1
|
Gong HY, Chen RX, Tan SM, Wang X, Chen JM, Zhang YL, Liao M. Viruses Identified in Shrews ( Soricidae) and Their Biomedical Significance. Viruses 2024; 16:1441. [PMID: 39339918 PMCID: PMC11437491 DOI: 10.3390/v16091441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Shrews (Soricidae) are common small wild mammals. Some species of shrews, such as Asian house shrews (Suncus murinus), have a significant overlap in their habitats with humans and domestic animals. Currently, over 190 species of viruses in 32 families, including Adenoviridae, Arenaviridae, Arteriviridae, Astroviridae, Anelloviridae, Bornaviridae, Caliciviridae, Chuviridae, Coronaviridae, Filoviridae, Flaviviridae, Hantaviridae, Hepadnaviridae, Hepeviridae, Nairoviridae, Nodaviridae, Orthoherpesviridae, Orthomyxoviridae, Paramyxoviridae, Parvoviridae, Phenuiviridae, Picobirnaviridae, Picornaviridae, Polyomaviridae, Poxviridae, Rhabdoviridae, Sedoreoviridae, Spinareoviridae, and three unclassified families, have been identified in shrews. Diverse shrew viruses, such as Borna disease virus 1, Langya virus, and severe fever with thrombocytopenia syndrome virus, cause diseases in humans and/or domestic animals, posing significant threats to public health and animal health. This review compiled fundamental information about shrews and provided a comprehensive summary of the viruses that have been detected in shrews, with the aim of facilitating a deep understanding of shrews and the diversity, epidemiology, and risks of their viruses.
Collapse
Affiliation(s)
- Huan-Yu Gong
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Rui-Xu Chen
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Su-Mei Tan
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Xiu Wang
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Ji-Ming Chen
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Yuan-Long Zhang
- Guangdong Center for Animal Disease Prevention and Control, Guangzhou 510230, China
| | - Ming Liao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510230, China
| |
Collapse
|
2
|
Kuhn JH, Bradfute SB, Calisher CH, Klempa B, Klingström J, Laenen L, Palacios G, Schmaljohn CS, Tischler ND, Maes P. Pending Reorganization of Hantaviridae to Include Only Completely Sequenced Viruses: A Call to Action. Viruses 2023; 15:660. [PMID: 36992369 PMCID: PMC10059669 DOI: 10.3390/v15030660] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The official classification of newly discovered or long-known unassigned viruses by the International Committee on Taxonomy of Viruses (ICTV) requires the deposition of coding-complete or -near-complete virus genome sequences in GenBank to fulfill a requirement of the taxonomic proposal (TaxoProp) process. However, this requirement is fairly new; thus, genomic sequence information is fragmented or absent for many already-classified viruses. As a result, taxon-wide modern phylogenetic analyses are often challenging, if not impossible. This problem is particularly eminent among viruses with segmented genomes, such as bunyavirals, which were frequently classified solely based on single-segment sequence information. To solve this issue for one bunyaviral family, Hantaviridae, we call on the community to provide additional sequence information for incompletely sequenced classified viruses by mid-June 2023. Such sequence information may be sufficient to prevent their possible declassification during the ongoing efforts to establish a coherent, consistent, and evolution-based hantavirid taxonomy.
