1
|
Yin X, Zhang G, Song G, Li X, Liu X, Wang L, Zhang H, Tang Z. A novel near-infrared fluorescent probe for butyrylcholinesterase: Research for screening of natural anti-AD inhibitors. Anal Chim Acta 2024; 1331:343348. [PMID: 39532429 DOI: 10.1016/j.aca.2024.343348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Elevated levels of butyrylcholinesterase (BuChE) have the potential to be predictive in the timely detection and diagnosis of Alzheimer's disease (AD). By inhibiting of BuChE activity can raise acetylcholine levels and intervene AD processes. Therefore, BuChE as an important factor in treatment AD has been given more and more attention in clinical studies. Given the facts above, in this study, for precise monitoring of BuChE level changes and screening for possible butyrylcholinesterase inhibitor (BuChEI) for AD diagnosis and therapy, a near-infrared (NIR) fluorescence probe (NFP-BuChE) was created. The probe exhibits excellent sensitivity and selectivity for BuChE. NFP-BuChE has been successfully applied to the detection of endogenous BuChE levels in live cells, and we successfully constructed a screening system for BuChEI on cells and a novel natural efficient BuChEI (matrine) was discovered and identified, which significantly reduced BuChE activity and thus alleviated AD symptoms. Most importantly, for the first time, we measured the changes of BuChE levels in zebrafish (0-4 days) after fertilization, various organs of zebrafish, and AD zebrafish modeled by different concentrations of AlCl3 by NFP-BuChE, and at the same time, we also validated the inhibitory effect of matrine on BuChE by NFP-BuChE in zebrafish. In addition, NFP-BuChE has also been successfully used to measure the changes of BuChE levels in the brains of AD mice. These findings imply that NFP-BuChE is a potentially useful molecular tool for screening possible natural BuChEI quickly and for monitoring changes in BuChE activity, and it is expected that more value will be explored in mice. In addition, matrine and its derivatives are promising options for future Alzheimer's disease treatments.
Collapse
Affiliation(s)
- Xiaoyi Yin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Gaoning Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Guangxu Song
- College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoru Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xinming Liu
- College of Management, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lufan Wang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hai Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Zhixin Tang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Jinan, 250355, China.
| |
Collapse
|
2
|
Li N, Feng X, An C, Liu G, Liu C. Metabolites from traditional Chinese botanical drugs with anti-hepatitis B virus activity - a review. Front Pharmacol 2024; 15:1331967. [PMID: 39070799 PMCID: PMC11272473 DOI: 10.3389/fphar.2024.1331967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Hepatitis B virus (HBV)-related liver disease poses a major threat to human health worldwide. Although interferon and nucleoside analogues are commonly administered for treating chronic HBV infection, their use is limited by considerable side effects, drug resistance and incapacity for HBV elimination. Hence, novel HBV therapeutics are urgently required. For numerous years, traditional Chinese botanical drugs have been widely used to treat HBV-related diseases. The natural metabolites derived from these traditional drugs exhibit significant anti-HBV effects and serve as potential novel drugs for treating HBV. For overall understanding the therapeutic potential of these metabolites, the anti-HBV effects and mechanisms of action of 107 natural metabolites are summarized in this article. Mechanistically, these natural metabolites exert their anti-HBV effects by influencing the expression and function of host and/or viral genes, which differs from the mechanism of action of nucleoside analogues. Indeed, combining natural metabolites with nucleoside analogues can exert synergistic effects. Accordingly, natural metabolites or their chemically modified derivatives represent potential novel drugs and adjuvants for anti-HBV treatment.
Collapse
Affiliation(s)
| | | | - Cheng An
- Clinical Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guijian Liu
- Clinical Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Liu
- Clinical Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Wei S, Xiao J, Ju F, Liu J, Hu Z. A review on the pharmacology, pharmacokinetics and toxicity of sophocarpine. Front Pharmacol 2024; 15:1353234. [PMID: 38746009 PMCID: PMC11092382 DOI: 10.3389/fphar.2024.1353234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Sophocarpine is a natural compound that belongs to the quinolizidine alkaloid family, and has a long history of use and widespread distribution in traditional Chinese herbal medicines such as Sophora alopecuroides L., Sophora flavescens Ait., and Sophora subprostrata. This article aims to summarize the pharmacology, pharmacokinetics, and toxicity of sophocarpine, evaluate its potential pharmacological effects in various diseases, and propose the necessity for further research and evaluation to promote its clinical application. A large number of studies have shown that it has anti-inflammatory, analgesic, antiviral, antiparasitic, anticancer, endocrine regulatory, and organ-protective effects as it modulates various signaling pathways, such as the NF-κB, MAPK, PI3K/AKT, and AMPK pathways. The distribution of sophocarpine in the body conforms to a two-compartment model, and sophocarpine can be detected in various tissues with a relatively short half-life. Although the pharmacological effects of sophocarpine have been confirmed, toxicity and safety assessments and reports on molecular mechanisms of its pharmacological actions have been limited. Given its significant pharmacological effects and potential clinical value, further research and evaluation are needed to promote the clinical application of sophocarpine.
