1
|
Kholodilov IS, Aibulatov SV, Khalin AV, Polienko AE, Klimentov AS, Belova OA, Rogova AA, Medvedev SG, Karganova GG. Orthoflavivirus Lammi in Russia: Possible Transovarial Transmission and Trans-Stadial Survival in Aedes cinereus (Diptera, Culicidae). Viruses 2024; 16:527. [PMID: 38675870 PMCID: PMC11054007 DOI: 10.3390/v16040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
In the last few years, there has been a dramatic increase in the number of discovered viruses that are transmitted by arthropods. Some of them are pathogenic for humans and mammals, and the pathogenic potential of others is unknown. The genus Orthoflavivirus belongs to the family Flaviviridae and includes arboviruses that cause severe human diseases with damage to the central nervous system and hemorrhagic fevers, as well as viruses with unknown vectors and viruses specific only to insects. The latter group includes Lammi virus, first isolated from a mosquito pool in Finland. It is known that Lammi virus successfully replicates in mosquito cell lines but not in mammalian cell cultures or mice. Lammi virus reduces the reproduction of West Nile virus during superinfection and thus has the potential to reduce the spread of West Nile virus in areas where Lammi virus is already circulating. In this work, we isolated Lammi virus from a pool of adult Aedes cinereus mosquitoes that hatched from larvae/pupae collected in Saint Petersburg, Russia. This fact may indicate transovarial transmission and trans-stadial survival of the virus.
Collapse
Affiliation(s)
- Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.E.P.); (O.A.B.); (A.A.R.); (G.G.K.)
| | - Sergey V. Aibulatov
- Laboratory for the Study of Parasitic Arthropods, Zoological Institute of Russian Academy of Sciences, 199034 St. Petersburg, Russia; (S.V.A.); (A.V.K.); (S.G.M.)
| | - Alexei V. Khalin
- Laboratory for the Study of Parasitic Arthropods, Zoological Institute of Russian Academy of Sciences, 199034 St. Petersburg, Russia; (S.V.A.); (A.V.K.); (S.G.M.)
| | - Alexandra E. Polienko
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.E.P.); (O.A.B.); (A.A.R.); (G.G.K.)
| | - Alexander S. Klimentov
- Laboratory of Biochemistry, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia;
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.E.P.); (O.A.B.); (A.A.R.); (G.G.K.)
| | - Anastasiya A. Rogova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.E.P.); (O.A.B.); (A.A.R.); (G.G.K.)
| | - Sergey G. Medvedev
- Laboratory for the Study of Parasitic Arthropods, Zoological Institute of Russian Academy of Sciences, 199034 St. Petersburg, Russia; (S.V.A.); (A.V.K.); (S.G.M.)
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.E.P.); (O.A.B.); (A.A.R.); (G.G.K.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| |
Collapse
|
2
|
Hernandez-Valencia JC, Muñoz-Laiton P, Gómez GF, Correa MM. A Systematic Review on the Viruses of Anopheles Mosquitoes: The Potential Importance for Public Health. Trop Med Infect Dis 2023; 8:459. [PMID: 37888587 PMCID: PMC10610971 DOI: 10.3390/tropicalmed8100459] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Anopheles mosquitoes are the vectors of Plasmodium, the etiological agent of malaria. In addition, Anopheles funestus and Anopheles gambiae are the main vectors of the O'nyong-nyong virus. However, research on the viruses carried by Anopheles is scarce; thus, the possible transmission of viruses by Anopheles is still unexplored. This systematic review was carried out to identify studies that report viruses in natural populations of Anopheles or virus infection and transmission in laboratory-reared mosquitoes. The databases reviewed were EBSCO-Host, Google Scholar, Science Direct, Scopus and PubMed. After the identification and screening of candidate articles, a total of 203 original studies were included that reported on a variety of viruses detected in Anopheles natural populations. In total, 161 viruses in 54 species from 41 countries worldwide were registered. In laboratory studies, 28 viruses in 15 Anopheles species were evaluated for mosquito viral transmission capacity or viral infection. The viruses reported in Anopheles encompassed 25 viral families and included arboviruses, probable arboviruses and Insect-Specific Viruses (ISVs). Insights after performing this review include the need for (1) a better understanding of Anopheles-viral interactions, (2) characterizing the Anopheles virome-considering the public health importance of the viruses potentially transmitted by Anopheles and the significance of finding viruses with biological control activity-and (3) performing virological surveillance in natural populations of Anopheles, especially in the current context of environmental modifications that may potentiate the expansion of the Anopheles species distribution.
Collapse
Affiliation(s)
- Juan C. Hernandez-Valencia
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| | - Paola Muñoz-Laiton
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| | - Giovan F. Gómez
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
- Dirección Académica, Escuela de Pregrados, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| |
Collapse
|
3
|
Tang X, Li R, Qi Y, Li W, Liu Z, Wu J. The identification and genetic characteristics of Quang Binh virus from field-captured Culex tritaeniorhynchus (Diptera: Culicidae) from Guizhou Province, China. Parasit Vectors 2023; 16:318. [PMID: 37679786 PMCID: PMC10486134 DOI: 10.1186/s13071-023-05938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Mosquitoes carry a variety of viruses that can cause disease in humans, animals and livestock. Surveys for viruses carried by wild mosquitoes can significantly contribute to surveillance efforts and early detection systems. In addition to mosquito-borne viruses, mosquitoes harbor many insect-specific viruses (ISVs). Quang Binh virus (QBV) is one such example, categorized as an ISV within the Flavivirus genus (family Flaviviridae). QBV has been specifically documented in Vietnam and China, with reports limited to several mosquito species. METHODS The homogenate obtained from female mosquitoes was cultured on C6/36 (Aedes albopictus) and BHK-21 (baby hamster kidney) cell lines. Positive cultures were identified by reverse transcription-polymerase chain reaction (RT‒PCR) with taxon- or species-specific primers. Next-generation sequencing was employed to sequence the complete genomes of the identified positive samples. Subsequently, phylogenetic, gene homology, molecular evolutionary and genetic variation analyses were conducted. RESULT In 2021, a total of 32,177 adult female mosquitoes were collected from 15 counties in Guizhou Province, China. The predominant mosquito species identified were Culex tritaeniorhynchus, Armigeres subalbatus and Anopheles sinensis. Among the collected mosquitoes, three positive cultures were obtained from Cx. tritaeniorhynchus pools, revealing the presence of Quang Binh virus (QBV) RNA sequences. Phylogenetic analysis indicated that the three Guizhou isolates, along with the prototype isolate from Vietnam, formed distinct branches. These branches were primarily closely related to other QBV isolates reported in China. Comparative analysis revealed a high degree of nucleotide and amino acid homology between the Guizhou isolates and both Vietnamese and other indigenous Chinese isolates. Additionally, nonsynonymous single-nucleotide variants (SNVs) were observed in these strains compared to the QBV prototype strain. CONCLUSION This study represents the first report of QBV presences in Cx. tritaeniorhynchus mosquitoes in Guizhou Province, China. Phylogenetic tree analysis showed that the three Guizhou isolates were most closely related to the QBV genes found in China. In addition, the study of the genetic characteristics and variation of this virus provided a deeper understanding of QBV and enriched the baseline data of these insect-specific flaviviruses (ISFVs).
