1
|
Gonzalez Berrios CL, Bowden CF, Saad HM, Bishop JV, Van Campen H, Pinedo P, Hansen TR, Thomas MG. Identification of candidate SNPs associated with embryo mortality and fertility traits in lactating Holstein cows. Front Genet 2024; 15:1409335. [PMID: 39184351 PMCID: PMC11341358 DOI: 10.3389/fgene.2024.1409335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction: Targeted single nucleotide polymorphisms (SNPs) have been used in genomic prediction methodologies to enhance the accuracy of associated genetic transmitting abilities in Holstein cows. The objective of this study was to identify and validate SNPs associated with fertility traits impacting early embryo mortality. Methods: The mRNA sequencing data from day 16 normal (n = 9) and embryo mortality (n = 6) conceptuses from lactating multiparous Holstein cows were used to detect SNPs. The selection of specific genes with SNPs as preliminary candidates was based on associations with reproductive and fertility traits. Validation of candidate SNPs and genotype-to-phenotype analyses were conducted in a separate cohort of lactating primiparous Holstein cows (n = 500). After genotyping, candidate SNPs were filtered using a quality control pipeline via PLINK software. Continuous numeric and binary models from reproductive traits were evaluated using the mixed procedure for a generalized linear model-one way ANOVA or logistic regression, respectively. Results: Sixty-nine candidate SNPs were initially identified, but only 23 passed quality control procedures. Ultimately, the study incorporated 466 observations for statistical analysis after excluding animals with missing genotypes or phenotypes. Significant (p <0.05) associations with fertility traits were identified in seven of the 23 SNPs: DSC2 (cows with the A allele were older at first calving); SREBF1 and UBD (cows with the T or G alleles took longer to conceive); DECR1 and FASN (cows with the C allele were less likely to become pregnant at first artificial insemination); SREBF1 and BOLA-DMB (cows with the T allele were less likely to be pregnant at 150 days in milk). It was also determined that two candidate SNPs within the DSC2 gene were tag SNPs. Only DSC2 SNPs had an important allele substitution effect in cows with the G allele, which had a decreased age at first calving by 10 days. Discussion: Candidate SNPs found in this study could be used to develop genetic selection tools to improve fertility traits in dairy production systems.
Collapse
Affiliation(s)
- Carolina L. Gonzalez Berrios
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Courtney F. Bowden
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hamad M. Saad
- Texas A&M AgriLife Research Station, Beeville, TX, United States
| | - Jeanette V. Bishop
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hana Van Campen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Pablo Pinedo
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Thomas R. Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Milton G. Thomas
- Texas A&M AgriLife Research Station, Beeville, TX, United States
| |
Collapse
|
2
|
Gong M, Myster F, van Campe W, Roels S, Mostin L, van den Berg T, Vanderplasschen A, Dewals BG. Wildebeest-Derived Malignant Catarrhal Fever: A Bovine Peripheral T Cell Lymphoma Caused by Cross-Species Transmission of Alcelaphine Gammaherpesvirus 1. Viruses 2023; 15:v15020526. [PMID: 36851740 PMCID: PMC9968110 DOI: 10.3390/v15020526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Gammaherpesviruses (γHVs) include viruses that can induce lymphoproliferative diseases and tumors. These viruses can persist in the long term in the absence of any pathological manifestation in their natural host. Alcelaphine gammaherpesvirus 1 (AlHV-1) belongs to the genus Macavirus and asymptomatically infects its natural host, the wildebeest (Connochaetes spp.). However, when transmitted to several susceptible species belonging to the order Artiodactyla, AlHV-1 is responsible for the induction of a lethal lymphoproliferative disease, named wildebeest-derived malignant catarrhal fever (WD-MCF). Understanding the pathogenic mechanisms responsible for the induction of WD-MCF is important to better control the risks of transmission and disease development in susceptible species. The aim of this review is to synthesize the current knowledge on WD-MCF with a particular focus on the mechanisms by which AlHV-1 induces the disease. We discuss the potential mechanisms of pathogenesis from viral entry into the host to the maintenance of viral genomes in infected CD8+ T lymphocytes, and we present current hypotheses to explain how AlHV-1 infection induces a peripheral T cell lymphoma-like disease.