Collapse
Affiliation(s)
- Shichao Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junshen Xiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ju
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Lei Y, Li X, Zhu L. Matrine regulates miR-495-3p/miR-543/PDK1 axis to repress the progression of acute myeloid leukemia via the Wnt/β-catenin pathway. Chem Biol Drug Des 2024; 103:e14441. [PMID: 38230785 DOI: 10.1111/cbdd.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
Acute myeloid leukemia (AML) is a commonly hematological malignancy with feature of rapidly increased immature myeloid cells in bone marrow. The anti-tumor activity of matrine has been reported in various cancers. However, the functional role of matrine in AML progression still needs to be studied. Cell growth, apoptosis and cell cycle arrest in AML cells were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay and flow cytometry, respectively. The levels of adenosine triphosphate (ATP)/adenosine diphosphate (ADP) ratio, lactate production and glucose consumption were detected to evaluate glycolysis. Dual-luciferase reporter assay was conducted to determine the relationships between phosphoinositide-dependent kinase 1 (PDK1) and microRNA-495-3p (miR-495-3p)/microRNA-543 (miR-543) in AML cells. The results showed that matrine inhibited cell proliferation, glycolysis, and accelerated cell apoptosis and cell cycle arrest in AML cells. MiR-495-3p/miR-543 was lowly expressed, and PDK1 was highly expressed in AML. Functionally, both miR-495-3p and miR-543 could reverse the effects of matrine on cell proliferation, glycolysis, apoptosis and cell cycle arrest in AML cells. Mechanistically, miR-495-3p/miR-543 directly targeted PDK1, and the inhibition impacts of miR-495-3p/miR-543 on AML progression could be rescued by PDK1 overexpression. Moreover, matrine also could regulate PDK1 expression to suppress AML progression. Besides, matrine modulated miR-495-3p/miR-543/PDK1 axis to inhibit the Wnt/β-catenin pathway. In summary, matrine hampered the progression of AML through targeting miR-495-3p and miR-543 to attenuate PDK1 expression, thereby repressing the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yanping Lei
- Department of Pharmacy, Weinan Maternal and Child Health Hospital (Weinan People's Hospital), Weinan, China
| | - Xiao Li
- Department of Gynecology, The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Liping Zhu
- Department of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Deng W, Chen F, Zhao Y, Zhou M, Guo M. Anti-hepatitis B virus activities of natural products and their antiviral mechanisms. Chin J Nat Med 2023; 21:803-811. [PMID: 38035936 DOI: 10.1016/s1875-5364(23)60505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 12/02/2023]
Abstract
Chronic hepatitis B (CHB) infections caused by the hepatitis B virus (HBV) continue to pose a significant global public health challenge. Currently, the approved treatments for CHB are limited to interferon and nucleos(t)ide analogs, both of which have their limitations, and achieving a complete cure remains an elusive goal. Therefore, the identification of new therapeutic targets and the development of novel antiviral strategies are of utmost importance. Natural products (NPs) constitute a class of substances known for their diverse chemical structures, wide-ranging biological activities, and low toxicity profiles. They have shown promise as potential candidates for combating various diseases, with a substantial number demonstrating anti-HBV properties. This comprehensive review focuses on the current applications of NPs in the fight against HBV and provides a summary of their antiviral mechanisms, considering their impact on the viral life cycle and host hepatocytes. By offering insights into the world of anti-HBV NPs, this review aims to furnish valuable information to support the future development of antiviral drugs.
Collapse
Affiliation(s)
- Wanyu Deng
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Fu Chen
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, School of Life Science&Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ming Zhou
- BGI-Shenzhen, Shenzhen 518000, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518110, China; Liver-biotechnology (Shenzhen) Co., Ltd., Shenzhen 518110, China.
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science&Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
6
|
Chen Y, Wang X, Ye D, Yang Z, Shen Q, Liu X, Chen C, Chen X. Research progress of sophoridine's pharmacological activities and its molecular mechanism: an updated review. Front Pharmacol 2023; 14:1126636. [PMID: 37397472 PMCID: PMC10311568 DOI: 10.3389/fphar.2023.1126636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Sophoridine, the major active constituent of Sophora alopecuroides and its roots, is a bioactive alkaloid with a wide range of pharmacological effects, including antitumor, anti-inflammatory, antiviral, antibacterial, analgesic, cardioprotective, and immunoprotective activities. Sophora flavescens Aiton is a traditional Chinese medicine that is bitter and cold. Additionally, it also exhibits the effects of clearing heat, eliminating dampness, and expelling insects. Aims of the study: To summarize the pharmacological research and associated mechanisms of sophoridine, we compiled this review by combining a huge body of relevant literature. Materials and methods: The information related to this article was systematically collected from the scientific literature databases including PubMed, Google Scholar, Web of Science, Science Direct, Springer, China National Knowledge Infrastructure, published books, PhD and MS dissertations. Results: Its antitumor activity is particularly remarkable, as it can inhibit cancer cell proliferation, invasion, and metastasis while inducing cell cycle arrest and apoptosis. Additionally, sophoridine also holds therapeutic potential for myocardial ischemia, osteoporosis, arrhythmias, and neurological disorders, primarily through the suppression of related inflammatory factors and cell apoptosis. However, sophoridine has also exhibited adverse effects such as hepatotoxicity and neurotoxicity. The antidisease effect and mechanism of sophoridine are diverse, so it has high research value. Conclusion: As an important traditional Chinese medicine alkaloid, modern pharmacological studies have demonstrated that sophoridine has prominent bioactivities, especially on anti-tumor anti-inflammation activities, and cardiovascular system protection. These activities provide prospects for novel drug development for cancer and some chronic diseases. Nevertheless, the understanding of the multitarget network pharmacology, long-term in vivo toxicity, and clinical efficacy of sophoridine require further detailed research.
