1
|
Song Y, Yuan Z, Ji J, Ruan Y, Li X, Wang L, Zeng W, Wu K, Hu W, Yi L, Ding H, Zhao M, Fan S, Li Z, Chen J. Development of a Ferritin-Based Nanoparticle Vaccine against Classical Swine Fever. Vaccines (Basel) 2024; 12:948. [PMID: 39204071 PMCID: PMC11360710 DOI: 10.3390/vaccines12080948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The occurrence of classical swine fever (CSF) poses a significant threat to the global swine industry. Developing an effective and safe vaccine is crucial for preventing and controlling CSF. Here, we constructed self-assembled ferritin nanoparticles fused with the classical swine fever virus (CSFV) E2 protein and a derived B cell epitope (Fe-E2B) using a baculovirus expression system (BVES), demonstrating enhanced immunogenicity. Furthermore, we provide a detailed evaluation of the immunological efficacy of the FeE2B in rabbits. The results showed that robust and sustained antibody responses were detected in rabbits immunized with the Fe-E2B nanoparticle vaccine, comparable to those elicited by commercially available vaccines. Additionally, we demonstrated that the vaccine effectively activated crucial immune factors IFN-γ and IL-4 in vivo, increasing their levels by 1.41-fold and 1.39-fold, respectively. Immunization with Fe-E2B enabled rabbits to avoid viremia and stereotypic fever after CSFV challenge. In conclusion, this study highlights the potential of ferritin nanoparticles as antigen-presenting carriers to induce robust immune responses, proposing a candidate vaccine strategy for the prevention and control of CSF.
Collapse
Affiliation(s)
- Yiwan Song
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Zhongmao Yuan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Junzhi Ji
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Yang Ruan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Lianxiang Wang
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing 527400, China;
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Wenshuo Hu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing 527400, China;
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Zhong D, Lu Z, Xia Y, Wu H, Zhang X, Li M, Song X, Wang Y, Moon A, Qiu HJ, Li Y, Sun Y. Ferritin Nanoparticle Delivery of the E2 Protein of Classical Swine Fever Virus Completely Protects Pigs from Lethal Challenge. Vaccines (Basel) 2024; 12:629. [PMID: 38932358 PMCID: PMC11209039 DOI: 10.3390/vaccines12060629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Classical swine fever (CSF), caused by the classical swine fever virus (CSFV), results in significant economic losses to the swine industry in many countries. Vaccination represents the primary strategy to control CSF and the CSFV E2 protein is known as the major protective antigen. However, the E2 protein expressed or presented by different systems elicits distinct immune responses. In this study, we established a stable CHO cell line to express the E2 protein and delivered it using self-assembled ferritin nanoparticles (NPs). Subsequently, we compared the adaptive immune responses induced by the E2-ferritin NPs and the monomeric E2 protein produced by the CHO cells or a baculovirus expression system. The results revealed that the NP-delivered E2 protein elicited higher titers of neutralizing antibodies than did the monomeric E2 protein in pigs. Importantly, only the NP-delivered E2 protein significantly induced CSFV-specific IFN-γ-secreting cells. Furthermore, all the pigs inoculated with the E2-ferritin NPs were completely protected from a lethal CSFV challenge infection. These findings demonstrate the ability of the E2-ferritin NPs to protect pigs against the lethal CSFV challenge by eliciting robust humoral and cellular immune responses.
Collapse
Affiliation(s)
- Dailang Zhong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Zhanhao Lu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Yu Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
- School of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Xinyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Mingzhi Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
- School of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xin Song
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Assad Moon
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
- School of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
3
|
Song H, Abdullah SW, Pei C, Shi X, Chen X, Ma Y, Yin S, Sun S, Huang Y, Guo H. Self-Assembling E2-Based Nanoparticles Improve Vaccine Thermostability and Protective Immunity against CSFV. Int J Mol Sci 2024; 25:596. [PMID: 38203765 PMCID: PMC10778992 DOI: 10.3390/ijms25010596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Classical swine fever virus (CSFV) is a highly contagious pathogen causing significant economic losses in the swine industry. Conventional inactivated or attenuated live vaccines for classical swine fever (CSF) are effective but face biosafety concerns and cannot distinguish vaccinated animals from those infected with the field virus, complicating CSF eradication efforts. It is noteworthy that nanoparticle (NP)-based vaccines resemble natural viruses in size and antigen structure, and offer an alternative tool to circumvent these limitations. In this study, we developed an innovative vaccine delivery scaffold utilizing self-assembled mi3 NPs, which form stable structures carrying the CSFV E2 glycoprotein. The expressed yeast E2-fused protein (E2-mi3 NPs) exhibited robust thermostability (25 to 70 °C) and long-term storage stability at room temperature (25 °C). Interestingly, E2-mi3 NPs made with this technology elicited enhanced antigen uptake by RAW264.7 cells. In a rabbit model, the E2-mi3 NP vaccine against CSFV markedly increased CSFV-specific neutralizing antibody titers. Importantly, it conferred complete protection in rabbits challenged with the C-strain of CSFV. Furthermore, we also found that the E2-mi3 NP vaccines triggered stronger cellular (T-lymphocyte proliferation, CD8+ T-lymphocytes, IFN-γ, IL-2, and IL-12p70) and humoral (CSFV-specific neutralizing antibodies, CD4+ T-lymphocytes, and IL-4) immune responses in pigs than the E2 vaccines. To sum up, these structure-based, self-assembled mi3 NPs provide valuable insights for novel antiviral strategies against the constantly infectious agents.
Collapse
Affiliation(s)
- Hetao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China;
| | - Sahibzada Waheed Abdullah
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
| | - Chenchen Pei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
| | - Xiaoni Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
| | - Xiangyang Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
| | - Yuqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China;
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (X.S.); (X.C.); (Y.M.); (S.Y.); (S.S.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
4
|
Lamothe-Reyes Y, Figueroa M, Sánchez O. Host cell factors involved in classical swine fever virus entry. Vet Res 2023; 54:115. [PMID: 38041163 PMCID: PMC10693020 DOI: 10.1186/s13567-023-01238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 12/03/2023] Open
Abstract
Classical swine fever virus (CSFV) is an ancient pathogen that continues to pose a threat to animal agriculture worldwide. The virus belongs to the genus Pestivirus and the family Flaviviridae. It causes a multisystemic disease that affects only pigs and is responsible for significant economic losses. CSFV infection is probably a multistep process that involves the proteins in the virus envelope and more than one receptor in the membrane of permissive cells. To date, the cellular receptors essential for CSFV entry and their detailed functions during this process remains unknown. All the viral envelope proteins Erns, E1 and E2 are involved in the entry process to some extent and the experimental approaches conducted until now have helped to unveil their contributions. This review aims to provide an overview of current knowledge on cellular molecules described to be involved in CSFV entry, including complement regulatory protein 46 (CD46), heparan sulphate (HS), Laminin receptor, Integrin ß3, Annexin II, MERKT and ADAM17. This knowledge would not only help to understand the molecular mechanisms involved in pestivirus infection, but also provide a rational basis for the development of nonvaccinal alternatives for CSFV control.
Collapse
Affiliation(s)
- Yaneysis Lamothe-Reyes
- Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
- Laboratory of Recombinant Biopharmaceuticals, Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
| | - Maximiliano Figueroa
- Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Oliberto Sánchez
- Laboratory of Recombinant Biopharmaceuticals, Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
| |
Collapse
|
5
|
Liu HM, Deng MC, Huang YL, Tsai KJ, Chang HW, Chang CY. In vivo characterization of the superior fitness of classical swine fever virus genotype 2.1 to genotype 3.4. Vet Microbiol 2023; 285:109854. [PMID: 37633061 DOI: 10.1016/j.vetmic.2023.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly contagious disease in pigs. In Taiwan, the emerging genotype 2.1 (G2.1) CSFV caused sporadic outbreaks in 1994 and replaced the previous G3.4 CSFV in the field. The shift of CSFV genotypes to G2 CSFV was also observed in several CSFV-affected countries. The present study aimed to explore the mechanism of the genotype shift of CSFV. Two groups of specific pathogen-free (SPF) pigs were first inoculated with either G2.1 or G3.4 CSFV (single-inoculated group) and housed together with naïve SPF pigs (cohabitating group). The results showed that peak viremia, viral loads in blood and tissues, and viral shedding of G2.1 were consistently higher than those of G3.4 CSFV in single-inoculated and cohabitating pigs. The phenomenon of superinfection exclusion (SIE), characterized by the prevention of secondary infection by a primary infection, was readily observed in CSFV single-inoculated pigs. Interestingly, coinfection of both genotypes of CSFV was observed in 3 out of 4 cohabitating pigs, while only one pig was infected with G2.1 CSFV alone. These findings suggest that the genetic shift in CSFV in the field may be in part the consequence of SIE.
Collapse
Affiliation(s)
- Hsin-Meng Liu
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC; Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan, ROC
| | - Ming-Chung Deng
- Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan, ROC
| | - Yu-Liang Huang
- Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan, ROC
| | - Kuo-Jung Tsai
- Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan, ROC
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC
| | - Chia-Yi Chang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC.
