kanegae Y, Hirooka S, Yoshida S, Horiuchi T, Ohashi T, Yanaga K, Saruta M, Oikawa T, Yoshida K. Forced expression of DYRK2 exerts anti-tumor effects via apoptotic induction in liver cancer. Cancer Lett 2019; 451:100-109. [PMID: 30851422 DOI: 10.1016/j.canlet.2019.02.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/10/2019] [Accepted: 02/19/2019] [Indexed: 11/20/2022]
Abstract
Liver cancer is highly aggressive and globally exhibits a poor prognosis. Therefore, the identification of novel molecules that can become targets for future therapies is urgently required. We have reported that dual-specificity tyrosine-regulated kinase 2 (DYRK2) functions as a tumor suppressor by regulating cell survival, differentiation, proliferation and apoptosis. However, the research into its clinical application as a molecular target has remained to be explored. Here we showed that DYRK2 knockdown enhanced tumor growth of liver cancer cells. Conversely and more importantly, adenovirus-mediated overexpression of DYRK2 resulted in inhibition of cell proliferation and tumor growth, and induction of apoptosis both in vitro and in vivo. Furthermore, we found that liver cancer patients with low DYRK2 expression had a significantly shorter overall survival. Given the findings that DYRK2 regulates proliferation and apoptosis of cancer cells, DYRK2 expression could be a promising predictive marker of the prognosis in liver cancer. Stabilized or forced expression of DYRK2 may become thus a potential target for novel gene therapy against liver cancer.
Collapse
Affiliation(s)
- Shiho Yokoyama-Mashima
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan; Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Satomi Yogosawa
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Yumi Kanegae
- Core Research Facilities for Basic Science (Division of Molecular Genetics), Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinichi Hirooka
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Horiuchi
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Saruta
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsunekazu Oikawa
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
7
|
Oki H, Yazawa T, Baba Y, Kanegae Y, Sato H, Sakamoto S, Goto T, Saito I, Kurahashi K. Adenovirus vector expressing keratinocyte growth factor using CAG promoter impairs pulmonary function of mice with elastase-induced emphysema. Microbiol Immunol 2017; 61:264-271. [PMID: 28543309 DOI: 10.1111/1348-0421.12492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 11/29/2022]
Abstract
Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin-induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 109 plaque-forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF-vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF-positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase-induced emphysema, indicating that KGF-expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF-expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed.
Collapse
Affiliation(s)
- Hiroshi Oki
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama
| | - Takuya Yazawa
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama
| | - Yasuko Baba
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama
| | - Yumi Kanegae
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hanako Sato
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama
| | - Seiko Sakamoto
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama
| | - Takahisa Goto
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama
| | - Izumu Saito
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kiyoyasu Kurahashi
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama
| |
Collapse
|
8
|
Efficient genome replication of hepatitis B virus using adenovirus vector: a compact pregenomic RNA-expression unit. Sci Rep 2017; 7:41851. [PMID: 28157182 PMCID: PMC5291108 DOI: 10.1038/srep41851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023] Open
Abstract
The complicated replication mechanisms of hepatitis B virus (HBV) have impeded HBV studies and anti-HBV therapy development as well. Herein we report efficient genome replication of HBV applying adenovirus vectors (AdVs) showing high transduction efficiency. Even in primary hepatocytes derived from humanized mice the transduction efficiencies using AdVs were 450-fold higher compared than those using plasmids. By using an expression unit consisting of the CMV promoter, 1.03-copy HBV genome and foreign poly(A) signal, we successfully generated an improved AdV (HBV103-AdV) that efficiently provided 58 times more pregenomic RNA than previously reported AdVs. The HBV103-AdV-mediated HBV replication was easily and precisely detected using quantitative real-time PCR in primary hepatocytes as well as in HepG2 cells. Notably, when the AdV containing replication-defective HBV genome of 1.14 copy was transduced, we observed that HBV DNA-containing circular molecules (pseudo-ccc DNA) were produced, which were probably generated through homologous recombination. However, the replication-defective HBV103-AdV hardly yielded the pseudo-ccc, probably because the repeated sequences are vey short. Additionally, the efficacies of entecavir and lamivudine were quantitatively evaluated using this system at only 4 days postinfection with HBV103-AdVs. Therefore, this system offers high production of HBV genome replication and thus could become used widely.