Collapse
Affiliation(s)
- Yiwei Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Xiang Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongmei Ye
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Zhousheng Yang
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Qingrong Shen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Xiaoxia Liu
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Chunxia Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Xiaoyu Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| |
Collapse
|
7
|
Tang Q, Luan F, Yuan A, Sun J, Rao Z, Wang B, Liu Y, Zeng N. Sophoridine Suppresses Herpes Simplex Virus Type 1 Infection by Blocking the Activation of Cellular PI3K/Akt and p38 MAPK Pathways. Front Microbiol 2022; 13:872505. [PMID: 35756044 PMCID: PMC9229184 DOI: 10.3389/fmicb.2022.872505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous and important human pathogen capable of causing significant clinical diseases ranging from skin damage to encephalitis, particularly in immunocompromised and neonatal hosts. Currently, widely used nucleoside analogs, including acyclovir and penciclovir, have some limitations in their use due to side effects and drug resistance. Herein, we report sophoridine's (SRI) dramatic inhibition of HSV-1 replication in vitro. SRI exhibited a remarkable inhibitory influence on HSV-1 virus-induced cytopathic effect and plaque formation, as well as on progeny viruses in Vero and HeLa cells, with selection indexes (SI) of 38.96 and 22.62, respectively. Moreover, SRI also considerably suppressed HSV-1 replication by hindering the expression of viral immediate-early (ICP0 and ICP22), early (ICP8 and TK), and late (gB and gD) genes and the expression of viral proteins ICP0, gB, and gD. We suggest that SRI can directly inactivate viral particles and block some stages in the life cycle of HSV-1 after adsorption. Further experiments showed that SRI downregulated the cellular PI3K/Akt signaling pathway and obstructed HSV-1 replication even more. Most importantly, SRI markedly repressed HSV-1-induced p38 MAPK pathway activation. Collectively, this natural bioactive alkaloid could be a promising therapeutic candidate against HSV-1 via the modulation of cellular PI3K/Akt and p38 MAPK pathways.
Collapse
Affiliation(s)
- Qiong Tang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - An Yuan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhili Rao
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baojun Wang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Liu
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Nan Zeng
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Pak U, Yu Y, Ning X, Ho C, Ji L, Mayo KH, Zhou Y, Sun L. Comparative study of water-soluble polysaccharides isolated from leaves and roots of Isatis indigotica Fort. Int J Biol Macromol 2022; 206:642-652. [PMID: 35247423 DOI: 10.1016/j.ijbiomac.2022.02.187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 11/15/2022]
Abstract
Water-soluble polysaccharides were isolated from the leaves and roots of Isatis indigotica Fort., and their structural features were studied and compared. One neutral polysaccharide fraction (WFIP-N) and three pectin fractions (WFIP-A-A, WFIP-A-B and WFIP-A-C) were obtained from the leaves, and one neutral polysaccharide fraction (WRIP-N) and two pectin fractions (WRIP-A-A and WRIP-A-B) were obtained from the roots. WFIP-A-B (Mw = 34.6 kDa) and WRIP-A-B (Mw = 29.9 kDa) were the major pectic polysaccharides. Monosaccharide composition, FT-IR, enzymatic hydrolysis, NMR and methylation analysis indicated that both WFIP-A-B and WRIP-A-B are composed of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II) and homogalacturonan (HG) domains with mass ratios of 1.5:1.0:0.4 and 0.3:1.0:1.7, respectively. WFIP-A-B and WRIP-A-B were found to be rich in RG-I and HG domains, respectively, and mainly contained type II arabinogalactan (AG-II) and α-L-1,5-arabinan side chains, but those in WRIP-A-B were more numerous and longer. Our results provide structural features and differences between these polysaccharides which will help to elucidate their functional differences.
Collapse
Affiliation(s)
- UnHak Pak
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Yang Yu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xin Ning
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - ChungHyok Ho
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Li Ji
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Lin Sun
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
9
|
Tang Q, Liu Y, Peng X, Wang B, Luan F, Zeng N. Research Progress in the Pharmacological Activities, Toxicities, and Pharmacokinetics of Sophoridine and Its Derivatives. Drug Des Devel Ther 2022; 16:191-212. [PMID: 35082485 PMCID: PMC8784973 DOI: 10.2147/dddt.s339555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Sophoridine is a natural quinolizidine alkaloid and a bioactive ingredient that can be isolated and identified from certain herbs, including Sophora flavescens Alt, Sophora alopecuroides L, and Sophora viciifolia Hance. In recent years, this quinolizidine alkaloid has gained widespread attention because of its unique structure and minimal side effects. Modern pharmacological investigations have uncovered sophoridine's multiple wide range biological activities, such as anti-cancer, anti-inflammatory, anti-viral, anti-arrhythmia, and analgesic functions, among others. These pharmacological activities and beneficial effects point to sophoridine as a strong potential therapeutic candidate for the treatment of various diseases, including several cancer types, hepatitis B virus, enterovirus 71, coxsackievirus B3, cerebral edema, cancer pain, heart failure, acute myocardial ischemia, arrhythmia, inflammation, acute lung injury, and osteoporosis. The data showed that sophoridine had adverse reactions, including hepatotoxicity and neurotoxicity. Additionally, analyses of sophoridine's safety, bioavailability, and pharmacokinetic parameters in animal models of research have been limited, especially in the clinic, as have been investigations on its structure-activity relationship. In this article, we comprehensively summarize the biological activities, toxicity, and pharmacokinetic characteristics of sophoridine and its derivatives, as currently reported in publications, as we attempt to provide an overall perspective on sophoridine analogs and the prospects of its application clinically.