Collapse
Affiliation(s)
- Xiaomin Tang
- Characteristic Key Laboratory of Modern Pathogen Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
- Department of Human Parasitology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Rongting Li
- Characteristic Key Laboratory of Modern Pathogen Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Yanfei Qi
- College of Osteopathic Medicine, Duquesne University, Pittsburgh, PA, 15282, USA
- College of Osteopathic Medicine, California Health Sciences University, Clovis, CA, 93611, USA
| | - Weiyi Li
- Characteristic Key Laboratory of Modern Pathogen Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Zhihao Liu
- Characteristic Key Laboratory of Modern Pathogen Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Jiahong Wu
- Characteristic Key Laboratory of Modern Pathogen Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China.
- Department of Human Parasitology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Huang Y, Zhang H, Li X, Zhao L, Cai D, Wang S, Ren N, Ma H, Huang D, Wang F, Yuan Z, Zhang B, Xia H. In Vitro and In Vivo Characterization of a New Strain of Mosquito Flavivirus Derived from Culicoides. Viruses 2022; 14:v14061298. [PMID: 35746769 PMCID: PMC9229015 DOI: 10.3390/v14061298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Mosquito-specific flaviviruses comprise a group of insect-specific viruses with a single positive RNA, which can affect the duplication of mosquito-borne viruses and the life growth of mosquitoes, and which have the potential to be developed as a vaccine platform for mosquito-borne viruses. In this study, a strain of mosquito flavivirus (MFV) YN15-283-02 was detected in Culicoides collected from Yunnan, China. The isolation of the purified MFV YN15-283-02 from cell culture failed, and the virus was then rescued by an infectious clone. To study the biological features of MFV YN15-283-02 in vitro and in vivo, electron microscopy, phylogenetic tree, and viral growth kinetic analyses were performed in both cell lines and mosquitoes. The rescued MFV (rMFV) YN15-283-02 duplicated and reached a peak in C6/36 cells at 6 d.p.i. with approximately 2 × 106 RNA copies/μL (RNA to cell ratio of 0.1), but without displaying a cytopathic effect. In addition, the infection rate for the rMFV in Ae.aegypti show a low level in both larvae (≤15%) and adult mosquitoes (≤12%).
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongqing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodan Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
| | - Lu Zhao
- Westlake Disease Modeling Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China;
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Dirui Cai
- School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Shunlong Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nanjie Ren
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixia Ma
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
| | - Doudou Huang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
| | - Fei Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.Z.); (H.X.); Tel.: +86-27-87197607 (B.Z.); +86-27-87198120 (H.X.)
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (Y.H.); (H.Z.); (X.L.); (S.W.); (N.R.); (H.M.); (D.H.); (F.W.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.Z.); (H.X.); Tel.: +86-27-87197607 (B.Z.); +86-27-87198120 (H.X.)
| |
Collapse
|
5
|
The Evolution, Genomic Epidemiology, and Transmission Dynamics of Tembusu Virus. Viruses 2022; 14:v14061236. [PMID: 35746707 PMCID: PMC9227414 DOI: 10.3390/v14061236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Tembusu virus (TMUV) can induce severe egg drop syndrome in ducks, causing significant economic losses. In this study, the possible origin, genomic epidemiology, and transmission dynamics of TMUV were determined. The time to the most recent common ancestor of TMUV was found to be 1924, earlier than that previously reported. The effective population size of TMUV increased rapidly from 2010 to 2013 and was associated with the diversification of different TMUV clusters. TMUV was classified into three clusters (clusters 1, 2, and 3) based on the envelope (E) protein. Subcluster 2.2, within cluster 2, is the most prevalent, and the occurrence of these mutations is accompanied by changes in the virulence and infectivity of the virus. Two positive selections on codons located in the NS3 and NS5 genes (591 of NS3 and 883 of NS5) were identified, which might have caused changes in the ability of the virus to replicate. Based on phylogeographic analysis, Malaysia was the most likely country of origin for TMUV, while Shandong Province was the earliest province of origin in China. This study has important implications for understanding TMUV and provides suggestions for its prevention and control.
Collapse
|
6
|
Feng Y, Gou QY, Yang WH, Wu WC, Wang J, Holmes EC, Liang G, Shi M. A time-series meta-transcriptomic analysis reveals the seasonal, host, and gender structure of mosquito viromes. Virus Evol 2022; 8:veac006. [PMID: 35242359 PMCID: PMC8887699 DOI: 10.1093/ve/veac006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Although metagenomic sequencing has revealed high numbers of viruses in mosquitoes sampled globally, our understanding of how their diversity and abundance varies in time and space as well as by host species and gender remains unclear. To address this, we collected 23,109 mosquitoes over the course of 12 months from a bat-dwelling cave and a nearby village in Yunnan province, China. These samples were organized by mosquito species, mosquito gender, and sampling time for meta-transcriptomic sequencing. A total of 162 eukaryotic virus species were identified, of which 101 were novel, including representatives of seventeen RNA virus multi-family supergroups and four species of DNA virus from the families Parvoviridae, Circoviridae, and Nudiviridae. In addition, two known vector-borne viruses-Japanese encephalitis virus and Banna virus-were found. Analyses of the entire virome revealed strikingly different viral compositions and abundance levels in warmer compared to colder months, a strong host structure at the level of mosquito species, and no substantial differences between those viruses harbored by male and female mosquitoes. At the scale of individual viruses, some were found to be ubiquitous throughout the year and across four mosquito species, while most of the other viruses were season and/or host specific. Collectively, this study reveals the diversity, dynamics, and evolution of the mosquito virome at a single location and sheds new lights on the ecology of these important vector animals.