Collapse
Affiliation(s)
- Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Steven B. Bradfute
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | - Boris Klempa
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Jonas Klingström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Lies Laenen
- Zoonotic Infectious Diseases Unit, KU Leuven, Rega Institute, 3000 Leuven, Belgium
- Belgium Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Connie S. Schmaljohn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Nicole D. Tischler
- Laboratorio de Virología Molecular, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8581151, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Piet Maes
- Zoonotic Infectious Diseases Unit, KU Leuven, Rega Institute, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Teng AY, Che TL, Zhang AR, Zhang YY, Xu Q, Wang T, Sun YQ, Jiang BG, Lv CL, Chen JJ, Wang LP, Hay SI, Liu W, Fang LQ. Mapping the viruses belonging to the order Bunyavirales in China. Infect Dis Poverty 2022; 11:81. [PMID: 35799306 PMCID: PMC9264531 DOI: 10.1186/s40249-022-00993-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viral pathogens belonging to the order Bunyavirales pose a continuous background threat to global health, but the fact remains that they are usually neglected and their distribution is still ambiguously known. We aim to map the geographical distribution of Bunyavirales viruses and assess the environmental suitability and transmission risk of major Bunyavirales viruses in China. METHODS We assembled data on all Bunyavirales viruses detected in humans, animals and vectors from multiple sources, to update distribution maps of them across China. In addition, we predicted environmental suitability at the 10 km × 10 km pixel level by applying boosted regression tree models for two important Bunyavirales viruses, including Crimean-Congo hemorrhagic fever virus (CCHFV) and Rift Valley fever virus (RVFV). Based on model-projected risks and air travel volume, the imported risk of RVFV was also estimated from its endemic areas to the cities in China. RESULTS Here we mapped all 89 species of Bunyavirales viruses in China from January 1951 to June 2021. Nineteen viruses were shown to infect humans, including ten species first reported as human infections. A total of 447,848 cases infected with Bunyavirales viruses were reported, and hantaviruses, Dabie bandavirus and Crimean-Congo hemorrhagic fever virus (CCHFV) had the severest disease burden. Model-predicted maps showed that Xinjiang and southwestern Yunnan had the highest environmental suitability for CCHFV occurrence, mainly related to Hyalomma asiaticum presence, while southern China had the highest environmental suitability for Rift Valley fever virus (RVFV) transmission all year round, mainly driven by livestock density, mean precipitation in the previous month. We further identified three cities including Guangzhou, Beijing and Shanghai, with the highest imported risk of RVFV potentially from Egypt, South Africa, Saudi Arabia and Kenya. CONCLUSIONS A variety of Bunyavirales viruses are widely distributed in China, and the two major neglected Bunyavirales viruses including CCHFV and RVFV, both have the potential for outbreaks in local areas of China. Our study can help to promote the understanding of risk distribution and disease burden of Bunyavirales viruses in China, and the risk maps of CCHFV and RVFV occurrence are crucial to the targeted surveillance and control, especially in seasons and locations at high risk.
Collapse
Affiliation(s)
- Ai-Ying Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Tian-Le Che
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - An-Ran Zhang
- Department of Research, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Yuan-Yuan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Tao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Yan-Qun Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Li-Ping Wang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Simon I Hay
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA.
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China.
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China.
| |
Collapse
|
4
|
Abstract
Identifying the animal reservoirs from which zoonotic viruses will likely emerge is central to understanding the determinants of disease emergence. Accordingly, there has been an increase in studies attempting zoonotic “risk assessment.” Herein, we demonstrate that the virological data on which these analyses are conducted are incomplete, biased, and rapidly changing with ongoing virus discovery. Together, these shortcomings suggest that attempts to assess zoonotic risk using available virological data are likely to be inaccurate and largely only identify those host taxa that have been studied most extensively. We suggest that virus surveillance at the human–animal interface may be more productive. Determining which organisms harbour viruses that could potentially infect humans is of great topical interest. This Essay demonstrates that the data on which such zoonotic risk assessments are conducted are incomplete, biased, and rapidly changing with ongoing virus discovery.