Collapse
Affiliation(s)
- Qiong Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Yao Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.,School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, 610083, People's Republic of China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Baojun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| |
Collapse
|
10
|
Zhou S, Li Y, Gao J, Wang Y, Ma X, Ding H, Li X, Sun S. Novel protein kinase C phosphorylated kinase inhibitor-matrine suppresses replication of hepatitis B virus via modulating the mitogen-activated protein kinase signal. Bioengineered 2022; 13:2851-2865. [PMID: 35037840 PMCID: PMC8974119 DOI: 10.1080/21655979.2021.2024957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
HBV (hepatitis B virus) infection still threatens human health. Therefore, it is essential to find new effective anti-HBV compounds. Here, we identified matrine as a novel inhibitor of PKC (protein kinase C) phosphorylated kinase by screening a natural compound library. After HepG2.215 cells were treated with matrine, we carried out a phosphorylated proteomics sequence study and analyzed the prediction of related kinase expression level. In the case of HBV infection, it was found that PKC kinase mediates the activation of mitogen-activated protein kinase (MAPK) signaling pathway known as son of sevenless (SOS) activation. It was also found that PKC kinase inhibits the expression of C-X-C Motif Chemokine Ligand 8 (CXCL8) by inhibiting the activity of activating transcription factor 2/ cAMP response element binding protein (ATF2/CREB), and this effect is independent of its activated MAPK signaling pathway. Finally, Western blot was used to detect the expression of MAPK, ATF2, CREB3 phosphorylation and nonphosphorylation in matrine-treated cells and PKC-treated cells. PKC phosphorylated kinase inhibitor-matrine suppresses the replication of HBV via modulating the MAPK/ATF2 signal. Matrine is a good clinical drug to enhance the autoimmunity in the adjuvant treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Shen Zhou
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yuan Li
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital Affiliated of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jing Gao
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yanyan Wang
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xinping Ma
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hui Ding
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xiuling Li
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Suofeng Sun
- Department of Gastroenterology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Chen M, Jiang Q, Zhang M, Chen S, Lou J, Chen Y, Wang F, Wang R. Establishment of quantitative methodology for sophoridine analysis and determination of its pharmacokinetics and bioavailability in rat. Drug Dev Ind Pharm 2021; 47:741-747. [PMID: 34213992 DOI: 10.1080/03639045.2021.1934862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study is to develop a rapid and sensitive UPLC-MS/MS approach to determine the sophoridine (SOP) level in rat plasma and the pharmacokinetics of the substance. SIGNIFICANCE Sophoridine is used as an anti-inflammatory, anti-virus, anti-microbial, and anti-tumor alkaloid. It is essential to explore specific detection methods for the quantitative analysis of SOP in the blood circulation. METHODS The rat plasma samples were prepared by one-step protein precipitation with acetonitrile. Subsequently, the samples were separated by chromatography using a UPLC BEH C18 reversed-phase with an initial mobile phase of methanol and 0.1% formic acid aqueous solution. The gradient elution was performed at a fixed flow rate of 0.4 mL/min, and multiple reaction monitoring (MRM) mode with an electrospray positive ionization source was employed to detect the transitions of m/z 249.1 → 84.2 for SOP and m/z 264.3 → 69.8 for dendrobine (IS). The entire process required 3.5 min for each sample. RESULTS A linear correlation was established over the range of 2-2000 ng/mL (r2≥0.9954) for SOP in rat plasma with a lower limit of quantification (LLOQ) at 2 ng/mL. The range of accuracy was tested between 94.90% and 100.80%, and the relative standard deviations (RSDs) toward both intra- and inter-day precision were <10%. Thus, this method was successfully applied to a pharmacokinetic study, and the subsequent results demonstrated a low absolute bioavailability of 2.32%. CONCLUSION The present study established a reliable method that quantified the SOP concentration in rat plasma after administering a dose of 2 mg/kg intravenously or 20 mg/kg orally.
Collapse
Affiliation(s)
- Mengchun Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
| | - Qi Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mingyao Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sailing Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junsheng Lou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yijie Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongyue Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Li X, Tang Z, Wen L, Jiang C, Feng Q. Matrine: A review of its pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113682. [PMID: 33307055 DOI: 10.1016/j.jep.2020.113682] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Dogel ebs" was known as Sophora flavescens Ait., which has been widely utilized in the clinical practice of traditional Chinese Mongolian herbal medicine for thousands of years. Shen Nong's Materia Medica (Shen Nong Ben Cao Jing in Chinese pinyin) recorded that it is bitter in taste and cold in nature with the effect of clearing heat and eliminating dampness, insecticide, diuresis. Due to its extensive application in the fields of ethnopharmacological utilization, the pharmaceutical researches of Sophora flavescens Ait.s keeps deepening. Modern pharmacological studies have exhibited that matrine, which is rich in this traditional herbal medicine, mediates its main biological properties. AIMS OF THE REVIEW This review aimed at summarizing the latest and comprehensive information of matrine on the pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches to explore the therapeutic potential of this natural ingredient. In addition, outlooks and perspective for possible future researches that related are also discussed. MATERIALS AND METHODS Related information concerning matrine was gathered from the internet database of Google scholar, Pubmed, ResearchGate, Web of Science and Wiley Online Library with the keywords including "matrine", "pharmacology", "toxicology" and "pharmacokinetics", "clinical application", etc. RESULTS: Based on literatures, matrine has a variety of pharmacological effects, including anti-cancer, anti-inflammatory, anti-microbial, detoxification and so on. Nevertheless, there are still some doubts about it due to the toxicity and questionable bioavailability that does exist. CONCLUSIONS Future researches directions probably include elucidate the mechanism of its toxicity and accurately tracing the in vivo behavior of its drug delivery system. Without doubt, integration of toxicity and efficiency and structure modification based on it are also pivotal methods to enhance pharmacological activity and bioavailability.