Collapse
|
9
|
Islam MJ, Hikosaka K, Noritake H, Uddin MKM, Amin MB, Aoto K, Wu YX, Sato E, Kobayashi Y, Wakita T, Miura N. Pol I-transcribed hepatitis C virus genome RNA replicates, produces an infectious virus and leads to severe hepatic steatosis in transgenic mice. Biomed Res 2016; 36:159-67. [PMID: 26106045 DOI: 10.2220/biomedres.36.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Patients chronically infected with hepatitis C virus (HCV) are at risk of developing end-stage liver disease and hepatocellular carcinoma. Development of drugs to inhibit hepatocyte damage and a vaccine against HCV is hampered by the lack of a small animal model. We generated mice in which the viral genome RNA was always present in the hepatocytes using a special transgene. Here we show that the HCV genome RNA transcribed by Pol I polymerase can replicate and produce infectious viruses in mice. We obtained a transgenic mouse with 200 copies per haploid which we named the A line mouse. It produced ~ 3 × 10(6) HCV RNA copies/mL serum, which is at the comparable level as patients with chronic HCV infection. This mouse was immunotolerant to HCV and showed hepatic steatosis without any necroinflammation at the age of 6 months or hepatocellular carcinoma at the age of 15 months. Thus, the A line mouse can be used as an animal model for chronic HCV infection. This will enable better study of the abnormalities in metabolism and signal transduction in infected hepatocytes, and development of drugs that cure abnormalities.
Collapse
|
10
|
Deng G, Huang XJ, Luo HW, Huang FZ, Liu XY, Wang YH. Amelioration of carbon tetrachloride-induced cirrhosis and portal hypertension in rat using adenoviral gene transfer of Akt. World J Gastroenterol 2013; 19:7778-7787. [PMID: 24431897 PMCID: PMC3837279 DOI: 10.3748/wjg.v19.i43.7778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/28/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether a virus constitutively expressing active Akt is useful to prevent cirrhosis induced by carbon tetrachloride (CCl4).
METHODS: Using cre-loxp technique, we created an Ad-myr-HA-Akt virus, in which Akt is labeled by a HA tag and its expression is driven by myr promoter. Further, through measuring enzyme levels and histological structure, we determined the efficacy of this Ad-myr-HA-Akt virus in inhibiting the development of cirrhosis induced by CCl4 in rats. Lastly, using western blotting, we examined the expression levels and/or phosphorylation status of Akt, apoptotic mediators, endothelial nitric oxide synthase (eNOS), and markers for hepatic stellate cells activation to understand the underlying mechanisms of protective role of this virus.
RESULTS: The Ad-myr-HA-Akt virus was confirmed using polymerase chain reaction amplification of inserted Akt gene and sequencing for full length of inserted fragment, which was consistent with the sequence reported in the GenBank. The concentrations of Ad-myr-HA-Akt and adenoviral enhanced green fluorescent protein (Ad-EGFP) virus used in the current study were 5.5 × 1011 vp/mL. The portal vein diameter, peak velocity of blood flow, portal blood flow and congestion index were significantly increased in untreated, saline and Ad-EGFP cirrhosis groups when compared to normal control after the virus was introduced to animal through tail veil injection. In contrast, these parameters in the Akt cirrhosis group were comparable to normal control group. Compared to the normal control, the liver function (Alanine aminotransferase, Aspartate aminotransferase and Albumin) was significantly impaired in the untreated, saline and Ad-EGFP cirrhosis groups. The Akt cirrhosis group showed significant improvement of liver function when compared to the untreated, saline and Ad-EGFP cirrhosis groups. The Hyp level and portal vein pressure in Akt cirrhosis groups were also significantly lower than other cirrhosis groups. The results of HE and Van Gieson staining indicated that Akt group has better preservation of histological structure and less fibrosis than other cirrhosis groups. The percentage of apoptotic cell was greatly less in Akt cirrhosis group than in other cirrhosis groups. Akt group showed positive HA tag and an increased level of phosphorylated Akt as well as decreased levels of Fas. In contrast, Caspase-3 and Caspase-9 levels in Akt group were significantly lower than other cirrhosis groups. Noticeable decrease of DR5 and α-SMA and increase of phosphorylated eNOS were observed in the Akt group when compared to other cirrhosis groups. The NO level in liver was significantly higher in Akt group than other cirrhosis groups, which was consistent with the level of phosphorylated eNOS in these groups.
CONCLUSION: This study suggest that Ad-myr-HA-Akt virus is a useful tool to prevent CCl4-induced cirrhosis in rat model and Akt pathway may be a therapeutic target for human cirrhosis.