Collapse
Affiliation(s)
- Michelle Wille
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
- * E-mail:
| | - Jemma L. Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Kikuchi F, Aoki K, Ohdachi SD, Tsuchiya K, Motokawa M, Jogahara T, Sơn NT, Bawm S, Lin KS, Thwe TL, Gamage CD, Ranorosoa MC, Omar H, Maryanto I, Suzuki H, Tanaka-Taya K, Morikawa S, Mizutani T, Suzuki M, Yanagihara R, Arai S. Genetic Diversity and Phylogeography of Thottapalayam thottimvirus ( Hantaviridae) in Asian House Shrew ( Suncus murinus) in Eurasia. Front Cell Infect Microbiol 2020; 10:438. [PMID: 32974220 PMCID: PMC7481397 DOI: 10.3389/fcimb.2020.00438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/16/2020] [Indexed: 11/27/2022] Open
Abstract
Murid and cricetid rodents were previously believed to be the principal reservoir hosts of hantaviruses. Recently, however, multiple newfound hantaviruses have been discovered in shrews, moles, and bats, suggesting a complex evolutionary history. Little is known about the genetic diversity and geographic distribution of the prototype shrew-borne hantavirus, Thottapalayam thottimvirus (TPMV), carried by the Asian house shrew (Suncus murinus), which is widespread in Asia, Africa, and the Middle East. Comparison of TPMV genomic sequences from two Asian house shrews captured in Myanmar and Pakistan with TPMV strains in GenBank revealed that the Myanmar TPMV strain (H2763) was closely related to the prototype TPMV strain (VRC66412) from India. In the L-segment tree, on the other hand, the Pakistan TPMV strain (PK3629) appeared to be the most divergent, followed by TPMV strains from Nepal, then the Indian-Myanmar strains, and finally TPMV strains from China. The Myanmar strain of TPMV showed sequence similarity of 79.3-96.1% at the nucleotide level, but the deduced amino acid sequences showed a high degree of conservation of more than 94% with TPMV strains from Nepal, India, Pakistan, and China. Cophylogenetic analysis of host cytochrome b and TPMV strains suggested that the Pakistan TPMV strain was mismatched. Phylogenetic trees, based on host cytochrome b and cytochrome c oxidase subunit I genes of mitochondrial DNA, and on host recombination activating gene 1 of nuclear DNA, suggested that the Asian house shrew and Asian highland shrew (Suncus montanus) comprised a species complex. Overall, the geographic-specific clustering of TPMV strains in Asian countries suggested local host-specific adaptation. Additional in-depth studies are warranted to ascertain if TPMV originated in Asian house shrews on the Indian subcontinent.
Collapse
Affiliation(s)
- Fuka Kikuchi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Keita Aoki
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Satoshi D. Ohdachi
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | | | - Takamichi Jogahara
- Faculty of Law, Economics and Management, Okinawa University, Naha, Japan
| | - Nguyễn Trường Sơn
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Saw Bawm
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw, Myanmar
| | - Kyaw San Lin
- Department of Aquaculture and Aquatic Disease, University of Veterinary Science, Nay Pyi Taw, Myanmar
| | - Thida Lay Thwe
- Department of Zoology, Yangon University of Distance Education, Yangon, Myanmar
| | - Chandika D. Gamage
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Marie Claudine Ranorosoa
- Mention Foresterie et Environnement, Ecole Supérieur des Sciences Agronomiques, Université d'Antananarivo, Antananarivo, Madagascar
| | - Hasmahzaiti Omar
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Ibnu Maryanto
- Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Bogor, Indonesia
| | - Hitoshi Suzuki
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Keiko Tanaka-Taya
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Morikawa
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Motoi Suzuki
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Richard Yanagihara
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Satoru Arai
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
6
|
Yashina LN, Kartashov MY, Wang W, Li K, Zdanovskaya NI, Ivanov LI, Zhang YZ. Co-circulation of distinct shrew-borne hantaviruses in the far east of Russia. Virus Res 2019; 272:197717. [PMID: 31422116 DOI: 10.1016/j.virusres.2019.197717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Insectivores are the new emerging reservoir of hantaviruses. Here, we describe Lena virus (LENV), a novel hantavirus harbored by the Laxmann`s shrew (Sorex caecutiens), which is also the host of Artybash virus (ARTV). Genetic analysis of the complete genomic sequence shows that LENV is in distant relation to ARTV and other Sorex-borne hantaviruses, suggesting that LENV has emerged from cross-species transmission. Additionally, new genetic variant of ARTV, designated as ARTV-St, was identified in tundra shrews (Sorex tundrensis). Finally, distinct insectivore-borne hantaviruses are co-circulating in the same localities of far eastern Russia: LENV, ARTV and Yakeshi in the forest site, while ARTV, ARTV-St, and Kenkeme virus in the meadow field site.