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ziwei Tang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Beibei Traditional Chinese Medical Hospital, Chongqing, 400700, China
| | - Li Wen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cen Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
13
|
Wang T, Wang X, Zhuo Y, Si C, Yang L, Meng L, Zhu B. Antiviral activity of a polysaccharide from Radix Isatidis (Isatis indigotica Fortune) against hepatitis B virus (HBV) in vitro via activation of JAK/STAT signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112782. [PMID: 32217096 DOI: 10.1016/j.jep.2020.112782] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatitis B virus (HBV) infection frequently results in both acute and chronic hepatitis and poses serious threats to human health worldwide. Despite the availability of effective HBV vaccine and anti-HBV drugs, apparently inevitable side effects and resistance have limited its efficiency, thus prompt the search for new anti-HBV agents. The traditional Chinese medicine Radix Isatidis has been used for thousands of years, mainly for the treatment of viral and bacterial infection diseases including hepatitis. AIM OF THE STUDY In this study, antiviral activities of a Radix Isatidis (Isatis indigotica Fortune) polysaccharide (RIP) were evaluated in vitro model using the HepG2.2.15 cell line and the underlying mechanism was elucidated with the aim of developing a novel anti-HBV therapeutic agent. MATERIALS AND METHODS Structure features of the purified polysaccharide RIP were investigated by a combination of chemical and instrumental analysis. Drug cytotoxicity was assessed using the MTT assay. The contents of HBsAg, HBeAg, intracellular and extracellular IFN-α level were measured using respective commercially available ELISA kit. The HBV DNA expression was evaluated by real-time quantitative polymerase chain reaction (PCR) and the relevant proteins involved in TFN/JAK/STAT signaling pathways were examined by western blot assay. RESULTS MTT assay showed that RIP had no toxicity on HepG2.2.15 cell line below the concentration 400 μg/ml at Day 3, 6 and 9. Furthermore, RIP at the concentration of 50, 100 and 200 μg/ml significantly reduced extracellular and intracellular level of HBsAg, HBeAg and HBV DNA in HepG2.2.15 cells in a time and dose-dependent manner. Moreover, RIP also enhanced the production of IFN-α in HepG2.2.15 cell via activation of JAK/STAT signal pathway and induction of antiviral proteins, as evidenced by the increased protein expression of p-STAT-1, p-STAT-2, p-JAK1, p-TYK2, OAS1, and Mx in HepG2.2.15 cells. In addition, the over expression of SOCS-1 and SOCS-3 was significantly abolished under same conditions. CONCLUSIONS These results suggested that the HBV inhibitory effect of RIP was possibly due to the activation of IFN-α-dependent JAK/STAT signal pathway and induction of the anti-HBV protein expression.
Collapse
Affiliation(s)
- Tianbao Wang
- Infectious Disease Department of the First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Xinwei Wang
- Infectious Disease Department of the First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Ya Zhuo
- Infectious Disease Department of the First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Changyun Si
- Infectious Disease Department of the First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Lu Yang
- Gastroenterology Department of the First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Lijun Meng
- Gastroenterology Department of the First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Bin Zhu
- Infectious Disease Department of the First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China.
| |
Collapse
|
14
|
Yang B, Li H, Zhang T, Wang Z, Li H, Zhang Y. Nonlinear and mixed inhibitory effect of matrine on the cytotoxicity of oligomeric amyloid-β protein. Neurochem Int 2020; 137:104746. [PMID: 32325190 DOI: 10.1016/j.neuint.2020.104746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 02/08/2023]
Abstract
The formation of amyloid β-protein (1-42) (Aβ42) oligomers and Aβ42 oligomer cytotoxicity are two defining characteristics of the etiology of Alzheimer's disease (AD). In this study, we found that matrine (Mat) could maintain or even enhance the cytotrophic effect of Aβ42 monomers by inhibiting their aggregation and by working in a manner similar to synergy with Aβ42 monomers. Moreover, Mat could also exert a cytoprotective effect by actively promoting the disaggregation of immature Aβ42 oligomers in a concentration-dependent manner. Although Mat at intermediate concentrations (1-50 μM) exhibited both cytotrophic and cytoprotective effects on SH-SY5Y cells, Mat at higher concentrations (100 μM) only exhibited a cytoprotective effect. Molecular docking studies reveal that these differences are a result of the different interactions between Mat and Aβ42 oligomers that occur at different molecular ratios. Our results support the hypothesis that there may be a Mat-like metabolite in the human brain that acts as a molecular chaperone for Aβ42 monomers. A deficiency in this chaperone would result in the gradual aggregation of Aβ42 monomers, and eventually, formation of toxic Aβ42 oligomers. In addition, reduction or clearance of Aβ42 aggregates or deposits and inhibition or elimination of the toxicity of oligomeric Aβ42, were not always directly correlated. Finally, the site(s) responsible for cytotoxicity in Aβ42 oligomers may be located in the integrated region of the N-terminal fragments of Aβ42 chains. This study provides valuable insights into the mechanisms involved in the development of natural drugs for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Bing Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Hongli Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Zhenxing Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China; China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - He Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China; School of Life Science, Jilin University, Changchun 130012, China; Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
15
|
GPR43 regulates HBV X protein (HBx)-induced inflammatory response in human LO2 hepatocytes. Biomed Pharmacother 2020; 123:109737. [DOI: 10.1016/j.biopha.2019.109737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
|
16
|
Quinolizidine alkaloids derivatives from Sophora alopecuroides Linn: Bioactivities, structure-activity relationships and preliminary molecular mechanisms. Eur J Med Chem 2019; 188:111972. [PMID: 31884408 DOI: 10.1016/j.ejmech.2019.111972] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/24/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
Abstract
Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn, have been well concerned in the past several decades owing to the unique structural features and numerous pharmacological activities. Quinolizidine alkaloids consist of matrine, oxymatrine, sophoridine, sophocarpine and aloperine etc. Additionally, quinolizidine alkaloids exert various excellent activities, including anti-cancer, anti-inflammation, anti-fibrosis, anti-virus and anti-arrhythmia regulations. In this review, we comprehensively clarify the pharmacological activities of quinolizidine alkaloids, as well as the relationship between biological function and structure-activity of substituted quinolizidine alkaloids. We believe that biological agents based on the pharmacological functions of quinolizidine alkaloids could be well applied in clinical practice.