| |
Collapse
|
6
|
Chen JY, Wu CM, Chia MY, Huang C, Chien MS. A prospective CSFV-PCV2 bivalent vaccine effectively protects against classical swine fever virus and porcine circovirus type 2 dual challenge and prevents horizontal transmission. Vet Res 2023; 54:57. [PMID: 37434231 DOI: 10.1186/s13567-023-01181-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 07/13/2023] Open
Abstract
Classical swine fever virus (CSFV) infection leading to CSF outbreaks is among the most devastating swine diseases in the pig industry. Porcine circovirus type 2 (PCV2) infection, resulting in porcine circovirus-associated disease (PCVAD), is also a highly contagious disease affecting pig health worldwide. To prevent and control disease occurrence, multiple-vaccine immunization is necessary in contaminated areas or countries. In this study, a novel CSFV-PCV2 bivalent vaccine was constructed and demonstrated to be capable of eliciting humoral and cellular immune responses against CSFV and PCV2, respectively. Moreover, a CSFV-PCV2 dual-challenge trial was conducted on specific-pathogen-free (SPF) pigs to evaluate vaccine efficacy. All of the vaccinated pigs survived and showed no clinical signs of infection throughout the experimental period. In contrast, placebo-vaccinated pigs exhibited severe clinical signs of infection and steeply increased viremia levels of CSFV and PCV2 after virus challenge. Additionally, neither clinical signs nor viral detections were noted in the sentinel pigs when cohabitated with vaccinated-challenged pigs at three days post-inoculation of CSFV, indicating that the CSFV-PCV2 bivalent vaccine completely prevents horizontal transmission of CSFV. Furthermore, conventional pigs were utilized to evaluate the application of the CSFV-PCV2 bivalent vaccine in field farms. An adequate CSFV antibody response and a significant decrease in PCV2 viral load in the peripheral lymph nodes were observed in immunized conventional pigs, suggesting its potential for clinical application. Overall, this study demonstrated that the CSFV-PCV2 bivalent vaccine effectively elicited protective immune responses and the ability to prevent horizontal transmission, which could be a prospective strategy for controlling both CSF and PCVAD in commercial herds.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Chi-Ming Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Min-Yuan Chia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Chienjin Huang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| | - Maw-Sheng Chien
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| |
Collapse
|
7
|
Yi W, Wang H, Qin H, Wang Q, Guo R, Wen G, Pan Z. Construction and efficacy of a new live chimeric C-strain vaccine with DIVA characteristics against classical swine fever. Vaccine 2023; 41:2003-2012. [PMID: 36803898 DOI: 10.1016/j.vaccine.2023.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
To develop the new classical swine fever (CSF) vaccine candidate with differentiating infected vaccinated animals (DIVA) characteristics, a chimeric CSF virus (CSFV) was constructed based on an infectious cDNA clone of the CSF vaccine C-strain. The 5'- and 3'-untranslated regions (UTRs) and partial E2 region (residues 690-860) of the C-strain were substituted with the corresponding regions of bovine viral diarrhoea virus (BVDV) to construct the chimeric cDNA clone pC/bUTRs-tE2. The chimeric virus rC/bUTRs-tE2 was generated by several passages of pC/bUTRs-tE2-transfected PK15 cells. Stable growth and genetic properties of rC/bUTRs-tE2 were obtained after 30 serial passages. Compared to parental rC/bUTRs-tE2 (1st passage), two residue mutations (M834K and M979K) located in E2 in rC/bUTRs-tE2 P30 were observed. Compared to the C-strain, rC/bUTRs-tE2 exhibited unchanged cell tropism and decreased plaque-forming ability. Substituting the C-strain UTRs with the BVDV UTRs resulted in significantly increased viral replication in PK15 cells. Compared to CSFV Erns-positive and BVDV tE2-negative antibody responses induced by the CSF vaccine C-strain, immunization of rabbits and piglets with rC/bUTRs-tE2 resulted in serological profiles of CSFV Erns- and BVDV tE2-positive antibodies, which are used to serologically discriminate pigs that are clinically infected and vaccinated. Vaccination of piglets with rC/bUTRs-tE2 conferred complete protection against lethal CSFV challenge. Our results suggest that rC/bUTRs-tE2 is a promising new CSF marker vaccine candidate.
Collapse
Affiliation(s)
- Weicheng Yi
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huan Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Laboratory, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430015, China
| | - Qin Wang
- World Organisation for Animal Health Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Zhang Y, Na D, Zhang W, Liu X, Miao S, Tan WS, Zhao L. Development of stable HEK293T cell pools expressing CSFV E2 protein: A potential antigen expression platform. Vaccine 2023; 41:1573-1583. [PMID: 36725430 DOI: 10.1016/j.vaccine.2023.01.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/15/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
Large quantities of antigens are required since protective antigens, such as classical swine fever virus (CSFV) E2 protein, are widely used in diagnostic reagents and subunit vaccines. Compared to clonal cell lines and transient gene expression, stable cell pools provide a potential alternative platform to rapidly produce large amounts of antigens. In this work, firstly, Human embryonic kidney 293 T (HEK293T) cell pools expressing E2 protein were developed by transduction of lentiviral vectors. On the one hand, the SP7 was selected from 7 well-performing signal peptides to remarkably increase the production of E2 protein. On the other hand, it was found that high MOI could improve the expression of E2 protein by increasing gene copy numbers. Moreover, the HEK293T cell pools were evaluated for stability by passages and batch cultures, demonstrating that the cell pools were stable for at least 90 days. And then, the performance of the cell pools in batch, fed-batch, and semi-perfusion was studied. Among them, the titer of E2 protein was up to 2 g/L in semi-perfusion, which is currently the highest to the authors' knowledge. Finally, the aggregations and immunogenicity of the E2 protein were analyzed by SDS-PAGE and immunization of mice, respectively. There was no significant difference in aggregations and antibody titers of E2 protein in three culture methods. These results suggest that stable HEK293T cell pools are a promising and robust platform for rapid and efficient production of recombinant proteins.
Collapse
Affiliation(s)
- Yanmin Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Daoyuan Na
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weijian Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuping Liu
- Shanghai Bioengine Sci-Tech Co Ltd, Shanghai 201203, China
| | - Shiwei Miao
- Hangzhou Sumgen Biotech Co Ltd, Zhejiang 310056, China
| | - Wen-Song Tan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Zhao
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
9
|
Chang CY, Tsai KJ, Deng MC, Wang FI, Liu HM, Tsai SH, Tu YC, Lin NN, Huang YL. Transmission of Classical Swine Fever Virus in Cohabitating Piglets with Various Immune Statuses Following Attenuated Live Vaccine. Animals (Basel) 2023; 13:ani13030368. [PMID: 36766258 PMCID: PMC9913813 DOI: 10.3390/ani13030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Classical swine fever (CSF) is a systemic hemorrhagic disease affecting domestic pigs and wild boars. The modified live vaccine (MLV) induces quick and solid protection against CSF virus (CSFV) infection. Maternally derived antibodies (MDAs) via colostrum could interfere with the MLV's efficacy, leading to incomplete protection against CSFV infection for pigs. This study investigated CSFV transmission among experimental piglets with various post-MLV immune statuses. Nineteen piglets, 18 with MDAs and 1 specific-pathogen-free piglet infected with CSFV that served as the CSFV donor, were cohabited with piglets that had or had not been administered the MLV. Five-sixths of the piglets with MDAs that had been administered one dose of MLV were fully protected from contact transmission from the CSFV donor and did not transmit CSFV to the piglets secondarily exposed through cohabitation. Cell-mediated immunity, represented by the anti-CSFV-specific interferon-γ-secreting cells, was key to viral clearance and recovery. After cohabitation with a CSFV donor, the unvaccinated piglets with low MDA levels exhibited CSFV infection and spread CSFV to other piglets through contact; those with high MDA levels recovered but acted as asymptomatic carriers. In conclusion, MLV still induces solid immunity in commercial herds under MDA interference and blocks CSFV transmission within these herds.
Collapse
Affiliation(s)
- Chia-Yi Chang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Kuo-Jung Tsai
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan
| | - Ming-Chung Deng
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan
| | - Fun-In Wang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsin-Meng Liu
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan
| | - Shu-Hui Tsai
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan
| | - Yang-Chang Tu
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan
| | - Nien-Nong Lin
- Bureau of Animal and Plant Health Inspection and Quarantine, Council of Agriculture, Executive Yuan, 9F., No. 100, Sec. 2, Heping-West Road, Zhongzheng Dist., Taipei 10060, Taiwan
| | - Yu-Liang Huang
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan
- Correspondence: ; Tel.: +886-2-2621-2111 (ext. 306)
| |
Collapse
|
10
|
Yuan M, Yang X, Zhang X, Zhao X, Abid M, Qiu HJ, Li Y. Different Types of Vaccines against Pestiviral Infections: "Barriers" for " Pestis". Viruses 2022; 15:2. [PMID: 36680043 PMCID: PMC9860862 DOI: 10.3390/v15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The genus Pestivirus of the family Flaviviridae mainly comprises classical swine fever virus (CSFV), bovine viral diarrhea virus 1 (BVDV-1), BVDV-2, border disease virus (BDV), and multiple new pestivirus species such as atypical porcine pestivirus (APPV), giraffe pestivirus, and antelope pestivirus. Pestiviruses cause infectious diseases, resulting in tremendous economic losses to animal husbandry. Different types of pestivirus vaccines have been developed to control and prevent these important animal diseases. In recent years, pestiviruses have shown great potential as viral vectors for developing multivalent vaccines. This review analyzes the advantages and disadvantages of various pestivirus vaccines, including live attenuated pestivirus strains, genetically engineered marker pestiviruses, and pestivirus-based multivalent vaccines. This review provides new insights into the development of novel vaccines against emerging pestiviruses, such as APPV and ovine pestivirus.
Collapse
Affiliation(s)
- Mengqi Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaoke Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Muhammad Abid
- Viral Oncogenesis Group, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
11
|
Zhang H, Yin D, Qin H, Zhang K, Li Z, Cui G, Ma G, Sun P, Cao Z. Immunogenicity of the recombinant adenovirus fusion-expressing E0-E2 gene of the classical swine fever virus. Front Microbiol 2022; 13:1054651. [PMID: 36406388 PMCID: PMC9673476 DOI: 10.3389/fmicb.2022.1054651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Adenovirus vector vaccines have been the mainstream research direction of CSF vaccines, due to the replication deficiency of adenovirus vectors, achieving double effects with the safety of inactivated vaccines and the efficacy of live vaccines. Therefore, the E0 and E2 genes were expressed by an adenovirus vector, a recombinant adenovirus E0-E2 (rAd-E0-E2) vaccine was constructed, and the minimum immunization dose and immune duration period were determined in this study. Forty healthy piglets were randomly divided into 8 groups (n = 5). Groups 1 ~ 5 were used to determine the minimum immunization dose, and 5 groups were inoculated with rAd-E0-E2 at different immune doses. Serum was collected at 7 d and 14 d after immunization to detect CSFV antibodies by ELISA, and piglets were challenged at 7 d post immunization. Groups 6 ~ 8 were immunized with 1 dose of rAd-E0-E2, the CSFV live attenuated vaccine C strain and saline to identify the immune duration period. Serum was collected at different time points after immunization, CSFV antibodies were detected by ELISA, and piglets were challenged at 8 months post immunization. Meanwhile, temperature, clinical symptoms and pathology were observed. The results of groups 1 ~ 5 showed that 1 piglet was protected after challenge, and 4 piglets exhibited high fever retention, typical CSFV symptoms and tissue lesions in the 1/50 dose group, whereas no clinical symptoms were observed in the 1/10 dose, 1/5 dose or 1 dose groups with 5/5 protection after challenge. The minimum dose was determined as 1/10 dose. The results of groups 6 ~ 8 showed that all piglets survived after challenge, but the antibody level of the rAd-E0-E2 strain was higher than that of the C strain at 8 months post immunization, and all piglets in the negative group developed the disease process after challenge. Overall, the minimum immunization dose of rAd-E0-E2 was 1/10 dose (3.16 × 106.0 IFU) and the minimum immune dose was determined to be 1 dose (3.16 × 107.0 IFU) to achieve the expected effects. The immune duration period of piglets immunized with 1 dose of rAd-E0-E2 was at least 8 months.