Collapse
Affiliation(s)
| | | | - Wen Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Kun Li
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | | | | | - Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.
| |
Collapse
|
7
|
Laenen L, Vergote V, Kafetzopoulou LE, Wawina TB, Vassou D, Cook JA, Hugot JP, Deboutte W, Kang HJ, Witkowski PT, Köppen-Rung P, Krüger DH, Licková M, Stang A, Striešková L, Szemeš T, Markowski J, Hejduk J, Kafetzopoulos D, Van Ranst M, Yanagihara R, Klempa B, Maes P. A Novel Hantavirus of the European Mole, Bruges Virus, Is Involved in Frequent Nova Virus Coinfections. Genome Biol Evol 2018; 10:45-55. [PMID: 29272370 PMCID: PMC5758900 DOI: 10.1093/gbe/evx268] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
Hantaviruses are zoonotic viruses with a complex evolutionary history of virus–host coevolution and cross-species transmission. Although hantaviruses have a broad reservoir host range, virus–host relationships were previously thought to be strict, with a single virus species infecting a single host species. Here, we describe Bruges virus, a novel hantavirus harbored by the European mole (Talpa europaea), which is the well-known host of Nova virus. Phylogenetic analyses of all three genomic segments showed tree topology inconsistencies, suggesting that Bruges virus has emerged from cross-species transmission and ancient reassortment events. A high number of coinfections with Bruges and Nova viruses was detected, but no evidence was found for reassortment between these two hantaviruses. These findings highlight the complexity of hantavirus evolution and the importance of further investigation of hantavirus–reservoir relationships.
Collapse
Affiliation(s)
- Lies Laenen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Valentijn Vergote
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Liana Eleni Kafetzopoulou
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Tony Bokalanga Wawina
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Despoina Vassou
- Genomics Facility, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Joseph A Cook
- Department of Biology, Museum of Southwestern Biology, University of New Mexico
| | - Jean-Pierre Hugot
- Department of Systematics and Evolution, L'Institut de Systématique, Évolution, Biodiversité, Muséum National d'Histoire Naturelle, Paris, France
| | - Ward Deboutte
- Laboratory of Viral Metagenomics, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Hae Ji Kang
- Department of Pediatrics, and Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa
| | - Peter T Witkowski
- Charité School of Medicine, Institute of Medical Virology, Berlin, Germany
| | - Panja Köppen-Rung
- Charité School of Medicine, Institute of Medical Virology, Berlin, Germany
| | - Detlev H Krüger
- Charité School of Medicine, Institute of Medical Virology, Berlin, Germany
| | - Martina Licková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexander Stang
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Lucia Striešková
- Department of Molecular Biology, Comenius University, Bratislava, Slovakia
| | - Tomáš Szemeš
- Department of Molecular Biology, Comenius University, Bratislava, Slovakia
| | - Janusz Markowski
- Department of Teacher Training and Biodiversity Studies, Faculty of Biology and Environmental Protection, University of Lódz, Poland
| | - Janusz Hejduk
- Department of Teacher Training and Biodiversity Studies, Faculty of Biology and Environmental Protection, University of Lódz, Poland
| | - Dimitris Kafetzopoulos
- Genomics Facility, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Richard Yanagihara
- Department of Pediatrics, and Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa
| | - Boris Klempa
- Charité School of Medicine, Institute of Medical Virology, Berlin, Germany.,Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Piet Maes
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| |
Collapse
|
8
|
Detection and characterization of three zoonotic viruses in wild rodents and shrews from Shenzhen city, China. Virol Sin 2017; 32:290-297. [PMID: 28721632 PMCID: PMC6598888 DOI: 10.1007/s12250-017-3973-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/27/2017] [Indexed: 11/02/2022] Open
Abstract
Diverse species of rodents and shrews, which are abundant worldwide, harbor a variety of viruses; some of these are closely related to human viruses and possess zoonotic potential. Previously studies have demonstrated that the mammarenavirus and hantavirus carried by rodents or shrews could cause diseases in human population. To determine the distribution of zoonotic viruses in Shenzhen city, the major city in southern China with a high population density, we analyzed 225 rodents (Rattus norvegicus and Rattus flavipectus) and 196 shrews (Suncus murinus) from urban and rural districts for the presence of mammarenavirus, hantavirus, and hepatitis E virus (HEV) by RT-PCR targeting the conserved regions. The infection rates for mammarenavirus, hantaviruses, and HEV in rodents and shrews were 3.56%, 6.89%, and 1.66%, respectively. Partial genome fragment analysis indicated that mammarenavirus and hantavirus strains had more than 90% and 99% nucleic acid identity with Cardamones virus and Seoul virus, respectively, which cause diseases in humans. Although the present HEV strains identified are typically found worldwide, phylogenetic analysis demonstrated a divergence of 16%. To our knowledge, the present work is the first report of the prevalence of mammarenavirus, hantaviruses, and rat HEV strains in rodents and shrews from Shenzhen city, China. Our findings highlight the zoonotic potential of rodent- and shrew-borne mammarenavirus and hantavirus, and the biodiversity of rat HEV isolates in Shenzhen city. The present work suggests that utilization of good hygiene habits is important to minimize the risk of zoonosis.