Collapse
Affiliation(s)
- Yun Feng
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, No. 5 Wenhua Road, Xiaguan, Dali, Yunnan 671000, China
| | - Qin-yu Gou
- Shenzhen Campus of Sun-Yat Sen University, Sun-Yat Sen University Shenzhen Campus, Guangming New District, Shenzhen, Guangdong 518107, China
| | - Wei-hong Yang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, No. 5 Wenhua Road, Xiaguan, Dali, Yunnan 671000, China
| | - Wei-chen Wu
- Shenzhen Campus of Sun-Yat Sen University, Sun-Yat Sen University Shenzhen Campus, Guangming New District, Shenzhen, Guangdong 518107, China
| | - Juan Wang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, No. 5 Wenhua Road, Xiaguan, Dali, Yunnan 671000, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Mang Shi
- Shenzhen Campus of Sun-Yat Sen University, Sun-Yat Sen University Shenzhen Campus, Guangming New District, Shenzhen, Guangdong 518107, China
| |
Collapse
|
7
|
Daidoji T, Morales Vargas RE, Hagiwara K, Arai Y, Watanabe Y, Nishioka K, Murakoshi F, Garan K, Sadakane H, Nakaya T. Development of genus-specific universal primers for the detection of flaviviruses. Virol J 2021; 18:187. [PMID: 34526049 PMCID: PMC8442469 DOI: 10.1186/s12985-021-01646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/23/2021] [Indexed: 12/03/2022] Open
Abstract
Background Flaviviruses are representative arboviruses carried by arthropods and/or vertebrates; these viruses can pose a public health concern in many countries. By contrast, it is known that a novel virus group called insect-specific flaviviruses (ISFs) also infects arthropods, although no such virus has yet been isolated from vertebrates. The characteristics of ISFs, which affect replication of human-pathogenic flaviviruses within co-infected mosquito cells or mosquitoes without affecting the mosquitoes themselves, mean that we should pay attention to both ISFs and human-pathogenic flaviviruses, despite the fact that ISFs appear not to be directly hazardous to human health. To assess the risk of diseases caused by flaviviruses, and to better understand their ecology, it is necessary to know the extent to which flaviviruses are harbored by arthropods. Methods We developed a novel universal primer for use in a PCR-based system to detect a broad range of flaviviruses. We then evaluated its performance. The utility of the novel primer pair was evaluated in a PCR assay using artificially synthesized oligonucleotides derived from a template viral genome sequence. The utility of the primer pair was also examined by reverse transcription PCR (RT-PCR) using cDNA templates prepared from virus-infected cells or crude supernatants prepared from virus-containing mosquito homogenates. Results The novel primer pair amplified the flavivirus NS5 sequence (artificially synthesized) in all samples tested (six species of flavivirus that can cause infectious diseases in humans, and flaviviruses harbored by insects). In addition, the novel primer pair detected viral genomes in cDNA templates prepared from mosquito cells infected with live flavivirus under different infectious conditions. Finally, the viral genome was detected with high sensitivity in crude supernatants prepared from pooled mosquito homogenates. Conclusion This PCR system based on a novel primer pair makes it possible to detect arthropod-borne flaviviruses worldwide (the primer pair even detected viruses belonging to different genetic subgroups). As such, an assay based on this primer pair may help to improve public health and safety, as well as increase our understanding of flavivirus ecology. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01646-5.
Collapse
Affiliation(s)
- Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | | | - Katsuro Hagiwara
- Veterinary Virology, School of Veterinary Medicine , Rakuno Gakuen University, Hokkaido, 069-8501, Japan
| | - Yasuha Arai
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yohei Watanabe
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Keisuke Nishioka
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Fumi Murakoshi
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kotaro Garan
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hiroki Sadakane
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
8
|
Sialovirome of Brazilian tropical anophelines. Virus Res 2021; 302:198494. [PMID: 34174341 DOI: 10.1016/j.virusres.2021.198494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Accepted: 06/15/2021] [Indexed: 11/23/2022]
Abstract
Anophelinae is a widely dispersed Culicidae subfamily that may carry a unique virome. Here we herein report the set of viruses found in 323 salivary glands of 16 anopheline species sampled at Upper Pantanal, Chapada dos Guimarães National Park and Coxipó river basin, South Central Mato Grosso, Brazil, pooled (n = 11) and subjected to high throughput sequencing. Metagenomics revealed the presence of nine viral sequences belonging to novel viruses from seven viral families: Purunga is a putative novel orbivirus sharing 74% and 65% aa identity, respectively, with the VP1 and VP3 segments of Changuinola serogroup, Jaracatiá flavivirus shares 60% amino-acid (aa) identity with Aedes flavivirus. Coxipó dielmovirus and Chapada dielmovirus shared 51% and 39% aa identity with Merida virus. Coloiado-orthomyxo like virus is 57.1-64.8% identical at aa level to Aedes albonnulatus orthomyxo-like virus. Mujica picorna-like virus shares 49% aa identity with Flen picorna-like virus and Chiquitos virus is 50% similar to Ista virus, both from Picornavirales order. Cerrado partiti-like-virus shares 75-86% aa identity with Atrato partiti-like virus 2. We also found the S and L segments of Anopheles triannulatus orthophasmavirus (92% identity) in Anopheles lutzi from Chapada dos Guimarães. The identification of these putative novel viruses underscore the wide dispersion of viruses in culicid hosts contributing to extensions on mosquito virome descriptions.
Collapse
|
9
|
He X, Yin Q, Zhou L, Meng L, Hu W, Li F, Li Y, Han K, Zhang S, Fu S, Zhang X, Wang J, Xu S, Zhang Y, He Y, Dong M, Shen X, Zhang Z, Nie K, Liang G, Ma X, Wang H. Metagenomic sequencing reveals viral abundance and diversity in mosquitoes from the Shaanxi-Gansu-Ningxia region, China. PLoS Negl Trop Dis 2021; 15:e0009381. [PMID: 33901182 PMCID: PMC8101993 DOI: 10.1371/journal.pntd.0009381] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/06/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mosquitoes host and transmit numerous arthropod-borne viruses (arboviruses) that cause disease in both humans and animals. Effective surveillance of virome profiles in mosquitoes is vital to the prevention and control of mosquito-borne diseases in northwestern China, where epidemics occur frequently. METHODS Mosquitoes were collected in the Shaanxi-Gansu-Ningxia region (Shaanxi Province, Gansu Province, and Ningxia Hui Autonomous Region) of China from June to August 2019. Morphological methods were used for taxonomic identification of mosquito species. High-throughput sequencing and metagenomic analysis were used to characterize mosquito viromes. RESULTS A total of 22,959 mosquitoes were collected, including Culex pipiens (45.7%), Culex tritaeniorhynchus (40.6%), Anopheles sinensis (8.4%), Aedes (5.2%), and Armigeres subalbatus (0.1%). In total, 3,014,183 (0.95% of clean reads) viral sequences were identified and assigned to 116 viral species (including pathogens such as Japanese encephalitis virus and Getah virus) in 31 viral families, including Flaviviridae, Togaviridae, Phasmaviridae, Phenuiviridae, and some unclassified viruses. Mosquitoes collected in July (86 species in 26 families) showed greater viral diversity than those from June and August. Culex pipiens (69 species in 25 families) and Culex tritaeniorhynchus (73 species in 24 families) carried more viral species than Anopheles sinensis (50 species in 19 families) or Aedes (38 species in 20 families) mosquitoes. CONCLUSION Viral diversity and abundance were affected by mosquito species and collection time. The present study elucidates the virome compositions of various mosquito species in northwestern China, improving the understanding of virus transmission dynamics for comparison with those of disease outbreaks.