Collapse
Affiliation(s)
- Heng Zhang
- Swine Disease R&D Center, Shandong SINDER Technology Co., Ltd., Qingdao, China
| | - Dehua Yin
- College of Animal Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huairui Qin
- College of Animal Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ke Zhang
- College of Animal Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhaoyang Li
- Swine Disease R&D Center, Shandong SINDER Technology Co., Ltd., Qingdao, China
| | - Guangchao Cui
- Swine Disease R&D Center, Shandong SINDER Technology Co., Ltd., Qingdao, China
| | - Guangbin Ma
- Swine Disease R&D Center, Shandong SINDER Technology Co., Ltd., Qingdao, China
| | - Peng Sun
- YEBIO Bioengineering Co., Ltd of Qingdao, Qingdao, China
| | - Zhi Cao
- College of Animal Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Zhi Cao,
| |
Collapse
|
12
|
Chen D, Kang H, Tuo T, Wang L, Xia Y, Zhang Y, Zhou L, Ge X, Han J, Guo X, Yang H. Astragalus polysaccharide alleviated the inhibition of CSFV C-strain replication caused by PRRSV via the TLRs/NF‑κB/TNF-α pathways. Virus Res 2022; 319:198854. [PMID: 35788015 DOI: 10.1016/j.virusres.2022.198854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 12/22/2022]
Abstract
It is a common phenomenon that PRRSV infection can interfere with the protective efficacy of the CSFV vaccine in clinical settings, and no effective treatment is available. In our previous study, we found that PRRSV infection could inhibit the replication of CSFV-C by promoting the high expression of inflammatory cytokines. In order to further investigate whether Chinese medicine could alleviate the inhibition effect, the PAM39 cells model, which was co-infected with PRRSV and CSFV-C, was established. The effects of Chinese medicine on this co-infection model, as well as the effect of astragalus polysaccharide on the TLRs/NF-κB/TNF-α pathways, were investigated. Our results demonstrated that PAM39 cells inoculated with different pathogenic PRRSV significantly inhibited the replication of CSFV-C and up-regulated the major inflammatory mediators, including TNF-α. For the following studies, 50 µM of astragalus polysaccharide was selected from six kinds of representative Chinese medicine based on their cytotoxicity, viral titers, and inflammatory mediators. Further experiments indicated that astragalus polysaccharide could alleviate the inhibition of CSFV-C replication in the co-infection group with no influence on cell viability. In addition, astragalus polysaccharide treatment clearly reduced P65 phosphorylation and down-regulated the expression of TLR7, TLR9, and TNF-α in co-infection group, implying that the TLRs/NF-κB/TNF-α pathways may play an important role in astragalus polysaccharide's anti-inflammatory response. In conclusion, astragalus polysaccharide treatment alleviated PRRSV-mediated inhibition of CSFV-C replication via the TLRs/NF-κB/TNF-α pathways, and the molecular mechanism of PRRSV co-infection leading to the failure of CSFV vaccine immunization was partially elucidated, providing a scientific basis for effective CSF prevention and control in pig farms.
Collapse
Affiliation(s)
- Dengjin Chen
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Haoran Kang
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Tianbei Tuo
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Lihong Wang
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Yidan Xia
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Yongning Zhang
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Lei Zhou
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Xinna Ge
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Jun Han
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Xin Guo
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China.
| | - Hanchun Yang
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
13
|
Xu Q, Sun Y, Yang J, Ma F, Wang Y, Zhang S, Li X, Qu X, Bai Y, Jia R, Wang L, Zhang E, Zhang G. An Improved Immunochromatographic Strip Based on Plant-Derived E2 for Detection of Antibodies against Classical Swine Fever Virus. Microbiol Spectr 2022; 10:e0105022. [PMID: 35862968 PMCID: PMC9431618 DOI: 10.1128/spectrum.01050-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccination is an effective method to control the spread of classical swine fever virus (CSFV), which is a major cause of economic losses to the swine industry. Although serological detection assays are commonly used to assess immune status, current methods for monitoring of antibodies (Abs) are time-consuming, expensive, and require cell culture and virus manipulation. To address these problems, the E2 protein of CSFV was expressed in transgenic rice seeds as a labeled antigen for the development of an immunochromatographic test strip (ICTS) for rapid, precise, and cost-effective detection of Abs. The ICTS has a reasonable sensitivity of 1:128,000 for detection of serum Abs against CSFV and no cross-reactivity with Abs of other porcine viruses. The similarity of the results between the proposed ICTS and a commercial enzyme-linked immunosorbent assay was 94.1% (128/136) for detection of serum Abs from immunized animals and 92.3% (72/78) for detection of maternally derived Abs. The proposed assay was successfully used to monitor Abs against E2 of both pigs and rabbits immunized with a live attenuated vaccine or an E2 subunit vaccine. The results confirmed that the ICTS can be applied to detect Ab levels in animals with different immunological backgrounds. The ICTS based on plant-derived E2 is a relatively inexpensive, rapid, and accurate assay for detection of Abs against CSFV and avoids the risk of contamination by animal products. IMPORTANCE The E2 protein of classical swine fever virus (CSFV) was expressed in transgenic rice endosperms as a diagnostic antigen for use with a rapid colloidal gold assay for the detection of antibodies (Abs) against CSFV. This improved test was used to monitor Abs against the E2 protein in both pigs and rabbits immunized with a live attenuated vaccine or E2 subunit vaccine. The assay successfully detected Ab levels in serum samples from piglets with different immunological backgrounds. In contrast to current E2 protein-based diagnostic methods using Escherichia coli or insect cells as expression systems, plant-derived E2 avoids the limitations of low immunogenicity of eukaryotic expression systems and potential contamination of fetal bovine serum with bovine viral diarrhea virus in cell culture.
Collapse
Affiliation(s)
- Qianru Xu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University,Zhengzhou, China
- School of basic medical sciences, Henan University, Kaifeng, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yaning Sun
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jifei Yang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Fanshu Ma
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yanan Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shenli Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University,Zhengzhou, China
| | - Xueyang Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University,Zhengzhou, China
| | - Xiaotian Qu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University,Zhengzhou, China
| | - Yilin Bai
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Rui Jia
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Li Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Erqin Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University,Zhengzhou, China
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University,Zhengzhou, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Chen D, Xu S, Jiang R, Guo Y, Yang X, Zhang Y, Zhou L, Ge X, Han J, Guo X, Yang H. IL-1β induced by PRRSV co-infection inhibited CSFV C-strain proliferation via the TLR4/NF-κB/MAPK pathways and the NLRP3 inflammasome. Vet Microbiol 2022; 273:109513. [DOI: 10.1016/j.vetmic.2022.109513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
|
15
|
Liu Z, Kong Z, Chen M, Shang Y. Design of live-attenuated animal vaccines based on pseudorabies virus platform. ANIMAL DISEASES 2022. [DOI: 10.1186/s44149-022-00044-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractPseudorabies virus (PRV) is a double-stranded DNA virus with a genome approximating 150 kb in size. PRV contains many non-essential genes that can be replaced with genes encoding heterogenous antigens without affecting viral propagation. With the ability to induce cellular, humoral and mucosal immune responses in the host, PRV is considered to be an ideal and potential live vector for generation of animal vaccines. In this review, we summarize the advances in attenuated recombinant PRVs and design of PRV-based live vaccines as well as the challenge of vaccine application.
Collapse
|
16
|
Designing a novel E2-IFN-γ fusion protein against CSFV by immunoinformatics and structural vaccinology approaches. Appl Microbiol Biotechnol 2022; 106:3611-3623. [PMID: 35524776 DOI: 10.1007/s00253-022-11919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/02/2022]
Abstract
Subunit vaccines with high purity and safety are gradually becoming a main trend in vaccinology. However, adjuvants such as interferon-gamma (IFN-γ) are required to enhance immune responses of subunit vaccines due to their poor immunogenicity. The conjugation of antigen with adjuvant can induce more potent immune responses compared to the mixture of antigen and adjuvant. At the same time, the selection of linker, indispensable in the construction of the stable and bioactive fusion proteins, is complicated and time-consuming. The development of immunoinformatics and structural vaccinology approaches provides a means to address the abovementioned problem. Therefore, in this study, a E2-IFN-γ fusion protein with an optimal linker (E2-R2-PIFN) was designed by bioinformatics approaches to improve the immunogenicity of the classical swine fever virus (CSFV) E2 subunit vaccine. Moreover, the E2-R2-PIFN fusion protein was expressed in HEK293T cells and the biological effects of IFN-γ in E2-R2-PIFN were confirmed in vitro via Western blotting. Here, an alternative method is utilized to simplify the design and validation of the antigen-adjuvant fusion protein, providing a potential subunit vaccine candidate against CSFV. KEY POINTS: • An effective and simple workflow of antigen-adjuvant fusion protein design and validation was established by immunoinformatics and structural vaccinology. • A novel E2-IFN-γ fusion protein with an optimal linker was designed as a potential CSFV vaccine. • The bioactivity of the newly designed fusion protein was preliminarily validated through in vitro experiments.
Collapse
|
17
|
Huang YL, Meyer D, Postel A, Tsai KJ, Liu HM, Yang CH, Huang YC, Berkley N, Deng MC, Wang FI, Becher P, Crooke H, Chang CY. Identification of a Common Conformational Epitope on the Glycoprotein E2 of Classical Swine Fever Virus and Border Disease Virus. Viruses 2021; 13:v13081655. [PMID: 34452520 PMCID: PMC8402670 DOI: 10.3390/v13081655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Classical swine fever virus (CSFV) shares high structural and antigenic homology with bovine viral diarrhea virus (BVDV) and border disease virus (BDV). Because all three viruses can infect swine and elicit cross-reactive antibodies, it is necessary to differentiate among them with regard to serological diagnosis of classical swine fever. To understand the mechanism of cross-reactivity, it is important to define common or specific epitopes of these viruses. For this purpose, epitope mapping of six monoclonal antibodies (mAbs) was performed using recombinant expressed antigenic domains of CSFV and BDV E2 proteins. One CSFV-specific conformational epitope and one CSFV and BDV common epitope within domain B/C of E2 were identified. Site-directed mutagenesis confirmed that residues G725 and V738/I738 of the CSFV-specific epitope and P709/L709 and E713 of the second epitope are important for mAbs binding. Infection of CSFV in porcine cells was significantly reduced after pre-incubation of the cells with the domain B/C of E2 or after pre-incubation of CSFV with the mAbs detecting domain B/C. 3D structural modeling suggested that both epitopes are exposed on the surface of E2. Based on this, the identified epitopes represent a potential target for virus neutralization and might be involved in the early steps of CSFV infection.