Collapse
|
17
|
Cao Y, Lu G, Chen X, Chen X, Guo N, Li W. BAFF is involved in the pathogenesis of IgA nephropathy by activating the TRAF6/NF‑κB signaling pathway in glomerular mesangial cells. Mol Med Rep 2019; 21:795-805. [PMID: 31974601 PMCID: PMC6947818 DOI: 10.3892/mmr.2019.10870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/30/2019] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to investigate the involvement of B cell-activating factor (BAFF) in the pathogenesis of IgA nephropathy by activating the tumor necrosis factor receptor-associated factor 6 (TRAF6)/NF-κB signaling pathway in glomerular mesangial cells. For the clinical analysis, blood, urine and kidney tissue samples were collected from 58 patients diagnosed with primary IgA nephropathy by renal biopsy. For the in vitro study, glomerular mesangial cells were divided into five groups: Control (con)-short hairpin RNA (shRNA) (control group); con-shRNA + BAFF (20 ng/ml); con-shRNA + BAFF + BAFF-RFc chimera protein (500 µg/ml); TRAF6-shRNA; and TRAF6-shRNA + BAFF (20 ng/ml). For the in vivo experiments, 60 Sprague-Dawley rats were randomly divided into four groups: Con-small interfering RNA (siRNA) (control group); con-siRNA + IgA (IgA nephropathy group), BAFF-RFc chimera protein (2 µg/ml) + IgA, and TRAF6-siRNA (0.2 µM) + IgA. Reverse transcription-quantitative PCR was performed to evaluate the mRNA expression levels of TRAF6, connective tissue growth factor (CTGF), fibronectin (FN) and NF-κBP65. Western blot analysis was used to detect the protein expression levels of TRAF6, FN, CTGF and phosphorylated-NF-κBP65 in glomerular mesangial cells and kidney tissues. The results revealed that plasma BAFF levels were positively correlated with the severity of pathological damage in patients with IgA nephropathy. In vitro, BAFF induced the mRNA and protein expression of TRAF6, CTGF, FN and NF-κBP65 in glomerular mesangial cells. After the BAFF-RFc chimera protein was added to inhibit the binding of BAFF and BAFF-receptor (-R), this effect was reduced. In vivo, inhibition of the effects of BAFF via injection with the BAFF-R Fc chimera protein reduced kidney damage in rats suffering from IgA nephropathy. The effect on the expression of signaling pathway-associated proteins was also alleviated. In conclusion, BAFF enhanced the expression of fibroblast factors in the kidneys by activating the TRAF6/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yingjie Cao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiaolan Chen
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xu Chen
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Naifeng Guo
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Wenwen Li
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
18
|
Sophocarpine Attenuates Chronic Constriction Sciatic Nerve Injury-induced Neuropathic Pain in Mice by Inhibiting the HMGB1/TLR4/NF-κB Signaling Pathway. IRANIAN RED CRESCENT MEDICAL JOURNAL 2019. [DOI: 10.5812/ircmj.94716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Hao Y, Zhang N, Wei N, Yin H, Zhang Y, Xu H, Zhu C, Li D. Matrine induces apoptosis in acute myeloid leukemia cells by inhibiting the PI3K/Akt/mTOR signaling pathway. Oncol Lett 2019; 18:2891-2896. [PMID: 31452769 PMCID: PMC6704321 DOI: 10.3892/ol.2019.10649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/12/2019] [Indexed: 11/06/2022] Open
Abstract
Matrine has been demonstrated to exert anticancer effects on acute myeloid leukemia (AML) cell lines. However, the mechanisms of matrine in AML remain largely unknown. The present study investigated the anticancer effects and underlying mechanisms of matrine on human AML cells in vitro. THP-1 cell lines were cultured and treated with different doses of matrine (0.4, 0.8, 1.2, 1.6 and 2.0 g/l). The effects of matrine on the cell proliferation were assessed by the Cell Counting Kit-8 assay. The apoptotic effects were evaluated by DAPI and annexin V/propidium iodide staining assays. The effects of the drug on phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/ mechanistic target of rapamycin kinase (mTOR) protein expression were studied by western blot analysis. The results of the present study demonstrated that matrine suppressed the viability of THP-1 cells. The anticancer effects were identified to be dose-dependent and the IC50 value was 1.2 g/l in THP-1 cells. Matrine inhibited cell viability and induced cell apoptosis of AML cell lines in a dose- and time-dependent manner. In addition, it was observed that matrine decreased the expression of phosphorylated (p)-PI3K, p-Akt and p-mTOR in a concentration-dependent manner. However, the expression levels of PI3K, Akt and mTOR remained almost unaltered. These findings indicated that matrine may inhibit cell proliferation and induce apoptosis of AML cells and may be a novel effective chemotherapeutic agent against AML.