Collapse
Affiliation(s)
- Xiaozhou He
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Qikai Yin
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Liwei Zhou
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, People’s Republic of China
| | - Lei Meng
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, People’s Republic of China
| | - Weijun Hu
- Shaanxi Provincial Center for Disease Control and Prevention, Xi’an, People’s Republic of China
| | - Fan Li
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yang Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Kun Han
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, People’s Republic of China
| | - Shaobai Zhang
- Shaanxi Provincial Center for Disease Control and Prevention, Xi’an, People’s Republic of China
| | - Shihong Fu
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiaoshu Zhang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, People’s Republic of China
| | - Ji Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Songtao Xu
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yi Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ying He
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Maoxing Dong
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, People’s Republic of China
| | - Xinxin Shen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Zheng Zhang
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, People’s Republic of China
| | - Kai Nie
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Guodong Liang
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xuejun Ma
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- * E-mail: (XJM); (HYW)
| | - Huanyu Wang
- Chinese Center for Disease Control and Prevention -Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- * E-mail: (XJM); (HYW)
| |
Collapse
|
10
|
Kobayashi D, Watanabe M, Faizah AN, Amoa-Bosompem M, Higa Y, Tsuda Y, Sawabe K, Isawa H. Discovery of a Novel Flavivirus (Flaviviridae) From the Horse Fly, Tabanus rufidens (Diptera: Tabanidae): The Possible Coevolutionary Relationships Between the Classical Insect-Specific Flaviviruses and Host Dipteran Insects. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:880-890. [PMID: 33710314 DOI: 10.1093/jme/tjaa193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 06/12/2023]
Abstract
Tabanid flies (Tabanidae: Diptera) are common hematophagous insects known to transmit some pathogens mechanically or biologically to animals; they are widely distributed throughout the world. However, no tabanid-borne viruses, except mechanically transmitted viruses, have been reported to date. In this study, we conducted RNA virome analysis of several human-biting tabanid species in Japan, to discover and characterize viruses associated with tabanids. A novel flavivirus was encountered during the study in the Japanese horse fly, Tabanus rufidens (Bigot, 1887). The virus was detected only in T. rufidens, but not in other tabanid species, and as such was designated Tabanus rufidens flavivirus (TrFV). TrFV could not be isolated using a mammalian cell line and showed a closer phylogenetic relationship to the classical insect-specific flaviviruses (cISFs) rather than the vertebrate-infecting flaviviruses (VIFs), suggesting that it is a novel member of the cISFs. The first discovery of a cISF from Brachycera provides new insight into the evolutionary history and dynamics of flaviviruses.
Collapse
Affiliation(s)
- Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Research Promotion, Japan Agency for Medical Research and Development, Otemachi, Chiyoda-ku, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Michael Amoa-Bosompem
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshio Tsuda
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
11
|
Fang Y, Zhang W, Xue JB, Zhang Y. Monitoring Mosquito-Borne Arbovirus in Various Insect Regions in China in 2018. Front Cell Infect Microbiol 2021; 11:640993. [PMID: 33791242 PMCID: PMC8006455 DOI: 10.3389/fcimb.2021.640993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/05/2021] [Indexed: 12/03/2022] Open
Abstract
Background Increases in global travel and trade are changing arbovirus distributions worldwide. Arboviruses can be introduced by travelers, migratory birds, or vectors transported via international trade. Arbovirus surveillance in field-collected mosquitoes may provide early evidence for mosquito-borne disease transmission. Methods During the seasons of high mosquito activity of 2018, 29,285 mosquitoes were sampled from seven sentinel sites in various insect regions. The mosquitoes were analyzed by RT-PCR for alphaviruses, flaviviruses, and orthobunyaviruses. Results We detected three strains of Japanese encephalitis virus (JEV), five strains of Getah virus (GETV), and 45 strains of insect-specific flaviviruses including Aedes flavivirus (AeFV, 1), Chaoyang virus (CHAOV, 1), Culex flavivirus (CxFV, 17), Hanko virus (HANKV, 2), QuangBinh virus (QBV, 22), and Yunnan Culex flavivirus (YNCxFV, 2). Whole genomes of one strain each of GETV, CxFV, CHAOV, and AeFV were successfully amplified. Phylogenetic analysis revealed that the new JEV strains detected in the Shanghai and Hubei Provinces belong to the GI-b strain and are phylogenetically close to the NX1889 strain (MT134112) isolated from a patient during a JE outbreak in Ningxia in 2018. GETVs were found in Inner Mongolia, Hubei, and Hainan and belonged to Group III. They were closely related to strains isolated from swine. HANKV was recorded for the first time in China and other ISFVs were newly detected at several sentinel sites. The bias-corrected maximum likelihood estimation value for JEV in Jinshan, Shanghai was 4.52/1,000 (range 0.80-14.64). Hence, there is a potential risk of a JEV epidemic in that region. Conclusion GI-b is the dominant circulating JEV genotype in nature and poses a health risk to animals and humans. The potential threat of widespread GETV distribution as a zoonosis is gradually increasing. The present study also disclosed the dispersion and host range of ISFVs. These findings highlight the importance of tracing the movements of the vectors and hosts of mosquito-borne pathogens in order to prevent and control arbovirus outbreaks in China.
Collapse
Affiliation(s)
- Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Chinese Center for Tropical Diseases Research, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Wei Zhang
- Zichuan District Center for Disease Control and Prevention, Zibo, China
| | - Jing-Bo Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Chinese Center for Tropical Diseases Research, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Chinese Center for Tropical Diseases Research, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Zhao L, Mwaliko C, Atoni E, Wang Y, Zhang Y, Zhan J, Hu X, Xia H, Yuan Z. Characterization of a Novel Tanay Virus Isolated From Anopheles sinensis Mosquitoes in Yunnan, China. Front Microbiol 2019; 10:1963. [PMID: 31507570 PMCID: PMC6714596 DOI: 10.3389/fmicb.2019.01963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Globally, mosquitoes are known to be competent vectors to various arboviruses that cause serious and debilitating diseases to humans and animals. Conversely, mosquitoes harbor a wide array of insect specific viruses (ISVs) that are generally neglected. Extensive characterization of these ISVs is important in understanding their persistence infection effect on host behavior and arbovirus transmission. Herein, we report first time isolation of Tanay virus (TANAV) isolate YN15_103_01 in Anopheles sinensis mosquitoes from Yunnan Province, China. Phylogenetically, the isolate’s nucleotide identity had more than 14.47% variance compared to previous TANAV isolates, and it clustered into an independent branch within the genus Sandewavirus in the newly proposed taxon Negevirus. TANAV growth and high titers was attained in Aag2 cells (107 PFU/mL) but with no CPE observed up to 7 days.p.i. compared to C6/36 cells that exhibited extensive CPE at 48 h.p.i. with titers of 107 PFU/mL. Contrarywise, the viral isolate did not replicate in vertebrate cell lines. Electron microscopy analyses showed that its final maturation process takes place in the cell cytoplasm. Notably, the predicted viral proteins were verified to be corresponding to the obtained SDS-PAGE protein bands. Our findings advance forth new and vital knowledge important in understanding insect specific viruses, especially TANAV.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yujuan Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunzhi Zhang
- Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Jianbo Zhan
- Division for Viral Disease with Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiaomin Hu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
13
|
Wang Y, Guo X, Peng H, Lu Y, Zeng X, Dai K, Zuo S, Zhou H, Zhang J, Tong Y. Complete genome sequence of a novel negevirus isolated from Culex tritaeniorhynchus in China. Arch Virol 2019; 164:907-911. [DOI: 10.1007/s00705-018-04133-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022]
|
14
|
Xing S, Guo X, Zhang X, Zhao Q, Li L, Zuo S, An X, Pei G, Sun Q, Cheng S, Wang Y, Fan H, Mi Z, Huang Y, Zhang Z, Zhou H, Zhang J, Tong Y. A novel mosquito-borne reassortant orbivirus isolated from Xishuangbanna, China. Virol Sin 2018; 32:159-162. [PMID: 28063012 DOI: 10.1007/s12250-016-3886-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Shaozhen Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.,Hebei Normal University, College of Science, Shijiazhuang, 050024, China
| | - Xiaofang Guo
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Qiumin Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lingli Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shuqing Zuo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xiaoping An
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Guangqian Pei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Qiang Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shi Cheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yunfei Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhiyi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hongning Zhou
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, China.