Collapse
Affiliation(s)
- Yu-Liang Huang
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Denise Meyer
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (D.M.); (A.P.); (P.B.)
| | - Alexander Postel
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (D.M.); (A.P.); (P.B.)
| | - Kuo-Jung Tsai
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Hsin-Meng Liu
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Chia-Huei Yang
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Yu-Chun Huang
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Nicholas Berkley
- OIE Reference Laboratory for Classical Swine Fever, Animal and Plant Health Agency, New Haw KT15 3NB, Surrey, UK;
| | - Ming-Chung Deng
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Fun-In Wang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan;
| | - Paul Becher
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (D.M.); (A.P.); (P.B.)
| | - Helen Crooke
- OIE Reference Laboratory for Classical Swine Fever, Animal and Plant Health Agency, New Haw KT15 3NB, Surrey, UK;
- Correspondence: (H.C.); (C.-Y.C.); Tel.: +44-0-1932-357331 (H.C.); +886-2-2621-2111 (ext. 343) (C.-Y.C.)
| | - Chia-Yi Chang
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
- Correspondence: (H.C.); (C.-Y.C.); Tel.: +44-0-1932-357331 (H.C.); +886-2-2621-2111 (ext. 343) (C.-Y.C.)
| |
Collapse
|
18
|
Liu ZH, Xu HL, Han GW, Tao LN, Lu Y, Zheng SY, Fang WH, He F. Self-Assembling Nanovaccine Enhances Protective Efficacy Against CSFV in Pigs. Front Immunol 2021; 12:689187. [PMID: 34367147 PMCID: PMC8334734 DOI: 10.3389/fimmu.2021.689187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023] Open
Abstract
Classical swine fever virus (CSFV) is a highly contagious pathogen, which pose continuous threat to the swine industry. Though most attenuated vaccines are effective, they fail to serologically distinguish between infected and vaccinated animals, hindering CSFV eradication. Beneficially, nanoparticles (NPs)-based vaccines resemble natural viruses in size and antigen structure, and offer an alternative tool to circumvent these limitations. Using self-assembling NPs as multimerization platforms provides a safe and immunogenic tool against infectious diseases. This study presented a novel strategy to display CSFV E2 glycoprotein on the surface of genetically engineered self-assembling NPs. Eukaryotic E2-fused protein (SP-E2-mi3) could self-assemble into uniform NPs as indicated in transmission electron microscope (TEM) and dynamic light scattering (DLS). SP-E2-mi3 NPs showed high stability at room temperature. This NP-based immunization resulted in enhanced antigen uptake and up-regulated production of immunostimulatory cytokines in antigen presenting cells (APCs). Moreover, the protective efficacy of SP-E2-mi3 NPs was evaluated in pigs. SP-E2-mi3 NPs significantly improved both humoral and cellular immunity, especially as indicated by the elevated CSFV-specific IFN-γ cellular immunity and >10-fold neutralizing antibodies as compared to monomeric E2. These observations were consistent to in vivo protection against CSFV lethal virus challenge in prime-boost immunization schedule. Further results revealed single dose of 10 μg of SP-E2-mi3 NPs provided considerable clinical protection against lethal virus challenge. In conclusion, these findings demonstrated that this NP-based technology has potential to enhance the potency of subunit vaccine, paving ways for nanovaccine development.
Collapse
Affiliation(s)
- Ze-Hui Liu
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hui-Ling Xu
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Guang-Wei Han
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li-Na Tao
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ying Lu
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Su-Ya Zheng
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wei-Huan Fang
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China.,Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Fang He
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China.,Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|
20
|
Genotyping and Molecular Characterization of Classical Swine Fever Virus Isolated in China during 2016-2018. Viruses 2021; 13:v13040664. [PMID: 33921513 PMCID: PMC8069065 DOI: 10.3390/v13040664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Classical swine fever (CSF) is a highly contagious disease of swine caused by classical swine fever virus (CSFV). For decades the disease has been controlled in China by a modified live vaccine (C-strain) of genotype 1. The emergent genotype 2 strains have become predominant in China in the past years that are genetically distant from the vaccine strain. Here, we aimed to evaluate the current infectious status of CSF, and for this purpose 24 isolates of CSFV were identified from different areas of China during 2016–2018. Phylogenetic analysis of NS5B, E2 and full genome revealed that the new isolates were clustered into subgenotype 2.1d and 2.1b, while subgenotype 2.1d was predominant. Moreover, E2 and Erns displayed multiple variations in neutralizing epitope regions. Furthermore, the new isolates exhibited capacity to escape C-strain-derived antibody neutralization compared with the Shimen strain (genotype 1). Potential positive selection sites were identified in antigenic regions of E2 and Erns, which are related with antibody binding affinity. Recombination events were predicted in the new isolates with vaccine strains in the E2 gene region. In conclusion, the new isolates showed molecular variations and antigenic alterations, which provide evidence for the emergence of vaccine-escaping mutants and emphasize the need of updated strategies for CSF control.
Collapse
|
21
|
Research Progress and Challenges in Vaccine Development against Classical Swine Fever Virus. Viruses 2021; 13:v13030445. [PMID: 33801868 PMCID: PMC7998128 DOI: 10.3390/v13030445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/06/2023] Open
Abstract
Classical swine fever (CSF), caused by CSF virus (CSFV), is one of the most devastating viral epizootic diseases of swine in many countries. To control the disease, highly efficacious and safe live attenuated vaccines have been used for decades. However, the main drawback of these conventional vaccines is the lack of differentiability of infected from vaccinated animals (DIVA concept). Advances in biotechnology and our detailed knowledge of multiple basic science disciplines have facilitated the development of effective and safer DIVA vaccines to control CSF. To date, two types of DIVA vaccines have been developed commercially, including the subunit vaccines based on CSFV envelope glycoprotein E2 and chimeric pestivirus vaccines based on infectious cDNA clones of CSFV or bovine viral diarrhea virus (BVDV). Although inoculation of these vaccines successfully induces solid immunity against CSFV, none of them could ideally meet all demands regarding to safety, efficacy, DIVA potential, and marketability. Due to the limitations of the available choices, researchers are still striving towards the development of more advanced DIVA vaccines against CSF. This review summarizes the present status of candidate CSFV vaccines that have been developed. The strategies and approaches revealed here may also be helpful for the development of new-generation vaccines against other diseases.
Collapse
|
22
|
Suárez-Pedroso M, Sordo-Puga Y, Sosa-Teste I, Rodriguez-Molto MP, Naranjo-Valdés P, Sardina-González T, Santana-Rodríguez E, Montero-Espinosa C, Frías-Laporeaux MT, Fuentes-Rodríguez Y, Pérez-Pérez D, Oliva-Cárdenas A, Pereda CL, González-Fernández N, Bover-Fuentes E, Vargas-Hernández M, Duarte CA, Estrada-García MP. Novel chimeric E2CD154 subunit vaccine is safe and confers long lasting protection against classical swine fever virus. Vet Immunol Immunopathol 2021; 234:110222. [PMID: 33690056 DOI: 10.1016/j.vetimm.2021.110222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
E2CD154 is a vaccine candidate against classical swine fever (CSF) based on a chimeric protein composed of the E2 glycoprotein fused to porcine CD154 antigen, and formulated in the oil adjuvant Montanide™ ISA 50 V2. This vaccine confers early protection in pigs and prevents vertical transmission in pregnant sows. The objectives of this study were to assess the safety of this immunogen in piglets, to compare several doses of antigen in the formulation, and to study the duration of the immunity provided by this vaccine for up to 9 months. Three trials were conducted by immunizing pigs with a two-dose regime of the vaccine. Challenge experiments were carried out with the highly pathogenic Margarita strain. No local or systemic adverse effects were documented, and neither macroscopic nor microscopic pathological findings were observed in the vaccinated animals. The three antigen doses explored were safe and induced CSF protective neutralizing antibodies. The dose of 50 μg was selected for further development because it provided the best clinical and virological protection. Finally, this protective immunity was sustained for at least 9 months. This study demonstrates that E2CD154 vaccine is safe; defines a vaccine dose of 50 μg antigen, and evidences the capacity of this vaccine to confer long term protection from CSFV infection for up to 9 months post- vaccination. These findings complement previous data on the evaluation of this vaccine candidate, and suggest that E2CD154 is a promising alternative to modified live vaccines in CSF endemic areas.
Collapse
Affiliation(s)
- Marisela Suárez-Pedroso
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba.
| | - Yusmel Sordo-Puga
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Iliana Sosa-Teste
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Cuba
| | | | | | - Talía Sardina-González
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Elaine Santana-Rodríguez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Carlos Montero-Espinosa
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | | | - Yohandy Fuentes-Rodríguez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Danny Pérez-Pérez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Ayme Oliva-Cárdenas
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Carmen Laura Pereda
- Centro Nacional de Sanidad Agropecuaria (CENSA), Apdo 10, San José de Las Lajas, Havana, Cuba
| | - Nemecio González-Fernández
- Departamento de Desarrollo de Procesos, Centro de Ingeniería Genética y Biotecnología (CIGB), Camagüey, Cuba
| | - Eddy Bover-Fuentes
- Departamento de Desarrollo de Procesos, Centro de Ingeniería Genética y Biotecnología (CIGB), Camagüey, Cuba
| | - Milagros Vargas-Hernández
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Carlos A Duarte
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Mario Pablo Estrada-García
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| |
Collapse
|
23
|
Coronado L, Perera CL, Rios L, Frías MT, Pérez LJ. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines (Basel) 2021; 9:154. [PMID: 33671909 PMCID: PMC7918945 DOI: 10.3390/vaccines9020154] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Classical swine fever (CSF) is, without any doubt, one of the most devasting viral infectious diseases affecting the members of Suidae family, which causes a severe impact on the global economy. The reemergence of CSF virus (CSFV) in several countries in America, Asia, and sporadic outbreaks in Europe, sheds light about the serious concern that a potential global reemergence of this disease represents. The negative aspects related with the application of mass stamping out policies, including elevated costs and ethical issues, point out vaccination as the main control measure against future outbreaks. Hence, it is imperative for the scientific community to continue with the active investigations for more effective vaccines against CSFV. The current review pursues to gather all the available information about the vaccines in use or under developing stages against CSFV. From the perspective concerning the evolutionary viral process, this review also discusses the current problematic in CSF-endemic countries.