Collapse
|
9
|
Sun XF, Zhao L, Zhang ZT, Liu MM, Xue ZF, Wen HL, Ma DQ, Huang YT, Sun Y, Zhou CM, Luo LM, Liu JW, Li WQ, Yu H, Yu XJ. Detection of Imjin Virus and Seoul Virus in Crocidurine Shrews in Shandong Province, China. Vector Borne Zoonotic Dis 2017; 17:425-431. [PMID: 28287930 DOI: 10.1089/vbz.2016.2056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Recently, hantaviruses have been discovered in insectivores in Europe, Asia, Africa, and North America. Imjin virus (MJNV) was first isolated from the lung tissues of Ussuri white-toothed shrew (Crocidura lasiura) from South Korea in 2009. We aim to detect the species and prevalence of insectivore- and rodent-borne hantaviruses in shrews and rodents. MATERIALS AND METHODS Shrews and rodents were captured in Jiaonan County of Shandong Province, China, in 2014. RT-PCR was used to amplify viral RNA of Hantavirus species, including insectivore-borne Imjin virus (MJNV), rodent-borne Hantaan virus (HTNV), and Seoul virus (SEOV) from shrews and rodents. RESULTS AND DISCUSSION We found that MJNV infected 10.7% (19/178) of Crocidura shrews, but it infected none of rodents (0/475); we also found that 2 of 178 (1.1%) Crocidura shrews were PCR positive to SEOV. This study indicated that the major animal hosts of Imjin virus are shrews, and rodent-borne SEOV can infect shrews.
Collapse
Affiliation(s)
- Xi-Feng Sun
- 1 School of Public Health, Shandong University , Jinan, China
| | - Li Zhao
- 1 School of Public Health, Shandong University , Jinan, China
| | - Zhen-Tang Zhang
- 2 Huangdao District Center for Disease Control and Prevention , Qingdao City, China
| | - Miao-Miao Liu
- 1 School of Public Health, Shandong University , Jinan, China
| | - Zai-Feng Xue
- 2 Huangdao District Center for Disease Control and Prevention , Qingdao City, China
| | - Hong-Ling Wen
- 1 School of Public Health, Shandong University , Jinan, China
| | - Dong-Qiang Ma
- 2 Huangdao District Center for Disease Control and Prevention , Qingdao City, China
| | - Yu-Ting Huang
- 1 School of Public Health, Shandong University , Jinan, China
| | - Yue Sun
- 1 School of Public Health, Shandong University , Jinan, China
| | - Chuan-Min Zhou
- 1 School of Public Health, Shandong University , Jinan, China
| | - Li-Mei Luo
- 1 School of Public Health, Shandong University , Jinan, China
| | - Jian-Wei Liu
- 1 School of Public Health, Shandong University , Jinan, China
| | - Wen-Qian Li
- 1 School of Public Health, Shandong University , Jinan, China
| | - Hao Yu
- 3 School of Medicine, Fudan University , Shanghai, China
| | - Xue-Jie Yu
- 1 School of Public Health, Shandong University , Jinan, China .,4 School of Health Sciences, Wuhan University , Wuhan, China .,5 Department of Pathology, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
10
|
Hantavirus infection: a global zoonotic challenge. Virol Sin 2017; 32:32-43. [PMID: 28120221 DOI: 10.1007/s12250-016-3899-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Hantaviruses are comprised of tri-segmented negative sense single-stranded RNA, and are members of the Bunyaviridae family. Hantaviruses are distributed worldwide and are important zoonotic pathogens that can have severe adverse effects in humans. They are naturally maintained in specific reservoir hosts without inducing symptomatic infection. In humans, however, hantaviruses often cause two acute febrile diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). In this paper, we review the epidemiology and epizootiology of hantavirus infections worldwide.