Collapse
Affiliation(s)
- Yanmei Hao
- Department of Clinical Laboratory, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Nan Zhang
- Department of Clinical Laboratory, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Nannan Wei
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Hongmei Yin
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yingjie Zhang
- Department of Clinical Laboratory, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Hui Xu
- Department of Clinical Laboratory, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Chaomang Zhu
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Duojie Li
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
20
|
Sun K, Bai Y, Zhao R, Guo Z, Su X, Li P, Yang P. Neuroprotective effects of matrine on scopolamine-induced amnesia via inhibition of AChE/BuChE and oxidative stress. Metab Brain Dis 2019; 34:173-181. [PMID: 30406376 DOI: 10.1007/s11011-018-0335-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022]
Abstract
The present study was designed to evaluate the effects of matrine (MAT) on scopolamine (SCOP)-induced learning and memory impairment. After successive oral administration of MAT to mice for three days at doses of 0.4, 2, and 10 mg/kg, we assessed improvements in learning and memory and investigated the mechanism of action of SCOP-induced amnesia. Donepezil at a dose of 3 mg/kg was used as a standard memory enhancer. MAT significantly improved SCOP-induced learning and memory impairment in novel object recognition and Y-maze tests at doses of 0.4, 2, and 10 mg/kg. Furthermore, MAT inhibited acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities and decreased oxidative stress in the brain, as evidenced by increased total antioxidant capacity, total superoxide dismutase levels, and catalase activities as well as decreased malondialdehyde levels. Additionally, there was a significant negative correlation between the percentage of spontaneous alternation in the Y maze and AChE activity in the cortex and hippocampus. MAT ameliorated SCOP-induced amnesia by the inhibition of both AChE/BuChE activities and oxidative stress. This study provides further evidence to encourage the development of MAT as a drug for the prevention or treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Kaiyue Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
| | - Yuting Bai
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Rong Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Zijiao Guo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Xiang Su
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Peiqi Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Pengyu Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| |
Collapse
|
21
|
|
22
|
Liu Y, Yao W, Si L, Hou J, Wang J, Xu Z, Li W, Chen J, Li R, Li P, Bo L, Xiao X, Lan J, Xu D. Chinese herbal extract Su-duxing had potent inhibitory effects on both wild-type and entecavir-resistant hepatitis B virus (HBV) in vitro and effectively suppressed HBV replication in mouse model. Antiviral Res 2018; 155:39-47. [PMID: 29702120 DOI: 10.1016/j.antiviral.2018.04.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 02/09/2023]
Abstract
This study aimed to investigate anti-HBV effect and major active compounds of Su-duxing, a medicine extracted from Chinese herbs. HBV-replicating cell lines HepG2.2.15 (wild-type) and HepG2.A64 (entecavir-resistant) were used for in vitro test. C57BL/6 mice infected by adeno-associated virus carrying 1.3 mer wild-type HBV genome were used for in vivo test. Inhibitory rates of Su-duxing (10 μg/mL) on HBV replicative intermediate and HBsAg levels were 75.1%, 51.0% in HepG2.2.15 cells and 65.2%, 42.9% in HepG2.A64 cells. The 50% inhibitory concentration of Su-duxing and entecavir on HBV replicative intermediates had 0.2-fold and 712.5-fold increase respectively for entecavir-resistant HBV compared to wild-type HBV. Su-duxing and entecavir combination showed a better anti-HBV effect than each single of agents. Mice treated with Su-duxing (45.0 mg kg-1 d-1 for 2 weeks) had 1.39 log10 IU/mL decrease of serum HBV DNA, and 48.9% and 51.7% decrease of serum HBsAg and HBeAg levels. GeneChip and KEGG analysis proposed that anti-HBV mechanisms included relief of HBx stability and viral replication, deregulation of early cell cycle checkpoints, and induction of type I interferon. Quantitative RT-PCR verified that CCNA2, ATF4, FAS and CDKN1A expression levels had significant difference between Su-duxing-treated and control groups. Six active compounds (Matrine, Oxymatrine, Chlorogenic acid, Sophocarpine, Baicalein, and Wogonin) against HBV were identified in Su-duxing. Greater anti-HBV effects were observed in some compound pairs compared to each single compound. In conclusion, Su-duxing had potent inhibitory effects on both wild-type and entecavir-resistant HBV. Its effects were associated with coordinated roles of active compounds in its composition.
Collapse
Affiliation(s)
- Yan Liu
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Weiming Yao
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Lanlan Si
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Jun Hou
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Jiabo Wang
- Institute of Chinese Medicine, Beijing 302 Hospital, Beijing, China
| | - Zhihui Xu
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Weijie Li
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Jianhong Chen
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China
| | - Penggao Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lvping Bo
- Beijing Jin Ming Kang Biotechnology Co., Ltd., Beijing 100054, China
| | - Xiaohe Xiao
- Institute of Chinese Medicine, Beijing 302 Hospital, Beijing, China.
| | - Jinchu Lan
- Beijing Gulou Hospital of Chinese Medicine, Beijing 100009, China.
| | - Dongping Xu
- Research Center for Clinical and Translational Medicine, Beijing 302 Hospital, Beijing, China.
| |
Collapse
|
23
|
Wang Y, Liu Y, Jiang J, Cui H. Antitumor effects of matrine on cancer stem like cells isolated from the human liver cancer SMMC-7721 cell line. Oncol Lett 2017; 15:1777-1782. [PMID: 29434874 DOI: 10.3892/ol.2017.7531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/28/2017] [Indexed: 01/15/2023] Open
Abstract
The existence of cancer stem cells (CSCs) or cancer stem-like cells (CSLCs) is regarded as the cause of tumor formation and recurrence. Matrine has been reported to exhibit antitumor effects in cancer cells. In the present study, a preliminary study was performed on the mechanisms of matrine on hepatocellular carcinoma (HCC) stem-like cells. The HCC SMMC-7721 cell line was cultured in tumor stem cell-specific medium to form spheres, and different concentrations (1, 2 and 5 mg/kg) of cisplatin were then used in order to purify the most drug-resistant cells, which were used as CSLCs. An MTT assay was performed to detect the inhibitory effects of matrine against CSLC proliferation. Quantitative polymerase chain reaction (qPCR) and western blot analysis were used to detect changes in cell adhesion regulating gene (CAR), E-cadherin, laminin and fibronectin. As a result, using tryptose sulfite cycloserine medium culture and cisplatin-resistance screening, CSLCs were successfully isolated from the SMMC-7721 cell line. Matrine inhibited the proliferation of CSLCs in vitro. The results of qPCR and western blot analysis demonstrated that matrine upregulated the expression of CAR, E-cadherin, laminin and fibronectin in CSLCs compared with the control treatment. A certain concentration of matrine exhibited antitumor effects on HCC stem like cells.