Collapse
Affiliation(s)
- Liani Coronado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Carmen L. Perera
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Liliam Rios
- Reiman Cancer Research Laboratory, Faculty of Medicine, University of New Brunswick, Saint John, NB E2L 4L5, Canada;
| | - María T. Frías
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Lester J. Pérez
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Champaign, IL 61802, USA
| |
Collapse
|
24
|
Chen JY, Wu CM, Chen ZW, Liao CM, Deng MC, Chia MY, Huang C, Chien MS. Evaluation of classical swine fever E2 (CSF-E2) subunit vaccine efficacy in the prevention of virus transmission and impact of maternal derived antibody interference in field farm applications. Porcine Health Manag 2021; 7:9. [PMID: 33431028 PMCID: PMC7798205 DOI: 10.1186/s40813-020-00188-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/26/2020] [Indexed: 01/29/2023] Open
Abstract
Background Classical swine fever (CSF) is one of the most devastating pig diseases that affect the swine industry worldwide. Besides stamping out policy for eradication, immunization with vaccines of live attenuated CSF or the CSF-E2 subunit is an efficacious measure of disease control. However, after decades of efforts, it is still hard to eliminate CSF from endemically affected regions and reemerging areas. Most of previous studies demonstrated the efficacy of different CSF vaccines in laboratories under high containment conditions, which may not represent the practical performance in field farms. The inadequate vaccine efficacy induced by unrestrained factors may lead to chronic or persistent CSF infection in animals that develop a major source for virus shedding among pig populations. In this study, a vaccination-challenge-cohabitation trial on specific-pathogen-free (SPF) pigs and long-term monitoring of conventional sows and their offspring were used to evaluate the efficacy and the impact of maternally derived antibody (MDA) interference on CSF vaccines in farm applications. Results The trials demonstrated higher neutralizing antibody (NA) titers with no clinical symptoms and significant pathological changes in the CSF-E2 subunit vaccine immunized group after CSFV challenge. Additionally, none of the sentinel pigs were infected during cohabitation indicating that the CSF-E2 subunit vaccine could provoke adequately acquired immunity to prevent horizontal transmission. In field farm applications, sows immunized with CSF-E2 subunit vaccine revealed an average of higher and consistent antibody level with significant reduction of CSF viral RNA detection via saliva monitoring in contrast to those of live attenuated CSF vaccine immunized sows possessing diverse antibody titer distributions and higher viral loads. Furthermore, early application of the CSF-E2 subunit vaccine in 3-week-old piglets illustrated no MDA interference on primary immunization and could elicit consistent and long-lasting adequate antibody response suggesting the flexibility of CSF-E2 subunit vaccine on vaccination program determination. Conclusions The CSF-E2 subunit vaccine demonstrated significant efficacy and no MDA interference for immunization in both pregnant sows and piglets. These advantages provide a novel approach to avoid possible virus shedding in sow population and MDA interference in piglets for control of CSF in field farm applications. Supplementary Information The online version contains supplementary material available at 10.1186/s40813-020-00188-6.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China
| | - Chi-Ming Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China
| | - Zeng-Weng Chen
- Animal Technology Laboratories, Agricultural Technology Research Institute, No. 52, Kedong 2nd Rd., Zhunan Township, Miaoli County, 350401, Taiwan, Republic of China
| | - Chih-Ming Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China
| | - Ming-Chung Deng
- Animal Health Research Institute, Council of Agriculture, 376 Chung-Cheng Road, Tansui, Taipei, 25158, Taiwan, Republic of China
| | - Min-Yuan Chia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China
| | - Chienjin Huang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China.
| | - Maw-Sheng Chien
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan, Republic of China.
| |
Collapse
|
25
|
Classical Swine Fever: A Truly Classical Swine Disease. Pathogens 2020; 9:pathogens9090745. [PMID: 32927731 PMCID: PMC7560091 DOI: 10.3390/pathogens9090745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 11/26/2022] Open
|
26
|
Evaluation of immune efficacy of recombinant PRRSV vectored vaccine rPRRSV-E2 in piglets with maternal derived antibodies. Vet Microbiol 2020; 248:108833. [PMID: 32891948 DOI: 10.1016/j.vetmic.2020.108833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/23/2020] [Indexed: 11/20/2022]
Abstract
Currently live attenuated porcine reproductive and respiratory syndrome (PRRS) and classical swine fever (CSF) vaccines are widely used in Chinese swine herds. However, the mutual effects of vaccination procedures and severe stress caused by successive vaccinations harm piglets and make it difficult to stimulate robust and effective immune responses. In our previous study, a recombinant PRRS virus (PRRSV) vectored vaccine candidate rPRRSV-E2, which expresses CSF virus (CSFV) E2 protein, has been demonstrated being able to protect piglets against lethal challenge of highly-pathogenic (HP)-PRRSV and CSFV. In this study, we determine whether preexisting maternally derived antibodies (MDA) interfere with the immune efficacy of rPRRSV-E2. 8 experimental groups of piglets, with or without PRRSV MDAs or CSFV MDAs were immunized with a single dose of 105 TCID50 rPRRSV-E2 or DMEM and challenged with HP-PRRSV or CSFV. Clinical characteristics, PRRSV- or CSFV-specific antibodies, viremia and pathological changes were monitored, examined and analyzed. The results showed that rPRRSV-E2-vaccinated piglets, either with or without MDAs directed against PRRSV or CSFV were completely protected from the lethal challenge of HP-PRRSV or CSFV. These results demonstrate that the MDAs do not interfere with the immune efficacy of rPRRSV-E2, which indicates that rPRRSV-E2 could have great significance in the effective prevention and control of HP-PRRSV and CSFV.
Collapse
|
27
|
Li YC, Chiou MT, Lin CN. Serodynamic Analysis of the Piglets Born from Sows Vaccinated with Modified Live Vaccine or E2 Subunit Vaccine for Classical Swine Fever. Pathogens 2020; 9:pathogens9060427. [PMID: 32485982 PMCID: PMC7350299 DOI: 10.3390/pathogens9060427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 02/03/2023] Open
Abstract
Classical swine fever (CSF) caused by the CSF virus (CSFV) is one of the most important swine diseases, resulting in huge economic losses to the pig industry worldwide. Systematic vaccination is one of the most effective strategies for the prevention and control of this disease. Two main CSFV vaccines, the modified live vaccine (MLV) and the subunit E2 vaccine, are recommended. In Taiwan, CSF cases have not been reported since 2006, although systemic vaccination has been practiced for 70 years. Here, we examined the sero-dynamics of the piglets born from sows that received either the CSFV MLV or the E2 vaccine and investigated in the field the correlation between the porcine reproductive and respiratory syndrome virus (PRRSV) loads and levels of CSFV antibody. A total of 1398 serum samples from 42 PRRSV-positive farms were evaluated to determine the PRRSV loads by real-time PCR and to detect CSFV antibody levels by commercial ELISA. Upon comparing the two sow vaccination protocols (CSFV MLV vaccination at 4 weeks post-farrowing versus E2 vaccination at 4-5 weeks pre-farrowing), the lowest levels of CSFV antibody were found in piglets at 5-8 and 9-12 weeks of age for the MLV and E2 groups, respectively. Meanwhile, the appropriate time window for CSFV vaccination of offspring was at 5-8 and 9-12 weeks of age in the MLV and E2 groups, respectively. There was a very highly significant negative correlation between the PRRSV load and the level of CSFV antibody in the CSFV MLV vaccination group (P < 0.0001). The PRRSV detection rate in the pigs from the MLV group (27.78%) was significantly higher than that in pigs from the E2 group (21.32%) (P = 0.011). In addition, there was a significant difference (P = 0.019) in the PRRSV detection rate at 5-8 weeks of age between the MLV (42.15%) and E2 groups (29.79%). Our findings indicate that the vaccination of CSFV MLV in piglets during the PRRSV susceptibility period at 5-8 weeks of age may be overloading the piglet's immune system and should be a critical concern for industrial pork production in the field.
Collapse
Affiliation(s)
- Yi-Chia Li
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Ming-Tang Chiou
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: (M.-T.C.); (C.-N.L.); Tel.: +886-8-7703202-5057 (M.-T.C.); +886-8-7703202-5047 (C.-N.L.)
| | - Chao-Nan Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: (M.-T.C.); (C.-N.L.); Tel.: +886-8-7703202-5057 (M.-T.C.); +886-8-7703202-5047 (C.-N.L.)
| |
Collapse
|
28
|
Han Y, Xie L, Yuan M, Ma Y, Sun H, Sun Y, Li Y, Qiu HJ. Development of a marker vaccine candidate against classical swine fever based on the live attenuated vaccine C-strain. Vet Microbiol 2020; 247:108741. [PMID: 32768202 DOI: 10.1016/j.vetmic.2020.108741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/29/2022]
Abstract
Classical swine fever (CSF) is a highly contagious and economically damaging disease. Classical swine fever virus (CSFV) lapinized vaccine C-strain against CSF worldwide lacks the capacity for the serological differentiation between infected and vaccinated animals (DIVA). To develop a marker C-strain complying with the DIVA principle, we generated and evaluated mutants rHCLV-E2F117A, rHCLV-E2G119A, and rHCLV-E2P122A, which harbor the single amino acid mutation at 117F, 119G or 122P of the monoclonal antibody HQ06-recognized epitope on the E2 glycoprotein in rabbits and pigs. Viral intravenous administration demonstrated that all the mutants retain the phenotype of C-strain in rabbits, including fever response induction and replication in the spleen. Notably, the HQ06-recognized epitope did not react with the antibodies induced by rHCLV-E2P122A in rabbits, in contrast with C-strain and other two mutants. Intramuscular administration of rHCLV-E2P122A in pigs induced anti-CSFV neutralizing antibodies but not antibodies against the HQ06-recognized epitope at 28 days post-inoculation. Collectively, our data demonstrate that rHCLV-E2P122A is a promising marker vaccine candidate against CSF.