Collapse
Affiliation(s)
- Meijiao Gong
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Laboratory of Parasitology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Françoise Myster
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Willem van Campe
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Stefan Roels
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Laurent Mostin
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Thierry van den Berg
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Alain Vanderplasschen
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Benjamin G. Dewals
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Laboratory of Parasitology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
3
|
Mitsiopoulou C, Sotirakoglou K, Skliros D, Flemetakis E, Tsiplakou E. The Impact of Whole Sesame Seeds on the Expression of Key-Genes Involved in the Innate Immunity of Dairy Goats. Animals (Basel) 2021; 11:468. [PMID: 33578642 PMCID: PMC7916339 DOI: 10.3390/ani11020468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 01/20/2023] Open
Abstract
Whole sesame seeds (WSS) are rich in both linoleic acid (LA) and lignans. However, their impact on the innate immunity of goats is not well studied. Twenty-four goats were divided into three homogeneous sub-groups; comprise one control (CON) and two treated (WWS5 and WWS10). In the treated groups, WSS were incorporated in the concentrates of the CON at 5 (WSS5) and 10% (WSS10) respectively, by partial substitution of both soybean meal and corn grain. The expression levels of MAPK1, IL6, TRIF, IFNG, TRAF3, and JUND genes in the neutrophils of WSS10 fed goats were reduced significantly compared with the CON. The same was found for the expression levels of IFNG and TRAF3 genes in the neutrophils of WSS5 fed goats. Both treated groups primarily affected the MYD88-independent pathway. The dietary supplementation of goats with WSS might be a good nutritional strategy to improve their innate immunity.
Collapse
Affiliation(s)
- Christina Mitsiopoulou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece;
| | - Kyriaki Sotirakoglou
- Laboratory of Mathematics and Statistics, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.S.); (E.F.)
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.S.); (E.F.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece;
| |
Collapse
|
4
|
Tsiplakou E, Mavrommatis A, Skliros D, Sotirakoglou K, Flemetakis E, Zervas G. The effects of dietary supplementation with rumen-protected amino acids on the expression of several genes involved in the immune system of dairy sheep. J Anim Physiol Anim Nutr (Berl) 2018; 102:1437-1449. [PMID: 30043476 DOI: 10.1111/jpn.12968] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022]
Abstract
Amino acids might be a tool to transform animals from a pro- to an anti-inflammatory phenotype through the downregulation of several genes (TLR-4, NF-κB, TNFa, IL-1β, IL-2, IL-6, IL-8, CCL-5 and CXCL-16) whose expression increases during inflammation. To examine this possibility, each of sixty Chios dairy sheep was assigned to one of the following five dietary treatments: A: basal diet (control group); B: basal diet +6.0 g/head rumen-protected methionine (MetaSmart™ ); C: basal diet +5.0 g/head rumen-protected lysine (LysiGEM™ ); D: basal diet +6.0 g/head MetaSmart™ + 5.0 g/head LysiGEM™ ; and E: basal diet +12.0 g/head MetaSmart™ + 5.0 g/head LysiGEM. The results showed a significant downregulation in the expression of the TLR-4 gene in both the macrophages and the neutrophils of ewes fed rumen-protected amino acids. Significantly lower mRNA transcript accumulation was also observed for the TNFa, IL-1β and CXCL-16 genes in the macrophages and for the IL-1β gene in the neutrophils of ewes supplemented with amino acids. The ewes that received dietary supplementation with rumen-protected lysine alone (C) had significantly lower CCL-5 transcript levels in their macrophages than the ewes fed the other supplemented diets. Diet D enhanced the mRNA expression of the IL-2 gene in ewe neutrophils. Negative correlations were found between: a. TLR-4, TNFa, IL-1β and CXCL-16 gene expression in macrophages and the milk fat and total solids content; b. CCL-5 gene expression in neutrophils and the milk yield and FCM(6%) ; and c. CXCL-16 gene expression and the milk protein content. Moreover, positive correlations were found between the BHBA concentration and the expression of the TLR-4 and CXCL-16 genes in macrophages. In conclusion, the rumen-protected amino acids improved sheep metabolism (as indicated by reduced blood BHBA and urea concentrations), milk chemical composition and immune system function.