Collapse
|
11
|
Arai S, Kang HJ, Gu SH, Ohdachi SD, Cook JA, Yashina LN, Tanaka-Taya K, Abramov SA, Morikawa S, Okabe N, Oishi K, Yanagihara R. Genetic Diversity of Artybash Virus in the Laxmann's Shrew (Sorex caecutiens). Vector Borne Zoonotic Dis 2016; 16:468-75. [PMID: 27172519 DOI: 10.1089/vbz.2015.1903] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although based on very limited M and L segment sequences, Artybash virus (ARTV) was proposed previously as a unique hantavirus harbored by the Laxmann's shrew (Sorex caecutiens). To verify this conjecture, lung tissues from 68 Laxmann's shrews, captured during 2006 to 2014 in eastern Siberia, Russia, and Hokkaido, Japan, were analyzed for ARTV RNA using reverse transcription polymerase chain reaction (RT-PCR). ARTV RNA was detected in six Laxmann's shrews. Pairwise alignment and comparison of partial- and full-length S, M, and L segment sequences from these Laxmann's shrews, as well as phylogenetic analyses, using maximum likelihood and Bayesian methods indicated that ARTV was distinct from other soricine shrew-borne hantaviruses and representative hantaviruses harbored by rodents, moles, and bats. Taxonomic identity of the ARTV-infected Laxmann's shrews was confirmed by full-length cytochrome b mitochondrial DNA sequence analysis. Our data indicate that the hantavirus previously known as Amga virus (MGAV) represents genetic variants of ARTV. Thus, the previously proposed designation of ARTV/MGAV should be replaced by ARTV.
Collapse
Affiliation(s)
- Satoru Arai
- 1 Infectious Disease Surveillance Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Hae Ji Kang
- 2 Department of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii at Manoa , Honolulu, Hawaii
| | - Se Hun Gu
- 2 Department of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii at Manoa , Honolulu, Hawaii
| | - Satoshi D Ohdachi
- 3 Institute of Low Temperature Science, Hokkaido University , Sapporo, Japan
| | - Joseph A Cook
- 4 Department of Biology and Museum of Southwestern Biology, University of New Mexico , Albuquerque, New Mexico
| | - Liudmila N Yashina
- 5 State Research Center of Virology and Biotechnology "Vector," Koltsovo , Russia
| | - Keiko Tanaka-Taya
- 1 Infectious Disease Surveillance Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Sergey A Abramov
- 6 Institute of Systematics and Ecology of Animals , Novosibirsk, Russia
| | - Shigeru Morikawa
- 7 Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nobuhiko Okabe
- 1 Infectious Disease Surveillance Center, National Institute of Infectious Diseases , Tokyo, Japan .,8 Kawasaki City Institute for Public Health , Kanagawa, Japan
| | - Kazunori Oishi
- 1 Infectious Disease Surveillance Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Richard Yanagihara
- 2 Department of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii at Manoa , Honolulu, Hawaii
| |
Collapse
|
12
|
Gu SH, Kumar M, Sikorska B, Hejduk J, Markowski J, Markowski M, Liberski PP, Yanagihara R. Isolation and partial characterization of a highly divergent lineage of hantavirus from the European mole (Talpa europaea). Sci Rep 2016; 6:21119. [PMID: 26892544 PMCID: PMC4759689 DOI: 10.1038/srep21119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
Genetically distinct hantaviruses have been identified in five species of fossorial moles (order Eulipotyphla, family Talpidae) from Eurasia and North America. Here, we report the isolation and partial characterization of a highly divergent hantavirus, named Nova virus (NVAV), from lung tissue of a European mole (Talpa europaea), captured in central Poland in August 2013. Typical hantavirus-like particles, measuring 80-120 nm in diameter, were found in NVAV-infected Vero E6 cells by transmission electron microscopy. Whole-genome sequences of the isolate, designated NVAV strain Te34, were identical to that amplified from the original lung tissue, and phylogenetic analysis of the full-length L, M and S segments, using maximum-likelihood and Bayesian methods, showed that NVAV was most closely related to hantaviruses harbored by insectivorous bats, consistent with an ancient evolutionary origin. Infant Swiss Webster mice, inoculated with NVAV by the intraperitoneal route, developed weight loss and hyperactivity, beginning at 16 days, followed by hind-limb paralysis and death. High NVAV RNA copies were detected in lung, liver, kidney, spleen and brain by quantitative real-time RT-PCR. Neuropathological examination showed astrocytic and microglial activation and neuronal loss. The first mole-borne hantavirus isolate will facilitate long-overdue studies on its infectivity and pathogenic potential in humans.