Collapse
Affiliation(s)
- Yuying Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Libao Xie
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengqi Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuteng Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huimin Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
29
|
In Vivo Demonstration of the Superior Replication and Infectivity of Genotype 2.1 with Respect to Genotype 3.4 of Classical Swine Fever Virus by Dual Infections. Pathogens 2020; 9:pathogens9040261. [PMID: 32260208 PMCID: PMC7238001 DOI: 10.3390/pathogens9040261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
In Taiwan, the prevalent CSFV population has shifted from the historical genotype 3.4 (94.4 strain) to the newly invading genotype 2.1 (TD/96 strain) since 1996. This study analyzed the competition between these two virus genotypes in dual infection pigs with equal and different virus populations and with maternally derived neutralizing antibodies induced by a third genotype of modified live vaccine (MLV), to simulate that occurring in natural situations in the field. Experimentally, under various dual infection conditions, with or without the presence of maternal antibodies, with various specimens from blood, oral and fecal swabs, and internal organs at various time points, the TD/96 had consistently 1.51-3.08 log higher loads than those of 94.4. A second passage of competition in the same animals further widened the lead of TD/96 as indicated by viral loads. The maternally derived antibodies provided partial protection to both wild type CSFVs and was correlated with lower clinical scores, febrile reaction, and animal mortality. In the presence of maternal antibodies, pigs could be infected by both wild type CSFVs, with TD/96 dominating. These findings partially explain the CSFV shift observed, furthering our understanding of CSFV pathogenesis in the field, and are helpful for the control of CSF.
Collapse
|
30
|
Chen J, Wu Y, Wu XD, Zhou J, Liang XD, Baloch AS, Qiu YF, Gao S, Zhou B. The R614E mutation of mouse Mx1 protein contributes to the novel antiviral activity against classical swine fever virus. Vet Microbiol 2020; 243:108621. [PMID: 32273007 DOI: 10.1016/j.vetmic.2020.108621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/07/2023]
Abstract
Mx proteins are interferon-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses. We previously demonstrated that porcine Mx1 protein (poMx1) inhibited the replication of classical swine fever virus (CSFV), an economically important Pestivirus, and that mouse Mx1 did so as well. It is unknown why the nucleus-localizing mouse Mx1 inhibits CSFV replication which occurs in the cytoplasm. To the end, we assessed the anti-CSFV actions of wild type mouse Mx1 and seven previously reported mutants (K49A, G83R, A222V, A516V, G540E, R614E and ΔL4) and identified the molecular mechanism of R614E action against CSFV replication. A series of experiments revealed that mmMx1 (R614E) mutant reposted to the cytoplasm and interacted with the CSFV nucleocapsid protein (Core), thereby inhibiting viral replication. These findings broaden our understanding of the function of Mx protein family members against CSFV and suggest that the relative conservation of Mx1 among species is the basis of broad-spectrum antiviral properties.
Collapse
Affiliation(s)
- Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu-Dan Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Dong Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Abdul Sattar Baloch
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya-Feng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Song Gao
- the Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
31
|
Xu H, Wang Y, Han G, Fang W, He F. Identification of E2 with improved secretion and immunogenicity against CSFV in piglets. BMC Microbiol 2020; 20:26. [PMID: 32019519 PMCID: PMC7001342 DOI: 10.1186/s12866-020-1713-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/27/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Outbreaks of Classical swine fever virus (CSFV) cause significant economic losses in the swine industry. Vaccination is the major method to prevent and control the disease. As live attenuated vaccines fail to elicit differentiable immunity between infected and vaccinated animals, subunit vaccine was considered as an alternative candidate to prevent and eradicate CSFV. Subunit vaccines present advantages in DIVA immunogenicity and safety. The technology was limited due to the low yield and the high cost with multiple and large doses. The native E2 signal peptide has not been well defined before. Here, the aim of this study is to develop a cost-effective and efficacious E2 vaccine candidate against CSFV with signal peptide and E2 sequence selection. RESULTS A novel CSFV E2 sequence (E2ZJ) was identified from an epidemic strain of Zhejiang for outstanding secretion in baculovirus and enhanced immunogenicity. E2 secretion induced with the selected signal peptide, SPZJ (SP23), increase at least 50% as compared to any other signal peptides tested. Besides, unique antigenic features were identified in E2ZJ. As indicated with immunized sera in IFA against CSFV infection, E2ZJ elicited CSFV antibodies at the earlier stage than other E2 types tested in mice. Moreover, higher level of neutralizing and CSFV antibodies against CSFV with E2ZJ was detected than other E2s with the same dosage at 28 dpi. Further, E2ZJ successfully elicited neutralizing immunity in piglets. A single dose of 5 μg of E2ZJ was sufficient to induce protective antibodies against CSFV in piglets and provided 100% protection against lethal virus challenge. CONCLUSIONS Our studies provide evidence that E2ZJ guided by a novel E2 signal peptide (SPZJ) was efficiently secreted and presented significantly improved immunogenicity than conventional E2 vaccines. Moreover, a single dose of 5 μg E2ZJ is efficacious against CSFV in piglets.
Collapse
Affiliation(s)
- Huiling Xu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Yanli Wang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Guangwei Han
- Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Fang He
- Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, 866 Yuhangtang road, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.
| |
Collapse
|
32
|
Nimmanapalli R, Gupta V. Vaccines the tugboat for prevention-based animal production. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149732 DOI: 10.1016/b978-0-12-816352-8.00020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The world population is growing at a faster rate day-by-day and the demands for animal products are also increasing to meet the food security worldwide. For sustained production of animals products, healthy livestock and poultry farming are the major concerns as animals are susceptible to various infectious agents viz. bacteria, virus, and parasites leading to huge economical losses in the form of livestock’s morbidity and mortality. Besides, zoonotic nature of some infectious pathogens of animals is also raising concern for human safety. Vaccination of animals against various diseases present in different geographical regions is a best known strategy for prevention of different disease outbreaks both in organized and unorganized livestock and poultry sectors. Vaccines had played a major role in eradication of different dreaded diseases of livestock sectors globally. In this article we have discussed different vaccine types, various vaccine strategies used for the development of more efficacious and safe vaccines and commercially available vaccines for livestock and poultry.
Collapse
|
33
|
Surface display of classical swine fever virus E2 glycoprotein on gram-positive enhancer matrix (GEM) particles via the SpyTag/SpyCatcher system. Protein Expr Purif 2019; 167:105526. [PMID: 31689499 DOI: 10.1016/j.pep.2019.105526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/12/2019] [Accepted: 10/30/2019] [Indexed: 01/20/2023]
Abstract
The E2 envelope protein is the main protective antigen of classical swine fever virus (CSFV). Importantly, gram-positive enhancer matrix (GEM) particles can work as an immunostimulant and/or carrier system to improve the immune effect of antigens. In this study, the artificially designed E2-Spy was expressed and glycosylated in Pichia pastoris, and subsequently conjugated with SpyCatcher-PA which was expressed in Escherichia coli. The conjugated E2-Spy-PA was displayed on the surface of GEM particles, generating the E2-Spy-PA-GEM complex. Blocking ELISA analysis and neutralization assays showed that both E2-Spy and E2-Spy-PA-GEM complexes induced high levels of anti-CSFV antibodies in mice. Furthermore, statistical analyses indicated that the E2-Spy-PA-GEM complex exhibited enhanced immunogenicity compared with E2-Spy alone.
Collapse
|
34
|
Li D, Wu J, Chen J, Zhang D, Zhang Y, Qiao X, Yu X, Zheng Q, Hou J. Optimized expression of classical swine fever virus E2 protein via combined strategy in Pichia pastoris. Protein Expr Purif 2019; 167:105527. [PMID: 31678666 DOI: 10.1016/j.pep.2019.105527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
Precaution of classical swine fever (CSF) is an important mission for the worldwide swine industry. Glycoprotein E2 is the leading antigen candidate for subunit vaccine of classical swine fever virus (CSFV). In this study, two Spy-tagged E2 genes were synthesized in vitro and subcloned into pMCO-AOX vector for intracellular expression in Pichia pastoris after methanol induction. Western blot analysis and semi-quantitative analysis showed that the yield of recombinant E2 protein was improved 17.87 folds by using co-translocational signal peptide cSIG. After the construction of the tandem multiple copy expression vectors, further increase of E2 production was observed by repetitive transforming expression vectors into P. pastoris genome. Finally, the yeast transformants harboring 8 or 16 copies of cSIG-E2-Spy increased the E2 expression level by 27.01-fold or 30.72-fold, respectively. These results demonstrate that utilizing co-translocational signal peptide together with multi-copy integration strategy can increase the production of recombinant E2 protein efficiently.
Collapse
Affiliation(s)
- Ding Li
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Junchen Wu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Jin Chen
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Dong Zhang
- Shandong Provincial Center for Animal Disease Control and Prevention, Shandong, China
| | - Yuanpeng Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Xuwen Qiao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Xiaoming Yu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China
| | - Qisheng Zheng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China.