| | - Jiusong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
15
|
Fang Y, Zhang Y, Zhou ZB, Shi WQ, Xia S, Li YY, Wu JT, Liu Q, Lin GY. Co-circulation of Aedes flavivirus, Culex flavivirus, and Quang Binh virus in Shanghai, China. Infect Dis Poverty 2018; 7:75. [PMID: 30021614 PMCID: PMC6052644 DOI: 10.1186/s40249-018-0457-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/26/2018] [Indexed: 11/22/2022] Open
Abstract
Background With increases in global travel and trade, the spread of arboviruses is undoubtedly alarming. Pathogen detection in field-caught mosquitoes can provide the earliest possible warning of transmission. Insect-specific flavivirus (ISFV) has been first detected in 1991 and documented worldwide in the latest ten years. Although infection with ISFVs is apparently limited to insects, an increase in the infection rate of mosquito-borne flaviviruses may be able to induce cytopathic effects in vertebrate cells during co-infection with other human pathogens. However, little is known whether ISFVs persist in most regions of China. Methods During the mosquito activity season in 2016, a surveillance program was carried out to detect ISFVs in mosquitoes in metropolitan Shanghai, China. The presence of ISFVs was randomly tested in different species of mosquitoes using RT-PCR-based and hemi-nested PCR assays, following by the sequencing of PCR products. Sequences from positive pooled samples were compared with those deposited in GenBank. Thereafter, sequences of representative insect flaviviruses were used for further phylogenetic and molecular evolutionary analyses. Results Our investigations showed: (1) the presence of Aedes flavivirus (AEFV) in 11/161 pooled samples (nine pools in Songjiang District, one pool in Huangpu District, and one pool in Qingpu District) of Aedes albopictus, (2) the presence of Quang Binh virus (QBV) in 10/195 pooled samples (all in Chongming District) of Culex tritaeniorhynchus; and (3) the presence of Culex flavivirus (CxFV) in 9/228 pooled samples (six pools in Pudong New Area, two pools in Huangpu District, and one pool in Chongming District) of Cx. pipiens. Furthermore, phylogenetic analyses of the gene sequences of envelope proteins indicated that Shanghai CxFV strains belonged to the Asia/USA genotype. The overall maximum likelihood estimation values (and 95% confidence interval) for CxFV, QBV, and AEFV in mosquitoes collected in Shanghai in 2016 were 1.34 (0.66–2.45), 1.65 (0.87–2.85), and 1.51 (0.77–2.70) per 1000, respectively. Conclusions This study reveals the presence and the geographical distribution of ISFVs, and determines the genetic variation and the infection rate of ISFVs in Shanghai, China. At least, three insect flaviviruses including ISFVs, AEFV, CxFV, and QBV, co-circulate in this area. To our knowledge, this is the first report of AEFV in China. Electronic supplementary material The online version of this article (10.1186/s40249-018-0457-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China.
| | - Zheng-Bin Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Wen-Qi Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Shang Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Yuan-Yuan Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Jia-Tong Wu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Qin Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Guang-Yi Lin
- Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
16
|
A Systematic Review of the Natural Virome of Anopheles Mosquitoes. Viruses 2018; 10:v10050222. [PMID: 29695682 PMCID: PMC5977215 DOI: 10.3390/v10050222] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
Anopheles mosquitoes are vectors of human malaria, but they also harbor viruses, collectively termed the virome. The Anopheles virome is relatively poorly studied, and the number and function of viruses are unknown. Only the o’nyong-nyong arbovirus (ONNV) is known to be consistently transmitted to vertebrates by Anopheles mosquitoes. A systematic literature review searched four databases: PubMed, Web of Science, Scopus, and Lissa. In addition, online and print resources were searched manually. The searches yielded 259 records. After screening for eligibility criteria, we found at least 51 viruses reported in Anopheles, including viruses with potential to cause febrile disease if transmitted to humans or other vertebrates. Studies to date have not provided evidence that Anopheles consistently transmit and maintain arboviruses other than ONNV. However, anthropophilic Anopheles vectors of malaria are constantly exposed to arboviruses in human bloodmeals. It is possible that in malaria-endemic zones, febrile symptoms may be commonly misdiagnosed. It is also possible that anophelines may be inherently less competent arbovirus vectors than culicines, but if true, the biological basis would warrant further study. This systematic review contributes a context to characterize the biology, knowledge gaps, and potential public health risk of Anopheles viruses.
Collapse
|
17
|
Xia H, Wang Y, Atoni E, Zhang B, Yuan Z. Mosquito-Associated Viruses in China. Virol Sin 2018; 33:5-20. [PMID: 29532388 PMCID: PMC5866263 DOI: 10.1007/s12250-018-0002-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/05/2017] [Indexed: 10/30/2022] Open
Abstract
Mosquitoes are classified into approximately 3500 species and further grouped into 41 genera. Epidemiologically, they are considered to be among the most important disease vectors in the world and they can harbor a wide variety of viruses. Several mosquito viruses are considered to be of significant medical importance and can cause serious public health issues throughout the world. Such viruses are Japanese encephalitis virus (JEV), dengue virus (DENV), chikungunya virus (CHIKV), and Zika virus (ZIKV). Others are the newly recognized mosquito viruses such as Banna virus (BAV) and Yunnan orbivirus (YNOV) with unclear medical significance. The remaining mosquito viruses are those that naturally infect mosquitoes but do not appear to infect humans or other vertebrates. With the continuous development and improvement of mosquito and mosquito-associated virus surveillance systems in China, many novel mosquito-associated viruses have been discovered in recent years. This review aims to systematically outline the history, characteristics, distribution, and/or current epidemic status of mosquito-associated viruses in China.
Collapse
Affiliation(s)
- Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yujuan Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
18
|
Liang G, Li X, Gao X, Fu S, Wang H, Li M, Lu Z, Zhu W, Lu X, Wang L, Cao Y, He Y, Lei W. Arboviruses and their related infections in China: A comprehensive field and laboratory investigation over the last 3 decades. Rev Med Virol 2017; 28. [PMID: 29210509 DOI: 10.1002/rmv.1959] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/27/2017] [Accepted: 10/04/2017] [Indexed: 01/10/2023]
Abstract
Since the 1980s, a comprehensive field and laboratory investigation has been conducted throughout China, and a total of 29 virus species belonging to 7 families and 13 genera were identified through virological, morphological, and immunological methods, as well as whole-genome sequencing and molecular genetic analyses. Most of the virus isolates belong to 9 genera in the families Flaviviridae, Bunyaviridae, Togaviridae, and Reoviridae. Among them, 4 genera (Orthobunyavirus, Bunyavirus, Phlebovirus, and Nairovirus) belong to the family Bunyaviridae and 3 genera (Seadonavirus, Orbivirus, and Cypovirus) belong to the family Reoviridae. Analyses of the relationships between viruses and human/animal diseases indicated that Japanese encephalitis virus, dengue virus, severe fever with thrombocytopenia syndrome virus, tick-borne encephalitis virus, Crimean-Congo hemorrhagic fever virus, West Nile virus, and Tahyna virus can cause human and animal infections and disease epidemics in China. This review systematically introduces the current status of the diversity and geographical distribution of arboviruses and vectors in China. In addition, our results provide strong technical support for the prevention and control of arboviral diseases, the treatment of epidemics, and the early warning and prediction of diseases, and so they are significant for the control and prevention of arboviral diseases in Asia and around the world.