Collapse
Affiliation(s)
- Eleni Tsiplakou
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Athens, Greece
| | - Alexandros Mavrommatis
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Kyriaki Sotirakoglou
- Department of Plant Breeding and Biometry, Agricultural University of Athens, Athens, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - George Zervas
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
5
|
Vrentas CE, Boggiatto PM, Schaut RG, Olsen SC. Collection and Processing of Lymph Nodes from Large Animals for RNA Analysis: Preparing for Lymph Node Transcriptomic Studies of Large Animal Species. J Vis Exp 2018. [PMID: 29863658 DOI: 10.3791/57195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Large animals (both livestock and wildlife) serve as important reservoirs of zoonotic pathogens, including Brucella, Mycobacterium bovis, Salmonella, and E. coli, and are useful for the study of pathogenesis and/or spread of the bacteria in natural hosts. With the key function of lymph nodes in the host immune response, lymph node tissues serve as a potential source of RNA for downstream transcriptomic analyses, in order to assess the temporal changes in gene expression in cells over the course of an infection. This article presents an overview of the process of lymph node collection, tissue sampling, and downstream RNA processing in livestock, using cattle (Bos taurus) as a model, with additional examples provided from the American bison (Bison bison). The protocol includes information about the location, identification, and removal of lymph nodes from multiple key sites in the body. Additionally, a biopsy sampling methodology is presented that allows for a consistency of sampling across multiple animals. Several considerations for sample preservation are discussed, including the generation of RNA suitable for downstream methodologies like RNA-sequencing and RT-PCR. Due to the long delays inherent in large animal vs. mouse time course studies, representative results from bison and bovine lymph node tissues are presented to describe the time course of the degradation in this tissue type, in the context of a review of previous methodological work on RNA degradation in other tissues. Overall, this protocol will be useful to both veterinary researchers beginning transcriptome projects on large animal samples and to molecular biologists interested in learning techniques for in vivo tissue sampling and in vitro processing.
Collapse
Affiliation(s)
- Catherine E Vrentas
- National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture;
| | - Paola M Boggiatto
- National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture
| | - Robert G Schaut
- National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture
| | - Steven C Olsen
- National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture
| |
Collapse
|
6
|
Characterisation of the Whole Blood mRNA Transcriptome in Holstein-Friesian and Jersey Calves in Response to Gradual Weaning. PLoS One 2016; 11:e0159707. [PMID: 27479136 PMCID: PMC4968839 DOI: 10.1371/journal.pone.0159707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
Weaning of dairy calves is an early life husbandry management practice which involves the changeover from a liquid to a solid feed based diet. The objectives of the study were to use RNA-seq technology to examine the effect of (i) breed and (ii) gradual weaning, on the whole blood mRNA transcriptome of artificially reared Holstein-Friesian and Jersey calves. The calves were gradually weaned over 14 days (day (d) -13 to d 0) and mRNA transcription was examined one day before gradual weaning was initiated (d -14), one day after weaning (d 1), and 8 days after weaning (d 8). On d -14, 550 genes were differentially expressed between Holstein-Friesian and Jersey calves, while there were 490 differentially expressed genes (DEG) identified on d 1, and 411 DEG detected eight days after weaning (P < 0.05; FDR < 0.1). No genes were differentially expressed within breed, in response to gradual weaning (P > 0.05). The pathways, gene ontology terms, and biological functions consistently over-represented among the DEG between Holstein-Friesian and Jersey were associated with the immune response and immune cell signalling, specifically chemotaxis. Decreased transcription of several cytokines, chemokines, immunoglobulin-like genes, phagocytosis-promoting receptors and g-protein coupled receptors suggests decreased monocyte, natural killer cell, and T lymphocyte, chemotaxis and activation in Jersey compared to Holstein-Friesian calves. Knowledge of breed-specific immune responses could facilitate health management practices better tailored towards specific disease sensitivities of Holstein-Friesian and Jersey calves. Gradual weaning did not compromise the welfare of artificially-reared dairy calves, evidenced by the lack of alterations in the expression of any genes in response to gradual weaning.