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, China.
| |
Collapse
|
35
|
Kumar R, Kumar V, Kekungu P, Barman NN, Kumar S. Evaluation of surface glycoproteins of classical swine fever virus as immunogens and reagents for serological diagnosis of infections in pigs: a recombinant Newcastle disease virus approach. Arch Virol 2019; 164:3007-3017. [PMID: 31598846 DOI: 10.1007/s00705-019-04425-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
Abstract
Classical swine fever (CSF) is an important viral disease of domestic pigs and wild boar. The structural proteins E2 and Erns of classical swine fever virus (CSFV), which participate in the attachment of the virion to the host cell surface and its subsequent entry, are immunogenic. The E2 and Erns proteins are used for diagnosis and the development of vaccines against CSFV infection in swine. Newcastle disease virus (NDV) has been successfully used as a viral vector to express heterologous proteins. In the present study, the E2 and Erns proteins of CSFV were expressed in cell culture as well as embryonated chicken eggs, using recombinant NDV (rNDV). Rescued rNDV expressing the E2 and Erns proteins induced the production of CSFV-neutralizing antibodies upon intranasal vaccination of pigs. Serum samples from vaccinated animals were found to neutralize both homologous and heterologous CSFV strains. Furthermore, rNDV expressing the E2 and Erns proteins of CSFV was used to develop an indirect ELISA, which was used to measure the the antibody titers of randomly collected serum samples. The results suggested that the ELISA based on rNDV-expressed E2 and Erns proteins could be used to screen for CSFV infections. This study shows that rNDV-based expression of CSFV antigens is potentially applicable for development of vaccines and diagnostic tests for CSFV infection. This approach could be an economically favorable alternative to the existing vaccine and diagnostics for CSFV in pigs.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Vishnu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Puro Kekungu
- ICAR Research Complex for North East Hill Region, Shillong, Meghalaya, India
| | - Nagendra N Barman
- Department of Veterinary Microbiology, College of Veterinary Sciences, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
36
|
Characterization of the Humoral Immune Response Induced after Infection with Atypical Porcine Pestivirus (APPV). Viruses 2019; 11:v11100880. [PMID: 31546571 PMCID: PMC6832543 DOI: 10.3390/v11100880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022] Open
Abstract
Atypical porcine pestivirus (APPV) is a widely distributed pathogen causing congenital tremor (CT) in piglets. So far, no data are available regarding the humoral immune response against APPV. In this study, piglets and their sows from an affected herd were tested longitudinally for viral genome and antibodies. APPV genome was detected in the majority of the piglets (14/15) from CT affected litters. Transient infection of gilts was observed. Kinetics of Erns- and E2-specific antibodies and their neutralizing capacity were determined by recently (Erns) and newly (E2) developed antibody ELISAs and virus neutralization assays. Putative maternally derived antibodies (MDA) were detected in most piglets, but displayed only low to moderate neutralizing capacity (ND50 ≤ 112). Horizontal APPV transmission occurred when uninfected and infected piglets were mingled on the flat deck. Horizontally infected piglets were clinically inapparent and showed only transient viremia with subsequently consistently high E2 antibody levels. For piglets from CT affected litters, significantly lower neutralizing antibody titers were observed. Results indicate that E2 represents the main target of neutralizing antibodies. Characterization of the humoral immune response against APPV will help to provide valuable serological diagnosis, to understand the epidemiology of this novel pathogen, and to implement tailored prevention strategies.
Collapse
|
37
|
Gong W, Li J, Wang Z, Sun J, Mi S, Xu J, Cao J, Hou Y, Wang D, Huo X, Sun Y, Wang P, Yuan K, Gao Y, Zhou X, He S, Tu C. Commercial E2 subunit vaccine provides full protection to pigs against lethal challenge with 4 strains of classical swine fever virus genotype 2. Vet Microbiol 2019; 237:108403. [PMID: 31585656 DOI: 10.1016/j.vetmic.2019.108403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
Classical swine fever (CSF) still threatens the swine industry in China, with genotype 2 isolates of CSFV dominating the epizootics. In 2018 the first E2 subunit marker vaccine against CSFV (Tian Wen Jing, TWJ-E2®), containing a baculovirus-expressed E2 glycoprotein of a genotype 1.1 vaccine strain, was officially licensed in China and commercialized. To evaluate the cross-protective efficacy of TWJ-E2 against different virulent genotype 2 Chinese field isolates (2.1b, 2.1c, 2.1 h, and 2.2), 4-week-old pigs were immunized with the TWJ-E2 vaccine according to the manufacturer's instructions and then challenged with genotype 2 strains. A group vaccinated with the conventional C-strain vaccine was included for comparison. TWJ-E2 vaccinated pigs developed higher levels of E2 and neutralizing antibodies than those receiving the commercial C-strain vaccine. All TWJ-E2 and C-strain vaccinated pigs survived challenge without development of fever, clinical signs or pathological lesions. In contrast, all unvaccinated control pigs displayed severe CSF disease with 40-100% mortalities by 24 days post challenge. None of the TWJ-E2 and C-strain vaccinated pigs developed viremia, viral shedding from tonsils, Erns protein in the sera, or viral RNA loads in different tissues after challenge, all of which were detected in the challenged unvaccinated controls. We conclude that vaccination of young pigs with TWJ-E2 provides complete immune protection against genotypically heterologous CSFVs and prevents viral shedding after challenge, with an efficacy at least comparable to that elicited by the conventional C-strain vaccine.
Collapse
Affiliation(s)
- Wenjie Gong
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Junhui Li
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Zunbao Wang
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Jiumeng Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Shijiang Mi
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Jialun Xu
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Jian Cao
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Yuzhen Hou
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Danyang Wang
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Xinliang Huo
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Yanjun Sun
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Pengjiang Wang
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Ke Yuan
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Yangyi Gao
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Xubin Zhou
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Sun He
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China.
| | - Changchun Tu
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
38
|
Zhou B. Classical Swine Fever in China-An Update Minireview. Front Vet Sci 2019; 6:187. [PMID: 31249837 PMCID: PMC6584753 DOI: 10.3389/fvets.2019.00187] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/28/2019] [Indexed: 11/17/2022] Open
Abstract
Classical swine fever (CSF) remains one of the most economically important viral diseases of domestic pigs and wild boar worldwide. The causative agent is CSF virus, it is highly contagious, with high morbidity and mortality rates; as such, it is an OIE-listed disease. Owing to a nationwide policy of vaccinations of pigs, CSF is well-controlled in China, with large-scale outbreaks rarely seen. Sporadic outbreaks are however still reported every year. In order to cope with future crises and to eradicate CSF, China should strengthen and support biosecurity measures such as the timely reporting of suspected disease, technologies for reliable diagnoses, culling infected herds, and tracing possible contacts, as well as continued vaccination and support of research into drug and genetic therapies. This mini-review summarizes the epidemiology of and control strategies for CSF in China.
Collapse
Affiliation(s)
- Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
39
|
Chen D, Liu X, Xu S, Chen D, Zhou L, Ge X, Han J, Guo X, Yang H. TNF-α induced by porcine reproductive and respiratory syndrome virus inhibits the replication of classical swine fever virus C-strain. Vet Microbiol 2019; 234:25-33. [PMID: 31213269 DOI: 10.1016/j.vetmic.2019.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022]
Abstract
Porcine productive and respiratory syndrome virus (PRRSV) and classical swine fever virus (CSFV) both are major pathogens of swine that pose a great threat to the Chinese pig industry. It has been found that PRRSV infection can lead to vaccination failure of CSFV C strain-derived modified live vaccine (CSFV-C) by interfering with the immune responses to the latter. To investigate whether PRRSV can suppress CSFV-C replication, we created a 3D4/21-based cell line PAM39 that is susceptible to both viruses by expressing PRRSV receptors CD163 and CD169, and then investigated their interplay under the condition of either sequential or simultaneous co-infection. The most significant suppressive effect came from the sequential infection when the cells were first infected by PRRSV and then followed by CSFV-C at an interval of 6 h. In addition, this effect was independent of PRRSV strains. Mechanistically, PRRSV induced an elevated level of a subset of pro-inflammatory cytokines, especially tumor necrosis factor (TNF-α), through the nuclear factor κB (NF-κB) signaling pathway to inhibit the replication of CSFV-C in vitro. Thus, our studies provide an alternative explanation on PRRSV-induced CSFV vaccination failure, and this has an important implication in CSF vaccination and control.
Collapse
Affiliation(s)
- Dongjie Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaowen Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shengkui Xu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Dengjin Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
40
|
Gong W, Li J, Wang Z, Sun J, Mi S, Lu Z, Cao J, Dou Z, Sun Y, Wang P, Yuan K, Zhang L, Zhou X, He S, Tu C. Virulence evaluation of classical swine fever virus subgenotype 2.1 and 2.2 isolates circulating in China. Vet Microbiol 2019; 232:114-120. [PMID: 31030834 DOI: 10.1016/j.vetmic.2019.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 01/01/2023]
Abstract
Classical swine fever (CSF) remains an important pig disease in China, where it usually presents with mild or atypical clinical manifestations, with large scale outbreaks rarely seen. This has led to speculation about the possible circulation of viral strains of low virulence. To investigate this possibility, five field isolates within the predominant genotype 2 (2.1b, 2.1c, 2.1 h and 2.2) were evaluated and compared by experimental infection of naturally farrowed but colostrum-deprived piglets. All infected piglets displayed clinical signs, including persistent high fever, depression, anorexia, dyspnea, conjunctivitis, constipation, and hesitant gait. Typical pathological lesions, including pulmonary edema, hemorrhagic or cellulosic exudation, and swelling and hemorrhage of lymph nodes, were observed. Viremia and Erns protein expression in the blood of all infected animals were detectable from 3 to 5 days post infection (DPI), their presence correlating with the onset of fever, clinical signs and leukopenia. E2 antibody did not develop in any of the field CSFV-infected piglets during the disease course, while Erns antibody was detectable in 4-56% of infected animals at various time points. Mortalities ranged from 20 to 80% within 21 DPI, progressing to 100% by 43 DPI. Based on clinical scores and fatalities within 21 DPI, 2 of the 5 field isolates were classified as of moderate virulence and 3 of high virulence; i.e., no field isolates of low virulence were identified. The study has provided data supporting the use of these isolates as challenge viruses to evaluate the efficacy of current CSF vaccines.
Collapse
Affiliation(s)
- Wenjie Gong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, PR China
| | - Junhui Li
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Zunbao Wang
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Jiumeng Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, PR China
| | - Shijiang Mi
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, PR China
| | - Zongji Lu
- College of Life Sciences and Engineering, Foshan University, Foshan, PR China
| | - Jian Cao
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Zhihua Dou
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Yanjun Sun
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Pengjiang Wang
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Ke Yuan
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Liying Zhang
- College of Animal Sciences, Jilin University, Changchun, PR China
| | - Xubin Zhou
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China
| | - Sun He
- Tecon Biology Joint Stock Company Limited, Urumqi, PR China.
| | - Changchun Tu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
41
|
E2 and Erns of classical swine fever virus C-strain play central roles in its adaptation to rabbits. Virus Genes 2019; 55:238-242. [DOI: 10.1007/s11262-018-01631-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/27/2018] [Indexed: 01/30/2023]
|
42
|
Zhang H, Wen W, Zhao Z, Wang J, Chen H, Qian P, Li X. Enhanced protective immunity to CSFV E2 subunit vaccine by using IFN-γ as immunoadjuvant in weaning piglets. Vaccine 2018; 36:7353-7360. [DOI: 10.1016/j.vaccine.2018.10.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 12/29/2022]
|
43
|
Madera RF, Wang L, Gong W, Burakova Y, Buist S, Nietfeld J, Henningson J, Cino-Ozuna AG, Tu C, Shi J. Toward the development of a one-dose classical swine fever subunit vaccine: antigen titration, immunity onset, and duration of immunity. J Vet Sci 2018; 19:393-405. [PMID: 29510474 PMCID: PMC5974521 DOI: 10.4142/jvs.2018.19.3.393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 11/28/2022] Open
Abstract
Highly contagious classical swine fever (CSF) remains a major trade and health problem in the pig industry, resulting in large economic losses worldwide. In CSF-endemic countries, attenuated CSF virus (CSFV) vaccines have been routinely used to control the disease. However, eradication of CSFV in a geographical area would require permanent reduction to zero presence of the virus. It is therefore of paramount importance to develop a safe, potent, and non-infectious CSF vaccine. We have previously reported on a cost-effective CSF E2 subunit vaccine, KNB-E2, which can protect against CSF symptoms in a single dose containing 75 µg of recombinant CSFV glycoprotein E2. In this study, we report on a series of animal studies undertaken to elucidate further the efficacy of KNB-E2. We found that pigs vaccinated with a single KNB-E2 dose containing 25 µg of recombinant CSFV glycoprotein E2 were protected from clinical symptoms of CSF. In addition, KNB-E2-mediated reduction of CSF symptoms was observed at two weeks post-vaccination and the vaccinated pigs continued to exhibit reduced CSF clinical signs when virus challenged at two months and four months post-vaccination. These results suggest that KNB-E2 effectively reduces CSF clinical signs, indicating the potential of this vaccine for safely minimizing CSF-related losses.