Collapse
Affiliation(s)
- Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaolong Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoyan Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Shihong Fu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Huanyu Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Minghua Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhi Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wuyang Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xinjun Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lihua Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yuxi Cao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ying He
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wenwen Lei
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
19
|
Li L, Guo X, Zhao Q, Tong Y, Fan H, Sun Q, Xing S, Zhou H, Zhang J. Investigation on Mosquito-Borne Viruses at Lancang River and Nu River Watersheds in Southwestern China. Vector Borne Zoonotic Dis 2017; 17:804-812. [PMID: 29083983 DOI: 10.1089/vbz.2017.2164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
During 2007 and 2010, an extensive entomological survey was performed to assess the distribution of mosquitoes and mosquito-borne arboviruses at Lancang River and Nu River watersheds in southwestern China. A total of 20,450 mosquitoes consisting 20 species was trapped and submitted 261 pools according to species and location. Culex tritaeniorhynchus and Anopheles sinensis were the most abundant species. Eighty-seven isolates representing 11 virus species in 8 genera were obtained from 6 mosquito species. The new isolates were identified as Getah virus (GETV), Japanese encephalitis virus (JEV), Yunnan Culex-related flavivirus (YNCxFV), Yunnan Aedes-related flavivirus (YNAeFV), Banna virus (BAV), Yunnan orbivirus (YUOV), Banna orbivirus (BAOV), Yunnan totivirus (YNToV), Nam Dinh virus (NDiV), Menghai rhabdovirus (MRV), and Anopheles minimus iridovirus (AMIV). These viruses included confirmed or potential pathogen of human disease, such as JEV, BAV, and NDiV, and several novel or reassortant arboviruses, such as YNAeFV, MRV, AMIV, and BAOV. GETV, JEV, YNCxFV, and NDiV were widely prevalent in the whole basin of the two rivers. The findings contribute to our understanding of the diversity and wide distribution of mosquito-borne arboviruses in the area, and are helpful to explore pathogenic evidence for fevers and viral encephalitis of unknown etiology.
Collapse
Affiliation(s)
- Lingli Li
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China .,2 Graduate School of Anhui Medical University , Hefei, China
| | - Xiaofang Guo
- 3 Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases , Pu'er, China
| | - Qiumin Zhao
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Yigang Tong
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Hang Fan
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Qiang Sun
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Shaozhen Xing
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Hongning Zhou
- 3 Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases , Pu'er, China
| | - Jiusong Zhang
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China .,2 Graduate School of Anhui Medical University , Hefei, China
| |
Collapse
|
20
|
Lequime S, Lambrechts L. Discovery of flavivirus-derived endogenous viral elements in Anopheles mosquito genomes supports the existence of Anopheles-associated insect-specific flaviviruses. Virus Evol 2017; 3:vew035. [PMID: 28078104 PMCID: PMC5217911 DOI: 10.1093/ve/vew035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Flavivirus genus encompasses several arboviruses of public health significance such as dengue, yellow fever, and Zika viruses. It also includes insect-specific flaviviruses (ISFs) that are only capable of infecting insect hosts. The vast majority of mosquito-infecting flaviviruses have been associated with mosquito species of the Aedes and Culex genera in the Culicinae subfamily, which also includes most arbovirus vectors. Mosquitoes of the Anophelinae subfamily are not considered significant arbovirus vectors; however, flaviviruses have occasionally been detected in field-caught Anopheles specimens. Whether such observations reflect occasional spillover or laboratory contamination or whether Anopheles mosquitoes are natural hosts of flaviviruses is unknown. Here, we provide in silico and in vivo evidence of transcriptionally active, flavivirus-derived endogenous viral elements (EVEs) in the genome of Anopheles minimus and Anopheles sinensis. Such non-retroviral endogenization of RNA viruses is consistent with a shared evolutionary history between flaviviruses and Anopheles mosquitoes. Phylogenetic analyses of the two newly described EVEs support the existence of a distinct clade of Anopheles-associated ISFs.
Collapse
Affiliation(s)
- Sebastian Lequime
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France; Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France; University Pierre et Marie Curie, Cellule Pasteur UPMC, Paris, France
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France; Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
| |
Collapse
|
21
|
Sun Q, Zhao Q, An X, Guo X, Zuo S, Zhang X, Pei G, Liu W, Cheng S, Wang Y, Shu P, Mi Z, Huang Y, Zhang Z, Tong Y, Zhou H, Zhang J. Complete genome sequence of Menghai rhabdovirus, a novel mosquito-borne rhabdovirus from China. Arch Virol 2016; 162:1103-1106. [PMID: 28000049 DOI: 10.1007/s00705-016-3188-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/01/2016] [Indexed: 02/02/2023]
Abstract
Menghai rhabdovirus (MRV) was isolated from Aedes albopictus in Menghai county of Yunnan Province, China, in August 2010. Whole-genome sequencing of MRV was performed using an Ion PGM™ Sequencer. We found that MRV is a single-stranded, negative-sense RNA virus. The complete genome of MRV has 10,744 nt, with short inverted repeat termini, encoding five typical rhabdovirus proteins (N, P, M, G, and L) and an additional small hypothetical protein. Nucleotide BLAST analysis using the BLASTn method showed that the genome sequence most similar to that of MRV is that of Arboretum virus (NC_025393.1), with a Max score of 322, query coverage of 14%, and 66% identity. Genomic and phylogenetic analyses both demonstrated that MRV should be considered a member of a novel species of the family Rhabdoviridae.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Qiumin Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xiaoping An
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xiaofang Guo
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, Yunnan, China
| | - Shuqing Zuo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Guangqian Pei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Wenli Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shi Cheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yunfei Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Peng Shu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhiyi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Hongning Zhou
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, Yunnan, China.
| | - Jiusong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
22
|
Roundy CM, Azar SR, Rossi SL, Weaver SC, Vasilakis N. Insect-Specific Viruses: A Historical Overview and Recent Developments. Adv Virus Res 2016; 98:119-146. [PMID: 28433051 DOI: 10.1016/bs.aivir.2016.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arthropod-borne viruses (arboviruses) have in recent years become a tremendous global health concern resulting in substantial human morbidity and mortality. With the widespread utilization of molecular technologies such as next-generation sequencing and the advancement of bioinformatics tools, a new age of viral discovery has commenced. Many of the novel agents being discovered in recent years have been isolated from mosquitoes and exhibit a highly restricted host range. Strikingly, these insect-specific viruses have been found to be members of viral families traditionally associated with human arboviral pathogens, including but not limited to the families Flaviviridae, Togaviridae, Reoviridae, and Bunyaviridae. These agents therefore present novel opportunities in the fields of viral evolution and viral/vector interaction and have tremendous potential as agents for biocontrol of vectors and or viruses of medical importance.