Collapse
Affiliation(s)
- Se Hun Gu
- Departments of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Mukesh Kumar
- Departments of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Faculty of Medicine, Medical University of Łódź, 92-216 Łódź, Poland
| | - Janusz Hejduk
- Department of Biodiversity Studies, Didactics and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Janusz Markowski
- Department of Biodiversity Studies, Didactics and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Marcin Markowski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Paweł P Liberski
- Department of Molecular Pathology and Neuropathology, Faculty of Medicine, Medical University of Łódź, 92-216 Łódź, Poland
| | - Richard Yanagihara
- Departments of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
13
|
Ge XY, Yang WH, Pan H, Zhou JH, Han X, Zhu GJ, Desmond JS, Daszak P, Shi ZL, Zhang YZ. Fugong virus, a novel hantavirus harbored by the small oriental vole (Eothenomys eleusis) in China. Virol J 2016; 13:27. [PMID: 26880191 PMCID: PMC4754816 DOI: 10.1186/s12985-016-0483-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/02/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Rodents are natural reservoirs of hantaviruses, which cause two disease types: hemorrhagic fever with renal syndrome in Eurasia and hantavirus pulmonary syndrome in North America. Hantaviruses related human cases have been observed throughout Asia, Europe, Africa, and North America. To date, 23 distinct species of hantaviruses, hosted by reservoir, have been identified. However, the diversity and number of hantaviruses are likely underestimated in China, and hantavirus species that cause disease in many regions, including Yunnan province, are unknown. RESULTS In August 2012, we collected tissue samples from 189 captured animals, including 15 species belonging to 10 genera, 5 families, and 4 orders in Fugong county, Yunnan province, China. Seven species were positive for hantavirus: Eothenomys eleusis (42/94), Apodemus peninsulae (3/25), Niviventer eha (3/27), Cryptotis montivaga (2/8), Anourosorex squamipes (1/1), Sorex araneus (1/1), and Mustela sibirica (1/2). We characterized one full-length genomic sequence of the virus (named fugong virus, FUGV) from a small oriental vole (Eothenomys eleusis). The full-length sequences of the small, medium, and large segments of FUGV were 1813, 3630, and 6531 nt, respectively. FUGV was most closely related to hantavirus LX309, a previously reported species detected in the red-backed vole in Luxi county, Yunnan province, China. However, the amino acid sequences of nucleocapsid (N), glycoprotein (G), and large protein (L) were highly divergent from those of Hantavirus LX309, with amino acid differences of 11.2, 15.3, and 12.7 %, respectively. In phylogenetic trees, FUGV clustered in the lineage corresponding to hantaviruses carried by rodents in the subfamily Arvicolinae. CONCLUSIONS High prevalence of hantavirus infection in small mammals was found in Fugong county, Yunnan province, China. A novel hantavirus species FUGV was identified from the small oriental vole. This virus is phylogenetic clustering with another hantavirus LX309, but shows highly genomic divergence.
Collapse
Affiliation(s)
- Xing-Yi Ge
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Wei-Hong Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China.
| | - Hong Pan
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China.
| | - Ji-Hua Zhou
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China.
| | - Xi Han
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China.
| | | | | | | | - Zheng-Li Shi
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Yun-Zhi Zhang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China.