Collapse
|
7
|
The A2 gene of alcelaphine herpesvirus-1 is a transcriptional regulator affecting cytotoxicity in virus-infected T cells but is not required for malignant catarrhal fever induction in rabbits. Virus Res 2014; 188:68-80. [PMID: 24732177 DOI: 10.1016/j.virusres.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 01/10/2023]
Abstract
Alcelaphine herpesvirus-1 (AlHV-1) causes malignant catarrhal fever (MCF). The A2 gene of AlHV-1 is a member of the bZIP transcription factor family. We wished to determine whether A2 is a virulence gene or not and whether it is involved in pathogenesis by interference with host transcription pathways. An A2 gene knockout (A2ΔAlHV-1) virus, revertant (A2revAlHV-1) virus, and wild-type virus (wtAlHV-1) were used to infect three groups of rabbits. A2ΔAlHV-1-infected rabbits succumbed to MCF, albeit with a delayed onset compared to the control groups, so A2 is not a critical virulence factor. Differential gene transcription analysis by RNAseq and qRT-PCR validation of a selection of these was performed in infected large granular lymphocyte (LGL) T cells obtained in culture from the MCF-affected animals. A2 was involved in the transcriptional regulation of immunological, cell cycle and apoptosis pathways. In particular, there was a bias towards γδ T cell receptor (TCR) expression and downregulation of αβ TCR. TCR signalling, apoptosis, cell cycle, IFN-γ and NFAT pathways were affected. Of particular interest was partial inhibition of the cytotoxicity-associated pathways involving perforin and the granzymes A and B in the A2ΔAlHV-1-infected LGLs compared to controls. In functional assays, A2ΔAlHV-1-infected LGLs were significantly less cytotoxic than wtAlHV-1- and A2revAlHV-1-infected LGLs using rabbit corneal epithelial cells (SIRC) as targets. This implies that A2 is involved in a pathway enhancing the expression of LGL cytotoxicity. This is important as virus-infected T cell cytotoxicity in vivo has been suggested as a potential mechanism of disease induction in MCF.
Collapse
|
8
|
Abstract
Malignant catarrhal fever (MCF) is an often lethal infection of many species in the order Artiodactyla. It is caused by members of the MCF virus group within Gammaherpesvirinae. MCF is a worldwide problem and has a significant economic impact on highly disease-susceptible hosts, such as cattle, bison, and deer. Several epidemiologic forms of MCF, defined by the reservoir ruminant species from which the causative virus arises, are recognized. Wildebeest-associated MCF (WA-MCF) and sheep-associated MCF (SA-MCF) are the most prevalent and well-studied forms of the disease. Historical understanding of MCF is largely based on WA-MCF, in which the causative virus can be propagated in vitro. Characterization of SA-MCF has been constrained because the causative agent has never been successfully propagated in vitro. Development of molecular tools has enabled more definitive studies on SA-MCF. The current understanding of MCF, including its etiological agents, epidemiology, pathogenesis, and prevention, is the subject of the present review.
Collapse
Affiliation(s)
- Hong Li
- Animal Disease Research Unit, USDA-ARS, and
| | | | | | | |
Collapse
|