Collapse
Affiliation(s)
- Christopher M Roundy
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Sasha R Azar
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Shannan L Rossi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Scott C Weaver
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
23
|
Tree MO, McKellar DR, Kieft KJ, Watson AM, Ryman KD, Conway MJ. Insect-specific flavivirus infection is restricted by innate immunity in the vertebrate host. Virology 2016; 497:81-91. [DOI: 10.1016/j.virol.2016.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/18/2016] [Accepted: 07/05/2016] [Indexed: 11/15/2022]
|
24
|
Discovery of Novel Viruses in Mosquitoes from the Zambezi Valley of Mozambique. PLoS One 2016; 11:e0162751. [PMID: 27682810 PMCID: PMC5040392 DOI: 10.1371/journal.pone.0162751] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/26/2016] [Indexed: 11/19/2022] Open
Abstract
Mosquitoes carry a wide variety of viruses that can cause vector-borne infectious diseases and affect both human and veterinary public health. Although Mozambique can be considered a hot spot for emerging infectious diseases due to factors such as a rich vector population and a close vector/human/wildlife interface, the viral flora in mosquitoes have not previously been investigated. In this study, viral metagenomics was employed to analyze the viral communities in Culex and Mansonia mosquitoes in the Zambezia province of Mozambique. Among the 1.7 and 2.6 million sequences produced from the Culex and Mansonia samples, respectively, 3269 and 983 reads were classified as viral sequences. Viruses belonging to the Flaviviridae, Rhabdoviridae and Iflaviridae families were detected, and different unclassified single- and double-stranded RNA viruses were also identified. A near complete genome of a flavivirus, tentatively named Cuacua virus, was obtained from the Mansonia mosquitoes. Phylogenetic analysis of this flavivirus, using the NS5 amino acid sequence, showed that it grouped with 'insect-specific' viruses and was most closely related to Nakiwogo virus previously identified in Uganda. Both mosquito genera had viral sequences related to Rhabdoviruses, and these were most closely related to Culex tritaeniorhynchus rhabdovirus (CTRV). The results from this study suggest that several viruses specific for insects belonging to, for example, the Flaviviridae and Rhabdoviridae families, as well as a number of unclassified RNA viruses, are present in mosquitoes in Mozambique.
Collapse
|
25
|
Identification and Characterization of Two Novel RNA Viruses from Anopheles gambiae Species Complex Mosquitoes. PLoS One 2016; 11:e0153881. [PMID: 27138938 PMCID: PMC4854438 DOI: 10.1371/journal.pone.0153881] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/05/2016] [Indexed: 11/19/2022] Open
Abstract
Mosquitoes of the Anopheles gambiae complex display strong preference for human bloodmeals and are major malaria vectors in Africa. However, their interaction with viruses or role in arbovirus transmission during epidemics has been little examined, with the exception of O'nyong-nyong virus, closely related to Chikungunya virus. Deep-sequencing has revealed different RNA viruses in natural insect viromes, but none have been previously described in the Anopheles gambiae species complex. Here, we describe two novel insect RNA viruses, a Dicistrovirus and a Cypovirus, found in laboratory colonies of An. gambiae taxa using small-RNA deep sequencing. Sequence analysis was done with Metavisitor, an open-source bioinformatic pipeline for virus discovery and de novo genome assembly. Wild-collected Anopheles from Senegal and Cambodia were positive for the Dicistrovirus and Cypovirus, displaying high sequence identity to the laboratory-derived virus. Thus, the Dicistrovirus (Anopheles C virus, AnCV) and Cypovirus (Anopheles Cypovirus, AnCPV) are components of the natural virome of at least some anopheline species. Their possible influence on mosquito immunity or transmission of other pathogens is unknown. These natural viruses could be developed as models for the study of Anopheles-RNA virus interactions in low security laboratory settings, in an analogous manner to the use of rodent malaria parasites for studies of mosquito anti-parasite immunity.
Collapse
|
26
|
Complete genome sequence of Xishuangbanna flavivirus, a novel mosquito-specific flavivirus from China. Arch Virol 2016; 161:1723-7. [DOI: 10.1007/s00705-016-2827-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 03/12/2016] [Indexed: 10/22/2022]
|
27
|
Bolling BG, Weaver SC, Tesh RB, Vasilakis N. Insect-Specific Virus Discovery: Significance for the Arbovirus Community. Viruses 2015; 7:4911-28. [PMID: 26378568 PMCID: PMC4584295 DOI: 10.3390/v7092851] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 01/23/2023] Open
Abstract
Arthropod-borne viruses (arboviruses), especially those transmitted by mosquitoes, are a significant cause of morbidity and mortality in humans and animals worldwide. Recent discoveries indicate that mosquitoes are naturally infected with a wide range of other viruses, many within taxa occupied by arboviruses that are considered insect-specific. Over the past ten years there has been a dramatic increase in the literature describing novel insect-specific virus detection in mosquitoes, which has provided new insights about viral diversity and evolution, including that of arboviruses. It has also raised questions about what effects the mosquito virome has on arbovirus transmission. Additionally, the discovery of these new viruses has generated interest in their potential use as biological control agents as well as novel vaccine platforms. The arbovirus community will benefit from the growing database of knowledge concerning these newly described viral endosymbionts, as their impacts will likely be far reaching.
Collapse
Affiliation(s)
- Bethany G Bolling
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Robert B Tesh
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
28
|
Ecuador Paraiso Escondido Virus, a New Flavivirus Isolated from New World Sand Flies in Ecuador, Is the First Representative of a Novel Clade in the Genus Flavivirus. J Virol 2015; 89:11773-85. [PMID: 26355096 PMCID: PMC4645344 DOI: 10.1128/jvi.01543-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A new flavivirus, Ecuador Paraiso Escondido virus (EPEV), named after the village where it was discovered, was isolated from sand flies (Psathyromyia abonnenci, formerly Lutzomyia abonnenci) that are unique to the New World. This represents the first sand fly-borne flavivirus identified in the New World. EPEV exhibited a typical flavivirus genome organization. Nevertheless, the maximum pairwise amino acid sequence identity with currently recognized flaviviruses was 52.8%. Phylogenetic analysis of the complete coding sequence showed that EPEV represents a distinct clade which diverged from a lineage that was ancestral to the nonvectored flaviviruses Entebbe bat virus, Yokose virus, and Sokoluk virus and also the Aedes-associated mosquito-borne flaviviruses, which include yellow fever virus, Sepik virus, Saboya virus, and others. EPEV replicated in C6/36 mosquito cells, yielding high infectious titers, but failed to reproduce either in vertebrate cell lines (Vero, BHK, SW13, and XTC cells) or in suckling mouse brains. This surprising result, which appears to eliminate an association with vertebrate hosts in the life cycle of EPEV, is discussed in the context of the evolutionary origins of EPEV in the New World. IMPORTANCE The flaviviruses are rarely (if ever) vectored by sand fly species, at least in the Old World. We have identified the first representative of a sand fly-associated flavivirus, Ecuador Paraiso Escondido virus (EPEV), in the New World. EPEV constitutes a novel clade according to current knowledge of the flaviviruses. Phylogenetic analysis of the virus genome showed that EPEV roots the Aedes-associated mosquito-borne flaviviruses, including yellow fever virus. In light of this new discovery, the New World origin of EPEV is discussed together with that of the other flaviviruses.