Collapse
|
11
|
Billerbeck E, de Jong Y, Dorner M, de la Fuente C, Ploss A. Animal models for hepatitis C. Curr Top Microbiol Immunol 2013; 369:49-86. [PMID: 23463197 DOI: 10.1007/978-3-642-27340-7_3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatitis C remains a global epidemic. Approximately 3 % of the world's population suffers from chronic hepatitis C, which is caused by hepatitis C virus (HCV)-a positive sense, single-stranded RNA virus of the Flaviviridae family. HCV has a high propensity for establishing a chronic infection. If untreated chronic HCV carriers can develop severe liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Antiviral treatment is only partially effective, costly, and poorly tolerated. A prophylactic or therapeutic vaccine for HCV does not exist. Mechanistic studies of virus-host interactions, HCV immunity, and pathogenesis as well as the development of more effective therapies have been hampered by the lack of a suitable small animal model. Besides humans, chimpanzees are the only species that is naturally susceptible to HCV infection. While experimentation in these large primates has yielded valuable insights, ethical considerations, limited availability, genetic heterogeneity, and cost limit their utility. In search for more tractable small animal models, numerous experimental approaches have been taken to recapitulate parts of the viral life cycle and/or aspects of viral pathogenesis that will be discussed in this review. Exciting new models and improvements in established models hold promise to further elucidate our understanding of chronic HCV infection.
Collapse
Affiliation(s)
- Eva Billerbeck
- Center for the Study of Hepatitis C, The Rockefeller University, NY, USA
| | | | | | | | | |
Collapse
|
12
|
Liu Y, Meyer C, Xu C, Weng H, Hellerbrand C, ten Dijke P, Dooley S. Animal models of chronic liver diseases. Am J Physiol Gastrointest Liver Physiol 2013; 304:G449-68. [PMID: 23275613 DOI: 10.1152/ajpgi.00199.2012] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic liver diseases are frequent and potentially life threatening for humans. The underlying etiologies are diverse, ranging from viral infections, autoimmune disorders, and intoxications (including alcohol abuse) to imbalanced diets. Although at early stages of disease the liver regenerates in the absence of the insult, advanced stages cannot be healed and may require organ transplantation. A better understanding of underlying mechanisms is mandatory for the design of new drugs to be used in clinic. Therefore, rodent models are being developed to mimic human liver disease. However, no model to date can completely recapitulate the "corresponding" human disorder. Limiting factors are the time frame required in humans to establish a certain liver disease and the fact that rodents possess a distinct immune system compared with humans and have different metabolic rates affecting liver homeostasis. These features account for the difficulties in developing adequate rodent models for studying disease progression and for testing new pharmaceuticals to be translated into the clinic. Nevertheless, traditional and new promising animal models that mimic certain attributes of chronic liver diseases are established and being used to deepen our understanding in the underlying mechanisms of distinct liver diseases. This review aims at providing a comprehensive overview of recent advances in animal models recapitulating different features and etiologies of human liver diseases.
Collapse
Affiliation(s)
- Yan Liu
- Department of Medicine II, Section Molecular Hepatology-Alcohol Associated Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Maekawa A, Pei Z, Suzuki M, Fukuda H, Ono Y, Kondo S, Saito I, Kanegae Y. Efficient production of adenovirus vector lacking genes of virus-associated RNAs that disturb cellular RNAi machinery. Sci Rep 2013; 3:1136. [PMID: 23355950 PMCID: PMC3555086 DOI: 10.1038/srep01136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 12/27/2012] [Indexed: 11/23/2022] Open
Abstract
First-generation adenovirus vectors (FG AdVs) are widely used in basic studies and gene therapy. However, virus-associated (VA) RNAs that act as small-interference RNAs are indeed transcribed from the vector genome. These VA RNAs can trigger the innate immune response. Moreover, VA RNAs are processed to functional viral miRNAs and disturb the expressions of numerous cellular genes. Therefore, VA-deleted AdVs lacking VA RNA genes would be advantageous for basic studies, both in vitro and in vivo. Here, we describe an efficient method of producing VA-deleted AdVs. First, a VA RNA-substituted “pre-vector” lacking the original VA RNA genes but alternatively possessing an intact VA RNA region flanked by a pair of FRTs was constructed. VA-deleted AdVs were efficiently obtained by infecting 293hde12 cells, which highly express FLP, with the pre-vector. The resulting transduction titers of VA-deleted AdVs were sufficient for practical use. Therefore, VA-deleted AdVs may be substitute for current FG AdV.
Collapse
Affiliation(s)
- Aya Maekawa
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|