Collapse
Affiliation(s)
- Yong Wang
- Key Lab of Ningbo, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yahui Liu
- Key Lab of Ningbo, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Jianshuai Jiang
- Key Lab of Ningbo, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Hanbin Cui
- Key Lab of Ningbo, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
24
|
Feng J, Huang J, Li Z. Kushenin combined with adefovir dipivoxil affects the HBV-DNA load in serum, immune functions and liver functions of patients with chronic hepatitis B. Exp Ther Med 2017; 14:5837-5842. [PMID: 29285129 PMCID: PMC5740596 DOI: 10.3892/etm.2017.5266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/22/2017] [Indexed: 01/27/2023] Open
Abstract
This study aimed to explore the effect of kushenin combined with adefovir dipivoxil on the load of hepatitis B virus DNA (HBV-DNA) in serum, in immune functions and in liver functions of patients with chronic hepatitis B. A sample of 80 patients with chronic hepatitis B was selected who were admitted to Weifang People's Hospital for treatment between January, 2013 and December, 2015. They were divided into the observation group (n=40) and the control group (n=40). The patients in both groups received adefovir dipivoxil, while those in the observation group additionally received the kushenin. Variations in HBV-DNA load and transforming growth factor-β1 (TGF-β1) in the two groups were detected before intervention, at 1 month, 3 months and 6 months after intervention. In addition, after intervention, we also observed the changes in CD4+, CD8+ and CD4+/CD8+, as well as the levels of immune globulin. Furthermore, in these two groups, we detected the changes in endotoxin in serum before and after intervention, the liver function after intervention, and the variations of hyaluronic acid (HA) and type III procollagen (PCIII) before and after intervention which were used to serve as the indicators for hepatic fibrosis. Results showed that at one month, 3 months and 6 months after intervention, HBV-DNA load and the level of TGF-β1 in the observation group were lower than those in the control group (P<0.05). In the observation group, the HBV-DNA load at 6 months after intervention was the lowest, sequentially followed by the levels at 3 months, at 1 month and before intervention (P<0.05). After intervention, the levels of CD4+ and CD8+ and CD4+/CD8+ in the observation group were higher than those in the control group (P<0.05). Moreover, the levels of immunoglobulin M (IgM), immunoglobulin G (IgG) and immunoglobulin A (IgA) were elevated in the observation group compared to the levels in the control group (P<0.05). Additionally, the level of endotoxin in serum, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBil). Besides, after intervention, the levels of HA and PCIII in the observation group were found to be lower than those in the control group before and after intervention (P<0.05). This study concludes that, for patients with chronic hepatitis B, kushenin combined with adefovir dipivoxil can remarkably decrease the HBV-DNA load, improve their immunity, ameliorate the liver function and delay the onset of liver cirrhosis.
Collapse
Affiliation(s)
- Jing Feng
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Jiandong Huang
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Zhiqin Li
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
25
|
Zhao X, Mei L, Pei J, Liu Z, Shao Y, Tao Y, Zhang X, Jiang L. Sophoridine from Sophora Flower Attenuates Ovariectomy Induced Osteoporosis through the RANKL-ERK-NFAT Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9647-9654. [PMID: 29058425 DOI: 10.1021/acs.jafc.7b03666] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An imbalance in osteogenesis and osteoclastogenesis is a crucial pathological factor in the development of osteoporosis. Osteoclasts (OCs) play a pivotal role in osteoporosis, whose new therapy exploration has been focused on the suppression of OC formation. Sophoridine is found from the Chinese traditional food sophora flower to exhibit anti-osteoporosis capacity by screening. This study is focused on its anti-osteoporosis mechanism evaluation. The anti-osteoporosis effect of sophoridine, (15 mg kg-1 body), was evaluated in ovariectomized (OVX) mice by monitoring changes in bone histomorphometry index, formation of osteoclasts from blood-derived mononuclear cells, and changes in the synthesis of pro-osteoclastogenic cytokines. Signal pathways were investigated by QPCR, Western blot, and immunofluorescence. Sophoridine has a significant anti-osteoporosis effect in vivo, which can inhibit RANKL-induced OC formation, the appearance of OC-specific marker genes, and OC marker protein in vitro. Mechanistically, sophoridine dose- and time-dependently blocks the RANKL-induced OC formation and the activation of ERK and c-Fos as well as the induction and nucleus translocation of NFATc1. Sophora flower might be a useful alternative functional food in preventing or treating osteoporosis.
Collapse
Affiliation(s)
- Xiaoying Zhao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) , Shanghai 200025, China
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM) , Shanghai 200092, China
| | - Lijuan Mei
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences , Xining 810001, P. R. China
| | - Jinjin Pei
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences , Xining 810001, P. R. China
- Shaanxi Key Laboratory of Bioresources and Biology, Shaanxi University of Technology , Hanzhong 723001, P. R. China
| | - Zenggen Liu
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences , Xining 810001, P. R. China
| | - Yun Shao
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences , Xining 810001, P. R. China
| | - Yanduo Tao
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences , Xining 810001, P. R. China
| | - Xiaoling Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) , Shanghai 200025, China
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM) , Shanghai 200092, China
| | - Lei Jiang
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences , Xining 810001, P. R. China
| |
Collapse
|