Collapse
|
29
|
Calzolari M, Zé-Zé L, Vázquez A, Sánchez Seco MP, Amaro F, Dottori M. Insect-specific flaviviruses, a worldwide widespread group of viruses only detected in insects. INFECTION GENETICS AND EVOLUTION 2015; 40:381-388. [PMID: 26235844 DOI: 10.1016/j.meegid.2015.07.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 01/06/2023]
Abstract
Several flaviviruses are important pathogens for humans and animals (Dengue viruses, Japanese encephalitis virus, Yellow-fever virus, Tick-borne encephalitis virus, West Nile virus). In recent years, numerous novel and related flaviviruses without known pathogenic capacity have been isolated worldwide in the natural mosquito population. However, phylogenetic studies have shown that genomic sequences of these viruses diverge from other flaviviruses. Moreover, these viruses seem to be exclusive of insects (they do not seem to grow on vertebrate cell lines), and were already defined as mosquito-only flaviviruses or insect-specific flaviviruses. At least eleven of these viruses were isolated worldwide, and sequences ascribable to other eleven putative viruses were detected in several mosquito species. A large part of the cycle of these viruses is not well known, and their persistence in the environment is poorly understood. These viruses are detected in a wide variety of distinct mosquito species and also in sandflies and chironomids worldwide; a single virus, or the genetic material ascribable to a virus, was detected in several mosquito species in different countries, often in different continents. Furthermore, some of these viruses are carried by invasive mosquitoes, and do not seem to have a depressive action on their fitness. The global distribution and the continuous detection of new viruses in this group point out the likely underestimation of their number, and raise interesting issues about their possible interactions with the pathogenic flaviviruses, and their influence on the bionomics of arthropod hosts. Some enigmatic features, as their integration in the mosquito genome, the recognition of their genetic material in DNA forms in field-collected mosquitoes, or the detection of the same virus in both mosquitoes and sandflies, indicate that the cycle of these viruses has unknown characteristics that could be of use to reach a deeper understanding of the cycle of related pathogenic flaviviruses.
Collapse
Affiliation(s)
- Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 9, 25124 Brescia, Italy.
| | - Líbia Zé-Zé
- Centre for Vectors and Infectious Diseases Research, National Institute of Health, Avenida da Liberdade 5, 2965-575 Águas de Moura, Portugal; University of Lisbon, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, Lisbon, Portugal.
| | - Ana Vázquez
- Laboratory of Arbovirus and Imported Viral Diseases, National Center of Microbiology, Institute of Health "Carlos III", Ctra Pozuelo-Majadahonda km 2, 28220 Madrid, Spain.
| | - Mari Paz Sánchez Seco
- Laboratory of Arbovirus and Imported Viral Diseases, National Center of Microbiology, Institute of Health "Carlos III", Ctra Pozuelo-Majadahonda km 2, 28220 Madrid, Spain.
| | - Fátima Amaro
- Centre for Vectors and Infectious Diseases Research, National Institute of Health, Avenida da Liberdade 5, 2965-575 Águas de Moura, Portugal.
| | - Michele Dottori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 9, 25124 Brescia, Italy.
| |
Collapse
|
30
|
Isolation of Japanese encephalitis virus and a novel insect-specific flavivirus from mosquitoes collected in a cowshed in Japan. Arch Virol 2015; 160:2151-9. [PMID: 26085283 DOI: 10.1007/s00705-015-2488-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/07/2015] [Indexed: 10/23/2022]
Abstract
Cattle do not generally appear to develop severe viremia when infected with Japanese encephalitis virus (JEV), and they can be infected without showing clinical signs. However, two cattle in Japan recently died from JEV infection. In this study, we investigated the presence of different species of mosquitoes and flavivirus in a cowshed in the southwest region of Japan. In this cowshed, the two most common species of mosquitoes collected were Culex tritaeniorhynchus (including Culex pseudovishnui) and Anopheles sinensis. We performed virus isolation from the collected mosquitoes and obtained two flaviviruses: JEV and a novel insect-specific flavivirus, tentatively designated Yamadai flavivirus (YDFV). Phylogenetic analysis revealed that all three JEV isolates belonged to JEV genotype I and were closely related to a JEV strain that was isolated from the brains of cattle exhibiting neurological symptoms in Japan. Genetic characterization of YDFV revealed that the full genome RNA (10,863 nucleotides) showed homology with the Culex-associated insect-specific flaviviruses Quang Binh virus (79% identity) and Yunnan Culex flavivirus (78% identity), indicating that YDFV is a novel insect-specific flavivirus.
Collapse
|
31
|
Blitvich BJ, Firth AE. Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses 2015; 7:1927-59. [PMID: 25866904 PMCID: PMC4411683 DOI: 10.3390/v7041927] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022] Open
Abstract
There has been a dramatic increase in the number of insect-specific flaviviruses (ISFs) discovered in the last decade. Historically, these viruses have generated limited interest due to their inability to infect vertebrate cells. This viewpoint has changed in recent years because some ISFs have been shown to enhance or suppress the replication of medically important flaviviruses in co-infected mosquito cells. Additionally, comparative studies between ISFs and medically important flaviviruses can provide a unique perspective as to why some flaviviruses possess the ability to infect and cause devastating disease in humans while others do not. ISFs have been isolated exclusively from mosquitoes in nature but the detection of ISF-like sequences in sandflies and chironomids indicates that they may also infect other dipterans. ISFs can be divided into two distinct phylogenetic groups. The first group currently consists of approximately 12 viruses and includes cell fusing agent virus, Kamiti River virus and Culex flavivirus. These viruses are phylogenetically distinct from all other known flaviviruses. The second group, which is apparently not monophyletic, currently consists of nine viruses and includes Chaoyang virus, Nounané virus and Lammi virus. These viruses phylogenetically affiliate with mosquito/vertebrate flaviviruses despite their apparent insect-restricted phenotype. This article provides a review of the discovery, host range, mode of transmission, superinfection exclusion ability and genomic organization of ISFs. This article also attempts to clarify the ISF nomenclature because some of these viruses have been assigned more than one name due to their simultaneous discoveries by independent research groups.
Collapse
Affiliation(s)
- Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| |
Collapse
|
32
|
Grisenti M, Vázquez A, Herrero L, Cuevas L, Perez-Pastrana E, Arnoldi D, Rosà R, Capelli G, Tenorio A, Sánchez-Seco MP, Rizzoli A. Wide detection of Aedes flavivirus in north-eastern Italy – a European hotspot of emerging mosquito-borne diseases. J Gen Virol 2015; 96:420-430. [DOI: 10.1099/vir.0.069625-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Michela Grisenti
- Department of Veterinary Sciences, University of Torino, largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Ana Vázquez
- Laboratory of Arboviruses and Viral Imported Diseases, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Laura Herrero
- Laboratory of Arboviruses and Viral Imported Diseases, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Laureano Cuevas
- Electron Microscopy Department, National Center of Microbiology, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Esperanza Perez-Pastrana
- Electron Microscopy Department, National Center of Microbiology, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Daniele Arnoldi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Gioia Capelli
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Antonio Tenorio
- Laboratory of Arboviruses and Viral Imported Diseases, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Maria Paz Sánchez-Seco
- Laboratory of Arboviruses and Viral Imported Diseases, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| |
Collapse
|