Collapse
Affiliation(s)
- Rachel F Madera
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Lihua Wang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Wenjie Gong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130062, China
| | - Yulia Burakova
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Sterling Buist
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jerome Nietfeld
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Ada G Cino-Ozuna
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Changchun Tu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130062, China
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
44
|
Porcine Mx1 Protein Inhibits Classical Swine Fever Virus Replication by Targeting Nonstructural Protein NS5B. J Virol 2018; 92:JVI.02147-17. [PMID: 29343573 DOI: 10.1128/jvi.02147-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
Mx proteins are interferon (IFN)-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses; they belong to the dynamin superfamily of large GTPases. In this study, we confirmed the anti-classical swine fever virus (CSFV) activity of porcine Mx1 in vitro and showed that porcine Mx2 (poMx2), human MxA (huMxA), and mouse Mx1 (mmMx1) also have anti-CSFV activity in vitro Small interfering RNA (siRNA) experiments revealed that depletion of endogenous poMx1 or poMx2 enhanced CSFV replication, suggesting that porcine Mx proteins are responsible for the antiviral activity of interferon alpha (IFN-α) against CSFV infection. Confocal microscopy, immunoprecipitation, glutathione S-transferase (GST) pulldown, and bimolecular fluorescence complementation (BiFC) demonstrated that poMx1 associated with NS5B, the RNA-dependent RNA polymerase (RdRp) of CSFV. We used mutations in the poMx1 protein to elucidate the mechanism of their anti-CSFV activity and found that mutants that disrupted the association with NS5B lost all anti-CSV activity. Moreover, an RdRp activity assay further revealed that poMx1 undermined the RdRp activities of NS5B. Together, these results indicate that porcine Mx proteins exert their antiviral activity against CSFV by interacting with NS5B.IMPORTANCE Our previous studies have shown that porcine Mx1 (poMx1) inhibits classical swine fever virus (CSFV) replication in vitro and in vivo, but the molecular mechanism of action remains largely unknown. In this study, we dissect the molecular mechanism of porcine Mx1 and Mx2 against CSFV in vitro Our results show that poMx1 associates with NS5B, the RNA-dependent RNA polymerase of CSFV, resulting in the reduction of CSFV replication. Moreover, the mutants of poMx1 further elucidate the mechanism of their anti-CSFV activities.
Collapse
|
45
|
Humoral and cellular immune response in mice induced by the classical swine fever virus E2 protein fused to the porcine CD154 antigen. Biologicals 2018; 52:67-71. [DOI: 10.1016/j.biologicals.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 08/23/2017] [Accepted: 12/22/2017] [Indexed: 01/15/2023] Open
|
46
|
Wetzel D, Rolf T, Suckow M, Kranz A, Barbian A, Chan JA, Leitsch J, Weniger M, Jenzelewski V, Kouskousis B, Palmer C, Beeson JG, Schembecker G, Merz J, Piontek M. Establishment of a yeast-based VLP platform for antigen presentation. Microb Cell Fact 2018; 17:17. [PMID: 29402276 PMCID: PMC5798182 DOI: 10.1186/s12934-018-0868-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/27/2018] [Indexed: 12/26/2022] Open
Abstract
Background Chimeric virus-like particles (VLP) allow the display of foreign antigens on their surface and have proved valuable in the development of safe subunit vaccines or drug delivery. However, finding an inexpensive production system and a VLP scaffold that allows stable incorporation of diverse, large foreign antigens are major challenges in this field. Results In this study, a versatile and cost-effective platform for chimeric VLP development was established. The membrane integral small surface protein (dS) of the duck hepatitis B virus was chosen as VLP scaffold and the industrially applied and safe yeast Hansenula polymorpha (syn. Pichia angusta, Ogataea polymorpha) as the heterologous expression host. Eight different, large molecular weight antigens of up to 412 amino acids derived from four animal-infecting viruses were genetically fused to the dS and recombinant production strains were isolated. In all cases, the fusion protein was well expressed and upon co-production with dS, chimeric VLP containing both proteins could be generated. Purification was accomplished by a downstream process adapted from the production of a recombinant hepatitis B VLP vaccine. Chimeric VLP were up to 95% pure on protein level and contained up to 33% fusion protein. Immunological data supported surface exposure of the foreign antigens on the native VLP. Approximately 40 mg of chimeric VLP per 100 g dry cell weight could be isolated. This is highly comparable to values reported for the optimized production of human hepatitis B VLP. Purified chimeric VLP were shown to be essentially stable for 6 months at 4 °C. Conclusions The dS-based VLP scaffold tolerates the incorporation of a variety of large molecular weight foreign protein sequences. It is applicable for the display of highly immunogenic antigens originating from a variety of pathogens. The yeast-based production system allows cost-effective production that is not limited to small-scale fundamental research. Thus, the dS-based VLP platform is highly efficient for antigen presentation and should be considered in the development of future vaccines.
Collapse
Affiliation(s)
- David Wetzel
- ARTES Biotechnology GmbH, Elisabeth-Selbert-Straße 9, 40764, Langenfeld, Germany. .,Laboratory of Plant and Process Design, Technical University of Dortmund, Emil-Figge-Straße 70, 44227, Dortmund, Germany.
| | - Theresa Rolf
- ARTES Biotechnology GmbH, Elisabeth-Selbert-Straße 9, 40764, Langenfeld, Germany
| | - Manfred Suckow
- ARTES Biotechnology GmbH, Elisabeth-Selbert-Straße 9, 40764, Langenfeld, Germany
| | - Andreas Kranz
- ARTES Biotechnology GmbH, Elisabeth-Selbert-Straße 9, 40764, Langenfeld, Germany
| | - Andreas Barbian
- Institute for Anatomy I, Düsseldorf University Hospital, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Jo-Anne Chan
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Joachim Leitsch
- ARTES Biotechnology GmbH, Elisabeth-Selbert-Straße 9, 40764, Langenfeld, Germany
| | - Michael Weniger
- ARTES Biotechnology GmbH, Elisabeth-Selbert-Straße 9, 40764, Langenfeld, Germany
| | - Volker Jenzelewski
- ARTES Biotechnology GmbH, Elisabeth-Selbert-Straße 9, 40764, Langenfeld, Germany
| | - Betty Kouskousis
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Catherine Palmer
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Gerhard Schembecker
- Laboratory of Plant and Process Design, Technical University of Dortmund, Emil-Figge-Straße 70, 44227, Dortmund, Germany
| | - Juliane Merz
- Laboratory of Plant and Process Design, Technical University of Dortmund, Emil-Figge-Straße 70, 44227, Dortmund, Germany
| | - Michael Piontek
- ARTES Biotechnology GmbH, Elisabeth-Selbert-Straße 9, 40764, Langenfeld, Germany
| |
Collapse
|
47
|
Li HM, Zhao ZY, Guo KK, Jiang YF, Zhang WM, Zhang YM, Liu W, Wang JY. Differentiation of virulent Shimen and vaccine C strains of classical swine fever virus by duplex reverse-transcription polymerase chain reaction. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1355263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Hai-min Li
- Department of Prevention, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Zi-yin Zhao
- Department of Prevention, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Kang-kang Guo
- Department of Prevention, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yan-fen Jiang
- Department of Prevention, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Wei-min Zhang
- Department of Prevention, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yan-ming Zhang
- Department of Prevention, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Wei Liu
- Department of Prevention, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Jing-yu Wang
- Department of Prevention, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
48
|
Expression and purification of classical swine fever virus E2 protein from Sf9 cells using a modified vector. Biotechnol Lett 2017; 39:1821-1825. [PMID: 28864859 DOI: 10.1007/s10529-017-2426-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/24/2017] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To develop a simple method for efficient expression of classical swine fever virus (CSFV) E2 protein. RESULTS The pFastBac HT B vector (pFastHTB-M1) was modified by adding a melittin signal peptide sequence. The E2 gene fragment without the transmembrane region was cloned into pFastHTB-M1. The modified vector has clear advantage over the original one, as evidenced by the purified recombinant E2 protein that was detected significantly by SDS-PAGE. CONCLUSIONS The modified vector has the potential for large-scale production and easy purification of the CSFV E2 protein or other proteins of interests.
Collapse
|
49
|
Suárez M, Sordo Y, Prieto Y, Rodríguez MP, Méndez L, Rodríguez EM, Rodríguez-Mallon A, Lorenzo E, Santana E, González N, Naranjo P, Frías MT, Carpio Y, Estrada MP. A single dose of the novel chimeric subunit vaccine E2-CD154 confers early full protection against classical swine fever virus. Vaccine 2017; 35:4437-4443. [DOI: 10.1016/j.vaccine.2017.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/18/2017] [Accepted: 05/07/2017] [Indexed: 01/07/2023]
|
50
|
Farsang A, Lévai R, Barna T, Fábián K, Blome S, Belák K, Bálint Á, Koenen F, Kulcsár G. Pre-registration efficacy study of a novel marker vaccine against classical swine fever on maternally derived antibody positive (MDA+) target animals. Biologicals 2017; 45:85-92. [DOI: 10.1016/j.biologicals.2016.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 07/13/2016] [Accepted: 09/19/2016] [Indexed: 01/24/2023] Open
|