| |
Collapse
|
14
|
Ling J, Sironen T, Voutilainen L, Hepojoki S, Niemimaa J, Isoviita VM, Vaheri A, Henttonen H, Vapalahti O. Hantaviruses in Finnish soricomorphs: evidence for two distinct hantaviruses carried by Sorex araneus suggesting ancient host-switch. INFECTION GENETICS AND EVOLUTION 2014; 27:51-61. [PMID: 24997334 DOI: 10.1016/j.meegid.2014.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/12/2014] [Accepted: 06/14/2014] [Indexed: 11/17/2022]
Abstract
Hantaviruses are emerging viruses carried by rodents, soricomorphs (shrews and moles) and bats. In Finland, Puumala virus (PUUV) was for years the only hantavirus detected. In 2009, however, Seewis virus (SWSV) was reported from archival common shrew (Sorex araneus) samples collected in 1982 in Finland. To elucidate the diversity of hantaviruses in soricomorphs in Finland, 180 individuals were screened, representing seven species captured from 2001 to 2012: hantavirus RNA was screened using RT-PCR, and hantaviral antigen using immunoblotting with polyclonal antibodies raised against truncated SWSV nucleocapsid protein. The overall hantavirus RNA prevalence was 14% (26/180), antigen could be demonstrated in 9 of 20 SWSV RT-PCR positive common shrews. Genetic analyses revealed that four soricomorph-borne hantaviruses circulate in Finland, including Boginia virus (BOGV) in water shrew (Neomys fodiens) and Asikkala virus (ASIV) in pygmy shrew (Sorex minutus). Interestingly, on two study sites, common shrews harbored strains of two different hantaviruses: Seewis virus and a new distinct, genetically distant (identity 57% at amino acid level) virus (Altai-like virus) which clusters together with viruses in the basal phylogroup I of hantaviruses with 62-67% identity at amino acid level. This is the first evidence of coexistence of two clearly distinct hantavirus species circulating simultaneously in one host species population. The findings suggest an ancient host-switching event from a yet unknown host to S. araneus. In addition, phylogenetic analyses of partial S and M segment sequences showed that SWSV in Finland represents a unique genotype in Europe.
Collapse
Affiliation(s)
- Jiaxin Ling
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | - Liina Voutilainen
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland; Finnish Forest Research Institute, Vantaa, Finland
| | - Satu Hepojoki
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | - Veli-Matti Isoviita
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland; Department of Virology and Immunology, HUSLAB, Helsinki University Central Hospital, Finland
| | | | - Olli Vapalahti
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland; Department of Virology and Immunology, HUSLAB, Helsinki University Central Hospital, Finland; Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Lin XD, Zhou RH, Fan FN, Ying XH, Sun XY, Wang W, Holmes EC, Zhang YZ. Biodiversity and evolution of Imjin virus and Thottapalayam virus in Crocidurinae shrews in Zhejiang Province, China. Virus Res 2014; 189:114-20. [PMID: 24874196 DOI: 10.1016/j.virusres.2014.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
The recent discovery of numerous hantaviruses in insectivores has provided a new view of hantavirus biodiversity and evolution. To determine the presence and genetic diversity of Imjin virus (MJNV) and Thottapalayam virus (TPMV) in insectivores in Zhejiang Province, China, we captured and performed virus screening of 32 Ussuri white-toothed shrews (Crocidura lasiura) and 105 Asian house shrews (Suncus murinus) in different coastal regions. Hantavirus genome (S, M, and L segments) sequences were successfully recovered from one Ussuri white-toothed shrew and seven Asian house shrews. Phylogenetic analysis revealed that the virus carried by the Ussuri white-toothed shrew was most closely related to MJNV, but with >15% nucleotide sequence difference, suggesting that it represents a new subtype. The hantaviruses carried by Asian house shrews were closely related to the TPMV variants found in the same geographic area, but more distantly related to those sampled in India and Nepal. Additionally, the TPMV sequences obtained in this study, as well as those found previously in this area, could be divided into three lineages reflecting their geographic origins, indicative of largely allopatric evolution. Overall, our data highlights the high genetic diversity of insectivore-borne hantaviruses in China, suggesting that more may be discovered in the future.
Collapse
Affiliation(s)
- Xian-Dan Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou 325001, Zhejiang Province, China
| | - Run-Hong Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206, Beijing, China
| | - Fei-Neng Fan
- Cixi Center for Disease Control and Prevention, Cixi, 315300, Zhejiang Province, China
| | - Xu-Hua Ying
- Yuhuan Center for Disease Control and Prevention, Yuhuan, 317600, Zhejiang Province, China
| | - Xiao-Yu Sun
- Wenzhou Center for Disease Control and Prevention, Wenzhou 325001, Zhejiang Province, China
| | - Wen Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China
| | - Edward C Holmes
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206, Beijing, China; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China.
| |
Collapse
|